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ABSTRACT

The scaling of observable properties of galaxy clusters with mass evolves with time. Assessing
the role of the evolution is crucial to study the formation and evolution of massive haloes and
to avoid biases in the calibration. We present a general method to infer the mass and the
redshift dependence, and the time-evolving intrinsic scatter of the mass—observable relations.
The procedure self-calibrates the redshift-dependent completeness function of the sample. The
intrinsic scatter in the mass estimates used to calibrate the relation is considered too. We apply
the method to the scaling of mass M s versus line-of-sight galaxy velocity dispersion o, optical
richness, X-ray luminosity, Lx, and Sunyaev—Zel’dovich signal. Masses were calibrated with
weak lensing measurements. The measured relations are in good agreement with time and mass
dependences predicted in the self-similar scenario of structure formation. The lone exception is
the Lx— M 4 relation, whose time evolution is negative in agreement with formation scenarios
with additional radiative cooling and uniform preheating at high redshift. The intrinsic scatter
in the o,— M 4 relation is notably small, of the order of 14 per cent. Robust predictions on the
observed properties of the galaxy clusters in the Cluster Lensing And Supernova survey with
Hubble sample are provided as cases of study. Catalogues and scripts are publicly available at

http://pico.bo.astro.it/~sereno/CoMaL.it/.
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1 INTRODUCTION

Scaling relations among cluster global properties embody impor-
tant clues on the formation and evolution of cosmic structures. They
result from the main gravitational processes driving the cluster evo-
lution (Kaiser 1986; Battaglia et al. 2012; Ettori 2013; Giodini et al.
2013). Accurate mass—observable relations are also needed to use
the abundance of galaxy clusters to constrain cosmological param-
eters (Vikhlinin et al. 2009; Mantz et al. 2010a, 2014; Rozo et al.
2010; Planck Collaboration XX 2014).

This paper is the fourth in a series titled ‘CoMaLit’ (COmparing
MAsses in LITerature), which aims to assess our present capability
to measure cluster masses, and to develop methods to measure scal-
ing relations through Bayesian techniques. In the first paper (Sereno
& Ettori 2015, hereafter CoMalLit-1), we evaluated systematic differ-
ences in lensing and X-ray masses obtained from independent anal-
yses and we quantified the overall level of bias and intrinsic scatter
of these mass proxies. The second paper presented the formalism to
calibrate an observable cluster property against the cluster mass and
applied the methodology to the Sunyaev—Zel’dovich (SZ) Planck
selected clusters (Sereno, Ettori & Moscardini 2015, hereafter
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CoMalLit-II). The Literature Catalogs of weak Lensing Clusters
(LC?), which are standardized and homogenized compilations of
clusters and groups with weak lensing (WL) mass estimates, were
presented in the third paper (Sereno 2015, hereafter CoMaL.it-I1I).
Here, we extend the Bayesian approach to account for redshift evo-
lution of the scaling relations, of the intrinsic scatters in the mass
and in the observable, and of the selection function.

If gravity is the dominant process, the resulting self-similar model
predicts scaling relations in form of scale-free power laws (Kaiser
1986; Giodini et al. 2013). Numerical simulations (Stanek et al.
2010; Fabjan et al. 2011) confirmed these scalings and showed
that intrinsic scatters around the median relations approximately
follow a lognormal distribution. This basic theoretical scheme is
very successful in describing observed scaling relations in X-ray
and SZ (Ettori 2013, 2015). Deviations from the self-similar scheme
may indicate that non-gravitational processes, such as feedback and
non-thermal processes, contribute significantly to the global energy
budget in clusters (Maughan et al. 2012).

The precise measurement of the redshift evolution of the scaling
relations is then crucial to understand how either gravitational or
non-gravitational phenomena drive the formation and evolution of
clusters. Furthermore, if the time evolution is neglected or wrongly
shaped, the estimated scaling with mass may be biased in cluster
samples spanning a significant redshift range (Andreon 2014).
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Any real time-dependence in the scaling of observables with
mass and redshift has to be separated by other effects connected
either to the evolution of the cluster mass function or to the redshift
dependence of the selection function and of the completeness of the
sample. Further complications are due to the fact that usual samples
of clusters are not assembled according to well-defined criteria but
they may be just heterogeneous collections of systems with high
quality data. In this case, the determination of the selection function
is very problematic.

Here, we develop a method that measures at the same time the
evolution of the scaling relation and the completeness/selection
function of the sample. This is a self-calibrating method which is
intended to be optimized in large optical survey such as Euclid
(Laureijs et al. 2011). If we calibrate a cluster observable against
the cluster mass, this relation can be used to construct a mass proxy
based on the observable. The optimal mass proxy is expected to
be easy to measure, unbiased, and minimally scattered. A crucial
aspect is that in the first step we cannot calibrate the observable
against the true mass (which cannot be measured), but we have to
rely on another mass proxy, such as the WL mass or the hydrostatic
mass, which are scattered too (Rasia et al. 2012; CoMalLit-I). This
scatter has to be considered to avoid biases (Mantz et al. 2014;
CoMalL.it-I; CoMalL.it-1I)

We apply the method to calibrate mass proxies based on the line-
of-sight velocity dispersion of cluster galaxies, which is supposedly
the best mass proxy (Stanek et al. 2010; Saro et al. 2013), and three
other observables, which are more scattered but optimized for large
surveys, i.e. the optical richness, the X-ray luminosity, and the SZ
integrated Compton parameter.

This paper is organized as follows. Section 2 is devoted to gen-
eral considerations on the redshift evolution of the scaling relations,
of the intrinsic scatters, and of the selection/completeness function.
Section 3 reviews the methodology employed to perform the regres-
sion and to recover at the same time the scaling relations and the
completeness and selection functions. The cluster catalogues used
in the analysis are introduced in Section 4. Results are presented
in Section 5, whereas Section 6 is devoted to the comparison with
theoretical predictions and previous works. Final considerations are
contained in Section 7. In Appendix A, we discuss how the masses
of clusters in selected samples are usually distributed. Appendix B
describes the format of the compiled catalogues of line-of-sight
velocity dispersions.

Throughout the CoMalL.it series of papers, we have been adopting
the following conventions and notations. The framework cosmo-
logical model is the concordance flat A cold dark matter (ACDM)
universe with density parameter 2y = 0.3, and Hubble constant
Hy = 70kms~! Mpc~!. H(z) is the redshift dependent Hubble pa-
rameter and £, = H(z)/Hy. When H, is not specified, % is the Hubble
constant in units of 100 kms~! Mpc~!.

O, denotes a global property of the cluster measured within the
radius which encloses a mean overdensity of A times the critical
density at the cluster redshift, p, = 3H(z)?/(87tG). ‘log’ is the
logarithm to base 10 and ‘In’ is the natural logarithm.

2 REDSHIFT EVOLUTION

Scaling relations evolve with redshift. Numerical simulations
(Stanek et al. 2010) and theoretical predictions (Giodini et al. 2013)
agree that the relation between the mass M, and any observable
quantity O can be summarized by the form

0 « MYE!. M
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Within this framework, the redshift evolution in the median scaling
relation is accounted for by the factor EY, whereas the slope B is
redshift independent. In fact, in the self-similar scenario, the evolu-
tion does not depend on the mass scale and only the normalization
depends on cosmic time.

We tested this scheme in a number of cases. We considered ob-
servables connected either to the galaxy distribution, i.e. velocity
dispersion of galaxies along the line of sight, o, or optical richness,
A, or to the intracluster medium, i.e. the bolometric X-ray luminos-
ity, Lx, or the spherically integrated SZ Compton signal, Ysz. In the
self-similar scenario, we expect that for clusters in equilibrium the
scalings go like (Giodini et al. 2013; Ettori 2015)

o, o« EVPm), 2)
A X My, 3
Lx < E3MY, )
DiYa o« E¥*M3, 5)

where D, is the angular diameter distance to the cluster. The above
self-similar scaling relations evolve with redshift as EJ*, with
yss = 1/3, 0, 7/3, or 2/3 for the galaxy velocity dispersion, the
optical richness, the X-ray luminosity, or the spherical SZ signal,
respectively. The scaling of the X-ray luminosity depends on the
energy band. For the soft X-ray luminosity in the rest-frame energy
band [0.1-2.4] keV, Lx_,, the evolution can be expressed as (Ettori

2015),

soft *

Ly, &< E2M . (6)

soft

Together with the redshift dependence of the median relation, the
intrinsic scatter of the relation and the scatter between the true mass
and the mass proxy used to calibrate the relation may evolve as well.
Furthermore, any apparent redshift evolution of the scaling may be
degenerate with the evolution of either the mass or the selection
function. We discuss these aspects in the following.

2.1 Intrinsic scatter

Broadly speaking, the intrinsic scatter of a scaling relation is related
to the degree of regularity of the clusters. The larger the devia-
tions from dynamical/hydrostatic equilibrium the larger the scatter
(Fabjan et al. 2011; Saro et al. 2013). Scatter is then prominent
in morphologically complex haloes. Triaxiality is another major
source of scatter, since clusters are usually studied under the sim-
plifying assumption of spherical symmetry (Limousin et al. 2013;
Sereno et al. 2013). Since high-redshift clusters are more irregular
and less spherical, the scatter is usually expected to increase with
redshift.

Let us consider the evolution of scatter in a number of cases.
Based on numerical simulations, Saro et al. (2013) showed that
the scatter of dynamical mass estimates based on the line-of-sight
velocity dispersion is approximately lognormal and that it increases
with redshift as

Ulﬂg(Ma\, / Mvyir) ~ 013(1 —+ 0252) (7)

They argued that the dominant contributor to the scatter is the in-
trinsic triaxial structure of haloes and that its evolution with redshift
is also the dominant source of the increasing scatter of the 1D dy-
namical mass estimates with redshift.
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Fabjan et al. (2011) studied the scaling relations between the
cluster mass and some proxies based on X-ray quantities with a set
of cosmological hydrodynamical simulations. They found that the
scatter distribution around the best-fitting relations is always close
to a lognormal one and that the scatter increases with redshift.

The precise quantitative estimate of the scatter and of its evolution
strongly depends on the details of the baryonic physics included in
the simulations. We considered the results of Fabjan et al. (2011) for
runs with non-radiative physics and standard viscosity. To study the
time evolution, we fitted the values of the scatter obtained at different
redshifts (z = 0.0, 0.25, 0.50, 0.80, and 1.0) under the assumption
of self-similar scaling relation (Fabjan et al. 2011, tables 1, 2, and
3). The mass proxy My, is based on Yx, i.e. the product of the
gas mass within rsoo and the spectroscopic temperature outside the
core (Kravtsov, Vikhlinin & Nagai 2006). We found that the scatter
evolves as

Olog(Myy, /Msoo) = O'O3E?-23’ (®)
or, with an alternative form,!
Olog(atyy /ity == 0.03(1 4 0.142). ©)

For the mass proxy based on the emission-weighted temperature,
we found

Olog(Mry /Mso0) = 0.00EL, (10)
or
GIUS(MTmW/MSUO) >~ 006(1 + 019Z) (1 1)

The above results show that the scatter mildly increases with red-
shift. This suggest that the evolution of the scatter can be modelled
as

Oolu = O’UE;/". (12)

2.2 Completeness

The completeness of a sample usually evolves with redshift. Very
massive clusters are rare and difficult to be found in the local volume
but they are still forming at high redshift. On the other hand, only
clusters emitting very strong signals can be detected to very large
distances. As detailed in Appendix A, the selection and the mass
functions conjure to make the distribution of true masses in observed
samples fairly unimodal. The evolution of the completeness of the
sample can be characterized through the evolution of the peak and
of the dispersion of this distribution.

The mean (logarithmic) mass of the sample is connected to the
observational threshold (see Appendix A), which may evolve with
redshift, and to the scatter between the mass and the observable
quantity used to select the clusters, which evolves too.

Let us first consider the evolution of the mass corresponding to a
completeness limit. As a first example let us consider a flux-selected
sample. The luminosity scales with mass as

Ly o MYEY. (13)

If we select only clusters above a limiting flux, fi,, the corresponding
luminosity evolves as Ly (z) & meL(z)z, where D (z) is the lumi-

! The function 1+ 2", ie. ~(1 4+ yz) forz S 1, can approximate E in
small redshift intervals. The coefficient y; used in the approximation de-
pends on the redshift range considered and on the cosmological parameters.
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nosity distance. In absence of scatter, the corresponding limiting
mass evolves as

_Y
M[h [0 DL(Z)%EZ P . (14)

As a second example, let us consider an SZ-like signal, whose size
increases with the projected physical surface covered by the cluster.
In this case, the observable is proportional to D (2)2%, where 64
is the angular extension of the cluster. The scaling can be written
as

Da(2)*Ya & MAEY. (15)

The noise is proportional to the square root of the angular area, i.e.
oy, 0 = ra/Dx.In absence of scatter, if we select only clusters
above a given signal-to-noise ratio (SNR), i.e. Ya/oy, > SNRy,
the corresponding threshold mass evolves with redshift as

243y
=38

1

My, & DA() 7T E. (16)

The two above examples suggest that the evolution of the mass
at a given completeness limit can be parametrized as

My o DA(2)"P EZ*, (17)

where the factor Ef *= accounts for the evolution in both the mass
threshold and the intrinsic scatter of the scaling relation. This mod-
elling of the completeness limit was derived for samples selected
with a cut on the detection observable but the functional form is flex-
ible enough to address even more complicated cases. The choice of
the angular diameter distance over the luminosity distance in equa-
tion (17) is irrelevant since the two differs for a factor of (1 + z)?
which can be approximately englobed in EY " for limited redshift
baselines.

The evolution in the dispersion of the mass sample is mainly
connected to the intrinsic scatter in the relation used to select the
samples, see Appendix A. The redshift dependence can then be
modelled as in equation (12).

3 REGRESSION SCHEME

When we calibrate a scaling relation, we deal with: (i) the true mass
of the cluster M4, which we cannot measure; (ii) a scattered (and
likely biased) proxy of the true mass, such as the WL mass Mwr, a,
which is the proxy we considered in following, or the hydrostatic
mass Myg, A (see section 2 and appendix A of CoMaLit-I); (iii) an
observable quantity O, which we assume to be on average related
to the true mass with a power law.

In logarithmic variables, the median scaling relation is approx-
imatively linear and the scatter is Gaussian. As discussed in Sec-
tion 2, the scaling can be expressed as

log(E;™0) =0+ BlogMx + y.log E.. (18)

Since we englobed the self-similar evolution in the left-hand side of
equation (18), values of the parameters y, which are different from
zero denote deviations from the self-similar time dependence. In
other words, the time evolution of the scaling relations y , is relative
to that predicted by the self-similar model. Given a particular scaling
law, there is negative, i.e. y, < 0 (positive, i.e. ¥, > 0) evolution if
the normalization at high redshift is lower (higher) than anticipated
from the self-similar scaling.

In what follows, which is the general scheme we employed for
the regression analysis, we identify log M with the variable Z, we
identify the logarithm of the mass proxy, i.e. the WL mass, with

MNRAS 450, 3675-3695 (2015)
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the random variable X, and we identify the logarithm of the self-
similarly redshift evolved observable with the response Y. In this
scheme, the mass is the covariate variable, as when using number
counts of galaxy clusters to constrain cosmological parameters. The
observed values are denoted with the lower case, i.e. x and y are
the manifest measured estimates of the latent X and Y, respectively
(Feigelson & Babu 2012). This notation is the convention adopted
in the CoMalL.it series.
The conditional probability of X given Z is

P(X|Z) = N(Z, 0x)2(2)), 19)

where N is the normal distribution. In equation (19), X is an unbi-
ased proxy of Z. Any bias between X and Z would be degenerate with
the estimated overall normalization of the scaling between Y and Z.
This bias cannot be determined with the data, which only constrain
the relative bias between X and Y (see CoMalLit-I). As discussed in
Section 2.1, the redshift evolution of the scatter is modelled as

ox|z(z) = UX\Z,OE;/UX‘Z- (20)

The mean observable for a given mass is linearly related to the
(logarithm of the) mass and the relation evolves with redshift,

Y; =ay;z + BrizZ + v, logE.; 21)

the redshift z is deterministic and assumed to be known without
measurement errors. Y is scattered and distributed according to the
conditional probability

P(Y|Z) = N(Yz, ov(2(2)), (22)
with
oy|z(2) = UY\z,oEzVJY‘Z~ (23)

The distribution of the masses can be approximated with a Gaussian
function

P(Z) = N(uz(2), 02(2)). (24)

The mass distribution resulting from usual selection procedures is
fairly unimodal (see Appendix A) and can be approximated with the
normal distribution of equation (24). The statistical improvement
obtained considering more complex distributions, such as mixture of
Gaussians with different means and variances, is usually negligible
(Kelly 2007; CoMaL.it-II).

As discussed in Section 2.2, the evolution of the (mean of the)
mass function can be modelled after equation (17) as

nz(2) =z + Vu, 10 E: + vy, 0 10g DA(2). (25
The dispersion evolves as
02(2) = 070E:" . (26)

The completeness function at a given redshift can be computed by
dividing the estimated mass function (equation 24) by the cosmo-
logical halo mass function. This approach requires the knowledge
of the effective survey area of the sample, which may be difficult
to estimate for heterogeneous samples. Alternatively, we can use
the approximate formulae presented in Appendix A, which were
derived under the assumptions that the completeness function can
be approximated as a complementary error function and that the
cosmological halo mass function can be approximated as a power
law.

If we assume that the uncertainty in the measurement process
is Gaussian, the relation between the unknown X; and Y; and the
measured x; and y; is given by

P({xi, yil (X, Vi) = N?P(UXG, Vi), VU (i, 00), 27

MNRAS 450, 3675-3695 (2015)

where A/?P and U are the bivariate Gaussian and the uniform dis-
tribution, respectively. In equation (27), V; is the symmetric un-
certainty covariance matrix, whose diagonal elements are denoted
as 87, and 85 ;, and whose off-diagonal elements are denoted as
p,\‘y‘s)a, isy, i

The truncation, i.e. null probability for y; < yu, i, accounts for
selection effects when only clusters above an observational limit (in
the response variable) are included in the sample, i.e. the Malmquist
bias (CoMalL.it-1I).

The treatment is complete once the priors on the parameters are
made explicit. We choose non-informative priors as discussed in
CoMalLit-I and CoMalLit-II. The priors on the intercept ay;z and on
the mean 1 are taken to be flat,

ayz, iz ~U(—1/e, 1/e), (28)

where ¢ is a small number. In our calculation we took € = 1073.
A priori, the slopes follow the Student’s #; distribution with one
degree of freedom, as suitable for uniformly distributed direction
angles,

/3Y|Zv Vzs yax‘zs )’ay‘z, y;;.z, y//.Z,Dv yﬂz Ntl- (29)

The Student prior for the slopes is not informative. Negative time
evolutions and scatters which decreases at early times are allowed.
For the variances, we adopted an inverse Gamma distribution,

1/‘7)2(\2.07 1/‘73\2,07 1/‘75,0 ~ I'(e, ). (30)

This regression scheme requires 12 parameters, i.e. three param-
eters characterizing the scaling relation, two for the intrinsic scatter,
two for the mass scatter, and five for the mass function, plus three
variables for each cluster, i.e. the true WL mass, the true mass,
and the true observable. The parameters and their meanings are
summarized in Table 1.

The relation in equation (21) expresses the conditional scaling
relation, wherein Y7 is the most likely value of the variable Y for a
given Z. This is the relation to be used to predict the value of Y for a
given Z. The relation between two random and scattered variables
might be better described by the symmetric scaling relation, which
goes along the direction where the probabilities of Z and Y are
maximized at the same time (CoMaLit-1I). In the above regression
scheme, where Z and Y follow a bivariate normal distribution, the
slope of the symmetric scaling can be expressed as (CoMaLit-II)

o} =0y — /o3 +2Qpy, — Dojo; + oy

By-z = , (€29)]
2pyz 070y
where py; is the correlation factor between Y and Z,
Br|z
Pyz = ﬁ (32)
\/ Uy|z/az - Igy\z
and the variance in Y is related to the conditional scatter as
oy = U)%\z + ﬁ%\zoé- (33)

The intercept of the symmetric relation can be expressed as

ay-z = ayjz + (Byiz — Br-z)iz. (34)

The detailed regression scheme is simplified when we are inter-
ested in the scaling between the observable and the measured proxy
mass, i.e. the WL or the X-ray mass,

log(E; " 0) = o + Blog Moy + y: 10g E... (35)
In this case, the adopted form for the scaling is

Yy = ayx + ByxX + y. logE_, (36)
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Table 1. Parameters of the regression scheme and their description. The variables Z, X,
and Y denote (the logarithm of) the true mass, the WL mass, and the self-similarly evolved

observable, respectively.

3679

Type Meaning Symbol

Yz =oayz+ BrzZ+ y logE;

Conditional scaling relation Intercept ayz
Mass evolution Briz
Time evolution Yz

Yoy|z

oy|z(z) = oy|z,0E; !

Conditional intrinsic scatter Conditional scatter at z = 0 oYZ,0
Time evolution Yoviz

Yox|z

ox12(2) = ox1z.0E: "

Intrinsic scatter of the WL mass Conditional scatter at z = 0 0X|Z,0
Time evolution Yox|z

uz(z) = iz + Yu, 10g E; + vy, . p log Da(z)

Mean of the mass function Normalization iz
Time evolution with E Yz
Time evolution with D Yiz.D

bz

07(2) = 0z0E: "

Dispersion of the mass function Dispersion at z =0 07,0
Time evolution Yoz

which substitutes equation (21). The latent variable Z coincides now
with the manifest one X and we do not have to model the conditional
probability of X given Z, see equations (19) and (20).

4 CLUSTER CATALOGUES

There are different approaches to choose a sample of clusters to
analyse. We may look for a statistical sample which is complete
with respect to well-defined selection criteria. This sample would
be ideal but most of the massive clusters with very good quality
data might be excised. The alternative is to assemble samples as
numerous as possible with the idea that variety and largeness can
compensate for incompleteness and inhomogeneity.

These two approaches are to some degree complementary and
have been already discussed in CoMaL.it-1I and CoMalL.it-1II, which
we refer to for further considerations. Here, we are mainly interested
in testing the regression algorithm and we focus on large samples.
To this aim we assembled a catalogue of clusters with measured ve-
locity dispersions. As catalogues of WL masses, optical richnesses,
X-ray luminosities, and SZ effects, we used publicly available com-
pilations. The subsample of WL clusters also included in either the
velocity dispersion, richness, X-ray, or SZ catalogues were used
in the analysis presented in the next section. We briefly discuss the
main properties of the catalogues and refer to the original references
for further details.

4.1 Weak lensing masses

CoMalLit-1II retrieved from literature 822 WL analyses of clusters
and groups with measured redshift and mass. Here, we consider
the LC2-single, which contains 485 unique entries with reported
coordinates, redshift, and WL masses to over-densities of 2500,
500, 200, and to the virial radius.> Duplicate entries from input
references were carefully handled.

2 The catalogues are available at http:/pico.bo.astro.it/~sereno/CoMaLit/
LC2/.

The cluster redshifts span a large interval, 0.02 < z < 1.5. The cat-
alogue is large and standardized but it is not statistically complete.
We refer to CoMaLit-1II for a detailed discussion of the catalogue
properties.

4.2 Velocity dispersions

We assembled some publicly available catalogues of clusters with
measured velocity dispersions. We first review the source catalogues
and then we introduce the merged compilation.

4.2.1 Source catalogues

Cava et al. (2009) presented the results from the spectroscopic
survey WINGS (Wlde-field Nearby Galaxy-cluster Survey)-SPE,
which consists of 48 nearby clusters at 0.04 < z < 0.07 selected
from three X-ray flux limited samples. They complemented the
sample with 29 additional clusters not observed in the programme
but for which literature data existed. The total sample contains 77
clusters over a broad range of richness, Bautz-Morgan class, and
X-ray luminosity.

Ebeling et al. (2007) presented the sample of the 12 most distant
galaxy clusters detected at z = 0.5 by the Massive Cluster Survey
(MACS). This catalogue is statistically complete and comprehen-
sive of measurements of radial velocity dispersions.

Girardi & Mezzetti (2001) considered a sample of 51 distant
galaxy clusters at 0.15 < z < 0.9, each cluster having at least 10
galaxies with available redshift in the literature. In some clusters,
two peaks that are not clearly separable were identified in the veloc-
ity distribution. For these systems with uncertain internal dynamics,
we considered the velocity dispersion measured by analysing the
identified peaks together. We also discarded two systems with no
major peak (CL J0023+0423 and CL J0949-+44).

Mazure et al. (1996) constructed a volume limited sample of 128
clusters out to z = 0.1 combining data from the ENACS (ESO
Nearby Abell Clusters Survey) with pre-existing data from the lit-
erature. They measured reliable velocity dispersions for a subset of
80 of them, based on at least 10 redshifts. They also analysed 26
additional clusters in the cone but with z > 0.1. The total catalogue

MNRAS 450, 3675-3695 (2015)
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consists of 106 clusters. We discarded from our final catalogue the
secondary systems.

Oegerle & Hill (2001) presented the spectroscopic study of a
sample of 25 Abell clusters out to z = 0.1 containing a central
cD galaxy. Redshifts measured with the MX Spectrometer were
combined with those collected from the literature to obtain typi-
cally 50-150 observed velocities in each cluster. We used the esti-
mates of the velocity dispersions within the smaller quoted aperture
(~12Mpch~'atz =0.1)

Popesso et al. (2007) considered a sample of 137 optically se-
lected and spectroscopically confirmed Abell clusters in the SDSS
(Sloan Digital Sky Survey) data base (Adelman-McCarthy et al.
2006). The clusters span the redshift range 0.04 < z < 0.17. 40 of
the clusters were X-ray underluminous, since they had a marginal
X-ray detection or remained undetected in the ROSAT All Sky
Survey.

Rines & Diaferio (2006) studied the infall patterns of 72 nearby
(z < 0.1) clusters from the Data Release (DR) 4 of the SDSS. The
clusters were selected in X-ray flux from the ROSAT All-Sky Survey.
Velocity dispersions were measured and masses were derived with
the caustic method. Rines & Diaferio (2010) extended the approach
to a sample of 16 groups with lower X-ray fluxes selected from
the 400 deg” serendipitous survey of clusters. Spectroscopic data
were taken from the SDSS DRS5. Rines et al. (2013) selected 58
clusters by their X-ray flux and in the redshift interval 0.1 < z < 0.3
to build the Hectospec Cluster Survey (HeCS), the first systematic
spectroscopic survey of cluster infall regions at z = 0.1. For each
cluster, high signal-to-noise spectra for ~200 cluster members were
acquired with Multiple Mirror Telescope (MMT)/Hectospec.

Ruel et al. (2014) presented optical spectroscopy of galaxies in
clusters detected through the SZ effect with the South Pole Tele-
scope (SPT). They reported measurements of 61 spectroscopic clus-
ter redshifts, and 48 velocity dispersions each calculated with more
than 15 member galaxies. After the inclusion of additional measure-
ments of SPT-observed clusters previously reported in the literature,
the final catalogue presents 57 velocity dispersions. Being SZ se-
lected, most of the clusters are at high redshift. The clusters span
aninterval 0.3 <z < 1.5

Sifén et al. (2013) presented the dynamical analysis of a sam-
ple of 16 SZ selected massive clusters detected with the Atacama
Cosmology Telescope over a 455 deg® area of the southern sky. 60
member galaxies on average per cluster were observed with deep
multi-object spectroscopic observations. The sample spans the red-
shift range 0.3 < z < 1.1 with a median redshift z = 0.50.

Zhang et al. (2011) presented a multiwavelength analysis of 62
galaxy clusters in the HIFLUGCS (HIghest X-ray FLUx Galaxy
Cluster Sample), an X-ray flux-limited sample. Velocity disper-
sions were computed thanks to 13439 cluster member galaxies with
redshifts collected from literature. Most of the clusters (60 out of
62) are at z < 0.1.

4.2.2 Merged catalogue

The catalogues listed before provides a total of 710 velocity disper-
sion estimates, comprehensive of multiple peaks and substructures
which we did not consider in our final sample.

Cluster coordinates were taken from the original or from compan-
ion papers. When they were not reported, we used the coordinates
listed by the NASA/IPAC Extragalactic Database (NED).?

3 http://ned.ipac.caltech.edu/.
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Not unique entries were identified by matching names and clus-
ter coordinates. For clusters with multiple analysis, we preferred
the study based on the larger number of identified cluster mem-
ber galaxies with measured redshift, Nyemvers- The final catalogue
contains 564 unique clusters. The catalogues are publicly available
at http://pico.bo.astro.it/~sereno/CoMaLit/sigma/. Their format is
detailed in Appendix B.

When original estimates were provided with asymmetric errors,
we computed the mean value as suggested in D’ Agostini (2004).
To standardize the uncertainties, we followed Ruel et al. (2014).
They found that the uncertainty in the velocity dispersion o is well
described by

0.920,
Bp = 37)

v
N members 1

when including the effect of membership selection.

As we inferred from the matching with the LC?-single, WL
masses are known for a subsample of 97 clusters. This size can be
achieved only relying on a number of different source catalogues.
30 clusters are from Girardi & Mezzetti (2001), 23 from Rines et al.
(2013), 13 from Zhang et al. (2011), 11 from Ebeling et al. (2007),
8 from Ruel et al. (2014), 5 from Popesso et al. (2007), 4 from
Mazure et al. (1996), and 3 from Sifén et al. (2013).

4.3 Optical richness

Rykoff etal. (2014) applied the redMaPPer (red-sequence Matched-
filter Probabilistic Percolation), a red-sequence cluster finder de-
signed for large photometric surveys, to ~ 10000 deg” of SDSS
DRS data. The resulting catalogue* contains ~25000 candidate
clusters over the redshift range 0.08 < z < 0.55.

According to the catalogue convention, the richness A of a cluster
is defined as the sum of the probabilities of the galaxies found near
a cluster to be actually cluster members. The sum extends over all
galaxies above a cut-off luminosity (0.2L+) and below a radial cut
which scales with richness. Clusters are included in the catalogue if
their richness exceeds 20 times the scale factor Sgy (also provided
in the catalogue), which is a function of the photometric redshift
of the cluster. This selection criterion approximately requires that
every cluster has at least 20 galaxy counts above the flux limit of the
survey or the cut-off luminosity at the cluster redshift, whichever is
higher.

4.4 X-ray clusters

Maughan et al. (2008) presented a sample of 114 clusters covering
wide temperature (2 < kg7 < 16keV) and redshift (0.1 < z < 1.3)
baselines. The sample was assembled from all publicly available
Chandra data as of 2006 November. It consists of clusters at red-
shift greater than 0.1 listed in the NED which were the targets of
observations made with the ACIS-I detector covering at least half of
the area in the annulus [0.9-1.0] rs5o. The radius rs5o9 was estimated
assuming a Msp—Yx relation.

The sample was later reanalysed using updated softwares and
calibration files in Maughan et al. (2012). Bolometric luminosities
were measured either in the [0-1] 7509 aperture, which we took as

4 We used the latest version of the catalogue (v5.2), which is publicly avail-
able at http://risa.stanford.edu/redMaPPer/.
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Table 2. Observed scaling relations, E;T0 =10¢ MZ EY*. Conventions are as in Section 3 and Table 1: Z = log(Mp); X =1og (Mwr )Y = log(E;VSS oy),
log(E; 7 1), log(E; ™ Lx), or log(E; " DiYsoo). yss is the self-similar evolution, which is equal to 1/3, 0, 7/3, 2/3 for oy—, A—, Lx—, and Ysz — M,

respectively. Units are 1014M® for mass, km s~! for oy, 1

044

ergs s~! for the bolometric luminosity Ly, and 10~*Mpc? for DiYSOO- Cols. 1-3: variables of

the regression procedure. Col. 4: number of clusters in the sample (N¢j). Col. 5: median redshift of the sample. Cols. 6, 7, and 8: intercept, mass slope, and time
evolution of the conditional scaling relation. Cols. 9-10: local scatter of the WL mass and its time evolution. Cols. 11 and 12: intrinsic scatter of the scaling
relation and its time evolution. Cols. 13 and 14: intercept and slope of the symmetric scaling relation at the median redshift of the sample. Col. 15: self-similar

prediction for the slope (Bss).

Conditional scaling

WL mass scatter

Intrinsic scatter

Symmetric scaling

107 10¥ 10" Ny z ayyz Bz vz 0X|7,0 Yox|z oV7Z.0 Yoyiz ay.z Br-z B
Magy  Mwr, 200 £ o, 97 023 267 £0.12 030£0.13 —005+030 0.11£006 000+ 126 006+0.02  0.17 £096 263 £ 0.14 034£0.15 1/3
Mo MwL, 200 A 157 030 129 +£021 070+027 039+ 058 022+£0.12 —056+ 122 0.18+0.08 —0.55 + 1.11 112 £ 021 091£025 1
Mspo Mwrsoo  E: 7Ly 73038 —0.13+026 160+027 —174+075 0.11£005 —004= 101 012+£007 003+ 116 —029 £ 024 178£025 4/3
Msoo Mwisoo Ez°D3¥spp 115 023 —023 +£004 1274021 —076+ 080 0.11+£004 —025+ 120 011005 —037 + 132 —027 +006 150+021 53

Table 3. Mass functions of the observed samples. Conventions and units are as in Tables 1 and 2.

Mean Dispersion

Sample Pz Yuz,D Yuz 02,0 Yoz

ov—M>op 1.08 £0.17 0.18 £0.16 0.69 £ 0.86 0.16 +0.04 0.74 £ 0.96

A—M>op 0.79+021 0.01+£024 —0.13 £092 0314+007 —0.04 £ 0.77

Lx—MS500 1.024+£032 0.17+£036 —1.03 £ 1.08 0.17+£0.04 1.30 £ 0.77

Ysz—Mso0  0.51 £0.15  0.57 £0.15 0.53 £0.79 0.174+0.03 0.03 £ 0.79

reference case to ease the comparison with theoretical predictions,
or in the core-excised [0.15-1] rsqo aperture, Lx_ ... This large cat-
alogue is standardized in the measurement procedures but it is not
statistically complete.

As an alternative, we also looked at catalogues of X-ray lumi-
nosities measured in the [0.1-2.4] keV band, Lx_,. We considered
the MCXC (Meta-Catalogue of X-ray detected Clusters of galax-
ies; Piffaretti et al. 2011), which comprises 1743 unique X-ray
clusters collected from available ROSAT All Sky Survey-based and
serendipitous cluster catalogues. X-ray luminosities were systemat-
ically homogenized and standardized to an overdensity of A = 500.
Uncertainties are not provided in the catalogue. For our tests, we
fixed the statistical uncertainty to 10 per cent. As the LC?, the
MCXC is not statistically complete.

4.5 Planck SZ catalogue

The Planck SZ Catalogue (PSZ, Planck Collaboration XXIX 2014)
contains 883 candidates identified with the Matched Multi-filter
method MMF3 with detections above SNR = 4.5. The catalogue
spans a broad mass range from 0.1 to 16 x 10'*Mg at a median
redshift of z ~ 0.22. The redshift determination is available for 664
candidates.

In CoMalLit-1I, we computed the spherically integrated Ysop of
the PSZ clusters within the WL determined rs(. The measurements
of M., so0 and Ysgo are then correlated. In our analysis, we used
the full uncertainty covariance matrix. We refer to CoMaLit-1I for
a detailed discussion.

5 RESULTS

We analysed the scaling between mass and optical, X-ray, or SZ
observables using the general regression scheme detailed in Sec-
tion 3. In fact, the uncertainties on the redshifts were assumed to
be negligible and the factors E, were assumed to be known without

errors. The Bayesian hierarchical model was implemented through
JAGS?

According to the notation of Section 3, the X variable is the
logarithm (to base 10) of the observed WL mass (computed at an
overdensity of either 200 in case of scaling of optical observables or
500 for observables related to the gas); the Z variable is the logarithm
of the unknown true mass; the observable Y is the logarithm of
either the galaxy velocity dispersion, the optical richness, the X-
ray luminosity, or the spherical SZ signal multiplied by E”7+. Any
deviation of the parameter y , from the null value implies a deviation
from the self-similar evolution with redshift.

In the case of optical richness and SZ signal, we had to consider
the correction for the Malmquist bias. The threshold value of the
optical richness above which candidate clusters are included in the
redMaPPer catalogue was given by 20 times the scale factor at the
cluster redshift (Rykoff et al. 2014). According to the notation of
Section 4.3, the threshold for the ith cluster is

Yini = 10g(20Srm.;)- (38)

The limiting SZ flux of the Planck clusters was obtained by
multiplying the minimum SNR(= 4.5) by the uncertainty on Ysg
(CoMalLit-II). In this case,

Yoni = log@.5E_ " D2(2)8v5001)- (39)

The results of the regression are summarized in Table 2 for the
scaling relations and in Table 3 for the mass functions. Table 4
summarizes the results of the scaling of the observables versus the
WL mass. Parameter degeneracies are illustrated as bi-dimensional
contour plots in Figs 1-4. Figs 5-8 show the scaling relation and
the evolution of the completeness function for o —Mg9, A—Mog0,
Lx—MSsy0, and Ysz—Msp, respectively.

>JAGS (Just Another Gibbs Sampler) is a program for analysis of
Bayesian hierarchical models using Markov Chain Monte Carlo simula-
tion. It is publicly available at http://mcmc-jags.sourceforge.net/. An ex-
ample of JAGS script that we wrote for the analysis can be found at
http://pico.bo.astro.it/~sereno/CoMaLit/JAGS/.
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Table 4. Scaling relations as a function of the WL mass, E; ™ O = 10% M@L’ A EY. Listed parameters refer to logarithmic variables. For
the conditional scaling, the adopted form is Yx = ay|x + By;xX + y:log E;. Conventions and units are as in Section 3 and Tables 1 and 2.

Conditional scaling Intrinsic scatter Symmetric scaling
Relation ayx Brix Ve oYX, 0 Yovix ayx Br-x
o v—MwL, 200 273 £ 0.05 022£0.05 —0.07 £ 0.23 0.07 £0.01 0.24 + 0.84 271 £ 0.06  0.25+£0.06
A=Mwr, 200 1.50 £ 0.06  0.45+£0.05 041 £ 051  024+£0.04 —0.59 £ 0.88 1.33 £ 0.10  0.65£0.12
Lx—Mwt., 500 0.13 £ 0.15 1.29+£0.14 —2.00 £ 0.63 0.20£0.04 023 £ 080 —0.16 =021 1.65+0.24
Ysz—-Mwi, 500 —0.25 +0.03 1.00+0.11 —0.05 £+ 054 0.16+003 —031 +£095 —030 =+ 0.04 1414021
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Figure 1. Probability distributions of parameters of the scaling relation between velocity dispersion and mass, oy—M>gp, and of the mass function. The
thick (thin) lines include the 1(2)o confidence region in two dimensions, here defined as the region within which the value of the probability is larger than
exp[—2.3/2] (exp [—6.17/2]) of the maximum.
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Figure 2. Probability distributions of parameters of the scaling relation between optical richness and mass, A—-M»0, and of the mass function. The thick (thin)
lines include the 1(2)o confidence region in two dimensions, here defined as the region within which the value of the probability is larger than exp [—2.3/2]

(exp [—6.17/2]) of the maximum.

To ease the comparison with theoretical predictions, we also com-
puted the parameters of the symmetric scaling relation (see Table 2).
We did not require that 8y 7 is redshift independent. However, the
slopes turned out to be constant within the errors. Slopes and inter-
cepts of the symmetric relations in Tables 2 and 4 were computed
at the median redshifts of the samples.

We obtained significant constraints on the evolution with redshift
of the scaling relations and of the mass functions. On the other
hand, the uncertainties on the evolution of the intrinsic scatters are
too large to come to any conclusion.

5.1 Parameter degeneracy

Most of the regression parameters are uncorrelated (see Figs 1-4).
Since a significant percentage of the massive clusters is at high
redshift, the time evolution can partially mimic the effects of the
mass evolution (see the Byz—y . panel). This degeneracy is most
pronounced for the Planck selected clusters, see Fig. 4, whose mass
completeness limits steadily increases with r