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ABSTRACT
The joint analysis of clustering and stacked gravitational lensing of galaxy clusters in large
surveys can constrain the formation and evolution of structures and the cosmological param-
eters. On scales outside a few virial radii, the halo bias, b, is linear and the lensing signal
is dominated by the correlated distribution of matter around galaxy clusters. We discuss a
method to measure the power spectrum amplitude σ 8 and b based on a minimal modelling. We
considered a sample of ∼120 000 clusters photometrically selected from the Sloan Digital Sky
Survey in the redshift range 0.1 < z < 0.6. The autocorrelation was studied through the two-
point function of a subsample of ∼70 000 clusters; the matter–halo correlation was derived
from the weak lensing signal of the subsample of ∼1200 clusters with Canada–France–Hawaii
Telescope Lensing Survey data. We obtained a direct measurement of b, which increases with
mass in agreement with predictions of the � cold dark matter paradigm. Assuming �M = 0.3,
we found σ 8 = 0.79 ± 0.16. We used the same clusters for measuring both lensing and clus-
tering and the estimate of σ 8 did require neither the mass–richness relation, nor the knowledge
of the selection function, nor the modelling of b. With an additional theoretical prior on the
bias, we obtained σ 8 = 0.75 ± 0.08.

Key words: gravitational lensing: weak – galaxies: clusters: general – cosmological parame-
ters – large-scale structure of Universe.

1 IN T RO D U C T I O N

Measurements of the large-scale structure growth can constrain the
cosmological scenario and the formation and evolution of cosmic
structures (Amendola et al. 2013, and references therein). The study
of growth as a function of time can determine the initial amplitude
of matter fluctuations, the matter density and the nature of dark
energy. Furthermore, the scale dependence of structure growth can
be used to constrain the neutrino mass (Villaescusa-Navarro et al.
2014).

A basic approach to study the structure growth exploits the sim-
ple hypothesis that galaxies trace the matter density field, whose
correlation function is very rich in astrophysical and cosmological
information and it is most easily predicted by the theory. Stacked
gravitational lensing is the cross-correlation between foreground

� E-mail: mauro.sereno@unibo.it

deflector positions and background galaxy shears. Weak gravita-
tional lensing depends on the total matter density (including dark
matter) via the deflection of light due to intervening matter along
the line of sight, which both magnifies and distorts galaxy shapes.
Stacked lensing can then be used to measure the galaxy-mass cross-
correlation. On the other hand, galaxy clustering recovers the auto-
correlation of galaxy positions.

Galaxies are biased tracers of the underlying mass distribution
(Sheth & Tormen 1999; Tinker et al. 2010; Bhattacharya et al.
2013). This severely limits the constraining power of either galaxy
clustering or stacked lensing on the matter power spectrum am-
plitude. Constraints from the two probes have to be combined to
break degeneracies and to recover the matter correlation function
(Baldauf et al. 2010; Oguri & Takada 2011; Cacciato et al. 2013;
Mandelbaum et al. 2013; Miyatake et al. 2013; More et al. 2014).

Theory and numerical simulations show that the galaxy bias is ex-
tremely complicated to model: it is stochastic, it depends on galaxy
properties such as luminosity, colour and/or morphological type,
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and it is scale dependent on small scales (Sheth & Tormen 1999;
Cacciato et al. 2013; Marulli et al. 2013, and references therein).
The proper treatment of how galaxies populate dark matter haloes,
assembly bias and baryonic effects on the matter power spectrum
on small scales requires a very accurate modelling. If the adopted
scheme is too restrictive and fails to account for some important fea-
tures, the constraining power on cosmological parameters is limited
and the results can be severely biased.

Galaxy bias contains very valuable information regarding galaxy
formation, mainly on small scales, but at the same time it is dif-
ficult to model it properly. Complementary approaches have been
proposed to deal with bias in joint clustering plus lensing analyses.
At one extreme, methods can be optimized to study the bias. Phys-
ically motivated models based on the halo occupation distribution
have been considered to simultaneously solve for cosmology and
galaxy bias (Yoo et al. 2006; Leauthaud et al. 2012; Tinker et al.
2012; Cacciato et al. 2013). Using the small-scale lensing signals
enhances the signal-to-noise ratio (SNR) and consequently reduces
the statistical errors. However, problems connected to theory inter-
pretation, arbitrary bias modelling and observational uncertainties
are more pronounced on small scales, and they can cause additional
systematic uncertainties which are difficult to ascertain.

At the other extreme, galaxy bias can be seen as a nuisance when
attempting to determine cosmological parameters. The informa-
tion from galaxy clustering and galaxy–galaxy lensing can then be
retained only above scales equal to a few times the typical dark mat-
ter halo virial radius, where the treatment of the bias is simplified
(Baldauf et al. 2010; Yoo & Seljak 2012; Mandelbaum et al. 2013).

Most of the previous studies which combine clustering and lens-
ing have focused on galactic scales. These studies can be optimized
to estimate σ 8, i.e. the root-mean-square mass fluctuation ampli-
tude in spheres of size 8 h−1 Mpc. Mandelbaum et al. (2013) re-
cently constrained cosmology and galaxy bias using measurements
of galaxy abundances, galaxy clustering and galaxy–galaxy lens-
ing taken from the Sloan Digital Sky Survey (SDSS) data release
7. In the framework of the cold dark matter model with a cosmo-
logical constant (�CDM), they found σ 8 = 0.76 ± 0.06. More
et al. (2014) measured the clustering and abundance of the BOSS
(Baryon Oscillation Spectroscopic Survey) galaxies from the SDSS-
III (data release 11), and their galaxy–galaxy lensing signal with the
Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS) to
find σ 8 = 0.79 ± 0.05.

In the era of precision cosmology, the development of indepen-
dent methods to measure cosmological parameters is crucial to test
possible failures of the standard �CDM model. The tension between
the lower values of σ 8 inferred from cluster counts (Planck Collab-
oration XX 2014b, and references therein) and higher estimates
from measurements of the primary cosmic microwave background
(CMB) temperature anisotropies (Planck Collaboration XVI 2014a)
may reflect either the need to extend the minimal �CDM model or
some hidden systematics.

Planck Collaboration XX (2014b) measured σ 8 = 0.75 ± 0.03
and �M = 0.29 ± 0.02 using number counts as a function of redshift
of 189 galaxy clusters from the Planck Sunyaev–Zel’dovich cata-
logue. However, the values of the cosmological parameters obtained
from cluster abundance are degenerate with any systematic error in
the assumed scaling relation between mass and the observed quan-
tity. This problem can be solved in the context of joint experiments
alike that considered in this paper. In fact, the combination of cluster
observables (number counts and cluster–cluster correlation func-
tions) and stacked weak lensing enables secure self-calibration of
important systematic errors inherent in these measurements, includ-

ing the source redshift uncertainty and the cluster mass–observable
relation (Oguri & Takada 2011).

Analyses of the primary CMB temperature anisotropies have
provided higher estimates of the power spectrum amplitude. Planck
Collaboration XVI (2014a) found σ 8 = 0.83 ± 0.02 assuming a
standard flat �CDM model. Estimates of cosmological parameters
with CMB experiment are very accurate but highly degenerate, since
only one source redshift can be observed. Results are then model
dependent.

Measurements of the cosmic shear, i.e. the autocorrelation of
galaxy shape distortions due to intervening matter along the line
of sight, can constrain the amplitude and growth of matter fluctua-
tions. Using non-linear models of the dark matter power spectrum,
Kilbinger et al. (2013) estimated σ 8 = 0.84 ± 0.03 for a flat �CDM
model with �M = 0.3 from 2D large-scale structure weak gravi-
tational lensing in the CFHTLenS. This method is not affected by
halo bias but since it relies on autocorrelations rather than shear
cross-correlations, coherent additive errors in galaxy shapes (such
as those induced by seeing or distortions in the telescope) may be
difficult to remove from the analysis (Mandelbaum et al. 2013).
Moreover, intrinsic alignments with the local density field anticor-
relate with the real gravitational shear and can contaminate cosmic
shear measurements (Hirata & Seljak 2004).

Here we propose a novel method based on the joint analysis of
clustering and lensing of clusters of galaxies. The focus on clusters
of galaxies is intended for a much simpler discussion. Clusters of
galaxies trace the biggest collapsed structures and produce a very
clean lensing signal. The stacked lensing technique has been highly
successful in measuring the average masses of galaxy clusters down
to the less massive haloes (Johnston et al. 2007; Mandelbaum, Seljak
& Hirata 2008; Covone et al. 2014; Ford et al. 2015). Furthermore,
galaxy clusters are more strongly clustered than galaxies. Measure-
ments of the two-point correlation function of galaxy clusters have
already provided detections of the baryon acoustic oscillation peak
(Estrada, Sefusatti & Frieman 2009; Hütsi 2010; Hong et al. 2012;
Veropalumbo et al. 2014).

The novelty of the method is that (i) we track clusters of galaxies
rather than galaxies, (iii) we consider the same clusters for both
lensing and clustering, and (ii) we determine bias and σ 8 based
exclusively on the large-scale signal. Even though some of these
elements were separately considered by previous papers, their com-
bination makes for a new approach with minimal modelling.

The method strongly relies on using the same cluster population
for both stacked lensing and clustering. If we correlate the positions
of the lenses, the galaxy bias for the considered sample can be
directly measured without any demanding theoretical modelling.
Instead of being a systematic uncertainty, the information on the
bias can be extracted to constrain structure formation and evolution.
We relate the bias to the observed cluster population rather than
trying to model the bias as a function of the halo mass, which
would require the problematic calibration of the mass against the
observable property the clusters were selected for (Sereno & Ettori
2014; Sereno, Ettori & Moscardini 2014). At the same time, σ 8 can
be estimated without the knowledge of the selection function of the
clusters.

The simultaneous analysis of stacked lensing and clustering is
further simplified by keeping only the information well beyond
the virial radius. Even at large scales, the proper treatment of the
connection between galaxies and dark matter requires the modelling
of the halo occupation statistics as a function of galaxy luminosity
through the conditional luminosity function, combined with the
halo model, which describes the non-linear matter field in terms of
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its halo building blocks (Mandelbaum et al. 2013). The modelling
of halo bias from very massive haloes is instead much easier to
perform on a theoretical ground (Tinker et al. 2010).

We focused on the determination of the amplitude of the power
spectrum, σ 8, in a reference flat �CDM model with matter density
parameter �M = 0.3, baryonic density parameter �B = 0.04, spec-
tral index ns = 1 and Hubble constant H0 = 100 h km s−1 Mpc−1

(Planck Collaboration XVI 2014a). When necessary, we assumed
h = 0.7.

The structure of the paper is as follows. In Section 2 we present
the basics of how the combination of galaxy clustering and stacked
lensing can determine the amplitude of the power spectrum and the
halo bias. In Section 3, we introduce the cluster catalogue and the
data sets. Sections 4 and 5 detail how we performed the analysis of
stacked lensing and clustering, respectively. The joint analysis and
the cosmological constraints are presented in Section 6. Section 7
forecasts the performance of the method with Euclid data. Some fu-
ture developments are prospected in Section 8. Section 9 is devoted
to the final considerations.

2 OV ERV IEW

Clustered haloes are biased tracers of the underlying mass distribu-
tion (Kaiser 1984; Tinker et al. 2010). Very massive and luminous
haloes are preferentially found in regions of the Universe with above
average density and are biased with respect to the mean dark matter
distribution.

Autocorrelation functions between either matter or halo density
fields depend on the halo bias in different ways. In principle, we can
break degeneracies with proper combinations of correlation func-
tions and we can infer at the same time the cosmological parameters
and the halo bias.

The matter autocorrelation function is

ξmm(r) = 〈δm(x)δ∗
m(x + r)〉 , (1)

where δm is the matter density contrast. The analogous autocorre-
lation function for the halo density field is ξhh(r), which is related
to the matter statistics through the halo bias b as

ξhh(r) = b2(r)ξmm(r). (2)

On the large scales probed by clusters of galaxies, the cross-
correlation coefficient between the matter and halo fluctuations is
1 and the bias is linear, i.e. b(r) = constant (Mandelbaum et al.
2013). For a given cosmological model, b depends on the mass
and the redshift of the haloes hosting the galaxies through the peak
height (Sheth & Tormen 1999; Tinker et al. 2010; Bhattacharya
et al. 2013).

Finally, the cross-correlation function is

ξhm(r) = 〈δg(x)δ∗
m(x + r)〉. (3)

On the observational side, ξ hh and ξ hm can be measured through
clustering and stacked lensing, respectively. If we focus on the bias
and σ 8, we can single out simple proportionality factors,

ξmm ∝ σ 2
8 , ξhm ∝ bσ 2

8 , ξhh ∝ b2σ 2
8 . (4)

In the regime where the bias is linear, b and σ 8 can then be deter-
mined as

b ∝ ξhh

ξhm
, σ8 ∝

√
ξ 2

hm

ξhh
. (5)

3 DATA

Our reference catalogue is the sample of 132 684 optically se-
lected clusters of galaxies identified from the SDSS-III (data re-
lease 8) by Wen, Han & Liu (2012, WHL).1 Overdensities of galax-
ies around the brightest cluster galaxies (BCGs) were identified
through their photometric redshifts. The optical richness is defined
as RL∗ = L̃200/L∗, where L̃200 is the total r-band luminosity within
an empirically determined radius r̃200 and L� is the evolved charac-
teristic galaxy luminosity. N200 is the number of member candidates
within r̃200. The subscript 200 denotes the radius r200 and related
quantities measured in a sphere whose mean density is 200 times the
critical density at the halo redshift. The cluster photometric redshift
reported in the catalogue is the median value of the photometric
redshifts of the galaxy members.

A candidate cluster makes the final cut if RL∗ ≥ 12 and N200 ≥ 8.
These thresholds correspond to a mass of ∼0.6 × 1014 M	 (Wen
et al. 2012; Covone et al. 2014). The detection rate above this mass
is estimated at ∼75 per cent. The false detection rate is less than
6 per cent for the whole sample. The catalogue spans a redshift
range 0.05 < z < 0.8.

To optimize the lensing signal, we considered a redshift-limited
subsample in the range 0.1 < z < 0.6 (median redshift z = 0.365),
wherein 123 822 clusters lie (93.3 per cent of the whole sample).
The upper redshift limit enabled us to perform a robust separation
between the lensing and the background population (Covone et al.
2014).

For the computation of the two-point correlation function, we
considered a subsample of 69 527 galaxy clusters, selected on a con-
tiguous area of ∼9000 deg2 in the Northern Galactic Cap obtained
including all the SDSS stripes between 10 and 37. This selection
is used to ease the reconstruction of the visibility mask. Neverthe-
less, its impact on the final results is negligible, considering the
uncertainties in the measurements.

For the lensing sample, we considered the 1176 clusters centred
in the four fields of the CFHTLenS (Heymans et al. 2012), cov-
ering about 154 square degrees in optical ugriz bands. The public
archive2 provides weak lensing data processed with THELI (Erben
et al. 2013), shear measurements with lensfit (Miller et al. 2013)
and photometric redshift measurements with accuracy ∼0.04(1 + z)
and a catastrophic outlier rate of about 4 per cent (Hildebrandt et al.
2012; Benjamin et al. 2013). Full details on the shear measurements
can be found in Heymans et al. (2012). Since we took all clusters
in the CFHTLenS fields without any further restriction, the lensing
clusters we considered are a small but unbiased subsample of the
total catalogue. This was verified with a Kolmogorov–Smirnov test.
The optical richness (redshift) distributions are compatible with a
probability of 49.0 (39.4) per cent. The main properties of the cluster
samples are reported in Table 1.

The CFHTLenS is at the same time much deeper and much
smaller than the SDSS. As far as the SNR of the stacked haloes
is concerned, these effects counterbalance each other and lensing
results are comparable (Johnston et al. 2007; Mandelbaum et al.
2008, 2013; Brimioulle et al. 2013; Covone et al. 2014; Ford et al.
2014, 2015; Oguri 2014; Velander et al. 2014; Hudson et al. 2015).
A similar choice of data sets for a joint analysis of galaxy clustering
and galaxy–galaxy lensing was recently made by More et al. (2014).

1 The latest version of the WHL catalogue cluster_dr9sz.dat is publicly
available at http://zmtt.bao.ac.cn/galaxy_clusters/
2 http://www.cfht.hawaii.edu/Science/CFHLS
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Table 1. Results from the stacked lensing (columns 2, 3 and 4) and the clustering (columns 5, 6 and 7) analysis of different binning in
optical richness RL∗ (column 1). For the lensing part: number of clusters Ncl in the bin (column 2); estimated cluster mass M200 (column
3); product b σ 2

8 (column 4). For the clustering: number of clusters Ncl in the bin (column 5); product b σ 8 (column 6); estimated redshift
error σz (column 7). Bias b and σ 8 from the combined analysis are reported in columns 8 and 9, respectively. Reported values of central
estimate and dispersion are the biweight estimators of the posterior probability densities. Masses are in units of 1014 M	 h−1.

Lensing Clustering Combined
Ncl M200 b σ 2

8 Ncl b σ 8 σz σ 8 b

RL∗ ≥ 12 1176 0.69 ± 0.11 1.56 ± 0.35 69527 2.29 ± 0.08 0.015 ± 0.003 0.79 ± 0.16 2.86 ± 0.78

12 ≤ RL∗ < 16 476 0.48 ± 0.09 1.87 ± 0.46 29130 1.87 ± 0.08 0.017 ± 0.003 0.69 ± 0.15 2.74 ± 0.64
16 ≤ RL∗ < 21 347 0.48 ± 0.10 1.43 ± 0.57 21047 2.12 ± 0.08 0.016 ± 0.003 3.08 ± 0.72
21 ≤ RL∗ < 30 216 0.79 ± 0.12 2.02 ± 0.68 11962 2.30 ± 0.16 0.015 ± 0.004 3.36 ± 0.82
30 ≤ RL∗ 137 1.92 ± 0.23 1.86 ± 0.83 7388 2.97 ± 0.16 0.012 ± 0.002 4.31 ± 1.03

Since the cluster catalogue and the shape measurements we con-
sidered are extracted from completely different data sets, the SDSS
and CFHTLenS data, respectively, we are assured that the distribu-
tion of lens galaxies is uncorrelated with residual systematics in the
shape measurements (Miyatake et al. 2013).

4 W EAK LENSING

The connection between galaxies and matter can be probed with
gravitational lensing. In this section, we review the methods used to
extract the lensing signal from the shape measurements, to estimate
the observational uncertainties and to constrain the cosmological
parameters.

4.1 Basics

The so-called shear-cluster correlation (or stacked lensing) is the
cross-correlation between the cluster distribution and the shapes
of source galaxies. The main observable quantity for weak lensing
is the tangential shear distortion γ + of the shapes of background
galaxies. It is related to the projected surface density 	(R) around
lenses (Mandelbaum et al. 2013),

	(R) = ρ̄m

∫ [
1 + ξhm(

√
R2 + �2)

]
d�, (6)

via

�	+(R) = γ+	cr = 	̄(<R) − 	(R). (7)

In the equations above, ρ̄m is the mean mass density at z, � is
the line-of-sight separation measured from the lens, 	̄(<R) is the
average lens matter density within the projected distance R and
	cr is the critical surface density for lensing. For a single source
redshift

	cr = c2

4πG

Ds

DdDds
, (8)

where c is the speed of light in the vacuum, G is the gravitational
constant, and Dd, Ds and Dds are the angular diameter distances to
the lens, to the source and from the lens to the source, respectively.

4.2 Shear profile modelling

Stacked lensing by galaxy clusters is described in terms of three
main terms. The treatment is simplified with respect to galaxy–
galaxy lensing, when central haloes have to be differentiated from
satellites and related additional terms contribute to the total shear
profile.

Our treatment follows Covone et al. (2014). The dominant con-
tribution up to ∼1 Mpc h−1 comes from the central haloes, �	BMO.
We modelled this term as a smoothly truncated Navarro–Frenk–
White (NFW) density profile (Baltz, Marshall & Oguri 2009,
BMO),

ρBMO = ρs
r
rs

(1 + r
rs

)2

(
r2

t

r2 + r2
t

)2

, (9)

where rs is the inner scalelength, rt is the truncation radius and ρs is
the characteristic density. When fitting the shear profiles up to very
large radii (10 times the virial radius and beyond), the truncated
NFW model gives less biased estimates of mass and concentration
with respect to the original NFW profile (Oguri & Hamana 2011).
The truncation removes the unphysical divergence of the total mass
and better describes the transition between the cluster and the two-
halo term which occurs beyond the virial radius.

In the following, as a reference halo mass, we consider M200, i.e.
the mass in a sphere of radius r200. The concentration is defined as
c200 = r200/rs. We set the truncation radius rt = 3 r200 (Oguri &
Hamana 2011; Covone et al. 2014).

The second contribution to the total profile comes from the off-
centred clusters, �	off. The BCG defining the cluster centre might
be misidentified (Johnston et al. 2007), which leads to underesti-
mate �	(R) at small scales and to bias low the measurement of the
concentration. Furthermore, even if properly identified, the BCG
might not coincide with the matter centroid, but this effect is gen-
erally very small and negligible at the weak lensing scale (George
et al. 2012; Zitrin et al. 2012). The azimuthally averaged profile of
clusters which are displaced by a distance Rs in the lens plane is
(Yang et al. 2006)

	(R|Rs) = 1

2π

∫ 2π

0
dθ	cen(

√
R2 + R2

s + 2RRs cos θ ), (10)

where 	cen is the centred profile. We modelled the distribution
of off-sets with an azimuthally symmetric Gaussian distribution
(Johnston et al. 2007; Hilbert & White 2010),

P (Rs) = Rs

σ 2
s

exp

[
−1

2

(
Rs

σs

)2
]

, (11)

where σ s is the scalelength. The contribution of the off-centred
haloes is then

	off (R) =
∫

dRsP (Rs)	(R|Rs). (12)

Typical scalelengths are of the order of σ s ∼ 0.4 Mpc h−1 (Johnston
et al. 2007). Miscentring mainly matters with regard to an unbiased
determination of the cluster concentration. Its effect is minor on the
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scales where the correlated matter manifests through the two-halo
term. We assumed that a fraction foff of the lenses is miscentred.

The third significant contribution to the total density profile is the
two-halo term, �	2h, which describes the effects of the correlated
matter distribution around the location of the galaxy cluster at scales
� 10 Mpc. The two-halo shear term around a single lens of mass M
at redshift z for a single source redshift can be modelled as (Oguri
& Hamana 2011; Oguri & Takada 2011)

γ+,2h(θ ; M, z) =
∫

ldl

2π
J2(lθ )

ρ̄m(z)b(M; z)

(1 + z)3	crD
2
d(z)

Pm(kl ; z), (13)

where θ is the angular radius, J2 is the second-order Bessel function
and kl ≡ l/[(1 + z)Dd(z)]. Pm(kl; z) is the linear power spectrum,
which was computed following Eisenstein & Hu (1999). Given
the observational errors on the shear measurements, more accurate
computations of Pm have a negligible impact on the final result.

The final profile for the total differential projected surface density
is then

�	tot = (1 − foff )�	BMO + foff�	off + �	2h. (14)

The above model has five free parameters: the mass M200 and the
concentration c200 of the clusters; the fraction of off-centred haloes,
foff, and the scalelength σ s of the probability distribution of the
off-sets; the product b σ 2

8 , which determines the amplitude of the
two-halo term.

We considered only the cosmological information contained in
the two-halo term, whose signal is proportional to ∝ b σ 2

8 . Small-
scale lensing has typically the best SNR, but it may be subject to
systematic uncertainties both in terms of theoretical interpretation
and observational uncertainties (Mandelbaum et al. 2013). We did
not try to connect it directly to the halo bias and the cosmological
background. We just modelled it in terms of a physically motivated
model, i.e. the (truncated) NFW profile. In this basic approach,
the parameters M200 and c200 of the main haloes, as well as the
parameters foff and σ s describing the miscentred clusters, can be
seen as nuisance parameters that we marginalize over to measure
the amplitude of the two-halo term.

However, gravitational lensing presents an exclusive feature: it
provides a direct measurement of the halo mass without relying
on any scaling relation. The estimate of M200 can then be used to
constrain the evolution of bias with the halo mass.

4.3 Measured profiles

We measured the lensing signal behind the 1176 clusters of the
WHL catalogue centred in the four fields of the CFHTLenS. We
extracted the shear profiles between 0.1 and 30 Mpc h−1 in 25
radial annuli equally distanced in logarithmic space. The procedure
is described in Covone et al. (2014), which we refer to for details on
shear calibration, selection of background galaxies, source redshift
estimation and stacking.

Very briefly, the raw shear components in the CFHTLenS cat-
alogue were corrected by applying a multiplicative and an addi-
tive parameter, empirically derived from the data. The background
lensed galaxy population behind each galaxy cluster were selected
by using a two-colour selection in the g and r bands (Medezinski
et al. 2010; Oguri et al. 2012), which can safely single out galax-
ies at z � 0.7. We determined the tangential and cross-component
of the shear for each cluster from the weighted ellipticity of the
background sources.

The clusters were finally stacked according to their optical rich-
ness. We adopted two binning schemes: either a single bin in optical

richness comprising all clusters, which we will refer to in the fol-
lowing as our reference case, or four bins with comparable SNR
(12 ≤ RL∗ < 16, 16 ≤ RL∗ < 21, 21 ≤ RL∗ < 30 and RL∗ ≥ 30),
as already done in Covone et al. (2014).

4.4 Uncertainty covariance matrix

Due to stacking, shear observations at different radii are correlated.
The effect is significant at radii larger than the typical lens angular
separation (Mandelbaum et al. 2013). We estimated the uncertainty
covariance matrix with a bootstrap procedure with replacement.
We resampled the clusters 10 000 times. Covariance also accounts
for the residual contribution from large-scale projections, which is
subdominant due to the large number of lines of sight we stacked
over.

The inverse of a noisy, unbiased estimator of the covariance ma-
trix is not an unbiased estimator of the inverse covariance matrix
(Hartlap, Simon & Schneider 2007; Mandelbaum et al. 2013). An
unbiasing correction factor can be estimated under very restrictive
statistical requirements, which are likely violated under usual obser-
vational conditions (Hartlap et al. 2007). Furthermore, the correc-
tion is negligible if the number of lenses is significantly larger than
the number of radial bins. We preferred not to apply any correction.

An alternative approach requires the smoothing of the covariance
matrix to create a noiseless version (Mandelbaum et al. 2013). The
diagonal terms behave according to reproducible trends. The shape
noise is the dominant source of variance at small radii. It scales
like R−2 for logarithmically spaced annular bins. However, the total
noise flattens at larger radii. There are two main reasons. First,
when R is significantly larger than the typical separation between
lenses, annular bins include many of the same sources around nearby
lenses and the shape noise cannot decrease by adding more lenses
(Mandelbaum et al. 2013).

Secondly, when R is comparable with the field of view of the
camera, an imperfect correction of the optical distortion can cause
a tangential or radial pattern of the point spread function (PSF)
ellipticities in the edge of the field of view. This coherent PSF
anisotropy can then cause a residual systematic error (Miyatake
et al. 2013). The field of view of CFHT/MegaCam is 1 deg large,
which corresponds to ∼12.9 Mpc h−1 at the median redshift of the
lens sample, z ∼ 0.37.

Taking into account all the above sources of noise, the diago-
nal terms of the lensing uncertainty covariance matrix V can be
modelled as (Mandelbaum et al. 2013)

V(Ri, Ri) = AR−2
[
1 + (R/Rt)

2
]
, (15)

where Rt denotes the turn-around radius above which the shape noise
is subdominant. A basic unweighted fit for the reference binning in
optical richness (RL∗ ≥ 12) gives Rt ∼ 9.3 Mpc h−1 (see Fig. 1).

The smoothing of the non-diagonal terms of the covariance matrix
is more problematic. The two main sources of correlation are the
cosmic variance (which is subdominant given the large number of
lines of sight in our sample) and the correlated shape noise due to the
large R compared to the separation between lenses (Mandelbaum
et al. 2013). These effects are difficult to model. Furthermore, a
smoothing procedure might bias low the estimated correlation of
the elements near the diagonal. We then preferred to use the noisy
version of the covariance matrix.

The uncertainty covariance matrix could be determined only
when the number of clusters to stack was large enough. This is
not the case for the less populated bins in optical richness. We then
decided to use the full covariance matrix only for our reference case,
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Figure 1. Diagonal terms of the lensing uncertainty covariance matrix of
the total sample (RL∗ ≥ 12) as a function of the transverse separation R.
The matrix elements were estimated with a bootstrap procedure. The full
black line plots the fitted smoothing function. Vertical red lines delimit the
radial range considered when fitting the shear profiles.

whereas we took only the diagonal elements for the subsamples in
optical richness in order to perform a coherent analysis when we
looked for trends with richness/mass.

4.5 Random catalogues

Residual systematic effects affecting the stacked shear profiles may
come either from stacking over annuli which are largely incomplete
due to the limited field of view or from other source of errors.
These additional systematics were estimated by extracting the signal
around random points with the same procedure as used for the
cluster lenses. We built a catalogue of 5046 random lenses with
the same redshift and spatial distribution of the galaxy clusters.
We realized 10 000 bootstrap resamplings with replacement of the
catalogue. The signal from the random pointings is consistent with
zero up to ∼5 Mpc h−1. The spurious signal at larger radii is likely
due to residual systematics in the shear measurements at the edges
of detector (Miyatake et al. 2013).

The shear profiles of the stacked clusters can be corrected for
these residual systematics by subtracting the stacked signal esti-
mated from the random catalogue. This correction rests on the
assumption that the distribution of lenses is uncorrelated with resid-
ual systematics in the shape measurements (Miyatake et al. 2013),
which holds in our analysis because the cluster catalogue and the
shape measurements are taken from completely different data sets.

After correction for the spurious signal, the cross-component of
the shear profile, �	× = 	crγ ×, is consistent with zero at nearly all
radii. This confirms that the main systematics have been eliminated.
The radial profile of �	× for the full sample of clusters is plotted
in Fig. 2. Most of the points are within 1σ from the null value
which might indicate somewhat overestimated uncertainties. �	×
increases at R � 20 Mpc h−1 but the deviation is not statistically
significant.

4.6 Constraints

The corrected excess surface density for the total sample is plotted
in Fig. 3. The signal is detected with high significance (SNR �
26.1) over the full radial range. Stacked profiles for subsamples in
optical richness can be found in Covone et al. (2014). Based on the
analysis of the turn-around radius in the diagonal elements of the
covariance matrix and the features of the shear profile �	×, we
limited our analysis to a maximum radius of 15.8 Mpc h−1.

Figure 2. The renormalized cross-component of the differential shear pro-
file of the full sample of lensing clusters (RL∗ ≥ 12) after correction for the
residual signal. Vertical red lines delimit the radial range considered when
fitting the shear profiles.

Figure 3. Stacked differential surface density �	+ after correction for
the residual signal as a function of radius for clusters with optical rich-
ness RL∗ ≥ 12. Black points are our measurements. The vertical error bars
show the square root of the diagonal values of the covariance matrix. The
horizontal lines are the weighted standard deviations of the distribution of
radial distances in the annulus. The green line plots the contribution from
the galaxy cluster haloes (i.e. the sum of lensing contributions from centred
and off-set lenses); the blue line describes the two-halo term; the black line
is the overall fitted radial profile. Vertical red lines delimit the radial range
considered when fitting the shear profiles. Dashed lines are extrapolations
based on the best-fitting model, which was determined in the radial range
0.5 < R < 15.8 Mpc h−1.

The choice of the lower limit for the radial range comes from
a compromise between minimizing the systematic errors due to
contamination of cluster member galaxies and non-linear effects,
and minimizing the statistical errors (Mandelbaum et al. 2008). We
considered a minimum radius of 0.5 Mpc h−1. Since to measure
σ 8 we used only the information in the two-halo term, which is
dominant at very large radii, our final constraints are affected in a
very negligible way by the choice of the lower fitting radius, which
mainly impacts the determination of the effective concentration of
the stacked clusters.

Radial fits were then performed between 0.5 and 15.8 Mpc h−1

(15 equally spaced points in logarithmic scale). The statistical anal-
ysis was based on a χ2 function,

χ2
WL =

∑
i,j

[
�	obs,i − �	th,i

]
V−1

ij

[
�	obs,j − �	th,j

]
, (16)

where V−1 is the inverse of the uncertainty covariance matrix,
�	obs, i is the observed excess density at radius Ri and �	th is
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σ 8 from lensing and clustering of clusters 4153

Table 2. Product b σ 2
8 (column 2) for the reference

sample (RL∗ ≥ 12) as determined with the stacked
lensing analysis under different assumptions. In col-
umn 1, we reported the difference in the fitting pro-
cedure with respect to the ‘reference’ case. All else
being equal, we considered: different priors on the
truncation radius rt of the BMO model of the central
haloes; a standard NFW model; a uncertainty co-
variance matrix with null off-diagonal elements; no
miscentred haloes; different thresholds for either the
maximum (rmax) or the minimum (rmin) fitting radius.

Assumption b σ 2
8

Reference 1.56 ± 0.35
rt = 4 r200 1.52 ± 0.34
rt = 2 r200 1.63 ± 0.34
NFW 0.96 ± 0.42
Diagonal covariance 1.54 ± 0.28
foff = 1 1.58 ± 0.33
rmax = 20 Mpc h−1 1.73 ± 0.32
rmax = 30 Mpc h−1 1.86 ± 0.29
rmin = 0.1 Mpc h−1 1.55 ± 0.33
rmin = 0.2 Mpc h−1 1.55 ± 0.34

the theoretical prediction of the halo model. We adopted uniform
priors for the fitting parameters and sampled the posterior probabil-
ity with four Monte Carlo Markov chains. Results are summarized
in Tables 1 and 2.

For the reference sample, the product b σ 2
8 was recovered with an

accuracy of ∼20 per cent. This estimate is stable against variation in
the fitting procedure, which reassure us about the proper treatment
of systematics (see Table 2). As far as we consider a truncated model
for the lenses, the final results on b σ 2

8 are nearly independent of
the specific modelling. The variations in the estimated b σ 2

8 due to
different assumptions on the truncation radius of the 	BMO profile
are not significant and they are much smaller than the statistical
uncertainty. The case of the divergent NFW model is different. This
model is unphysical at scales well beyond the virial radius and it
would severely underestimate the contribution of the two-halo term.

We checked that the results of our analysis are very similar
whether using the full covariance matrix or only the diagonal terms.
Neglecting the covariance in the shear measurements of near-radial
bins does not affect the central estimate. On the other hand, the
uncertainties on the fitting parameters are slightly smaller. This
agreement further supports our choice of using the (noisy) covari-
ance matrix without any correction.

As expected, a different minimum radius in the fitting procedure
has no effect on the estimate of the bias, which only depends on the
signal at scales �10 Mpc h−1. The inclusion of small scales affects
nevertheless the estimate of the mass and of the concentration of
the central halo. At scales R ∼ 0.1 Mpc h−1 a proper modelling
of the lens requires the treatment of the BCG and of the baryonic
component. Similar considerations hold for the treatment of the
miscentred haloes too. The fraction of haloes with off-sets has a
negligible impact on the estimate of the bias.

Finally, the inclusion of shear measurements at large radial scales
not fully covered by the field of view can bias the results.

5 C LUSTERING

This section provides a general description of the methods used in
this work to measure the halo clustering, to estimate the observa-

tional uncertainties, and to constrain the linear bias and σ 8. We refer
to Veropalumbo et al. (2014) for further details.

5.1 The two-point correlation function

To compute comoving distances from angular coordinates and red-
shifts, we assumed the fiducial cosmological parameters reported
in Section 1. We used the Landy–Szalay estimator (Landy &
Szalay 1993) to measure the monopole of the two-point correla-
tion function in redshift space,

ξ (s) = 1

RR(s)
×

[
DD(s)

n2
r

n2
d

− 2DR(s)
nr

nd
+ RR(s)

]
, (17)

where DD(s), DR(s) and RR(s) are the number of data–data, data–
random and random–random pairs within a comoving separation
s ± �s/2, �s is the bin size, and nr and nd are the comoving number
densities of the random and cluster sample, respectively. The corre-
lation function was measured in the range 10 < r/( Mpc h−1 ) < 40.

5.2 Modelling the redshift-space cluster clustering

Measuring distances from observed redshifts introduces geometric
and dynamic distortions in the correlation function measurements,
the former due to the assumption of a fiducial cosmology, not neces-
sarily the true one, the latter caused by perturbations in the cosmo-
logical redshifts due to peculiar motions. Moreover, the precision of
redshift measurements influences the estimate of line-of-sight dis-
tances (Marulli et al. 2012). As a first approximation, the relation
between the observed redshift, zobs, and the cosmological one, zc,
reads

zobs = zc + v‖
c

(1 + zc) ± σz , (18)

where v‖ is the velocity component along the line of sight of the
peculiar velocity of the object and σ z is the redshift error. We ignored
geometric distortions, whose effect is negligible with respect to
dynamic distortions and photo-z errors (Marulli et al. 2012), and
we kept the cosmological parameters fixed in the fitting procedure.

The redshift-space 2D power spectrum can be modelled in polar
coordinates as follows (see e.g. Kaiser 1987; Peacock et al. 2001):

P (k, μ) = PDM(k)(b + f μ2)2 exp(−k2μ2σ 2) , (19)

where k =
√

k2
⊥ + k2

‖ , k⊥ and k‖ are the wavevector components

perpendicular and parallel to the line of sight, respectively, μ= k‖/k,
PDM(k) is the dark matter power spectrum, b is the linear bias factor,
f is the growth rate of density fluctuations and σ is the displacement
along the line of sight due to random perturbations of cosmological
redshifts. Assuming standard gravity, we approximated the growth
rate as f � �M(z)γ , with γ = 0.545. The fμ2 term parametrizes the
coherent motions due to large-scale structures, enhancing the clus-
tering signal on all scales. The exponential cut-off term describes
the random perturbations of the redshifts caused by both non-linear
stochastic motions and redshift errors. It washes out the signal over
a typical scale k ∼ 1/σ , thus causing a scale-dependent effect.

To derive the monopole of the correlation function, we integrated
equation (19) over the angle μ, and then Fourier antitransformed.
The solution can be written as follows:

ξ (s) = b2ξ ′(s) + bξ ′′(s) + ξ ′′′(s) . (20)
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The main term, ξ ′, is the Fourier antitransform of the monopole
P′(k):

P ′(k) = PDM(k)

√
π

2kσ
erf(kσ ) , (21)

which corresponds to the model given by equation (19) when ne-
glecting the dynamic distortion term. The ξ ′ ′ and ξ ′ ′ ′ terms are the
Fourier antitransforms of

P ′′(k) = f

(kσ )3
PDM(k)

[√
π

2
erf(kσ ) − kσ exp(−k2σ 2)

]
, (22)

and

P ′′′(k) = f 2

(kσ )5
PDM(k)

{
3
√

π

8
erf(kσ )

−kσ

4

[
2(kσ )2 + 3

]
exp(−k2σ 2)

}
, (23)

respectively.
In our case, photo-z errors perturb the most the distance measure-

ments along the line of sight. Indeed, as verified in a precedent study
(Veropalumbo et al. 2014), the BCGs identified as cluster centres are
close to the minimum of the cluster potential wells. Therefore, their
small-scale random motions are negligible with respect to photo-
z errors, and the effect of non-linear peculiar velocities at small
scales, the so-called fingers of God effect, can be safely neglected.
The cut-off scale in equation (19) can thus be written as

σ = cσz

H (z)
, (24)

where H(z) is the Hubble function computed at the median redshift
of the sample and σ z is the typical photo-z error.

5.3 Photo-z errors

Large photo-z errors have a dramatic impact on the measured ξ (s).
The real-space clustering can be derived by projecting the corre-
lation function along the line of sight (e.g. Marulli et al. 2013;
Veropalumbo et al. 2014). However, this technique becomes quite
ineffective for large redshift errors and small survey area, since it
would be necessary to integrate the correlation function up to too
large scales to fully correct for redshift errors. In this work, we
followed a different strategy, fitting directly the redshift-space clus-
tering with a model that takes into account redshift uncertainties.3

To estimate the photo-z errors, we used the spectroscopic data
available for a subsample of the photometric catalogue. A spectro-
scopic redshift was assigned to a galaxy cluster if it was measured
for its BCG. Spectroscopic redshifts of BCGs can be considered ba-
sically unaffected by peculiar velocities (Veropalumbo et al. 2014),
and are measured with high precision. The resulting sample of clus-
ters with both photometric and spectroscopic redshift measurements
consists of 31 338 objects.

We estimated the photo-z errors, σ z, by comparing spectroscopic
and photometric cluster redshifts in different redshift and richness
bins. As shown in Fig. 4, the �z(≡ zphot − zspec) distributions are
well described by a Gaussian function at all redshifts. Specifically,
Fig. 4 shows the �z distributions (black solid lines) estimated in four

3 Due to targeting processes in SDSS, the redshift distributions of the photo-
metric and spectroscopic redshift samples are different. Therefore, to com-
bine clustering with lensing data, we were forced to measure the clustering
of the photometric sample.

Figure 4. Distribution of �z(≡ zphot − zspec) in four redshift bins (black
solid lines) and the associated Gaussian fit (red dashed lines). The limiting
values of each redshift bin are indicated in the corresponding panels. The
vertical lines correspond to the median values of the �z distributions (black)
and to the mean of the Gaussian models (red dashed).

illustrative redshift bins, 0.10 ≤ zphot < 0.21, 0.21 ≤ zphot < 0.30,
0.30 ≤ zphot < 0.38 and 0.38 ≤ zphot ≤ 0.59. The red dashed lines
show the best-fitting Gaussian models, which faithfully reproduce
the measured distributions. The photo-z error, σ z, could then be
estimated as the standard deviation of the distribution.

To reconstruct the full �z distribution, we used 20 redshift bins.
Anyway, the estimate of the photo-z errors resulted to be very
weakly dependent on the specific redshift partition. In Fig. 5, top
panel, we show the variation of σ z with redshift for the whole sample
(black solid line) and for four richness bins (coloured lines) in the
entire redshift range. The z ∼ 0.35 peak is due to the shift of the
4000 Å break from the g − r to r − i colours (Rykoff et al. 2014).
Our results agree with what found by Wen et al. (2012). As can
be seen in the bottom panel of Fig. 5, thanks to the larger number
of cluster members, the larger the richness, the smaller the photo-z
error. The estimated values of σ z are reported in Table 1. Finally,
to obtain a unique value of σ z to be used in equation (24), we
averaged the standard deviations measured in the different redshift
bins, weighting over the cluster redshift distribution.

5.4 Random catalogues

To construct the random catalogues, we reproduced separately
the angular and redshift selection functions of the cluster sam-
ple. This method provides a fair approximation of the full distri-
bution (Veropalumbo et al. 2014). The angular distribution of the
random objects was obtained using the public software MANGLE

(Swanson et al. 2008). We first converted the measured angular po-
sitions to the SDSS coordinate system in order to reconstruct the
footprint of the sample, which is eventually randomly filled.

We associated redshifts with the random objects by drawing from
the observed redshift distribution of the cluster samples. The latter
was assessed grouping the data into 100 redshift bins and applying
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σ 8 from lensing and clustering of clusters 4155

Figure 5. Top panel: photo-z errors as a function of redshift for the whole
sample (black solid line) and for the four richness bins reported in Table 1,
as indicated by the labels. The photometric redshift is systematically better
determined for high-richness clusters. Bottom panel: photo-z errors obtained
following the procedure described in Section 5.3 for the whole sample (red
point) and for the four richness bins. The horizontal error bars span from
the 16 to the 84 percentiles of the cluster richness distribution, while the
vertical error bars are the standard deviations of the σz redshift distribution.
The solid line is a least-squares linear fit to the black points which highlights
the decreasing behaviour as a function of richness.

a Gaussian convolution with a kernel three times larger than the
bin size (Marulli et al. 2013). Reducing the bin size has the effect
of lowering the clustering signal along the line of sight. However,
the impact of this effect is negligible considering the measurement
uncertainties, as we verified. To minimize the impact of the shot
noise at small scales, for each sample considered in this work, we
generated a random catalogue 20 times larger.

5.5 Error estimates

We used the jackknife resampling technique to estimate the covari-
ance matrix of the correlation function measurements:

Cij = Nsub − 1

Nsub

N∑
k=1

(ξk
i − ξ̄i)(ξ

k
j − ξ̄j ) , (25)

where Nsub is the number of resamplings, ξk
i is the value of the

correlation function in the ith bin for the kth subsample and ξ̄i is the
mean value of the subsamples.

The jackknife subsamples are constructed following the SDSS
geometry. We divided the original catalogue into fractions of SDSS
stripes (5 regions in each of the 28 considered SDSS stripes,
Nsub = 140 subvolumes in total) and excluding recursively one

Figure 6. The redshift-space two-point correlation function of the whole
cluster sample (RL∗ ≥ 12, black dots), compared to best-fitting models
obtained with the full model in equation (20, red solid line), the dominant ξ ′
term only (blue dashed line) and without the photo-z damping term (green
long-dashed line). The error bars show the square roots of the diagonal
values of the covariance matrix.

of them. As tested, the number of subsamples is large enough to
ensure convergence and stability of the covariance matrix estimate.

We also tested our algorithms on the LasDamas mock samples
(McBride et al. 2009), finding that our error estimates are conser-
vative with a typical overestimation of ∼20 per cent (Veropalumbo
et al. 2014).

5.6 Constraints

The analysis to constrain the bias and σ 8 was performed with Monte
Carlo Markov chain technique, using the full covariance matrix. We
adopted a standard likelihood, LCL ∝ exp(−χ2

CL/2), with

χ2
CL =

i=n∑
i=0

j=n∑
j=0

(ξi − ξ̂i)C
−1
ij (ξj − ξ̂j ) , (26)

where ξ i is the correlation function measured in the ith spatial bin,
ξ̂i is the model and C−1 is the inverted covariance matrix. A χ2

CL

can be constructed for each richness sample.
As described in Section 5.2, we fitted the redshift-space two-

point correlation function ξ (s) with the model given by equation
(20). When the cosmology density parameters are fixed, as in our
case, this model depends on three parameters only, the amplitude
σ 8, the bias, b, and the cut-off scale σ , related to σ z through equation
(24). Formally, the photo-z error is a parameter to be determined too
but, following the procedure described in Section 5.3, we assumed
an informative Gaussian prior on σ z, with a measured standard
deviation of 0.003.

The redshift-space two-point correlation function of our photo-
metric cluster sample is shown in Fig. 6 (black dots). The error bars
are the square root of the diagonal values of the covariance matrix.
The dashed blue line shows the best-fitting model given by equation
(20). The red line is the result obtained by fitting only the dominant
ξ ′ term. The blue and red lines are in close agreement. The model
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Figure 7. The redshift-space two-point correlation function of the four
richness-selected cluster samples (dots), compared to the best-fitting model
obtained with equation (20, lines). The blue, magenta, purple and red colour
codes refer to the 12 ≤ RL∗ < 16, 16 ≤ RL∗ < 21, 21 ≤ RL∗ < 30 and
RL∗ > 30, respectively. The error bars show the square roots of the diagonal
elements of the covariance matrix.

with only ξ ′ can fit the data nearly as well as the full model but it
produces systematically shifted parameter estimates. If we neglect
the Kaiser term, fμ2, we find a 6 per cent higher bias.

The long-dashed green line, which shows the case of a model
without the photo-z dumping term, clearly demonstrates the dra-
matic effect of photo-z errors on the clustering shape.

Constraints are strongly degenerate. Clustering is strongly de-
pendent on the product b σ 8. This degeneracy would be exact if the
correlation function was measured in the real space. For the whole
sample, we measured b σ 8 = 2.29 ± 0.08, at the median redshift
z = 0.37. The error estimate is conservative, due to the choice of
the prior standard deviation. Lowering the value of the σ z standard
deviation enhances the precision of the measurement.

Fig. 7 shows the redshift-space clustering measured in the four
richness-selected samples. The amplitude of the correlation func-
tion scales according to the richness. The lines are the best-fitting
full models given by equation (20). The results are summarized in
Table 1.

6 J O I N T A NA LY S I S

In this section, we combine lensing and clustering to infer σ 8 and
the halo bias. At the large scales probed by clusters of galaxies, we
can safely consider the bias as linear. For each binning in optical
richness, we can measure the weighted bias

b(Meff, z) =
∫

b(M200, z)fsel(M200)dM200, (27)

where fsel(M200) is the selection function,

fsel(M200) =
∫ Rmax

L∗

Rmin
L∗

P (M200|RL∗ )n(RL∗ )dRL∗ , (28)

Figure 8. Main degeneracies between bias and σ 8 as probed by either clus-
tering (blue line), lensing (green line) or a theoretical modelling of the bias
(black line). Theoretical predictions are based on Tinker et al. (2010). We
considered σ 8 = 0.8 and the bias of a halo with mass M200 = 1014 M	 h−1

at z = 0.3.

n(RL∗ ) is the distribution of the observed richness, Rmin
L∗ and Rmax

L∗
delimit the richness bin, and P (M200|RL∗ ) embodies the mass–
richness scaling relation through the conditional probability that a
cluster with richness RL∗ has a mass M200.

The big advantage of using the same clusters to measure lensing
and clustering is that we do not need to model the bias to infer the
amplitude σ 8. We are assured that we observe the same weighted
bias, which is written in terms of an effective mass Meff, for both
lensing and clustering. We do not need to determine the effective
mass to estimate σ 8, even though Meff can be constrained with the
lensing fit of the central haloes.

This basic approach does not need any derivation of the scaling
relation between the observable (the optical richness in our case)
and the cluster mass. The effects of the cluster selection function and
of the scaling relation are included in the effective bias. In this way,
we avoid two of the main difficulties which plague cosmological
tests based on cluster of galaxies (Sereno & Ettori 2014; Sereno
et al. 2014).

Bias and σ 8 can be computed by properly matching the con-
straints obtained with either lensing (which is degenerate with b σ 2

8 )
and clustering (which is degenerate with b σ 8). Degeneracies be-
tween bias and σ 8 which affect each of the two probes are pictured
in Fig. 8. Results are summarized in Table 1. We explored two
methods to infer σ 8 according to whether or not the information on
the mass halo, which is inferred from the small scales in the lensing
analysis, is used to infer the amplitude of the power spectrum, σ 8.

6.1 First method

The first proposed method is the most basic. It consists in a si-
multaneous analysis of σ 8 and bias. It uses only the cosmological
information derived from the two-halo term in the lensing mod-
elling. Together with σ 8, we could then determine the halo bias
bi for each binning in optical richness. This method fully exploits
the fact that we are measuring clustering and lensing for the same
clusters, which were selected based on their richness. The determi-
nation of σ 8 does not require the modelling of the halo bias as a
function of mass/richness.

The joint analysis was performed with the combined likelihood

Ltot (σ8, {bi}) ∝
∏

i

LGL,iLCL,i , (29)
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σ 8 from lensing and clustering of clusters 4157

Figure 9. Derived probability density of bias b and σ 8 in the reference case (RL∗ ≥ 12). The green (blue) regions include the confidence regions as obtained
from lensing (clustering). The darker (lighter) area includes the 1σ (3σ ) confidence region in two dimensions, here defined as the region within which the value
of the probability is larger than exp (−2.3/2) (exp (−11.8/2)) of the maximum. The red thick (thin) contour includes the 1σ (3σ ) confidence regions from the
joint analysis.

where LCL,i is the clustering likelihood for the ith richness bin, see
equation (26). The dependence on σ z was marginalized over. The
lensing likelihood, LGL,i(bi σ8), was obtained by marginalizing the
posteriori probability distribution obtained with the stacked lensing
analysis of the ith bin, see Section 4.6. We adopted uniform priors
for σ 8 and the bias. Results for the reference case are reported in
Table 1. We found σ 8 = 0.79 ± 0.16 and a bias of 2.86 ± 0.78.
Confidence regions are plotted as red contours in Fig. 9. Even
though the lensing constraints are quite shallow with respect to the
clustering results, they are crucial to break the degeneracy between
bias and power spectrum amplitude.

The lensing constraints are exactly degenerate with the contours
where b σ 2

8 is constant whereas the constraints from clustering align
to a very good approximation with the loci of points where b σ 8 is
constant. The latter degeneracy would be exact if the cluster–cluster
correlation function was measured in the real space. A simplified
joint likelihood can be written in terms of the χ2 function

χ2 =
∑

i

([
b σ 2

8

]
i
− biσ

2
8

δ
[
b σ 2

8

]
i

)2

+
(

[b σ8]i − biσ8

δ [b σ8]i

)2

, (30)

where the sum runs over the different richness bins;
[
b σ 2

8

]
i

and
[b σ 8]i are the measurements from lensing and clustering in the ith
bin, respectively. For the following tests, we used the simplified
version of the likelihood.

We first checked for consistency. Estimates of σ 8 obtained
considering subsamples in optical richness one at a time are in
agreement among themselves and with the reference case. We
got σ 8 = 0.92 ± 0.27 for 12 ≤ RL∗ < 16, σ 8 = 0.59 ± 0.24
for 16 ≤ RL∗ < 21, σ 8 = 0.80 ± 0.29 for 21 ≤ RL∗ < 30 and
σ 8 = 0.57 ± 0.22 for RL∗ ≥ 30.

Being the estimates consistent, we could analyse the four sub-
samples together. In this way, we could measure at the same time

Figure 10. Bias as a function of mass. The red line is the prediction by
Tinker et al. (2010) for σ 8 = 0.8 at z = 0.37.

the halo bias in each richness bin and the amplitude of the power
spectrum. We found σ 8 = 0.69 ± 0.15, which is fully consistent
with the reference case.

The measured halo bias is an increasing function of the optical
richness, see Table 1. Stacked lensing also provided direct estimates
of effective masses thanks to the modelling of the main halo term.
We could then look for trends of b with mass without assuming any
scaling relation. The bias increases with mass in agreement with
results from theoretical predictions, see Fig. 10.

We remark that we used the small-scale regime only to derive
the halo mass whereas we did not try to extract constraints on the
bias from the regions within the viral radius. The determination of
σ 8 and of the bias for each bin was independent of the small-scale
regime, which entered only when we studied the evolution of bias
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with mass. In this scheme, the effective mass is identified with the
lensing mass, which is an acceptable approximation for stacking
analyses in physical length units (Okabe et al. 2013; Umetsu et al.
2014).

6.2 Second method

In the second approach, we focused on the determination of σ 8 by
assuming that the bias is a known cosmological function of the peak
height (Tinker et al. 2010; Bhattacharya et al. 2013). This requires
the knowledge of the halo mass, which is determined with the
stacked lensing. The weight factor when stacking in physical length
units is mass independent and estimated masses and concentration
are not biased (Okabe et al. 2013; Umetsu et al. 2014). We then
assumed that the effective mass measured by lensing for the central
halo is the same effective mass probed by the bias, see equation (27),
which strictly holds if the signals are linear in mass. The quantitative
analysis can be performed in terms of a χ2 function,

χ2
(
σ8, {M200,i}

) =
∑

i

[ ([
b σ 2

8

]
i
− bth,iσ

2
8

)2

δ
[
b σ 2

8

]2

i
+ δ

[
bth,i

]2
σ 4

8

+
(
[b σ8]i − bth,iσ8

)2

δ [b σ8]2
i + δ

[
bth,i

]2
σ 2

8

+
(

M200,i − Mobs
200,i

δMobs
200,i

)2
⎤
⎦ , (31)

where bth, i = bth, i(σ 8, zi, M200, i) is the theoretical prediction for
given σ 8 and halo mass M200, i at redshift zi and δ[bth, i] is the related
uncertainty. We used the fitting formula for the bias derived in Tinker
et al. (2010). They found a 6 per cent scatter about their best-fitting
relation, which we conservatively adopted as the uncertainty on the
theoretical prediction.

Differently from the first approach, where the biases themselves
were free parameters, now they are expressed in terms of M200.
Since the masses were already constrained by the lensing analysis,
we added to the χ2 function a penalty term, i.e. the third right-
hand term in equation (31), and we still formally considered the
mass associated with each bin as a parameter to be determined. Of
course, the posterior estimate of each M200, i just follows the prior
but we had to include the penalty not to underestimate the error on
σ 8. As for the first approach, the second method still does not need
to calibrate the mass–richness relation.

For the reference binning in optical richness (RL∗ ≥ 12), we
obtained σ 8 = 0.75 ± 0.08, in agreement with what obtained with
the first approach. The use of the information on the dependence
of the bias on the peak height nearly halved the statistical error.
The theoretical constraint on the bias is nearly degenerate with the
lensing one, i.e. bth is nearly proportional to the inverse squared
σ 8. Constraints from clustering, lensing or theoretical predictions
are compared in Fig. 8. However, we cannot use the theoretical
constraint without the information on mass from lensing.

7 FO R E C A S T I N G

The accuracy in the determination of σ 8 will greatly benefit from
future optical galaxy surveys. As a test bed, we consider the wide
survey planned by the Euclid mission.4 The signals of either lensing
or clustering can be enhanced by considering a larger number of
clusters (which can be achieved with either deeper or wider surveys),

4 http://www.euclid-ec.org/

a larger number of background sources (deeper surveys) and a larger
survey area in order to cover the lensing two-halo term up to 50 Mpc
(wider surveys). With regard to these three aspects, Euclid will
represent a significant improvement with respect to the data sets we
considered in this paper.

Euclid will observe an area of 15 000 deg2 and it is expected to
detect ng ∼ 30 galaxies per square arcminute with a median redshift
greater than 0.9, which can be used for weak lensing analyses
(Laureijs et al. 2011). These basic properties are enough to forecast
the expected accuracy in the σ 8 determination from the joint lensing
plus clustering analysis we presented.

The area of the Euclid survey is nearly two times larger than the
area we considered in the clustering analysis and nearly 100 times
wider than the CFHTLenS, with a corresponding expected improve-
ment in the corresponding signals.

Due to improved photometry, a larger number of clusters will
be detected to higher redshifts. Most of the newly detected clusters
will be low-mass haloes producing a small lensing signal. On the
other hand, Euclid will significantly extend the redshift range of the
background galaxies, whose lensing signal is maximized at high
redshift.

Recently, Ford et al. (2015) presented the CFHTLenS 3D-
Matched-Filter catalogue of cluster galaxies. Candidate clusters
were selected if they had at least two member galaxies within the
virial radius and a detection significance in excess of 3.5. More
than Ncl ∼ 18 000 clusters were detected in the ∼150 deg2 area of
the survey in the redshift range 0.2 � z � 0.9. More than 14 000
candidate clusters had an estimated N200 > 10. By comparison, with
SDSS-III quality data, Wen et al. (2012) detected Ncl ∼ 1200 clus-
ters with N200 � 8 in the redshift range 0.1 < z < 0.6 over the area
of ∼130 deg3 in common with the CFHTLenS. We can conclude
than nearly 10 times more clusters can be identified by increasing
the photometric depth of the survey from SDSS-III to CFHTLenS
quality data.

The Euclid mission is expected to identify an even larger number
of clusters. Nevertheless, a significant number of them will be made
of small groups, whose photometric redshift determination might
be uncertain, which hampers the clustering analysis. Furthermore,
the larger the number of identified clusters, the larger their density
in the sky. As we have seen, the shot noise is not the only source
of uncertainty at large radii. If we consider clusters whose mean
separation is smaller than the range over which we measure the shear
profile, we cannot simply rescale the lensing signal-to-noise ratio as
SNR ∝ √

Ncl. We can then conservatively consider an improvement
of a factor ∼10 in the clustering/lensing signal detected by Euclid
with respect to the present analysis due to the larger density of
detected clusters.

The background lensed galaxies resolved by Euclid will be more
and further away than the sources in the CFHTLenS. The number
density of galaxies in the CFHTLenS with shear and redshift data
is ngal ∼ 17 galaxies per square arcminute (Heymans et al. 2012).
The effective weighted galaxy number density that is useful for a
lensing analysis is ngal ∼ 11 galaxies per square arcminute in the
redshift range 0.2 < z < 1.3 with a median redshift of z ∼ 0.75
(Heymans et al. 2012), and it is ∼6 galaxies per square arcminute at
z � 0.7 (Covone et al. 2014). Euclid sources will be more numerous
(ng ∼ 30 galaxies per square arcminute) and at a median redshift
of ∼0.9. These two factors make the signal behind a lens nearly two
times larger.

Finally, the wide coverage of the Euclid survey will enable us to
detect the two-halo lensing signal to its full radial extent. The exten-
sion of the radial coverage from 15 up to 30 Mpc h−1 can decrease
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σ 8 from lensing and clustering of clusters 4159

the errors in the lensing estimate of b σ 2
8 from �20 to ∼15 per cent,

see Table 2. The improvement would be even more significant con-
sidering radii up to 50 Mpc h−1 but this effect would be counterbal-
anced by the increased overlap in the lensing area of near clusters.

Based on the above considerations, we expect that stacked lens-
ing can measure b σ 2

8 with an accuracy of ∼0.3 per cent and that
clustering can measure b σ 8 with an accuracy of ∼0.1 per cent. The
combined effects of a larger sample of clusters and less noisy mea-
surements should be enough to get an accuracy δσ 8 ∼ 0.003 with
the Euclid mission without any assumption on the mass–richness
scaling or any modelling of the halo bias.

In the present analysis, we could keep �M fixed because of the
large statistical uncertainties. This will be no more the case in pres-
ence of Euclid quality data. On one hand, the dependence on �M

of the joint clustering plus lensing analysis enlarges the forecasted
statistical uncertainty on σ 8. On the other hand, �M could be de-
termined to very good accuracy by exploiting other features of the
joint analysis that we discuss in the following section as well as by
combining the present method with other external probes. These ef-
fects should counterbalance each other and the expected δσ 8 should
be nearly unchanged.

The estimate of σ 8 will also greatly benefit from the increased
spectroscopic sample associated with the Euclid survey. Working
with spectroscopic rather than photometric redshift eliminates one
of the main sources of uncertainty in the clustering analysis, see
Section 5.3.

The high precision in Euclid measurements will demand for very
accurate theoretical modelling. The bias is a stochastic process
which is difficult to model. In this sense, our basic approach, where
the bias is treated as an effective parameter, is very promising.

8 PRO SPECTS

In this section, we consider some improvements that might enhance
the performances of joint analyses of lensing and clustering.

8.1 Cosmological dependences

Due to the limited field of view covered by the lensing catalogue, we
did not aim at constraining all cosmological parameters. However,
the joint analysis of cross-correlation makes it possible to constrain
cosmological density parameters too.

The lensing signal is proportional to the matter density ρ̄m, see
equations (6) and (7). On fully linear scales, stacked lensing and
clustering can then constrain the product σ 8�M. Neglecting neu-
trinos we can single out the linear growth factor D+ at the lens
redshift too, so that the inferred product becomes σ 8�MD+(�M,
��, . . . ). Cosmological parameters enter with a lesser impact
also in the angular diameter distances and the shape of the power
spectrum.

The inference of cosmological densities requires that the mea-
sured signals are independent of the reference cosmological frame-
work. Stacking in physical length and the estimation of the lensing
signal as done in this paper require the assumption of a cosmologi-
cal model. In fact, angular diameter distances have to be computed
to convert angular separations to physical lengths, to convert tan-
gential shears to surface density contrast and to weight the lensing
signal for sources at different redshifts. These effects are usually
considered small and neglected. The stacked lensing signal derived

in a fixed cosmology has been already used to constrain the cosmo-
logical density parameter �M (Cacciato et al. 2013; Mandelbaum
et al. 2013).

An unbiased procedure would require stacking the signal in an-
gular annuli for lenses in small redshift bins and adopting a single
population of background source galaxies for the lensing analysis
(Oguri & Takada 2011). This approach is suitable for large surveys,
like Euclid.

8.2 Self-calibration

The approach we presented circumvents the problems inherent to a
proper calibration of the cluster mass–observable relation. Cluster
properties which can be easily measured for a large number of ob-
jects in ongoing and future large surveys, such as optical richness
and X-ray luminosity, can be used as mass proxies. This requires
the accurate calibration of the observable through comparison with
direct mass estimates such as weak lensing determinations of mas-
sive clusters or X-ray analyses assuming hydrostatic equilibrium
(Rasia et al. 2012). However, these estimates are scattered too, with
intrinsic scatters of ∼15 per cent for lensing masses and of ∼25 per
cent for X-ray masses (Sereno & Ettori 2014). The level of bias is
more difficult to ascertain because of differences as large as 40 per
cent in either lensing or X-ray mass estimates reported by different
groups (Sereno & Ettori 2014).

In principle, the combination of the two observables we consid-
ered in this paper, i.e. the stacked lensing and the clustering, enables
the self-calibration of the mass–observable relation together with
the calibration of the other major source of systematic errors, i.e.
the photometric redshift uncertainty (Oguri & Takada 2011). The
degeneracy between these two uncertainties can be broken by ob-
serving tangential shear signals over a wide range of radii (Oguri &
Takada 2011). Accurate self-calibration of systematic errors can be
indeed attained in future surveys, when we expect a redshift accu-
racy in lensing tomographic bins of ∼0.1 per cent and that the mean
cluster mass in each bin can be calibrated to 0.05 per cent (Oguri &
Takada 2011).

9 C O N C L U S I O N S

Haloes are biased tracers of the underlying matter distribution. The
bias is mass dependent, and, for a given mass range, it is a non-
linear and stochastic function of the underlying matter density field.
In the CDM scenario for structure formation and evolution, the
knowledge of the relative abundance of haloes is sufficient to ap-
proximate the large-scale bias relation (Sheth & Tormen 1999).
Detailed knowledge of the merger histories of dark matter haloes is
not required. The peak-background split achieves an agreement at
the level of ∼20 per cent with the numerical results, both at high
and low masses (Tinker et al. 2010).

The knowledge of the halo bias plays an important role in the de-
termination of cosmological parameters through tests based on the
abundance and clustering of high-mass haloes (Tinker et al. 2010;
Oguri & Takada 2011). Methods that utilize correlation functions to
constrain cosmology require precise knowledge of halo clustering,
which is understood in terms of the bias of the haloes in which
structures collapse. Furthermore, the information obtained from the
bias of clusters is complementary to their abundance. Indeed, proper
self-calibration of cluster surveys relies on the additional informa-
tion present in clustering data.
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The analysis of stacked lensing and clustering can directly mea-
sure the bias as a function of mass and test this important prediction
of the �CDM paradigm. Combining results from the two-point
correlation function of a photometric sample of 69 527 clusters
selected from the SDSS with the weak lensing analysis of 1176
clusters from the CFHTLenS, we measured the linear bias in the
mass range 0.5 � M200/(1014 M	 h−1) � 2. We found excellent
agreement with results from dark matter N-body simulations (Tin-
ker et al. 2010; Bhattacharya et al. 2013). The bias scales with
mass according to theoretical predictions. Thanks to the minimal
modelling of the employed method, we could obtain this result by-
passing the calibration of the scaling relation between cluster mass
and observable.

The development of independent methods to measure cosmolog-
ical parameters and a proper comparison of estimated values from
different experiments are crucial to test possible failures of the stan-
dard �CDM model or hidden systematics. We could determine the
power spectrum amplitude with an accuracy δσ 8 � 0.1. Even though
we fixed �M = 0.3 in our analysis, the statistical error is too large
to discriminate between the discrepant estimates of σ 8 from either
number counts (Planck Collaboration XX 2014b) or CMB (Planck
Collaboration XVI 2014a). The method is nevertheless promising
for its minimal modelling and well-controlled systematics. Our es-
timation of σ 8 does not rely on any mass–observable scaling re-
lation. In view of future wide surveys like e.g. Euclid (Amendola
et al. 2013), our method, as well as other proposed approaches
which combine galaxy/matter correlation functions, provides com-
plementary information to constrain cosmological parameters and
should help to test non-standard physics. Future deep galaxy surveys
will enable us to detect and stack lensing clusters in small redshift
bins up to z � 1.5. This will enable us to further break parameter
degeneracies and limit systematics (Oguri & Takada 2011).
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