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ABSTRACT
The scaling of observable properties of galaxy clusters with mass evolves with time. Assessing
the role of the evolution is crucial to study the formation and evolution of massive haloes and
to avoid biases in the calibration. We present a general method to infer the mass and the
redshift dependence, and the time-evolving intrinsic scatter of the mass–observable relations.
The procedure self-calibrates the redshift-dependent completeness function of the sample. The
intrinsic scatter in the mass estimates used to calibrate the relation is considered too. We apply
the method to the scaling of mass M� versus line-of-sight galaxy velocity dispersion σ v, optical
richness, X-ray luminosity, LX, and Sunyaev–Zel’dovich signal. Masses were calibrated with
weak lensing measurements. The measured relations are in good agreement with time and mass
dependences predicted in the self-similar scenario of structure formation. The lone exception is
the LX−M� relation, whose time evolution is negative in agreement with formation scenarios
with additional radiative cooling and uniform preheating at high redshift. The intrinsic scatter
in the σv−M� relation is notably small, of the order of 14 per cent. Robust predictions on the
observed properties of the galaxy clusters in the Cluster Lensing And Supernova survey with
Hubble sample are provided as cases of study. Catalogues and scripts are publicly available at
http://pico.bo.astro.it/~sereno/CoMaLit/.

Key words: gravitational lensing: weak – catalogues – galaxies: clusters: general.

1 IN T RO D U C T I O N

Scaling relations among cluster global properties embody impor-
tant clues on the formation and evolution of cosmic structures. They
result from the main gravitational processes driving the cluster evo-
lution (Kaiser 1986; Battaglia et al. 2012; Ettori 2013; Giodini et al.
2013). Accurate mass–observable relations are also needed to use
the abundance of galaxy clusters to constrain cosmological param-
eters (Vikhlinin et al. 2009; Mantz et al. 2010a, 2014; Rozo et al.
2010; Planck Collaboration XX 2014).

This paper is the fourth in a series titled ‘CoMaLit’ (COmparing
MAsses in LITerature), which aims to assess our present capability
to measure cluster masses, and to develop methods to measure scal-
ing relations through Bayesian techniques. In the first paper (Sereno
& Ettori 2015, hereafter CoMaLit-I), we evaluated systematic differ-
ences in lensing and X-ray masses obtained from independent anal-
yses and we quantified the overall level of bias and intrinsic scatter
of these mass proxies. The second paper presented the formalism to
calibrate an observable cluster property against the cluster mass and
applied the methodology to the Sunyaev–Zel’dovich (SZ) Planck
selected clusters (Sereno, Ettori & Moscardini 2015, hereafter

� E-mail: mauro.sereno@unibo.it

CoMaLit-II). The Literature Catalogs of weak Lensing Clusters
(LC2), which are standardized and homogenized compilations of
clusters and groups with weak lensing (WL) mass estimates, were
presented in the third paper (Sereno 2015, hereafter CoMaLit-III).
Here, we extend the Bayesian approach to account for redshift evo-
lution of the scaling relations, of the intrinsic scatters in the mass
and in the observable, and of the selection function.

If gravity is the dominant process, the resulting self-similar model
predicts scaling relations in form of scale-free power laws (Kaiser
1986; Giodini et al. 2013). Numerical simulations (Stanek et al.
2010; Fabjan et al. 2011) confirmed these scalings and showed
that intrinsic scatters around the median relations approximately
follow a lognormal distribution. This basic theoretical scheme is
very successful in describing observed scaling relations in X-ray
and SZ (Ettori 2013, 2015). Deviations from the self-similar scheme
may indicate that non-gravitational processes, such as feedback and
non-thermal processes, contribute significantly to the global energy
budget in clusters (Maughan et al. 2012).

The precise measurement of the redshift evolution of the scaling
relations is then crucial to understand how either gravitational or
non-gravitational phenomena drive the formation and evolution of
clusters. Furthermore, if the time evolution is neglected or wrongly
shaped, the estimated scaling with mass may be biased in cluster
samples spanning a significant redshift range (Andreon 2014).

C© 2015 The Authors
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Any real time-dependence in the scaling of observables with
mass and redshift has to be separated by other effects connected
either to the evolution of the cluster mass function or to the redshift
dependence of the selection function and of the completeness of the
sample. Further complications are due to the fact that usual samples
of clusters are not assembled according to well-defined criteria but
they may be just heterogeneous collections of systems with high
quality data. In this case, the determination of the selection function
is very problematic.

Here, we develop a method that measures at the same time the
evolution of the scaling relation and the completeness/selection
function of the sample. This is a self-calibrating method which is
intended to be optimized in large optical survey such as Euclid
(Laureijs et al. 2011). If we calibrate a cluster observable against
the cluster mass, this relation can be used to construct a mass proxy
based on the observable. The optimal mass proxy is expected to
be easy to measure, unbiased, and minimally scattered. A crucial
aspect is that in the first step we cannot calibrate the observable
against the true mass (which cannot be measured), but we have to
rely on another mass proxy, such as the WL mass or the hydrostatic
mass, which are scattered too (Rasia et al. 2012; CoMaLit-I). This
scatter has to be considered to avoid biases (Mantz et al. 2014;
CoMaLit-I; CoMaLit-II)

We apply the method to calibrate mass proxies based on the line-
of-sight velocity dispersion of cluster galaxies, which is supposedly
the best mass proxy (Stanek et al. 2010; Saro et al. 2013), and three
other observables, which are more scattered but optimized for large
surveys, i.e. the optical richness, the X-ray luminosity, and the SZ
integrated Compton parameter.

This paper is organized as follows. Section 2 is devoted to gen-
eral considerations on the redshift evolution of the scaling relations,
of the intrinsic scatters, and of the selection/completeness function.
Section 3 reviews the methodology employed to perform the regres-
sion and to recover at the same time the scaling relations and the
completeness and selection functions. The cluster catalogues used
in the analysis are introduced in Section 4. Results are presented
in Section 5, whereas Section 6 is devoted to the comparison with
theoretical predictions and previous works. Final considerations are
contained in Section 7. In Appendix A, we discuss how the masses
of clusters in selected samples are usually distributed. Appendix B
describes the format of the compiled catalogues of line-of-sight
velocity dispersions.

Throughout the CoMaLit series of papers, we have been adopting
the following conventions and notations. The framework cosmo-
logical model is the concordance flat � cold dark matter (�CDM)
universe with density parameter �M = 0.3, and Hubble constant
H0 = 70 km s−1 Mpc−1. H(z) is the redshift dependent Hubble pa-
rameter and Ez ≡ H(z)/H0. When H0 is not specified, h is the Hubble
constant in units of 100 km s−1 Mpc−1.

O� denotes a global property of the cluster measured within the
radius which encloses a mean overdensity of � times the critical
density at the cluster redshift, ρcr = 3H (z)2/(8πG). ‘log ’ is the
logarithm to base 10 and ‘ln’ is the natural logarithm.

2 R E D S H I F T E VO L U T I O N

Scaling relations evolve with redshift. Numerical simulations
(Stanek et al. 2010) and theoretical predictions (Giodini et al. 2013)
agree that the relation between the mass M� and any observable
quantity O can be summarized by the form

O ∝ M
β
�Eγ

z . (1)

Within this framework, the redshift evolution in the median scaling
relation is accounted for by the factor Eγ

z , whereas the slope β is
redshift independent. In fact, in the self-similar scenario, the evolu-
tion does not depend on the mass scale and only the normalization
depends on cosmic time.

We tested this scheme in a number of cases. We considered ob-
servables connected either to the galaxy distribution, i.e. velocity
dispersion of galaxies along the line of sight, σ v, or optical richness,
λ, or to the intracluster medium, i.e. the bolometric X-ray luminos-
ity, LX, or the spherically integrated SZ Compton signal, YSZ. In the
self-similar scenario, we expect that for clusters in equilibrium the
scalings go like (Giodini et al. 2013; Ettori 2015)

σv ∝ E1/3
z M

1/3
� , (2)

λ ∝ M�, (3)

LX ∝ E7/3
z M

4/3
� , (4)

D2
AY� ∝ E2/3

z M
5/3
� , (5)

where DA is the angular diameter distance to the cluster. The above
self-similar scaling relations evolve with redshift as Eγss

z , with
γ ss = 1/3, 0, 7/3, or 2/3 for the galaxy velocity dispersion, the
optical richness, the X-ray luminosity, or the spherical SZ signal,
respectively. The scaling of the X-ray luminosity depends on the
energy band. For the soft X-ray luminosity in the rest-frame energy
band [0.1–2.4] keV, LXsoft , the evolution can be expressed as (Ettori
2015),

LXsoft ∝ E2
z M�. (6)

Together with the redshift dependence of the median relation, the
intrinsic scatter of the relation and the scatter between the true mass
and the mass proxy used to calibrate the relation may evolve as well.
Furthermore, any apparent redshift evolution of the scaling may be
degenerate with the evolution of either the mass or the selection
function. We discuss these aspects in the following.

2.1 Intrinsic scatter

Broadly speaking, the intrinsic scatter of a scaling relation is related
to the degree of regularity of the clusters. The larger the devia-
tions from dynamical/hydrostatic equilibrium the larger the scatter
(Fabjan et al. 2011; Saro et al. 2013). Scatter is then prominent
in morphologically complex haloes. Triaxiality is another major
source of scatter, since clusters are usually studied under the sim-
plifying assumption of spherical symmetry (Limousin et al. 2013;
Sereno et al. 2013). Since high-redshift clusters are more irregular
and less spherical, the scatter is usually expected to increase with
redshift.

Let us consider the evolution of scatter in a number of cases.
Based on numerical simulations, Saro et al. (2013) showed that
the scatter of dynamical mass estimates based on the line-of-sight
velocity dispersion is approximately lognormal and that it increases
with redshift as

σlog(Mσv /MVir) � 0.13(1 + 0.25z). (7)

They argued that the dominant contributor to the scatter is the in-
trinsic triaxial structure of haloes and that its evolution with redshift
is also the dominant source of the increasing scatter of the 1D dy-
namical mass estimates with redshift.

MNRAS 450, 3675–3695 (2015)
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Fabjan et al. (2011) studied the scaling relations between the
cluster mass and some proxies based on X-ray quantities with a set
of cosmological hydrodynamical simulations. They found that the
scatter distribution around the best-fitting relations is always close
to a lognormal one and that the scatter increases with redshift.

The precise quantitative estimate of the scatter and of its evolution
strongly depends on the details of the baryonic physics included in
the simulations. We considered the results of Fabjan et al. (2011) for
runs with non-radiative physics and standard viscosity. To study the
time evolution, we fitted the values of the scatter obtained at different
redshifts (z = 0.0, 0.25, 0.50, 0.80, and 1.0) under the assumption
of self-similar scaling relation (Fabjan et al. 2011, tables 1, 2, and
3). The mass proxy MYX is based on YX, i.e. the product of the
gas mass within r500 and the spectroscopic temperature outside the
core (Kravtsov, Vikhlinin & Nagai 2006). We found that the scatter
evolves as

σlog(MYX /M500) � 0.03E0.23
z , (8)

or, with an alternative form,1

σlog(MYX /M500) � 0.03(1 + 0.14z). (9)

For the mass proxy based on the emission-weighted temperature,
we found

σlog(MTmw /M500) � 0.06E0.29
z , (10)

or

σlog(MTmw /M500) � 0.06(1 + 0.19z). (11)

The above results show that the scatter mildly increases with red-
shift. This suggest that the evolution of the scatter can be modelled
as

σo|μ = σ0E
γσ
z . (12)

2.2 Completeness

The completeness of a sample usually evolves with redshift. Very
massive clusters are rare and difficult to be found in the local volume
but they are still forming at high redshift. On the other hand, only
clusters emitting very strong signals can be detected to very large
distances. As detailed in Appendix A, the selection and the mass
functions conjure to make the distribution of true masses in observed
samples fairly unimodal. The evolution of the completeness of the
sample can be characterized through the evolution of the peak and
of the dispersion of this distribution.

The mean (logarithmic) mass of the sample is connected to the
observational threshold (see Appendix A), which may evolve with
redshift, and to the scatter between the mass and the observable
quantity used to select the clusters, which evolves too.

Let us first consider the evolution of the mass corresponding to a
completeness limit. As a first example let us consider a flux-selected
sample. The luminosity scales with mass as

L� ∝ M
β
�Eγ

z . (13)

If we select only clusters above a limiting flux, fth, the corresponding
luminosity evolves as Lth(z) ∝ fthDL(z)2, where DL(z) is the lumi-

1 The function (1 + z)γ1 , i.e. ∼(1 + γ 1z) for z � 1, can approximate Ez in
small redshift intervals. The coefficient γ 1 used in the approximation de-
pends on the redshift range considered and on the cosmological parameters.

nosity distance. In absence of scatter, the corresponding limiting
mass evolves as

Mth ∝ DL(z)
2
β E

− γ
β

z . (14)

As a second example, let us consider an SZ-like signal, whose size
increases with the projected physical surface covered by the cluster.
In this case, the observable is proportional to DA(z)2θ2

�, where θ�

is the angular extension of the cluster. The scaling can be written
as

DA(z)2Y� ∝ M
β
�Eγ

z . (15)

The noise is proportional to the square root of the angular area, i.e.
σY�

∝ θ� = r�/DA. In absence of scatter, if we select only clusters
above a given signal-to-noise ratio (SNR), i.e. Y�/σY�

> SNRth,
the corresponding threshold mass evolves with redshift as

Mth ∝ DA(z)
3

3β−1 E
2+3γ
1−3β
z . (16)

The two above examples suggest that the evolution of the mass
at a given completeness limit can be parametrized as

Mth ∝ DA(z)γD E
γEz
z , (17)

where the factor E
γEz
z accounts for the evolution in both the mass

threshold and the intrinsic scatter of the scaling relation. This mod-
elling of the completeness limit was derived for samples selected
with a cut on the detection observable but the functional form is flex-
ible enough to address even more complicated cases. The choice of
the angular diameter distance over the luminosity distance in equa-
tion (17) is irrelevant since the two differs for a factor of (1 + z)2

which can be approximately englobed in Eγ Ez

z for limited redshift
baselines.

The evolution in the dispersion of the mass sample is mainly
connected to the intrinsic scatter in the relation used to select the
samples, see Appendix A. The redshift dependence can then be
modelled as in equation (12).

3 R EGRESSI ON SCHEME

When we calibrate a scaling relation, we deal with: (i) the true mass
of the cluster M�, which we cannot measure; (ii) a scattered (and
likely biased) proxy of the true mass, such as the WL mass MWL, �,
which is the proxy we considered in following, or the hydrostatic
mass MHE, � (see section 2 and appendix A of CoMaLit-I); (iii) an
observable quantity O, which we assume to be on average related
to the true mass with a power law.

In logarithmic variables, the median scaling relation is approx-
imatively linear and the scatter is Gaussian. As discussed in Sec-
tion 2, the scaling can be expressed as

log(E−γss
z O) = α + β log M� + γz log Ez. (18)

Since we englobed the self-similar evolution in the left-hand side of
equation (18), values of the parameters γ z which are different from
zero denote deviations from the self-similar time dependence. In
other words, the time evolution of the scaling relations γ z is relative
to that predicted by the self-similar model. Given a particular scaling
law, there is negative, i.e. γ z < 0 (positive, i.e. γ z > 0) evolution if
the normalization at high redshift is lower (higher) than anticipated
from the self-similar scaling.

In what follows, which is the general scheme we employed for
the regression analysis, we identify log M� with the variable Z, we
identify the logarithm of the mass proxy, i.e. the WL mass, with

MNRAS 450, 3675–3695 (2015)
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the random variable X, and we identify the logarithm of the self-
similarly redshift evolved observable with the response Y. In this
scheme, the mass is the covariate variable, as when using number
counts of galaxy clusters to constrain cosmological parameters. The
observed values are denoted with the lower case, i.e. x and y are
the manifest measured estimates of the latent X and Y, respectively
(Feigelson & Babu 2012). This notation is the convention adopted
in the CoMaLit series.

The conditional probability of X given Z is

P (X|Z) = N (Z, σX|Z(z)), (19)

where N is the normal distribution. In equation (19), X is an unbi-
ased proxy of Z. Any bias between X and Z would be degenerate with
the estimated overall normalization of the scaling between Y and Z.
This bias cannot be determined with the data, which only constrain
the relative bias between X and Y (see CoMaLit-I). As discussed in
Section 2.1, the redshift evolution of the scatter is modelled as

σX|Z(z) = σX|Z,0E
γσX|Z
z . (20)

The mean observable for a given mass is linearly related to the
(logarithm of the) mass and the relation evolves with redshift,

YZ = αY |Z + βY |ZZ + γz log Ez; (21)

the redshift z is deterministic and assumed to be known without
measurement errors. Y is scattered and distributed according to the
conditional probability

P (Y |Z) = N (YZ, σY |Z(z)), (22)

with

σY |Z(z) = σY |Z,0E
γσY |Z
z . (23)

The distribution of the masses can be approximated with a Gaussian
function

P (Z) = N (μZ(z), σZ(z)). (24)

The mass distribution resulting from usual selection procedures is
fairly unimodal (see Appendix A) and can be approximated with the
normal distribution of equation (24). The statistical improvement
obtained considering more complex distributions, such as mixture of
Gaussians with different means and variances, is usually negligible
(Kelly 2007; CoMaLit-II).

As discussed in Section 2.2, the evolution of the (mean of the)
mass function can be modelled after equation (17) as

μZ(z) = μ̄Z + γμZ
log Ez + γμZ,D log DA(z). (25)

The dispersion evolves as

σZ(z) = σZ,0E
γσZ
z . (26)

The completeness function at a given redshift can be computed by
dividing the estimated mass function (equation 24) by the cosmo-
logical halo mass function. This approach requires the knowledge
of the effective survey area of the sample, which may be difficult
to estimate for heterogeneous samples. Alternatively, we can use
the approximate formulae presented in Appendix A, which were
derived under the assumptions that the completeness function can
be approximated as a complementary error function and that the
cosmological halo mass function can be approximated as a power
law.

If we assume that the uncertainty in the measurement process
is Gaussian, the relation between the unknown Xi and Yi and the
measured xi and yi is given by

P ({xi, yi}|{Xi, Yi}) = N 2D({Xi, Yi},Vi)U(yth,i, ∞), (27)

where N 2D and U are the bivariate Gaussian and the uniform dis-
tribution, respectively. In equation (27), Vi is the symmetric un-
certainty covariance matrix, whose diagonal elements are denoted
as δ2

x,i and δ2
y,i , and whose off-diagonal elements are denoted as

ρxyδx, iδy, i.
The truncation, i.e. null probability for yi < yth, i, accounts for

selection effects when only clusters above an observational limit (in
the response variable) are included in the sample, i.e. the Malmquist
bias (CoMaLit-II).

The treatment is complete once the priors on the parameters are
made explicit. We choose non-informative priors as discussed in
CoMaLit-I and CoMaLit-II. The priors on the intercept αY|Z and on
the mean μ̄Z are taken to be flat,

αY |Z, μ̄Z ∼ U(−1/ε, 1/ε), (28)

where ε is a small number. In our calculation we took ε = 10−3.
A priori, the slopes follow the Student’s t1 distribution with one
degree of freedom, as suitable for uniformly distributed direction
angles,

βY |Z, γz, γσX|Z , γσY |Z , γμZ
, γμZ,D, γσZ

∼ t1. (29)

The Student prior for the slopes is not informative. Negative time
evolutions and scatters which decreases at early times are allowed.
For the variances, we adopted an inverse Gamma distribution,

1/σ 2
X|Z,0, 1/σ 2

Y |Z,0, 1/σ 2
Z,0 ∼ �(ε, ε). (30)

This regression scheme requires 12 parameters, i.e. three param-
eters characterizing the scaling relation, two for the intrinsic scatter,
two for the mass scatter, and five for the mass function, plus three
variables for each cluster, i.e. the true WL mass, the true mass,
and the true observable. The parameters and their meanings are
summarized in Table 1.

The relation in equation (21) expresses the conditional scaling
relation, wherein YZ is the most likely value of the variable Y for a
given Z. This is the relation to be used to predict the value of Y for a
given Z. The relation between two random and scattered variables
might be better described by the symmetric scaling relation, which
goes along the direction where the probabilities of Z and Y are
maximized at the same time (CoMaLit-II). In the above regression
scheme, where Z and Y follow a bivariate normal distribution, the
slope of the symmetric scaling can be expressed as (CoMaLit-II)

βY-Z = σ 2
Z − σ 2

Y −
√

σ 4
Z + 2(2ρ2

YZ − 1)σ 2
Zσ 2

Y + σ 4
Y

2ρYZ σZσY

, (31)

where ρYZ is the correlation factor between Y and Z,

ρYZ = βY |Z√
σ 2

Y |Z/σ 2
Z − β2

Y |Z
, (32)

and the variance in Y is related to the conditional scatter as

σ 2
Y = σ 2

Y |Z + β2
Y |Zσ 2

Z. (33)

The intercept of the symmetric relation can be expressed as

αY-Z = αY |Z + (βY |Z − βY-Z)μZ. (34)

The detailed regression scheme is simplified when we are inter-
ested in the scaling between the observable and the measured proxy
mass, i.e. the WL or the X-ray mass,

log(E−γss
z O) = α + β log Mproxy + γz log Ez. (35)

In this case, the adopted form for the scaling is

YX = αY |X + βY |XX + γz log Ez, (36)

MNRAS 450, 3675–3695 (2015)
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Table 1. Parameters of the regression scheme and their description. The variables Z, X,
and Y denote (the logarithm of) the true mass, the WL mass, and the self-similarly evolved
observable, respectively.

Type Meaning Symbol

YZ = αY|Z + βY|ZZ + γ zlog Ez

Conditional scaling relation Intercept αY|Z
Mass evolution βY|Z
Time evolution γ z

σY |Z(z) = σY |Z,0E
γσY |Z
z

Conditional intrinsic scatter Conditional scatter at z = 0 σ Y|Z, 0

Time evolution γσY |Z
σX|Z(z) = σX|Z,0E

γσX|Z
z

Intrinsic scatter of the WL mass Conditional scatter at z = 0 σX|Z, 0

Time evolution γσX|Z
μZ(z) = μ̄Z + γμZ

log Ez + γμZ,D log DA(z)
Mean of the mass function Normalization μ̄Z

Time evolution with Ez γμZ

Time evolution with DA γμZ,D

σZ(z) = σZ,0E
γσZ
z

Dispersion of the mass function Dispersion at z = 0 σ Z, 0

Time evolution γσZ

which substitutes equation (21). The latent variable Z coincides now
with the manifest one X and we do not have to model the conditional
probability of X given Z, see equations (19) and (20).

4 C L U S T E R C ATA L O G U E S

There are different approaches to choose a sample of clusters to
analyse. We may look for a statistical sample which is complete
with respect to well-defined selection criteria. This sample would
be ideal but most of the massive clusters with very good quality
data might be excised. The alternative is to assemble samples as
numerous as possible with the idea that variety and largeness can
compensate for incompleteness and inhomogeneity.

These two approaches are to some degree complementary and
have been already discussed in CoMaLit-II and CoMaLit-III, which
we refer to for further considerations. Here, we are mainly interested
in testing the regression algorithm and we focus on large samples.
To this aim we assembled a catalogue of clusters with measured ve-
locity dispersions. As catalogues of WL masses, optical richnesses,
X-ray luminosities, and SZ effects, we used publicly available com-
pilations. The subsample of WL clusters also included in either the
velocity dispersion, richness, X-ray, or SZ catalogues were used
in the analysis presented in the next section. We briefly discuss the
main properties of the catalogues and refer to the original references
for further details.

4.1 Weak lensing masses

CoMaLit-III retrieved from literature 822 WL analyses of clusters
and groups with measured redshift and mass. Here, we consider
the LC2-single, which contains 485 unique entries with reported
coordinates, redshift, and WL masses to over-densities of 2500,
500, 200, and to the virial radius.2 Duplicate entries from input
references were carefully handled.

2 The catalogues are available at http://pico.bo.astro.it/~sereno/CoMaLit/
LC2/.

The cluster redshifts span a large interval, 0.02 � z � 1.5. The cat-
alogue is large and standardized but it is not statistically complete.
We refer to CoMaLit-III for a detailed discussion of the catalogue
properties.

4.2 Velocity dispersions

We assembled some publicly available catalogues of clusters with
measured velocity dispersions. We first review the source catalogues
and then we introduce the merged compilation.

4.2.1 Source catalogues

Cava et al. (2009) presented the results from the spectroscopic
survey WINGS (WIde-field Nearby Galaxy-cluster Survey)-SPE,
which consists of 48 nearby clusters at 0.04 � z � 0.07 selected
from three X-ray flux limited samples. They complemented the
sample with 29 additional clusters not observed in the programme
but for which literature data existed. The total sample contains 77
clusters over a broad range of richness, Bautz-Morgan class, and
X-ray luminosity.

Ebeling et al. (2007) presented the sample of the 12 most distant
galaxy clusters detected at z � 0.5 by the Massive Cluster Survey
(MACS). This catalogue is statistically complete and comprehen-
sive of measurements of radial velocity dispersions.

Girardi & Mezzetti (2001) considered a sample of 51 distant
galaxy clusters at 0.15 � z � 0.9, each cluster having at least 10
galaxies with available redshift in the literature. In some clusters,
two peaks that are not clearly separable were identified in the veloc-
ity distribution. For these systems with uncertain internal dynamics,
we considered the velocity dispersion measured by analysing the
identified peaks together. We also discarded two systems with no
major peak (CL J0023+0423 and CL J0949+44).

Mazure et al. (1996) constructed a volume limited sample of 128
clusters out to z = 0.1 combining data from the ENACS (ESO
Nearby Abell Clusters Survey) with pre-existing data from the lit-
erature. They measured reliable velocity dispersions for a subset of
80 of them, based on at least 10 redshifts. They also analysed 26
additional clusters in the cone but with z > 0.1. The total catalogue
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consists of 106 clusters. We discarded from our final catalogue the
secondary systems.

Oegerle & Hill (2001) presented the spectroscopic study of a
sample of 25 Abell clusters out to z = 0.1 containing a central
cD galaxy. Redshifts measured with the MX Spectrometer were
combined with those collected from the literature to obtain typi-
cally 50–150 observed velocities in each cluster. We used the esti-
mates of the velocity dispersions within the smaller quoted aperture
(∼1.2 Mpc h−1 at z = 0.1)

Popesso et al. (2007) considered a sample of 137 optically se-
lected and spectroscopically confirmed Abell clusters in the SDSS
(Sloan Digital Sky Survey) data base (Adelman-McCarthy et al.
2006). The clusters span the redshift range 0.04 � z � 0.17. 40 of
the clusters were X-ray underluminous, since they had a marginal
X-ray detection or remained undetected in the ROSAT All Sky
Survey.

Rines & Diaferio (2006) studied the infall patterns of 72 nearby
(z < 0.1) clusters from the Data Release (DR) 4 of the SDSS. The
clusters were selected in X-ray flux from the ROSAT All-Sky Survey.
Velocity dispersions were measured and masses were derived with
the caustic method. Rines & Diaferio (2010) extended the approach
to a sample of 16 groups with lower X-ray fluxes selected from
the 400 deg2 serendipitous survey of clusters. Spectroscopic data
were taken from the SDSS DR5. Rines et al. (2013) selected 58
clusters by their X-ray flux and in the redshift interval 0.1 < z < 0.3
to build the Hectospec Cluster Survey (HeCS), the first systematic
spectroscopic survey of cluster infall regions at z � 0.1. For each
cluster, high signal-to-noise spectra for ∼200 cluster members were
acquired with Multiple Mirror Telescope (MMT)/Hectospec.

Ruel et al. (2014) presented optical spectroscopy of galaxies in
clusters detected through the SZ effect with the South Pole Tele-
scope (SPT). They reported measurements of 61 spectroscopic clus-
ter redshifts, and 48 velocity dispersions each calculated with more
than 15 member galaxies. After the inclusion of additional measure-
ments of SPT-observed clusters previously reported in the literature,
the final catalogue presents 57 velocity dispersions. Being SZ se-
lected, most of the clusters are at high redshift. The clusters span
an interval 0.3 � z � 1.5.

Sifón et al. (2013) presented the dynamical analysis of a sam-
ple of 16 SZ selected massive clusters detected with the Atacama
Cosmology Telescope over a 455 deg2 area of the southern sky. 60
member galaxies on average per cluster were observed with deep
multi-object spectroscopic observations. The sample spans the red-
shift range 0.3 � z � 1.1 with a median redshift z = 0.50.

Zhang et al. (2011) presented a multiwavelength analysis of 62
galaxy clusters in the HIFLUGCS (HIghest X-ray FLUx Galaxy
Cluster Sample), an X-ray flux-limited sample. Velocity disper-
sions were computed thanks to 13439 cluster member galaxies with
redshifts collected from literature. Most of the clusters (60 out of
62) are at z < 0.1.

4.2.2 Merged catalogue

The catalogues listed before provides a total of 710 velocity disper-
sion estimates, comprehensive of multiple peaks and substructures
which we did not consider in our final sample.

Cluster coordinates were taken from the original or from compan-
ion papers. When they were not reported, we used the coordinates
listed by the NASA/IPAC Extragalactic Database (NED).3

3 http://ned.ipac.caltech.edu/.

Not unique entries were identified by matching names and clus-
ter coordinates. For clusters with multiple analysis, we preferred
the study based on the larger number of identified cluster mem-
ber galaxies with measured redshift, Nmembers. The final catalogue
contains 564 unique clusters. The catalogues are publicly available
at http://pico.bo.astro.it/~sereno/CoMaLit/sigma/. Their format is
detailed in Appendix B.

When original estimates were provided with asymmetric errors,
we computed the mean value as suggested in D’Agostini (2004).
To standardize the uncertainties, we followed Ruel et al. (2014).
They found that the uncertainty in the velocity dispersion σ v is well
described by

δσv = 0.92σv√
Nmembers − 1

, (37)

when including the effect of membership selection.
As we inferred from the matching with the LC2-single, WL

masses are known for a subsample of 97 clusters. This size can be
achieved only relying on a number of different source catalogues.
30 clusters are from Girardi & Mezzetti (2001), 23 from Rines et al.
(2013), 13 from Zhang et al. (2011), 11 from Ebeling et al. (2007),
8 from Ruel et al. (2014), 5 from Popesso et al. (2007), 4 from
Mazure et al. (1996), and 3 from Sifón et al. (2013).

4.3 Optical richness

Rykoff et al. (2014) applied the redMaPPer (red-sequence Matched-
filter Probabilistic Percolation), a red-sequence cluster finder de-
signed for large photometric surveys, to ∼10 000 deg2 of SDSS
DR8 data. The resulting catalogue4 contains ∼25 000 candidate
clusters over the redshift range 0.08 � z � 0.55.

According to the catalogue convention, the richness λ of a cluster
is defined as the sum of the probabilities of the galaxies found near
a cluster to be actually cluster members. The sum extends over all
galaxies above a cut-off luminosity (0.2L�) and below a radial cut
which scales with richness. Clusters are included in the catalogue if
their richness exceeds 20 times the scale factor SRM (also provided
in the catalogue), which is a function of the photometric redshift
of the cluster. This selection criterion approximately requires that
every cluster has at least 20 galaxy counts above the flux limit of the
survey or the cut-off luminosity at the cluster redshift, whichever is
higher.

4.4 X-ray clusters

Maughan et al. (2008) presented a sample of 114 clusters covering
wide temperature (2 � kBT � 16keV) and redshift (0.1 � z � 1.3)
baselines. The sample was assembled from all publicly available
Chandra data as of 2006 November. It consists of clusters at red-
shift greater than 0.1 listed in the NED which were the targets of
observations made with the ACIS-I detector covering at least half of
the area in the annulus [0.9–1.0] r500. The radius r500 was estimated
assuming a M500–YX relation.

The sample was later reanalysed using updated softwares and
calibration files in Maughan et al. (2012). Bolometric luminosities
were measured either in the [0–1] r500 aperture, which we took as

4 We used the latest version of the catalogue (v5.2), which is publicly avail-
able at http://risa.stanford.edu/redMaPPer/.
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Table 2. Observed scaling relations, E−γss
z O = 10αM

β
�E

γz
z . Conventions are as in Section 3 and Table 1: Z = log (M�); X = log (MWL, �); Y = log(E−γss

z σv),
log(E−γss

z λ), log(E−γss
z LX), or log(E−γss

z D2
AY500). γ ss is the self-similar evolution, which is equal to 1/3, 0, 7/3, 2/3 for σ v–, λ–, LX–, and YSZ − M�,

respectively. Units are 1014M	 for mass, km s−1 for σ v, 1044 ergs s−1 for the bolometric luminosity LX, and 10−4Mpc2 for D2
AY500. Cols. 1–3: variables of

the regression procedure. Col. 4: number of clusters in the sample (Ncl). Col. 5: median redshift of the sample. Cols. 6, 7, and 8: intercept, mass slope, and time
evolution of the conditional scaling relation. Cols. 9-10: local scatter of the WL mass and its time evolution. Cols. 11 and 12: intrinsic scatter of the scaling
relation and its time evolution. Cols. 13 and 14: intercept and slope of the symmetric scaling relation at the median redshift of the sample. Col. 15: self-similar
prediction for the slope (βss).

Conditional scaling WL mass scatter Intrinsic scatter Symmetric scaling
10Z 10X 10Y NCl z αY|Z βY|Z γ z σX|Z, 0 γσX|Z σY|Z, 0 γσY |Z αY–Z βY–Z βss

M200 MWL, 200 E
−1/3
z σv 97 0.23 2.67 ± 0.12 0.30 ± 0.13 − 0.05 ± 0.30 0.11 ± 0.06 0.00 ± 1.26 0.06 ± 0.02 0.17 ± 0.96 2.63 ± 0.14 0.34 ± 0.15 1/3

M200 MWL, 200 λ 157 0.30 1.29 ± 0.21 0.70 ± 0.27 0.39 ± 0.58 0.22 ± 0.12 − 0.56 ± 1.22 0.18 ± 0.08 − 0.55 ± 1.11 1.12 ± 0.21 0.91 ± 0.25 1

M500 MWL, 500 E
−7/3
z LX 73 0.38 − 0.13 ± 0.26 1.60 ± 0.27 − 1.74 ± 0.75 0.11 ± 0.05 − 0.04 ± 1.01 0.12 ± 0.07 0.03 ± 1.16 − 0.29 ± 0.24 1.78 ± 0.25 4/3

M500 MWL, 500 E
−2/3
z D2

AY500 115 0.23 − 0.23 ± 0.04 1.27 ± 0.21 − 0.76 ± 0.80 0.11 ± 0.04 − 0.25 ± 1.20 0.11 ± 0.05 − 0.37 ± 1.32 − 0.27 ± 0.06 1.50 ± 0.21 5/3

Table 3. Mass functions of the observed samples. Conventions and units are as in Tables 1 and 2.

Mean Dispersion
Sample μ̄Z γμZ,D γμZ

σ Z, 0 γσZ

σ v–M200 1.08 ± 0.17 0.18 ± 0.16 0.69 ± 0.86 0.16 ± 0.04 0.74 ± 0.96
λ–M200 0.79 ± 0.21 0.01 ± 0.24 − 0.13 ± 0.92 0.31 ± 0.07 − 0.04 ± 0.77
LX–M500 1.02 ± 0.32 0.17 ± 0.36 − 1.03 ± 1.08 0.17 ± 0.04 1.30 ± 0.77
YSZ–M500 0.51 ± 0.15 0.57 ± 0.15 0.53 ± 0.79 0.17 ± 0.03 0.03 ± 0.79

reference case to ease the comparison with theoretical predictions,
or in the core-excised [0.15–1] r500 aperture, LX, ce. This large cat-
alogue is standardized in the measurement procedures but it is not
statistically complete.

As an alternative, we also looked at catalogues of X-ray lumi-
nosities measured in the [0.1–2.4] keV band, LXsoft . We considered
the MCXC (Meta-Catalogue of X-ray detected Clusters of galax-
ies; Piffaretti et al. 2011), which comprises 1743 unique X-ray
clusters collected from available ROSAT All Sky Survey-based and
serendipitous cluster catalogues. X-ray luminosities were systemat-
ically homogenized and standardized to an overdensity of � = 500.
Uncertainties are not provided in the catalogue. For our tests, we
fixed the statistical uncertainty to 10 per cent. As the LC2, the
MCXC is not statistically complete.

4.5 Planck SZ catalogue

The Planck SZ Catalogue (PSZ, Planck Collaboration XXIX 2014)
contains 883 candidates identified with the Matched Multi-filter
method MMF3 with detections above SNR = 4.5. The catalogue
spans a broad mass range from 0.1 to 16 × 1014 M	 at a median
redshift of z ∼ 0.22. The redshift determination is available for 664
candidates.

In CoMaLit-II, we computed the spherically integrated Y500 of
the PSZ clusters within the WL determined r500. The measurements
of MWL, 500 and Y500 are then correlated. In our analysis, we used
the full uncertainty covariance matrix. We refer to CoMaLit-II for
a detailed discussion.

5 R ESULTS

We analysed the scaling between mass and optical, X-ray, or SZ
observables using the general regression scheme detailed in Sec-
tion 3. In fact, the uncertainties on the redshifts were assumed to
be negligible and the factors Ez were assumed to be known without

errors. The Bayesian hierarchical model was implemented through
JAGS.5

According to the notation of Section 3, the X variable is the
logarithm (to base 10) of the observed WL mass (computed at an
overdensity of either 200 in case of scaling of optical observables or
500 for observables related to the gas); the Z variable is the logarithm
of the unknown true mass; the observable Y is the logarithm of
either the galaxy velocity dispersion, the optical richness, the X-
ray luminosity, or the spherical SZ signal multiplied by E−γss

z . Any
deviation of the parameter γ z from the null value implies a deviation
from the self-similar evolution with redshift.

In the case of optical richness and SZ signal, we had to consider
the correction for the Malmquist bias. The threshold value of the
optical richness above which candidate clusters are included in the
redMaPPer catalogue was given by 20 times the scale factor at the
cluster redshift (Rykoff et al. 2014). According to the notation of
Section 4.3, the threshold for the ith cluster is

yth,i = log(20SRM,i). (38)

The limiting SZ flux of the Planck clusters was obtained by
multiplying the minimum SNR(= 4.5) by the uncertainty on Y500

(CoMaLit-II). In this case,

yth,i = log(4.5E
−2/3
z,i D2

A(zi)δY500,i). (39)

The results of the regression are summarized in Table 2 for the
scaling relations and in Table 3 for the mass functions. Table 4
summarizes the results of the scaling of the observables versus the
WL mass. Parameter degeneracies are illustrated as bi-dimensional
contour plots in Figs 1–4. Figs 5–8 show the scaling relation and
the evolution of the completeness function for σ v–M200, λ–M200,
LX–M500, and YSZ–M500, respectively.

5 JAGS (Just Another Gibbs Sampler) is a program for analysis of
Bayesian hierarchical models using Markov Chain Monte Carlo simula-
tion. It is publicly available at http://mcmc-jags.sourceforge.net/. An ex-
ample of JAGS script that we wrote for the analysis can be found at
http://pico.bo.astro.it/~sereno/CoMaLit/JAGS/.
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Table 4. Scaling relations as a function of the WL mass, E
−γss
z O = 10αM

β
WL,�E

γz
z . Listed parameters refer to logarithmic variables. For

the conditional scaling, the adopted form is YX = αY|X + βY|XX + γ zlog Ez. Conventions and units are as in Section 3 and Tables 1 and 2.

Conditional scaling Intrinsic scatter Symmetric scaling
Relation αY|X βY|X γ z σ Y|X, 0 γσY |X αY-X βY-X

σ v–MWL, 200 2.73 ± 0.05 0.22 ± 0.05 − 0.07 ± 0.23 0.07 ± 0.01 0.24 ± 0.84 2.71 ± 0.06 0.25 ± 0.06
λ–MWL, 200 1.50 ± 0.06 0.45 ± 0.05 0.41 ± 0.51 0.24 ± 0.04 − 0.59 ± 0.88 1.33 ± 0.10 0.65 ± 0.12
LX–MWL, 500 0.13 ± 0.15 1.29 ± 0.14 − 2.00 ± 0.63 0.20 ± 0.04 0.23 ± 0.80 − 0.16 ± 0.21 1.65 ± 0.24
YSZ–MWL, 500 − 0.25 ± 0.03 1.00 ± 0.11 − 0.05 ± 0.54 0.16 ± 0.03 − 0.31 ± 0.95 − 0.30 ± 0.04 1.41 ± 0.21

Figure 1. Probability distributions of parameters of the scaling relation between velocity dispersion and mass, σ v–M200, and of the mass function. The
thick (thin) lines include the 1(2)σ confidence region in two dimensions, here defined as the region within which the value of the probability is larger than
exp [−2.3/2] (exp [−6.17/2]) of the maximum.
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CoMaLit – IV 3683

Figure 2. Probability distributions of parameters of the scaling relation between optical richness and mass, λ–M200, and of the mass function. The thick (thin)
lines include the 1(2)σ confidence region in two dimensions, here defined as the region within which the value of the probability is larger than exp [−2.3/2]
(exp [−6.17/2]) of the maximum.

To ease the comparison with theoretical predictions, we also com-
puted the parameters of the symmetric scaling relation (see Table 2).
We did not require that βY–Z is redshift independent. However, the
slopes turned out to be constant within the errors. Slopes and inter-
cepts of the symmetric relations in Tables 2 and 4 were computed
at the median redshifts of the samples.

We obtained significant constraints on the evolution with redshift
of the scaling relations and of the mass functions. On the other
hand, the uncertainties on the evolution of the intrinsic scatters are
too large to come to any conclusion.

5.1 Parameter degeneracy

Most of the regression parameters are uncorrelated (see Figs 1–4).
Since a significant percentage of the massive clusters is at high
redshift, the time evolution can partially mimic the effects of the
mass evolution (see the βY|Z–γ z panel). This degeneracy is most
pronounced for the Planck selected clusters, see Fig. 4, whose mass
completeness limits steadily increases with redshift, see Fig. 8. To
obtain unbiased estimates of the scaling relations is then crucial to
properly account for time evolution and selection effects.
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Figure 3. Probability distributions of parameters of the scaling relation between X-ray luminosity and mass, LX–M500, and of the mass function. The thick (thin)
lines include the 1(2)σ confidence region in two dimensions, here defined as the region within which the value of the probability is larger than exp [−2.3/2)]
(exp [−6.17/2]) of the maximum.

The estimate of the normalization of the scaling relation, αY|Z,
is correlated with the slopes, βY|Z and γ z. Slope and normalization
are correlated to the intrinsic scatter too. The Pearson correlation
coefficient between αY|Z (βY|Z) and σ Y|Z, 0 is 0.38 (−0.38) for the σ v–
MWL sample, 0.72 (−0.75) for the λ–MWL sample, 0.50 (−0.53) for
the LX–MWL sample, and −0.08 (−0.31) for the YSZ–MWL sample.

The parameters characterizing the scaling, i.e. αY|Z, βY|Z, and γ z,
are not degenerate with the mass functions. Furthermore, as already
noted in CoMaLit-I, since σ X|Z and σ Y|Z spread the observed relation
in orthogonal directions, they are nearly uncorrelated too.

The only remaining significant degeneracy is among the parame-
ters characterizing the normalization of the mean value of the mass
function, μ̄Z , and its evolution, parametrized in terms of γμZ,D and

γμZ
. The evolution parameters of the (mean of the) mass function,

γμZ,D and γμZ
, are degenerate too, see equations (17) and (25). In

fact, the redshift dependence in small intervals can be modelled
either in terms of Ez or in terms of the distance.

5.2 Scaling with the WL mass

Results for the scalings with the WL mass are reported in Table 4. In
this case, the general regression scheme simplifies as described in
Section 3. Due to the intrinsic scatter of the WL mass with respect to
the true mass, the conditional relation O–MWL, � is systematically
flatter than the corresponding O−M�, whereas the intrinsic scatter
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Figure 5. Top panel: completeness function of the clusters from the WL–
velocity dispersion sample. WL masses MWL, 200 are shown as a function
of redshift (black points). The full lines plot the value of the true mass
M200 where a given completeness level is reached as a function of the red-
shift. From top to bottom, the red, green, and blue lines show the 85, 50,
and 15 per cent completeness levels, respectively. The shaded green region
encloses the 68 per cent confidence region around the 50 per cent complete-
ness level due to uncertainties on the mass function parameters. Note that
the completeness is a function of the true mass, whereas the points refer
to the WL masses, which are scattered with respect to the true mass. Bot-
tom panel: scaling between velocity dispersion and mass, M200. The black
points mark the data (WL mass and redshift evolved velocity dispersion),
the blue (green) line represent the conditional (symmetric) scaling relation
fitted to the data (true mass versus redshift evolved velocity dispersion). The
dashed blue lines show the median scaling relation (full blue line) plus or
minus the intrinsic scatter. The shaded blue region encloses the 68 per cent
confidence region around the median relation due to uncertainties on the
scaling parameters. The red line represents the theoretical prediction based
on Munari et al. (2013) at the median redshift of the sample. Masses are in
units of 1014M	.

for luminosities accounting for the core regions. The dependence
with mass is slightly less pronounced but still steeper than the self-
similar expectation.

We also evaluated the mass–X-ray luminosity relation in the
soft band by considering the MCXC catalogue, which comprises
193 clusters with measured WL mass. For the LXsoft−M� relation
we found βY–Z = 1.43 ± 0.15, which is steeper than the self-
similar prediction βss = 1, and a negative redshift evolution which
deviates from the expected γ ss = 2 [see e.g. Ettori (2015) for a
derivation of the self-similar predictions in the [0.1–2.4] keV band]
by γ z =−1.80 ± 0.59. As expected for the MCXC catalogue, whose

Figure 6. Top panel: completeness function of the clusters from the WL–
optical richness sample. Lines and points are as in the top panel of Fig. 5.
Bottom panel: scaling between optical richness and mass, M200. Black, blue,
and green graphics are as in the bottom panel of Fig. 5.

luminosities were standardized from heterogeneous data sets, the
intrinsic scatter is overestimated, σ Y|Z = 0.18 ± 0.07.

5.4 Intrinsic scatters

The intrinsic scatter of the WL mass with respect to the true mass
is estimated to be of the order of ∼25 ± 10 per cent. This is slightly
larger but still compatible within errors with the scatter measured
in Mantz et al. (2014) or in CoMaLit-I, and with predictions based
on numerical simulations (Rasia et al. 2012). In CoMaLit-II, we
noted that the scatter measured in heterogeneous samples, such as
LC2-single, may be overestimated due to not coherent formulated
statistical uncertainties on WL masses. In the case of the richness
calibration, both estimated WL scatter and related errors doubles,
so that the difference in the central estimates of the scatter is not
statistically significant.

We confirm that mass proxies based on velocity dispersions are
among the most accurate (scatter of ∼14 per cent). We verified
that mass proxies based on X-ray luminosity are noisier (scatter
of ∼30 per cent) than those based on the integrated SZ effect
(∼25 per cent), in agreement with numerical simulations (Stanek
et al. 2010). The richness, with an intrinsic scatter of ∼40 per cent,
may compete with the X-ray luminosity. The scatter in prox-
ies based on the X-ray luminosity strongly depend on the mea-
surement/analysis process. Luminosities estimated in core-excised
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CoMaLit – IV 3687

Figure 7. Top panel: completeness function of the clusters from the WL-
X-ray luminosity sample. Lines and points are as in the top panel of Fig. 5.
Bottom panel: scaling between (self-similarly redshift evolved) X-ray bolo-
metric luminosity and mass M500. Black, blue, and green graphics are as in
the bottom panel of Fig. 5.

regions are less scattered (∼20 per cent), whereas inconsistencies
in the measurement process and not uniform data sets can boost the
scatter up to ∼40 per cent.

The catalogue of velocity dispersion used to study the σ v–M200

relation is heterogeneous which might bias the relation and inflate
the estimated intrinsic scatter. First, the central estimates of the ve-
locity dispersion were estimated in the different source papers with
different methods. However, these statistical differences are very
small. Ruel et al. (2014) presented two independent measurements
of σ v, based either on the measured gapper scale or the bi-weight
dispersion. The two estimates are very well consistent, with a dis-
tribution of relative differences whose centre deviates from zero by
less than 1 per cent and whose scatter is less than 2 per cent.

Secondly, systematic differences in the measurements by inde-
pendent groups might play a role. We checked that results based on
the merged catalogues are fully consistent with those from single
source catalogues with homogeneous estimates of σ v. 31 clusters
from Girardi & Mezzetti (2001) have measured WL mass. For
these clusters, we found αY|Z = 2.74 ± 0.33, βY|Z = 0.22 ± 0.34,
γ z = 0.04 ± 0.54, and σ Y|Z, 0 = 0.07 ± 0.03. For the 26 clus-
ters from Rines et al. (2013) with measured WL mass, we found
αY|Z = 2.72 ± 0.27, βY|Z = 0.26 ± 0.29, γ z = −0.56 ± 1.23, and
σ Y|Z, 0 = 0.07 ± 0.02.

Figure 8. Top panel: completeness function of the clusters from the WL–
SZ sample. Lines and points are as in the top panel of Fig. 5. The black line
represents the 50 per cent completeness limit of the full SZ sample as derived
in Planck Collaboration XXIX (2014) from the average noise over the sky
for the MMF3 algorithm. Bottom panel: scaling between (self-similarly
redshift evolved) spherical SZ flux and mass, M500. Black, blue, and green
graphics are as in the bottom panel of Fig. 5. The red line represents the
result from Planck Collaboration XX (2014) at the median redshift of the
sample.

5.5 Completeness function

The evolution of the completeness function is obtained through the
analysis of the redshift dependence of the distribution of selected
true masses. In Figs 5–8, we plotted the 15, 50, and 85 per cent com-
pleteness limit as a function of the redshift. The completeness was
approximated as a complementary error function, see Appendix A,
whose scale and dispersion were derived from the parameters of the
fitted mass function through equations (A9) and (A10).

For the samples of clusters with WL mass and velocity dispersion,
SZ flux, or X-ray luminosity, the larger the redshift the larger the
mass at a given completeness limit, see Figs 5–8. This is not the
case for the WL clusters in the redMaPPer catalogue, when the
limits are nearly redshift independent, see Fig. 6. The apparent
spike in some completeness functions at high redshift, see Figs 5–7,
is not statistically significant and more regular evolutions are fully
compatible with our results.

Few high-redshift clusters lie above the 85 per cent completeness
limit. This is expected since high mass clusters are very rare at high
redshifts and few of them have measured WL mass.

Even though the redMaPPer catalogue of optical rich-
nesses (Rykoff et al. 2014) and the Planck catalogues (Planck
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Collaboration XXIX 2014) are statistically complete, we do not ex-
pect to exactly recover the selection function of the full catalogues.
In fact, the subsamples of clusters with measured WL masses may
be biased with respect to the full catalogues.

The derived completeness functions refer to the subsample of the
cluster in the catalogues with measured WL mass. The catalogue of
WL masses is heterogeneous which makes the studied subsamples
heterogeneous too, even in the case of parent catalogues constructed
with well-defined selection functions. However, despite the fact that
we do not expect that the completeness function of the subsamples
with WL masses strictly resembles the completeness of the parent
catalogue, some similarities are still in place. The redshift evolution
of the derived completeness limits of the SZ flux–WL catalogue
follows that of the Planck clusters, see the upper panel of Fig. 8.
The shift in normalization reflects the fact that masses used in Planck
Collaboration XXIX (2014) to derive the average limit were based
on the Yz proxy which severely underestimates the true masses (von
der Linden et al. 2014; CoMaLit-II). Furthermore, the subsample
with WL masses underrepresents the clusters with low SNR just
above the threshold (CoMaLit-II). The larger mean SNR of the
subsample determines a larger average limit, as we observed.

The flatness of the completeness limits of the optical richness–
WL subsample (see upper panel of Fig. 6) is also connected to the
properties of the parent sample. The redMaPPer catalogue is in fact
nearly complete at z � 0.3 and λ � 30 (Rykoff et al. 2014).

5.6 Mass function

The modelling with a redshift-evolving Gaussian function, see equa-
tions (24)–(26), is functional as far as the mass distribution is fairly
unimodal and the redshift evolution is smooth. In the case of a
cluster sample selected through a hard cut in the observable, these
assumptions are well justified, see Section 2 and Appendix A. How-
ever, the scheme is flexible enough to work even with heterogeneous
sample since detections and measurements are generally limited by
observational thresholds.

As far as the distribution is unimodal, a simple parametrization
of the distribution of the covariate variable in terms of a single
Gaussian function can determine unbiased estimates of the scaling
relation. Results are full consistent with more complex parametriza-
tions adopting mixtures of Gaussians (Kelly 2007; CoMaLit-II).

The observed WL mass functions in different redshift bins are
well reproduced by the regression model. Distributions for the ve-
locity dispersion–, optical richness–, X-ray luminosity–, and SZ
flux–WL samples are shown in Figs 9, 10, 11, and 12, respectively.
The regression model computes the distribution of the true masses.
To compare them with the observed distribution of WL masses,
we had to smooth the distribution first with a Gaussian function
whose standard deviation is the intrinsic scatter between true and
proxy mass, which is computed by the regression too, and then with
a Gaussian whose dispersion is given by the observational uncer-
tainty on the WL masses. We considered the median uncertainty in
the redshift bin.

5.7 Predictions for the CLASH sample

We can now make use of the constraints on the investigated scaling
relations to obtain robust predictions on the observed properties of
the galaxy clusters that are part of the CLASH programme (Clus-
ter Lensing And Supernova survey with Hubble; Postman et al.
2012), which provides one of the samples best studied at different
wavelengths.

Figure 9. Mass function of the clusters from the σ v–MWL sample in four
redshift bins. The black histogram groups the observed WL masses. The blue
line is the normal approximation estimated from the regression at the median
redshift. The shaded blue region encloses the 68 per cent confidence region
around the median relation due to uncertainties on the parameters of the
mass function. The mass function for the observed WL masses is estimated
from the fit result, i.e. the mass function of the true masses, by smoothing
the prediction with a Gaussian whose variance is given by the quadratic sum
of the intrinsic scatter of the (logarithmic) WL mass with respect to the true
mass and the median observational uncertainty on the WL mass. Redshift
increases from the top to the bottom. The median redshift and the redshift
bins are indicated in the legends of the respective panels.
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Figure 10. Mass function of the clusters from the optical richness–WL
sample in four redshift bins. Lines and conventions are as in Fig. 9.

The scaling relation σ v–M200 can be used to predict the results
for the ongoing measurements of the velocity dispersions acquired
as part of the extension with optical spectroscopic data of the ob-
jects in the CLASH sample (e.g. the VLT-VIMOS Large Program
of 230 h to carry out a panoramic spectroscopic survey of the
14 southern CLASH clusters). The CLASH-VLT programme aims
at obtaining redshift measurements for 400–600 cluster members
and 10–20 lensed multiple images in each cluster field (Biviano
et al. 2013). Additional observations from northern facilities, i.e.

Figure 11. Mass function of the clusters from the X-ray luminosity–WL
sample in four redshift bins. Lines and conventions are as in Fig. 9.

the MMT/Hectospec (Rines et al. 2013), will complement the pro-
gramme.

For these predictions, we performed a new regression excising
from the sample the eight CLASH clusters previously included.
Since we are interested in predicting the velocity dispersion given
the WL mass, we considered the conditional σv−MWL

200 relation
rather than the true mass–velocity dispersion σ v–M200. The re-
sults of the regression were in full agreement with the regres-
sion of the full sample: αY|X = 2.75 ± 0.05; βY|X = 0.22 ± 0.05;
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Figure 12. Mass function of the clusters from the SZ–WL sample in four
redshift bins. Lines and conventions are as in Fig. 9.

γ z = −0.02 ± 0.24; σ Y|X, 0 = 0.07 ± 0.01; γσY |X = 0.07 ± 0.91.
Alternatively, we might have used the σ v–M200 scaling considering
the additional source of error given by the intrinsic scatter between
the known WL masses and the unknown true masses. As a gen-
eral remark, if we have WL masses we cannot make predictions by
plugging them in scaling relations which compare for example the
observable to the hydrostatic mass.

We considered for the CLASH clusters the WL masses reported
in LC2-all (CoMaLit-III) and based on Umetsu et al. (2014), who

performed a combined analysis of shear and magnification. The
velocity dispersions based on the σ v–MWL, 200 relation are listed in
Table 5. The main source of statistical uncertainty on the predictions
is due to the intrinsic scatter of the relation, which abundantly tops
the uncertainties due to the propagated error on the WL mass or due
to the uncertainties in the scaling relation parameters.

The prediction for MACS J1206.2−0847 compares well with the
first measurement from CLASH-VLT (Biviano et al. 2013, σv =
1087+53

−55 km s−1). The HeCS covered two clusters later on analysed
in Umetsu et al. (2014), i.e. A2261 and RXJ2129. The prediction for
RXJ2129 is in excellent agreement with the measurements (Rines
et al. 2013, σv = 858+71

−57 km s−1). On the other hand, the prediction
slightly exceeds the observed velocity dispersion of A2261 (Rines
et al. 2013, σv = 780+78

−60 km s−1), even though the small discrepancy
is fully covered by the uncertainty due to the intrinsic dispersion of
the scaling.

6 C O M PA R I S O N S

In this section, we compare our results to theoretical predictions or
previous estimates.

6.1 Theoretical predictions

We first compare our results to predictions based either on theoreti-
cal models of structure formation or on numerical/hydrodynamical
simulations.

6.1.1 LX−M�

Stanek et al. (2010) presented a computational study of the intrinsic
covariance of cluster observables using the Millennium Gas Sim-
ulations. Two different physical treatments were proposed: shock
heating driven by gravity only, or a second treatment with cool-
ing and pre-heating. The predictions in Stanek et al. (2010) on the
scaling between mass and bolometric X-ray luminosity are strongly
dependent on the adopted scheme. Acceptable values of the slope
are in the range 1.1 � β � 1.9, consistent with our estimate of
βY–Z = 1.8 ± 0.3.

Ettori et al. (2004a) noted a significant negative evolution in the
LX−M� relation (γ z ∼ −0.94) in a sample of local and high-
redshift galaxy clusters extracted from a large cosmological hydro-
dynamical simulation with cooling and pre-heating, supporting the
first evidence of a negative evolution (with respect to the self-similar
model) observed in Chandra data of high-z clusters in Ettori et al.
(2004b). This negative evolution with z is in agreement with our
findings (γ z = −1.7 ± 0.8), even though the large statistical error
make the estimate marginally compatible with self-similarity. We
noted negative evolution in two different samples of X-ray clus-
ters, i.e. the sample from Maughan et al. (2012) and the MCXC,
whose luminosities were largely based on independent data sets and
procedures.

An exhaustive study of the joint effect of feedback from super-
novae (SNe) and active galactic nuclei (AGNs) on the evolution of
the X-ray scaling laws presented in Short et al. (2010) predicts an
opposite behaviour of the evolution of the LX−M� relation. They
found that the energy output from SNe and AGNs as implemented
through semi-analytic models of galaxy formation causes a positive
evolution. On the other hand, simulations based on a pre-heating
model where an entropy floor of 200 keV cm2 is introduced at z = 4
confirmed the presence of a negative evolution (Short et al. 2010).
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Table 5. Predicted line-of-sight velocity dispersions of the CLASH clusters. WL masses (col. 3) and
redshifts (col. 2) are from the LC2-all. The quoted uncertainty on σ v is statistical (col. 4), including
the contribution from the uncertainty in the mass estimates (δσmass

v , col. 5), from the uncertainties in
the scaling relation parameters (δσ SR

v , col. 6), and from the intrinsic scatter in the σ v–MWL scaling
relation and the related uncertainty (δσ scat

v , col. 7).

Name z MWL, 200 σ v δσmass
v δσ SR

v δσ scatter
v

(1014M	) (km s−1) (km s−1) (km s−1) (km s−1)

ABELL 383 0.187 8.1 ± 2.2 958 ± 164 63 25 153
ABELL 209 0.206 17.6 ± 3.0 1145 ± 193 64 48 187
ABELL 2261 0.224 21.2 ± 4.1 1204 ± 206 79 60 200
RX J2129.3+0005 0.234 5.5 ± 1.4 902 ± 157 61 35 147
ABELL 611 0.288 14.1 ± 3.9 1139 ± 197 77 34 183
MS 2137.3−2353 0.313 12.4 ± 4.8 1123 ± 206 100 29 180
RXC J2248.7−4431 0.348 20.2 ± 6.7 1274 ± 231 108 55 210
MACS J1931.8−2635 0.352 14.7 ± 6.4 1192 ± 225 119 37 192
MACS J1115.8+0129 0.352 15.5 ± 3.4 1205 ± 204 70 39 196
RX J1532.9+3021 0.363 7.1 ± 1.9 1022 ± 177 70 35 167
MACS J1720.3+3536 0.391 13.4 ± 3.1 1195 ± 204 70 36 192
MACS J0416.1−2403 0.396 10.3 ± 2.2 1130 ± 191 62 32 182
MACS J0429.6−0253 0.399 9.4 ± 3.0 1109 ± 197 85 33 180
MACS J1206.2−0847 0.44 15.8 ± 3.6 1272 ± 219 78 46 208
MACS J0329.6−0211 0.45 9.9 ± 1.5 1156 ± 193 55 39 189
RX J1347.5−1145 0.451 29.3 ± 6.1 1465 ± 260 110 88 250
MACS J1149.5+2223 0.544 25.2 ± 5.2 1495 ± 265 108 85 257
MACS J0717.5+3745 0.548 30.5 ± 4.9 1561 ± 278 114 100 272
MACS J0647.7+7015 0.584 13.1 ± 4.2 1326 ± 245 113 63 224
MACS J0744.9+3927 0.686 17.3 ± 4.7 1497 ± 278 127 90 261

Positive evolution (i.e. higher luminosities at higher redshift, for
a fixed mass, than the self-similar prediction) was also found in Pike
et al. (2014) in a series of radiative hydrodynamical models, which
suggested that radiative cooling is the main driver for departures
from self-similarity.

The pre-heating scenario seems to be preferred from our results.

6.1.2 YSZ−M�

The consensus from numerical simulations is that the YSZ−M� is
approximately self-similar in mass (1.6 � β � 1.8) and it is char-
acterized by a small intrinsic scatter (Stanek et al. 2010; Battaglia
et al. 2012; Kay et al. 2012). Stanek et al. (2010) found that the
evolution with redshift might be negative (γ z ∼ −0.34) in presence
of cooling and preheating.

In agreement with simulations, we did not detect any departure
from the self-similar scaling, with βY–Z = 1.50 ± 0.21. The uncer-
tainty in the observed time evolution is too large (γ z = −0.8 ± 0.8)
to infer any statistically significant deviation from self-similarity.
In fact, the evolution with mass is fully consistent with the findings
of CoMaLit-II, where we found βY–Z = 1.37 ± 0.15 assuming a
self-similar redshift evolution.

6.1.3 σv−M�

Numerical simulations confirmed that the σv−M� relation is con-
sistent with the self-similar scaling with mass (Evrard et al. 2008;
Munari et al. 2013; Saro et al. 2013). Some differences may arise
from the galaxy population used to estimate the velocity dispersion
and from the impact of selection using galaxy colour, projected
separation from the cluster centre, galaxy luminosity, and spectro-
scopic redshift (Saro et al. 2013). Whereas dark matter particles in
simulations trace a relation that is fully consistent with the theo-

retical expectations, subhaloes and galaxies trace slightly steeper
relations with β just above 1/3, and with slightly larger values of
the normalization (Munari et al. 2013). This is due to dynamical
processes, namely dynamical friction and tidal disruption, which
act on substructures and galaxies, but not on dark matter particles.
The relevance of these effects depends on the halo mass and the
effectiveness of baryon cooling, and may create a non-trivial de-
pendence of the scaling relation on the tracer, the halo mass, and its
redshift (Munari et al. 2013). A better statistical accuracy than that
achieved with our results is needed to detect such effects.

Saro et al. (2013) noted a substantial agreement between the
time evolution of the σv−M� relation and the expected self-similar
evolution, γ z ∼ 0, which we confirm here within the statistical
uncertainties.

The main sources of bias and scatter in velocity dispersion at
fixed mass are the halo triaxiality, sampling noise, the presence of
multiple kinematic populations within the cluster, and the effect of
interlopers (Saro et al. 2013). Saro et al. (2013) found σlog(σv/M�) ∼
0.05 locally, and that the intrinsic scatter increases with redshift,
with velocity dispersions that are ∼25 per cent less accurate for
estimating single cluster masses at z = 1 than at low redshift. Stanek
et al. (2010) found a smaller scatter of σlog(σv/M�) ∼ 0.02 for dark
matter particles.

Our findings, i.e. σlog(σv/M�) ∼ 0.06 ± 0.02, slightly exceed the
theoretical predictions. The accuracy of our results is not good
enough to appreciate any evolution of scatter with redshift.

6.2 Previous estimates

We now discuss our findings in relation to previous results. We
limited the comparison mainly to scaling relations which employed
direct mass measurements based on WL or the assumption of hy-
drostatic equilibrium, whereas we mostly discarded works based on
mass estimates based on external calibration. Previous analyses of
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the σv−M� were mostly based on mass measurements assuming the
dynamical equilibrium and the virial theorem (Girardi & Mezzetti
2001; Rines et al. 2013). This mass measurement is direct too, but it
is strongly correlated with the velocity dispersion, differently from
the WL masses we considered here.

We did not consider previous analyses of the conditional scaling
relations in which the mass worked as the response variable. These
relations are not easily inverted and cannot be compared straight on
with our results.

6.2.1 LX−M�

Observed slopes of the LX−M� relation from previous studies may
be steeper than the self-similar prediction. Estimated values of β

ranges from 1.3 to 1.9 (Pratt et al. 2009; Vikhlinin et al. 2009;
Arnaud et al. 2010; Reichert et al. 2011; Ettori 2013). Source of
disagreement may be various. The slope and normalization of the
relation depend on the energy band and method used for the flux
extraction (Ettori 2015).

The intrinsic scatter of the LX−M� relation is ∼40 per cent
(Giodini et al. 2013). It is the largest among the various X-ray scal-
ing relations. We confirmed the large scatter in the LX−M� rela-
tion. The X-ray luminosity is heavily affected by non-gravitational
processes, the presence of cool-cores, and the overall dynamical
state of the halo (Giodini et al. 2013). Most of the scatter derives
from the inner regions where cooling and merging effects are most
pronounced. Our estimate of the scatter based on the soft band lu-
minosities provided by the MCXC is fully consistent with most
of the previous results (∼40 per cent), whereas the estimate based
on the core-excised bolometric luminosities from Maughan et al.
(2012) is significantly smaller (∼20 per cent). This suggests that a
careful choice of the energy band and of the methods for the flux
measurement might significantly reduce the intrinsic scatter of the
LX−M� relation.

A negative time evolution of the relation was first noticed in
Ettori et al. (2004b) and later confirmed by Reichert et al. (2011),
which found γ z = −1.3 ± 0.2 applying a tentative selection-bias
correction. Our results confirm these previous findings.

From a multivariate analysis aimed to study X-ray luminosity,
temperature, and gas mass fraction in a sample of clusters with well-
measured WL masses in the context of cosmological parameter de-
terminations with cluster abundances, Mantz et al. (2014) estimated
a slope of 1.71 ± 0.17 and an intrinsic scatter of 42 ± 5 per cent
for the LXsoft−M� relation assuming self-similar time evolution.
Apart from the assumed redshift dependence, these results are di-
rectly comparable to ours, since Mantz et al. (2014) considered
the scatter of the WL mass and the effects of the selection func-
tion. The estimated slope is in very good agreement with our result
βY|Z = 1.60 ± 0.27. In principle, slopes obtained from a multivari-
ate analysis may differ from the results of a single O−M� relation
if the considered observables are strongly correlated (Ettori 2013).
However, this is not the case of the X-ray properties considered in
Mantz et al. (2014).

Rozo et al. (2014b) developed a self-consistent method to derive
scaling relations satisfying optical data from SDSS, X-ray data from
ROSAT and Chandra, and SZ data from Planck. Assuming a self-
similar time evolution, they derived a slope of βY|X = 1.55 ± 0.09 for
the LXsoft−M500 relation with a scatter of ∼39 ± 3 per cent. Slope
and scatter from Rozo et al. (2014b) are consistent with our results
for the LXsoft−M� relation based on the MCXC (see Section 5)
even though the analyses presents some major differences. In fact,

Rozo et al. (2014b) used stacked data rather than measurements
from single clusters and they assumed a self-similar time evolution.

6.2.2 YSZ−M�

Observed slopes of the scaling relation between mass and SZ flux
are discordant to some degree (CoMaLit-II). The Planck team de-
termined the YSZ–M500 relation relying on masses estimates based
on the YX proxy and assuming a self-similar time evolution (Planck
Collaboration XX 2014). Through the BCES-orthogonal regres-
sion, they found βY–X = 1.79 ± 0.06 and an intrinsic orthogonal
scatter ∼15–20 per cent (Planck Collaboration XX 2014). A previ-
ous calibration based on 19 WL clusters mainly from the LoCuSS
sample (Local Cluster Substructure Survey, Okabe et al. 2010) gave
βY-X = 1.7 ± 0.4 (Planck Collaboration III 2013). However, WL
masses of the LoCuSS clusters are biased low due to contamination
effects and systematics in shape measurements (Okabe et al. 2013).
The underestimate might be mass dependent and affect the estimated
slope. With a self-consistent method, Rozo et al. (2014b) found a
slope of βY|X = 1.71 ± 0.08 with a scatter of ∼15 ± 2 per cent.
These estimated slopes are steeper but consistent within the statis-
tical uncertainty with our result of βY-X = 1.5 ± 0.2.

Andreon (2014) claimed that the evolution of the YSZ–M500 re-
lation is significantly inconsistent with the self-similar evolution.
He found γ z = 1.8 ± 0.4. The disagreement with our result, which
is fully consistent with the self-similar prediction, might be due
to the arbitrary choice in Andreon (2014) to use a pre-determined
completeness function. An inappropriate modelling can bias the es-
timates of the scaling relations as well as neglecting time evolution
at all.

Furthermore, Andreon (2014) neglected the intrinsic scatter in
the mass estimate, and, following Planck Collaboration XX (2014),
he employed a mass proxy based on YX, which is strongly correlated
to the SZ signal. These choices likely explain the disagreement with
our result.

6.2.3 λ−M�

Most of the analyses correlating optical richness to mass were based
on stacking techniques (Covone et al. 2014; Rozo et al. 2014b, and
references therein). Here, we focus on not binned data. Wen, Han
& Liu (2009) considered a compilation of clusters whose masses
had been estimated by X-ray or WL methods to infer a slope of
βY–Z = 1.17 ± 0.03.

Andreon & Congdon (2014) studied the mass–richness scal-
ing for a subsample of the CCCP clusters (The Canadian Clus-
ter Comparison Project; Hoekstra et al. 2012). They found that
richness scales almost linearly with the projected WL mass
(βY|X = 1.3 ± 0.3), with a statistically insignificant evolution
(γ z = −0.7 ± 0.7). The evolution with mass measured in Andreon
& Congdon (2014) is steeper than a previous result by Andreon &
Bergé (2012), which used spherical masses and projected richnesses
to find βY|X = 0.46 ± 0.12.

The slower slope found in Andreon & Bergé (2012) might be
due to their assumption that the masses, which were measured
with the caustic method, were unscattered measurements of the
true masses. However, masses based on this method are highly
scattered (CoMaLit-II). Neglecting this effect makes relations flatter
(CoMaLit-I; CoMaLit-II). The very large scatter of ∼58 ± 7 per cent
measured in Andreon & Bergé (2012) is biased high for the same
reason.
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7 C O N C L U S I O N S

To assess the role of the evolution with time of the scaling relations
between mass and observed properties it is crucial to avoid biases
in the calibration. The evolution of cluster scaling relations is still
debated. Small samples or biases due to the (unknown) selection
function are two of the main problems. We developed a regression
methodology that at the same time constrains the evolution and
calibrates the completeness function of the studied sample.

The method is general and lets the data determine the time-
dependent scatter of the mass proxy or the intrinsic scatter between
the observable and the mass. Selection functions and their time-
dependence are often not known a priori. In our approach, the
selection function can be determined in the context of the regres-
sion procedure. The approach we implemented is Bayesian and can
easily include any additional or a priori information on the com-
pleteness of the sample. This method is functional in the context
of large photometric surveys such as Euclid (Laureijs et al. 2011),
where self-calibration of scaling relations is crucial to unbiased es-
timates of dark energy with study of cluster abundances (Majumdar
& Mohr 2004)

We tested the method with large heterogeneous samples to cal-
ibrate either optical properties, such as richness and velocity dis-
persion, or observables connected to the intracluster medium, such
as X-ray luminosity and SZ flux. Masses were estimated with WL
analyses and intrinsic scatter in the mass estimate was considered.
WL masses are reliable mass measurements up to high redshifts.

To our knowledge and not considering mass estimates based
on the viral theorem, this is one of the first studies to compare
galaxy velocity dispersions to direct estimates of masses of clusters
(WL masses in our case). This is the approach usually followed in
numerical simulations (Evrard et al. 2008; Munari et al. 2013; Saro
et al. 2013) to built mass proxies based on the velocity dispersion
without assuming dynamical equilibrium and without exploiting the
properties of the infall patterns.

We found that observables scale self-similarly with respect to
the mass and that they evolve self-similarly with cosmic time. The
only exception is the LX−M� relation, which seems to show a
negative evolution. A similar level of evolution can be obtained
in hydrodynamical simulations of the intracluster medium by in-
cluding additional radiative cooling and uniform preheating at high
redshift as a simple model of non-gravitational heating from astro-
physical sources (Ettori et al. 2004a; Short et al. 2010; Reichert
et al. 2011).

The intrinsic scatter in the mass–velocity dispersion relation is
notably small, which encourages the use of velocity dispersions
as mass proxies. Our procedure accounts for time evolution of the
intrinsic scatter. However, the large statistical uncertainties made
the parameters characterizing this dependence as de facto noise
parameters which had to be marginalized over to avoid to bias low
the uncertainties on the scaling relation. The determination of this
evolution is out of reach in present samples of nearly one hundred
of clusters (Mantz et al. 2010b), but is should be feasible in future
large surveys that will be able to collect homogeneous multiband
information of an unprecedented number of clusters.
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tive alla fase B2/C per la missione Euclid’, PRIN MIUR 2010-2011
‘The dark Universe and the cosmic evolution of baryons: from

current surveys to Euclid’, and PRIN INAF 2012 ‘The Universe
in the box: multiscale simulations of cosmic structure’. SE ac-
knowledges the financial contribution from contracts ASI-INAF
I/009/10/0 and PRIN-INAF 2012 ‘A unique data set to address the
most compelling open questions about X-Ray Galaxy Clusters’.
This research has made use of NASA’s Astrophysics Data Sys-
tem (ADS) and of the NASA/IPAC Extragalactic Database (NED),
which is operated by the Jet Propulsion Laboratory, California In-
stitute of Technology, under contract with the National Aeronautics
and Space Administration.

R E F E R E N C E S

Adelman-McCarthy J. K. et al., 2006, ApJS, 162, 38
Allen S. W., Evrard A. E., Mantz A. B., 2011, ARA&A, 49, 409
Andreon S., 2014, A&A, 570, L10
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A P P E N D I X A : T H E M A S S F U N C T I O N

The mass distribution of an observationally selected sample of clus-
ters is usually limited at large masses by the steepness of the mass
function, and, at smaller masses, it is limited by some observational
thresholds they have to surpass to be detected/selected. This two fac-

Figure A1. Distribution of true masses M200 of a sample of clusters at
z = 0.3 (grey histogram), whose observable proxy mass was larger than
Mth, 200 = 0.5 × 1014M	 h−1 (vertical blue line). The assumed lognormal
scatter is σ = 0.25. The empty histogram represents the full distribution of
the true masses of all clusters before the selection; the grey histogram repre-
sent the distribution of selected clusters, i.e. clusters whose observed proxy
mass is above the threshold (vertical blue line). The red line is the Gaussian
approximation to the mass function. The true masses were extracted from a
cosmological halo mass function following Tinker et al. (2008).

tors conjure to make the distribution of the masses approximately
lognormal (Lima & Hu 2005).

As an example, we extracted a number of clusters from the cos-
mological halo mass function (Tinker et al. 2008). The clusters were
then selected if their observable proxy mass was in excess of a given
threshold value. We assumed that the proxy masses were unbiased,
i.e. the expected value of the proxy for a given mass is exactly the
mass, but (lognormally) scattered with respect to the true masses.
The final distribution, which is plotted in Fig. A1, resembles a
normal function.

The mass function of an observed sample can be expressed as

dnsample

dμ
= χ (μ)

dn

dμ
, (A1)

where μ ≡ log M� and dn/dμ is the number density per logarithmic
interval. The completeness of the observed sample χ can be usually
approximated as

χ (μ) � 1

2
erfc

(
μχ − μ√

2σχ

)
, (A2)

where erfc is the complementary error function.
Some considerations based on a toy-model can give us a better

insight. The mass function in small mass and redshift ranges can be
approximated using a first-order Taylor expansion as (Evrard et al.
2014; Rozo et al. 2014a),

dn

dμ
∝ exp (−β1μ) . (A3)

At large masses, the mass function is steep and the function in
equation (A3) provides a good approximation. Fitting the approx-
imation to the mass function proposed by Tinker et al. (2008), we
found that at z � 0.3 (1.0), β1 � 6.8 (11.3) around a pivot mass of
M200 = 5 × 1014M	 h−1 for the standard �CDM cosmology.

Previous treatments have approximated the mass function of the
sample with the cosmological halo distribution in equation (A3)
(Mandelbaum & Seljak 2007; Allen, Evrard & Mantz 2011; Evrard
et al. 2014; Rozo et al. 2014a, and references therein). Here, we want
to consider the additional effect of the selection function, which
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severely limits the number of low-mass haloes. Let us assume that
the observable O is lognormally scattered around the mass. The
conditional probability for the log variable o ≡ log O is

p(o|μ) = 1√
2πσo|μ

exp

[
−1

2

(
o − μ

σo|μ

)2
]

. (A4)

To simplify the notation, we assumed that O scales linearly with the
mass and that is was normalized so that the expected value of o for
a given mass is exactly μ.

If we select a cluster sample imposing a hard cut in the observable,
o > oth, the resulting mass function of the selected clusters is

p(μ) = β1

2
erfc

(
oth − μ√

2σo|μ

)
exp

[
−β1

(
μ − oth + β1

2
σ 2

o|μ

)]
. (A5)

By comparison with equation (A1), we see that in this case the
completeness function is exactly given by the complementary error
function with μχ = oth and σχ = σ o|μ.

The probability distribution of the observable is

p(o) = β1 exp [−β1 (o − oth)] , (A6)

for o > oth, and p(o) = 0 below the threshold. The two-dimensional
distribution is

p(μ, o) = β1
1√

2πσo|μ
exp

[
−1

2

(
o − μ

σo|μ

)2
]

× exp

[
−β1

(
μ − oth + β1

2
σ 2

o|μ

)]
, (A7)

for o > oth, and it is null otherwise.
The mass function of the selected clusters in equation (A1), and

its approximation in equation (A5) can be adequately described by
a Gaussian distribution. The effectiveness of the Gaussian structural
model for estimating the regression parameters was illustrated by
Kelly (2007), who showed that as far as the distribution of the co-
variate variable, i.e. the mass function in our case, is fairly unimodal
a simple Gaussian can perform competitively with a mixture. For a
large range of scatters, 0.05 � σχ � 0.25, and slopes, 5 � β1 � 20,
we found the following analytical approximation:

p(μ) � 1√
2πσμ

exp

[
−1

2

(
μ − μ̄

σμ

)2
]

. (A8)

with

μ̄ � μχ + σχ − 1.21β1σ
2
χ , (A9)

and

σμ � 0.062 − 0.0023β1 + (1 − 0.0052β1)σχ , (A10)

Equations (A9) and (A10) can be used to approximately estimate the
completeness function, equation (A2), if we know the mass distribu-
tion of the clusters, equation (A8). The larger the intrinsic scatter σχ

and the steeper the mass function, the better the Gaussian approxi-
mation, see Fig. A2. Even for small scatters (σ o|μ ∼ 0.15) and shal-
low mass functions (β1 ∼ 5), the normal approximation is reliable.

A P P E N D I X B : C ATA L O G U E S O F V E L O C I T Y
DISPERSION

We compiled two catalogues of galaxy clusters with measured ve-
locity dispersion, the Sigma Catalogues (SCs). SC-all comprises
the full body of information. Multiple entries are present. The SC-
single is a subsample with unique entries. When a cluster had multi-
ple analyses available in literature, we picked for the SC-single the

Figure A2. Probability function of the log mass μ, i.e. the logarithm of
the overdensity mass M�. We assume that μ is intrinsically distributed as
a local power law and that clusters are selected if they have a proxy mass
o > −1. The value of the slope of the halo function β1, and of the intrinsic
scatter for the different cases are reported in the legend.

results based on the larger number of identified member galaxies
with confirmed spectroscopic redshift, Nmembers.

In each catalogue, objects are ordered by right ascension. The
format of the catalogues is as follows.

Cols. 1–2: name of cluster as designated in the original paper.
Cols. 3–4: right ascension RA (J2000) and declination DEC

(J2000), as quoted in the original paper. If coordinates are not
quoted in the source paper or in a companion one, we reported
the coordinates of the NED’s association.

Col. 5: redshift z, as reported in the original paper.
Col. 6: external validation through NED. ‘N’: the NED’s object

was associated by name; ‘P’: the NED’s object was associated by
positional matching; ‘NA’: no found association.

Cols. 7–11: as in cols. 1–5, but for the NED’s association.
Col. 12: author code.
Col. 13: bibliographic code from NASA’s Astrophysics Data

System (ADS).
Col. 14: Nmembers, number of confirmed member galaxies used

to measure the velocity dispersion. If the number was not available,
we put the entry to −99.

Col. 15: aperture radius within which member galaxies were
looked for, in units of Mpc h−1. The radius is measured in a flat
�CDM model with �M = 0.3. If the information is not available,
we put the entry to −99.

Col. 16: line-of-sight velocity dispersion σ v, in units of km s−1.
Col. 17: uncertainty on the line-of-sight velocity dispersion, in

units of km s−1, as quoted in the reference paper, δσv,ref .
Col. 18: Standardized uncertainty in the velocity dispersion σ v,

in units of km s−1, measured as

δσv,stand = 0.92σv√
Nmembers − 1

, (B1)

or fixed to −99 if Nmembers is unknown.

The format of columns 1–13 follows the LC2 (CoMaLit-III).
The catalogues are publicly available at http://pico.bo.astro.it/
~sereno/CoMaLit/sigma/ and they will be periodically updated.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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