J/MNRAS/440/942 100 and 160um fluxes of nearby galaxies (Cortese+, 2014) ================================================================================ PACS photometry of the Herschel Reference Survey - far-infrared/submillimetre colours as tracers of dust properties in nearby galaxies. Cortese L., Fritz J., Bianchi S., Boselli A., Ciesla L., Bendo G.J., Boquien M., Roussel H., Baes M., Buat V., Clemens M., Cooray A., Cormier D., Davies J.I., De Looze I., Eales S.A., Fuller C., Hunt L.K., Madden S., Munoz-Mateos J., Pappalardo C., Pierini D., Remy-Ruyer A., Sauvage M., di Serego Alighieri S., Smith M.W.L., Spinoglio L., Vaccari M., Vlahakis C. =2014MNRAS.440..942C ================================================================================ ADC_Keywords: Galaxies, nearby ; Photometry, infrared ; Photometry, millimetric/submm Keywords: galaxies: fundamental parameters - galaxies: ISM - infrared: galaxies Abstract: We present Herschel/PACS 100 and 160{mu}m integrated photometry for the 323 galaxies in the Herschel Reference Survey (HRS), a K-band, volume-limited sample of galaxies in the local Universe. Once combined with the Herschel/SPIRE observations already available, these data make the HRS the largest representative sample of nearby galaxies with homogeneous coverage across the 100-500{mu}m wavelength range. In this paper, we take advantage of this unique data set to investigate the properties and shape of the far-infrared/submillimetre spectral energy distribution in nearby galaxies. We show that, in the stellar mass range covered by the HRS (8<~log(M*/M_{sun}_)<~12), the far-infrared/submillimetre colours are inconsistent with a single modified blackbody having the same dust emissivity index {beta} for all galaxies. In particular, either {beta} decreases or multiple temperature components are needed, when moving from metal-rich/gas-poor to metal-poor/gas-rich galaxies. We thus investigate how the dust temperature and mass obtained from a single modified blackbody depend on the assumptions made on {beta}. We show that, while the correlations between dust temperature, galaxy structure and star formation rate are strongly model dependent, the dust mass scaling relations are much more reliable, and variations of {beta} only change the strength of the observed trends. Description: The Herschel/PACS 100 and 160um observations of HRS galaxies presented in this work have been obtained as part of various opentime Herschel projects. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 139 323 The PACS 100 and 160 micron flux densities of the Herschel Reference Survey (HRS) table3.dat 79 246 *Best-fitting dust temperatures and masses for a single modified black-body with {beta}=2 and {beta}=free -------------------------------------------------------------------------------- Note on table3.dat: Only galaxies for which the reduced {chi}^2^ corresponds to a probability P>=95% are shown. -------------------------------------------------------------------------------- See also: VI/139 : Herschel Observation Log (Herschel Science Centre, 2013) J/PASP/122/261 : Herschel Reference Survey Sample (Boselli+, 2010) J/A+A/532/A90 : PACS Evolutionary Probe (PEP-DR1) catalogs (Lutz+, 2011) J/MNRAS/421/3027 : Statisical study of galaxy dust emissions (Bourne+, 2012) J/A+A/565/A128 : Dust SED in HRS nearby galaxies (Ciesla+, 2014) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 I3 --- HRS [1/323] Herschel Reference Survey number, <[BEC2010] HRS NNN> in Simbad 5- 11 A7 --- CGCG CGCG name (NNN-NNN, in Simbad) 13- 16 I4 --- VCC ?=0 VCC number 18- 21 I4 --- UGC ?=0 UGC number 23- 26 I4 --- NGC ?=0 NGC number 28- 31 I4 --- IC ?=0 IC number 33- 34 I2 h RAh Right ascension (J2000) 36- 37 I2 min RAm Right ascension (J2000) 39- 43 F5.2 s RAs Right ascension (J2000) 45 A1 --- DE- Declination sign (J2000) 46- 47 I2 deg DEd Declination (J2000) 49- 50 I2 arcmin DEm Declination (J2000) 52- 55 F4.1 arcsec DEs Declination (J2000) 57- 58 I2 --- TT [-2/17] Morphological type (1) 60 I1 --- f_F100 [0/2] 100um flux density flag, 1=ok (2) 61 A1 --- l_F100 [<] Limit flag on F100 (for f_F100=2) (2) 62- 68 F7.3 Jy F100 ?=0 100 micron flux density (or upper limit) 70- 74 F5.3 Jy e_F100 ?=0 Total uncertainty on F100 77 I1 --- f_F160 [0/2] 160um flux density flag, 1=ok (2) 78 A1 --- l_F160 [<] Limit flag on F160 (for f_F160=2) (2) 79- 85 F7.3 Jy F160 ?=0 160 micron flux density (or upper limit) 87- 91 F5.3 Jy e_F160 ?=0 Total uncertainty on F160 93- 97 F5.1 arcsec a [20/600] Major semi-axis of the aperture used for the photometry 99-103 F5.1 arcsec b [20/400] Minor semi-axis of the aperture used for the photometry 105-109 F5.1 deg PA [-90/90] Position angle of the aperture used for the photometry 111-139 A29 --- PID Herschel Proposal ID(s) -------------------------------------------------------------------------------- Note (1): Morphological Type are: -2=dE/dS0, 0=E-E/S0, 1=S0, 2=S0a- S0/Sa, 3=Sa, 4=Sab, 5=Sb, 6=Sbc, 7=Sc, 8=Scd, 9=Sd, 10=Sdm-Sd/Sm, 11=Sm, 12=Im, 13=Pec, 14=S/BCD, 15=Sm/BCD, 16=Im/BCD, 17=BCD. Note (2): Flags are: 0 = Non detections 1 = Detections 2 = Confused (i.e., flux density estimate significantly contaminated by the presence of another object. For confused galaxies, flux densities should be considered as an upper limit to the real value -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 I3 --- HRS [1/323] HRS sequential number 5- 9 F5.2 Mpc Dist [15/25] Distance 11- 14 F4.1 K T2 ?=- Best-fitting dust temperature for {beta}=2 16- 18 F3.1 K E_T2 ? Error on T2 (lower value) 20- 22 F3.1 K e_T2 ? Error on T2 (lower value) 24- 27 F4.2 [Msun] logMd2 ?=- Dust mass for {beta}=2 29- 32 F4.2 [Msun] E_logMd2 ? Error on logMd2 (upper value) 34- 37 F4.2 [Msun] e_logMd2 ? Error on logMd2 (lower value) 39- 41 F3.1 --- beta [0.6/3.5]?=- Best-fitting {beta} value (1) 43- 45 F3.1 --- E_beta ? Error on beta (upper value) 47- 49 F3.1 --- e_beta ? Error on beta (lower value) 51- 54 F4.1 K T ?=- Best-fitting dust temperature for beta 56- 59 F4.1 K E_T ? Error on T (upper value) 61- 64 F4.1 K e_T ? Error on T (lower value) 66- 69 F4.2 [Msun] logMd ?=- Dust mass for beta 71- 74 F4.2 [Msun] E_logMd ? Error on logMd (upper value) 76- 79 F4.2 [Msun] e_logMd ? Error on logMd (lower value) -------------------------------------------------------------------------------- Note (1): where the variation of the dust emissivity with frequency is described by {kappa}_{nu}_={kappa}_0_.({nu}/{nu}_0_)^{beta}^ . -------------------------------------------------------------------------------- History: From electronic version of the journal ================================================================================ (End) Patricia Vannier [CDS] 26-Jan-2015