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ABSTRACT
With this paper we introduce the concept of apparent structure of a gamma-ray burst (GRB) jet,
as opposed to its intrinsic structure. The latter is customarily defined specifying the functions
ε(θ ) (the energy emitted per jet unit solid angle) and �(θ ) (the Lorentz factor of the emitting
material); the apparent structure is instead defined by us as the isotropic equivalent energy
Eiso(θv) as a function of the viewing angle θv. We show how to predict the apparent structure of
a jet given its intrinsic structure. We find that a Gaussian intrinsic structure yields a power-law
apparent structure: this opens a new viewpoint on the Gaussian (which can be understood
as a proxy for a realistic narrow, well-collimated jet structure) as a possible candidate for a
quasi-universal GRB jet structure. We show that such a model (a) is consistent with recent
constraints on the observed luminosity function of GRBs; (b) implies fewer orphan afterglows
with respect to the standard uniform model; (c) can break out the progenitor star (in the
collapsar scenario) without wasting an unreasonable amount of energy; (d) is compatible with
the explanation of the Amati correlation as a viewing angle effect; (e) can be very standard in
energy content, and still yield a very wide range of observed isotropic equivalent energies.

Key words: radiation mechanisms: non-thermal – relativistic processes – gamma-ray
burst: general.

1 IN T RO D U C T I O N

In a 1999 preprint Lipunov, Postnov and Prokhorov introduced, pos-
sibly for the first time, the idea that gamma-ray burst (GRBs) could
be ‘standard energy explosions’, i.e. events with a standard energy
reservoir. In their final paper, published two years later (Lipunov,
Postnov & Prokhorov 2001), the authors identified E0 ∼ 5 × 1051 erg
as a plausible value for this universal energy, and they described two
possible scenarios: in the first, the standard energy is emitted in-
side a conical jet whose semi-aperture θ jet varies from one GRB to
another (Fig. 1a); in the second, the beam pattern, made up of two
coaxial conical components and an isotropic component, is the same
for all GRBs (Fig. 1b). In their view, the wide range of observed
luminosities of GRBs could be accommodated in either the first
scenario, with the brightest events being the most collimated, or the
second picture, with the viewing angle being crucial to determine
which part of the beam mostly contributes to the observed fluence.

Soon later, Frail et al. (2001) analysed a sample of 17 long GRBs
for which a jet break in the afterglow light curve was identified, and
thus a measure of θ jet was available, finding a surprising cluster-
ing of the collimation-corrected energy Eγ ≡ Eiso(1 − cos θjet) ≈
Eisoθ

2
jet/2 around the universal value Eγ ∼ 5 × 1050 erg (which

� E-mail: omsharan.salafia@gmail.com

implies a correlation Eiso ∝ θ−2
jet ). The result was interpreted as ev-

idence that the emission is in fact beamed inside a conical jet: this
supported the first scenario proposed by Lipunov et al. (2001), fi-
nally tracing the very wide range of observed isotropic equivalent
energies of GRBs to a single ‘real’ value.

Next year, Rossi, Lazzati & Rees (2002) and Zhang & Mészáros
(2002) interpreted the same result in a different way, closer to the
second scenario proposed by Lipunov et al. (2001): their claim was
that the correlation Eiso ∝ θ−2

jet was instead due to the existence of
a universal jet structure, with the jet energy per unit solid angle
being ε(θ ) ∝ θ−2. This particular energy configuration, along with
the assumption of a strong relativistic beaming of the emitted radia-
tion, implies that Eiso ∝ θ−2

v , where θv is the viewing angle. Based
on a simulation of the afterglow light curves produced by such a
structured jet (SJ) Rossi et al. (2002) claimed1 that θv ∼ θ jet, and
thus Eiso ∝ θ−2

jet .
The idea of a quasi-universal jet structure (that is, universal with

some dispersion of the structure parameters) stimulated a number

1 In Rossi et al. (2002), the afterglow light curve of their SJ seen under a
viewing angle θv is found to show a feature similar to the jet break predicted
for the uniform jet, with the coincidence that the break time is approximately
the same as that of a uniform jet, seen on-axis, with semi-aperture θ jet = θv.
The correspondence is not exact, as discussed two years later in Rossi et al.
(2004), but the difference should be small in most cases.

C© 2015 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

 at O
sp S G

erardo on June 14, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

mailto:omsharan.salafia@gmail.com
http://mnras.oxfordjournals.org/


3550 O. S. Salafia et al.

Figure 1. Sketch of the two possible scenarios described in Lipunov et al.
(2001). In the first one (a) GRB jets are seen on-axis, and they differ by their
semi-aperture and consequently their observed energy, with the brightest
being the most collimated; in the second one (b) the jet configuration is
such that the viewing angle determines which component contributes most
significantly to the received energy.

of papers exploring the idea and its consequences. Here are some
examples: Granot & Kumar (2003) and Kumar & Granot (2003)
constrained the possible jet structures by a qualitative comparison
of simulated afterglow light curves with the observed ones; Rossi
et al. (2004) showed that polarization measures could be a crucial
tool to discern between the SJ and the uniform jet; Zhang et al.
(2004) and Dai & Zhang (2005) proposed the interpretation of
X-ray flashes (XRFs) and GRBs as a unique population of bursts
with a Gaussian SJ, and tested this hypothesis against many obser-
vational constraints, finding general consistency; on the contrary,
Lamb, Donaghy & Graziani (2005) found that the universal SJ
proposed by Rossi et al. (2002) fails to predict the right observed
number ratio of XRFs to GRBs; relativistic hydrodynamical simu-
lations (e.g. Zhang et al. 2004; Morsony, Lazzati & Begelman 2007)
showed that the interaction of the jet with the stellar envelope prior
to the break out (in the collapsar scenario of long GRBs) leads in-
evitably to some structure in the jet properties, but it remains unclear
if this structure is likely to have any degree of universality; Lund-
man, Pe’er & Ryde (2013), within a photospheric emission model,
obtained a low-energy photon index α consistent with the obser-
vations assuming an SJ, where the Lorentz factor �(θ ) varies as a
power law with the angular distance from the jet axis; we (Pescalli
et al. 2015) recently showed that the observed luminosity function
(LF) of long GRBs is consistent with the SJ model, provided that
the energy structure is much steeper than the original θ−2 (at least
θ−4 seems to be necessary).

Despite all these efforts and some successes, no consensus about
the viability of the quasi-universal SJ hypothesis has been achieved
so far.

1.1 Aim and structure of this paper

The aim of this paper is to introduce the concept of apparent struc-
ture and to show that it is a necessary tool to correctly compare the
predictions of the SJ model with the observations. In the following
sections, we will try to make the distinction between intrinsic and
apparent structure as clear and as rigorous as possible; for the mo-
ment, suffice it to say that the intrinsic structure here is understood
as the energy emitted by different portions of the jet at different
angular distances θ from the jet axis, while the apparent struc-
ture describes the energy received by observers that see the same
jet under different viewing angles θv. While the intrinsic structure

can be due to the jet formation process itself (e.g. the Blandford
& Znajek 1977 process) or to the subsequent interaction of the jet
with the stellar envelope (in the collapsar scenario), the apparent
structure depends on how relativistic beaming effects shape the
emission from each part of the jet. From an observational point
of view, it is the apparent structure that determines the isotropic
equivalent energy, the observed LF and the like; from a theoretical
point of view, one would like to reconstruct the intrinsic structure
to find out e.g. the actual energy emitted by the jet and, through
the efficiency, the total energy (kinetic plus internal and possibly
magnetic) of the jet itself; thus, a clear distinction between the
two, and some insight on their interdependence, are to be worked
out.

The importance of such a distinction was partly pointed out in a
remarkable work by Graziani, Lamb & Donaghy (2006), but their
study assumed a constant bulk Lorentz factor profile �(θ ) = �. Few
works to date (as far as we know) assign a variable Lorentz factor
profile �(θ ) to the jet (e.g. Kumar & Granot 2003; Lundman et al.
2013) and none reports predictions about the apparent structure of
a GRB jet within such a model.

The structure of the paper is the following:

(i) in Section 2 and Section 3.1 we give a rigorous definition of
intrinsic and apparent structure, and we make some examples to
clarify the concepts;

(ii) in Section 3.2 we introduce two formulas to compute the
apparent structure and the spectrum of an SJ given its intrinsic
structure; in the following subsection, we compare the predictions
of our formulas with previous treatments and show that they are
consistent;

(iii) in what follows next, we analyse the particular case of a
Gaussian intrinsic structure, showing that (under the assumption
that also the Lorentz factor has a Gaussian profile) its apparent
structure is not Gaussian, but rather it is quite well described by a
power law; we then show that a Gaussian quasi-universal jet model,
with very reasonable parameter values, is consistent with recent
constraints from the observed LF of GRBs;

(iv) we show that the model is consistent with the Amati corre-
lation being a viewing angle effect;

(v) in the appendix we give detailed derivations of the formulas
presented in Section 3.2.

2 INTRINSIC STRUCTURE

Following Rossi et al. (2002) and Zhang & Mészáros (2002) we
define the intrinsic structure of the jet as follows:

(i) we set up a spherical coordinate system with the central engine
at its origin and the jet directed along the z-axis;

(ii) we define the function ε(θ ) as the energy emitted (during
the prompt emission) by the portion of the jet comprised be-
tween θ and θ + dθ , divided by the corresponding solid angle,
i.e. ε(θ ) ≡ η dE(θ )/2π sin θ dθ , where dE here stands for the total
energy (kinetic plus internal and possibly that of the magnetic field)
of the jet portion, and η is the prompt emission efficiency, which
might as well depend on θ ;

(iii) we assign a Lorentz factor �(θ ) to the emitting material
comprised between θ and θ + dθ during the prompt emission.

The functions ε(θ ) and �(θ ) then define what we call the intrinsic
structure of the jet.

MNRAS 450, 3549–3558 (2015)
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Figure 2. Example apparent structure of a uniform jet in the ultrarelativistic
limit (black dashed line) and for � = 200 (red solid line). The isotropic
equivalent energy is normalized to its maximum value, corresponding to the
jet observed on-axis. A jet semi-aperture θ jet = 3◦ is assumed.

3 A P PA R E N T S T RU C T U R E

3.1 Definition

We introduce here our notion of apparent structure. Let θv be the
viewing angle of an observer looking at a GRB jet, i.e. the angle
between the jet axis and the line of sight. We call ‘apparent struc-
ture’ the function Eiso(θv), namely the isotropic equivalent energy
inferred by the observer as a function of θv. For the sake of clarity,
let us apply this definition to some examples:

(i) an isotropic explosion, defined by ε(θ ) = ε ∀θ ∈ [0, π], has

Eiso = 4π ε (1)

for all viewing angles;
(ii) the ‘classical’ uniform (‘top-hat’) GRB jet has

ε(θ ) =
{

ε θ < θjet

0 θ ≥ θjet
(2)

and

�(θ ) =
{

� θ < θjet

1 θ ≥ θjet.
(3)

In the ultrarelativistic limit (� → ∞) the uniform jet is indistin-
guishable from an isotropic explosion as long as θv < θ jet, because
the relativistic beaming prevents (Rhoads 1997) the observer from
‘seeing’ anything not expanding exactly along the line of sight.2

For the same reason, the GRB is always undetected if θv > θ jet. In
other words, the apparent structure (dashed black line in Fig. 2) is

Eiso(θv) =
{

4π ε θv < θjet

0 θv ≥ θjet.
(4)

This ultrarelativistic, uniform jet picture is often used in theoretical
works about GRBs;

(iii) relaxing the ultrarelativistic assumption, one must in princi-
ple take into account the contribution to the observed flux coming

2 The implicit assumption is that the jet expansion is purely radial with
respect to the central engine.

from the whole emitting volume of the jet (the result of such cal-
culation for the uniform jet is usually dubbed ‘off-axis jet model’,
e.g. Yamazaki, Yonetoku & Nakamura 2003; Eichler & Levinson
2004; Donaghy 2006; Ghisellini et al. 2006). For the uniform jet,
the resulting apparent structure Eiso(θv) has been computed numer-
ically by many authors and it differs from equation (4) in that the
transition from the ‘on-axis’ (θv < θ jet) to the ‘off-axis’ (θv > θ jet)
regime is obviously smoother, and a non-zero energy is received
from the observer even at large viewing angles, since the radiation
is not 100 per cent forward-beamed (red solid line in Fig. 2).

3.2 A general formula for the apparent structure of a jet

In the appendix, we derive a formula to calculate the apparent
structure Eiso(θv) of a jet with a given (axisymmetric) intrinsic
structure {ε(θ ), �(θ )}. It is valid under the assumptions that the
emission comes from a geometrically and optically thin volume
whose surface does not change significantly during the emission.
According to our derivation, such apparent structure is given by

Eiso(θv) =
∫

δ3(θ, φ, θv)

�(θ )
ε(θ ) d�, (5)

where θv is the angle between the line of sight and the jet axis,
and δ is the relativistic Doppler factor. Here Eiso is understood as
4π d2

L/(1 + z) times the bolometric fluence measured at the Earth
(dL is the luminosity distance). A formula to calculate the observed
time integrated spectrum under the same set of assumptions is also
derived in the appendix (equation A16). The formula is

F (ν, θv) = 1 + z

4π d2
L

∫
δ2(θ, φ, θv)

�(θ )

f (x,α)

ν ′
0fα

ε(θ ) d�, (6)

where we have set x = (1 + z)ν/(δν ′
0) for neatness. Here f (x, α)

is a dimensionless function which defines the comoving spectral
shape, which can depend on an array α of parameters (see the
appendix for more details on its definition), ν ′

0 is some typical
frequency of the comoving spectrum, and

fα =
∫ ∞

0
f (x, α) dx. (7)

Formula (6) can be used to compute the isotropic equivalent energy
in a specific band, by using

Eiso,[ν1,ν2](θv) = 4π d2
L

1 + z

∫ ν2/1+z

ν1/1+z

F (ν, θv) dν. (8)

3.3 Comparison with previous studies

As a consistency check, we test our approach assuming a uniform
jet structure (equations 2 and 3) and compare the results with the
off-axis models of Yamazaki et al. (2003, hereafter Y03), Eichler &
Levinson (2004, hereafter E04) and Ghisellini et al. (2006, hereafter
G06).

(i) The comparison with Y03 is obtained by using equation (8),
assuming the same redshift, comoving spectral shape, normaliza-
tion, and Lorentz factor as in Y03. In Fig. 3, we show our results
together with those of Y03. Apparently, the model used in Y03 (thin
black lines) slightly underestimates the off-axis isotropic equivalent
energy with respect to ours (coloured solid lines).

(ii) The comparison with E04 is straightforward: the integrand
of equation 3 of their work, which is used to calculate Eiso(θv), is
proportional to δ3, and the same holds for our equation (5) in the

MNRAS 450, 3549–3558 (2015)
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Figure 3. Apparent structures (equation 5) of three uniform jets with � =
100 and θ jet = 15◦, 20◦ and 30◦ respectively (solid coloured lines). The
results of Yamazaki et al. (2003) are shown for comparison (solid and dotted
thin black lines). Our curves are normalized with the same prescriptions as
in Yamazaki et al. (2003).

uniform jet case. The resulting apparent structures are thus the same
up to a multiplicative constant.

(iii) Similarly, the integrand of equation 2 of G06, which is used
to calculate the observed time-integrated spectrum, is proportional
to δ2. Again, the same holds for our equation (6) in the uniform
jet case. Integration of either equation over all frequencies gives
an additional δ factor so that, as in the previous case, the resulting
apparent structures are the same up to a multiplicative constant.

We conclude that our model is reasonably consistent with previous
studies on the uniform jet model, and it has the advantage that it
can be applied to the SJ case using the definition of ε(θ ) commonly
found in the literature.

3.4 Application to power-law and Gaussian jet models

Here we want to show how the apparent structure of an SJ depends
on the energy profile ε(θ ) and especially on the Lorentz factor profile
�(θ ): the latter has been assumed constant (Graziani et al. 2006)
or its role has been deemed secondary (Rossi et al. 2002; Zhang &
Mészáros 2002) in many preceding works.

Fig. 4 shows the computed apparent structures of three power-
law jet models (upper panel) and three Gaussian jet models (lower
panel). The intrinsic structures are defined following Kumar &
Granot (2003) as

ε(θ ) =
{

εc θ ≤ θc

εc (θ/θc)−a θ > θc

�(θ ) =
{

�c θ ≤ θc

1 + (�c − 1) (θ/θc)−b θ > θc

(9)

and

ε(θ ) = εc e−(θ/θc)2

�(θ ) = 1 + (�c − 1) e−(θ/θc)2 (10)

for the power-law and Gaussian jet model, respectively. In both
cases, the θ c parameter represents the typical angular scale of the
intrinsic structure, i.e. the angle within which most of the jet energy
is contained. Inspection of Fig. 4 shows that the more the Lorentz
factor varies, the less the apparent structure mimics the underlying

Figure 4. Apparent structures, according to equation (5), of three power-law
(upper panel) and three Gaussian (lower panel) jet models. All power-law
models have θ c = 2◦, �c = 400, a = 2 and different values of the b parameter,
listed in the legend. The Gaussian models have θc = 2◦ and different values
of �c, listed. The corresponding intrinsic energy structures (understood as
4πε(θv)) are shown (black dashed lines). The apparent structures in the
Gaussian case decrease as Eiso ∼ θ−3

v at large viewing angles, regardless of
the core Lorentz factor �c and the jet typical angular size θ c.

intrinsic structure. The Gaussian jet model, in particular, displays
an apparent structure which is quite well described by a power law
with a slope around −3, plus a roughly constant core.

3.5 Reformulation of the Gaussian intrinsic structure

In the Gaussian case, the slope of the power-law tail of the apparent
structure at large viewing angles (see Fig. 4) is almost unaffected
by changes in the two parameters θ c and �c, and it remains between
−3 and −4 for reasonable values of these parameters. A different
slope can be achieved by modifying equation (10) as follows:

ε(θ ) = εc e−(θ/θc)2

�(θ ) = 1 + (�c − 1) e−(θ/θ� )2
,

(11)

where θ� is a new parameter that allows for the Lorentz factor
structure and intrinsic energy structure to fall off over different
angular scales. In principle, θ c might differ from θ� for the following
reason: ε(θ ) is related to the energy density u = ρc2 + p + uB (where
uB is the magnetic energy density) of the jet according to

ε(θ ) ≡ η
dE

d�
(θ ) = η

4πR2(θ ) �(θ )

4π
u(θ ), (12)

where �(θ ) is the width of the emitting volume and R(θ ) defines
its surface. The energy density u is related to the comoving one by

MNRAS 450, 3549–3558 (2015)
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Figure 5. Apparent structures of three Gaussian jets with different values
of θ�/θc (reported near each line), together with the apparent structure of a
uniform jet (blue solid line). The corresponding intrinsic structures are also
shown (dashed lines). The Gaussian jets have θ c = 3◦ and �c = 400; the
uniform jet has θ jet = 3◦ and � = 400.

u(θ ) = �2(θ )u′(θ ). Let us take the simplest picture as an example:
(a) let the emitting volume be a portion of a spherical shell, with
fixed width � and radius R; (b) let the efficiency η be the same at all
angles. One then gets ε(θ ) ∝ u(θ ) = �2(θ )u′(θ ). If u′ is constant, this
implies θ� = √

2θc. The efficiency, geometry and energy density
all play a role in determining the ratio θ�/θc. This ratio is the main
parameter affecting the slope of the power-law tail of the apparent
structure.3 Fig. 5 shows the apparent structure of the Gaussian jet
for three values of θ�/θc, along with the uniform jet for comparison.

4 THE GAUSSIAN SJ A S A QUA S I -UNIVE RSAL
J E T MO D E L

4.1 Luminosity function

The LF of GRBs clearly depends upon their apparent structure rather
than on the intrinsic one. We (Pescalli et al. 2015) recently showed
that a quasi-universal jet with a power-law apparent structure is
consistent with the observed LF of long GRBs: according to our
analysis above, the corresponding intrinsic structure might then be
Gaussian. In order to test the possibility that a Gaussian quasi-
universal SJ is compatible with the long GRB LF, we first need a
way to relate Eiso and the isotropic equivalent luminosity Liso. The
simplest approach is to define a rest-frame duration of the burst
t and to assume a triangular shape for the prompt emission light
curve. One then has

Liso ∼ 2 × Eiso/t. (13)

To define our candidate quasi-universal Gaussian SJ we need a
set of typical values of the model parameters. Here is an educated
guess, based on heuristic arguments:

(i) We define the typical rest-frame duration 〈t〉 as the mode of the
observed prompt emission time distribution 〈T90〉 ≈ 70 s (Sakamoto
et al. 2011) divided by the average long GRB redshift 〈1 + z〉 ≈
3.14 (Hjorth et al. 2012), obtaining 〈t〉 ≈ 22 s.

3 Let us remark that to get a Gaussian apparent structure, as assumed e.g.
in Zhang et al. (2004) and Dai & Zhang (2005), one needs θ� � θc, i.e. the
Lorentz factor should remain very high while the energy per unit solid angle
falls off exponentially.

(ii) The long GRB LF (Wanderman & Piran 2010) breaks around
L∗ ≈ 3 × 1052 erg s−1: in the SJ picture, this luminosity corresponds
to the typical GRB seen on-axis. By equation (13) such GRB has an
on-axis isotropic equivalent energy Eiso(θv = 0) ≈ 3 × 1053 erg, or
equivalently 〈εc〉 ≈ 3 × 1053 erg/4π ≈ 2.4 × 1052 erg sr−1. Since
the highest measured Eiso so far is approximately 5 × 1054 erg (e.g.
GRB 080916C; Ghisellini et al. 2010), the εc parameter requires
some dispersion to accommodate the observations.

(iii) The total emitted energy4 (during the prompt) is

Eγ = 2π

∫ π/2

0
ε(θ ) sin θ dθ ≈ πεcθ

2
c . (14)

According to Kumar & Smoot (2014), a typical jet employs around
1051 erg to break out the envelope of the star in the collapsar sce-
nario: requiring the remaining energy Ejet = Eγ /η to be at least of
the same order, assuming an efficiency η = 0.2 we obtain a lower
limit on the jet angular scale

θc � 3◦. (15)

A jet with an aperture smaller than this must have lost more than
half of its initial energy in the excavation of its channel through the
star envelope.

(iv) Some mixing is likely to occur between the jet borders and
the stellar envelope (Rossi et al. 2002), and indeed simulations indi-
cate (e.g. Morsony et al. 2007) that the jet plasma density increases
with the distance from the axis. In the simplest case outlined in Sec-
tion 3.5, this suggests a ratio θ�/θc �

√
2. We thus take θ�/θc = 1

for simplicity.
(v) The exact value of �c has little effect on the apparent structure

of the Gaussian jet (as long as it is �100), so it is a secondary
parameter for what concerns the LF. By the way, let us remark that
hydrodynamic simulations by Kumar & Granot (2003) suggest that
for a Gaussian SJ the afterglow onset time is soonest for θv = 0,
in which case it is the same as that of a uniform jet with � = �c.
Within the SJ picture, this indicates that the highest Lorentz factors
inferred so far (those of GRBs detected in the GeV energy range
by Fermi-LAT, see Ghirlanda et al. 2012a) are a measure of the
core Lorentz factor �c of the underlying jets. We therefore give this
parameter the rather high value �c = 800.

The set of typical parameter values that we induced from these ar-
guments is given in Table 1. As stated in point (ii) above, some
dispersion in εc around its typical value is necessary to match the
observations. Similarly, observations show that the rest-frame emis-
sion time t ∼ T90/1 + z is certainly not universal (e.g. Sakamoto
et al. 2011): in the next section we will discuss how to handle these
two parameters and their dispersion.

Before moving on, let us note that we are assuming no evolution
of the typical values with redshift: this might well be a rough ap-
proximation, since the overall progenitor properties may vary with
redshift. Nevertheless, to keep the discussion as simple as possible,
we neglect this aspect and assume that the quasi-universal jet is the
same at all times in the past.

4.1.1 Dispersion on emission time and jet total energy

As a starting point, we assume a lognormal distribution for both the
intrinsic duration t and the core energy parameter εc with a total

4 Some authors assume two equal, oppositely directed jets. To avoid confu-
sion, we stress that we refer here to a single jet.

MNRAS 450, 3549–3558 (2015)

 at O
sp S G

erardo on June 14, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


3554 O. S. Salafia et al.

Table 1. Set of parameters defining our quasi-universal Gaussian SJ.

Parameter Value Comment Limitsa

4πεc 3 × 1053 erg Needed to match the break in the observed LF. σlog εc � 1 dex
t 22 s Mode of the observed T90 divided by average redshift <1 + z >. 0.35 dex � σlog Liso � 0.78 dex
�c 800 Highest � inferred from the onset of an afterglow light curve. �c � 100
θ c 3◦ Gives a total energy of the same order of the break out energy. 3◦ � θ c � 5◦

θ�/θc 1 Reasonable if the density of the jet core is less than that of the wings. 0.5 � θ�/θc �
√

2

Note. aall the limits are discussed within the text.

Figure 6. The light blue line represents the LF of our fiducial model (see
Table 1). There are two shaded areas obtained by varying one parameter
and leaving the others fixed: the grey one refers to 1 ≤ θ�/θc ≤ √

2, while

the pink one refers to σ =
√

σ 2
log t + σ 2

log εc
between 0.35 and 0.78 dex. The

dashed grey line (visible on the bottom-right corner) is the LF for θc =
5◦, while the dashed light blue line is the LF for θ�/θc = 0.5, both with
all other parameters fixed. The data points are the same as in Pescalli et al.
(2015), and are partly based on previous works by Soderberg et al. (2006)
and Wanderman & Piran (2010). Red points are lower limits.

dispersion parameter σlog Liso =
√

σ 2
log t + σ 2

log εc
(the dispersion on

the luminosity is affected the same way by the dispersion on t and
on εc because of equation 13). Fig. 6 shows the LF of the model
assuming σlog Liso = 0.56 dex (light blue solid line), together with
the data used in Pescalli et al. (2015). This is the value of σlog Liso

for which we find the best agreement between the theoretical LF
and the observed one. Varying σlog Liso between 0.35 and 0.78 dex
one still obtains LFs (pink shaded area in Fig. 6) that lie within the
error bars of the data points, so we take these values as estimates of
the limits of this parameter.5

In a realistic model, one might expect the core energy per unit
solid angle εc to correlate with the emission time t, so a more
rigorous approach is to interpret the parameter σ 2

log Liso
as the residual

variance of log εc with respect to its (possible) correlation with log t.
We have two limiting cases.

(i) In the ‘worst’ case, a linear relation holds between εc and
t, so that the dispersion on t gives no contribution to the disper-
sion on Liso. Let us take the standard deviation of log T90 (for long

5 Let us remark that the large uncertainties in the observed LF make it not
very constraining: as a matter of fact, the reduced Chi-squared of the model
in Fig. 6 is formally χ̃2 ∼ 10−1. Indeed, we have shown in Pescalli et al.
(2015) that several jet models can reproduce the observed LF to date.

GRBs observed by Swift), which is around 0.57 dex (Sakamoto et al.
2011), as an estimate of σ log t. The dispersion parameter σlog εc (and
consequently the dispersion on the logarithm of the jet total energy)
required in this case to reproduce the LF of Fig. 6 is then ∼1.13 dex.

(ii) At the other end, if t and εc were independent, a 0.56 dex
dispersion on log t only would be sufficient to reproduce the LF:
in other words, a single universal value of the jet energy would be
consistent with the LF (but not with the observed Eiso distribution,
as noted in the preceding section).

As a result, Fig. 6 suggests that a quasi-universal value 〈εc〉 ≈ 2.4 ×
1052 erg sr−1 (which corresponds to Ejet = 1051 erg if θ c = 3◦ and
η = 0.2) with a dispersion of less than 1 dex (but not much less) is
compatible with the considered observational constraints. This goes
well along with the fact that the progenitor (a former Wolf–Rayet
star) is expected to possess rather standard properties.

At this point, a remark is necessary: we assumed that the dis-
tribution of t is independent from the luminosity, which might be
questionable. Indeed, some authors argue (Daigne & Mochkovitch
2007; Virgili, Liang & Zhang 2009; Bromberg, Nakar & Piran 2011;
Barniol Duran et al. 2015; Nakar 2015) that low luminosity, very
long GRBs might represent a distinct population, possibly origi-
nating from a different progenitor. One of such GRBs is included
in the low-luminosity bin of Fig. 6, namely GRB060218 (the only
other burst in the bin is GRB980425, which lasted ∼40 s). Based on
such a distinction, one may suppose that there is an anticorrelation
between luminosity and duration in the overall population. On the
other hand, though, there is another subclass of GRBs (the so-called
ultralong GRBs, see Levan et al. 2014; Piro et al. 2014) which have
durations around 104 s, but are not underluminous: indeed, no clear
correlation exists between luminosity and duration within today’s
samples. We thus conclude that, for our simple model, the assump-
tion of a distribution of emission times which does not depend on
the burst luminosity is acceptable.

4.1.2 Limits on the ratio θ�/θc

While the dispersion σlog Liso affects the high luminosity end of the
LF in Fig. 6, the value of the ratio θ�/θc has its influence on the
low luminosity end. As explained in Section 3.5, different values of
the ratio yield different slopes of the apparent structure. The steeper
the slope (the higher θ�/θc), the fainter the jet when it is seen under
a 90 degrees viewing angle: this implies a lower limit on θ�/θc if
we require the predicted LF to extend down to the lowest observed
luminosities. For our model, this lower limit is θ�/θc ∼ 0.5 (light
blue dashed line in Fig. 6); increasing θ�/θc from 1 to

√
2 one

obtains the family of LFs spanning the grey shaded area in Fig. 6.
The highest value of θ�/θc consistent with the lower limits on
the rate of intermediate-luminosity GRBs (red points in Fig. 6) is
θ�/θc ∼ √

2.
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4.1.3 Limits on the angular scale θ c

The width of the angular scale θ c impacts mainly on the high-
luminosity end of the LF. The wider θ c, the higher the probability
of observing the jet within the core (i.e. θv ≤ θ c), implying a higher
rate of bursts with high observed luminosity. The dark grey dashed
line in Fig. 6 shows how the LF would change if θ c = 5◦ was
assumed. A wider θ c would lead to higher rates than those observed
at high luminosities.

As explained in Section 4.1, the lower limit θ c ∼ 3◦ is given by
the requirement that the jet total energy Ejet = Eγ /η of the quasi-
universal jet is at least 1051 erg, i.e. of the same order of the energy
previously spent by the jet to excavate its way through the stellar
envelope (Kumar & Smoot 2014). This is not a strict requirement,
since one can also have that most of the jet energy is spent prior
to the break out (we stress that Ejet is the total jet energy after the
break out).

4.2 Consistency with the Amati correlation

GRBs show a strong correlation (Lloyd, Petrosian & Mallozzi 2000;
Amati et al. 2002; Lamb et al. 2005) between the peak of their νFν

spectrum (Epeak) and the isotropic equivalent energy Eiso, roughly

Epeak ∝ E1/2
iso . (16)

A similar correlation involves the isotropic equivalent luminosity
Liso (Yonetoku et al. 2004). These correlations have been exten-
sively studied in the past years for (a) their possible physical im-
plications on the GRB emission process (e.g. Rees & Mészáros
2005; Toma, Yamazaki & Nakamura 2005; Barbiellini et al. 2006;
Ryde et al. 2006; Thompson 2006; Giannios & Spruit 2007;
Thompson, Mészáros & Rees 2007) and on the GRB jet struc-
ture (E04; Yamazaki, Ioka & Nakamura 2004; Lamb et al. 2005;
Levinson & Eichler 2005), (b) the possibility to use them to stan-
dardize GRB energetics and constrain the cosmological parameters
(Ghirlanda et al. 2004; Amati et al. 2008). Besides, these correla-
tions stimulated an intense debate on the possible impact of selec-
tion effects (Band & Preece 2005; Ghirlanda, Ghisellini & Firmani
2005; Nakar & Piran 2005; Butler et al. 2007; Bosnjak et al. 2008;
Ghirlanda et al. 2008, 2012b; Nava et al. 2008; Amati, Frontera &
Guidorzi 2009; Butler, Kocevski & Bloom 2009; Krimm et al. 2009;
Shahmoradi & Nemiroff 2009; Kocevski 2012; Heussaff, Atteia &
Zolnierowski 2013). Despite the wealth of papers, the spectral en-
ergy correlations are still a hot subject in the field and no consensus
on their physical interpretation has been reached yet.

It has been proposed recently that the Amati correlation might
be due to a sequence of bulk Lorentz factors, with more luminous
GRBs having larger � values, as suggested by the possible clustering
of the GRB energetics when transformed in the comoving frame
(Ghirlanda et al. 2013).

Here we wish to show that, within the quasi-universal Gaussian
SJ defined in the preceding section, the Amati correlation can be
explained as a viewing angle effect. First, we need to make some
assumptions on the comoving spectrum emitted by the jet.

(i) Following e.g. Y03 and G06, we assume a smoothly broken
power-law shape for the comoving spectrum. In the notation of
equation (6), this amounts to

f (x, a, b) = 1

xa + xb
. (17)

We choose a = −0.1 and b = 1.3, which are the typical low- and
high-energy slopes of observed GRB energy spectra (e.g. Nava et al.

Figure 7. The thick solid coloured line represents a sequence of Eiso(θv)
and Epeak(θv) for a Gaussian SJ with the parameters given in Table 1. The
colour coding of the curve accounts for the viewing angles according to the
scale defined on the right. Data points from the Swift BAT complete GRB
sample (Nava et al. 2012) are shown for comparison. The pink dashed lines
represent the Amati correlation and the 3σ dispersion of the data points as
computed by Nava et al. (2012). The shaded area represents the portion of
the plane spanned by the curves {Eiso(θv), Epeak(θv)} with log εc varying
within ±σ (darkest shade), ±2σ and ±3σ (lightest shade) respectively (we
assumed σ = 0.5 dex).

2011) (the results of this work do not change if we take different
values of a and b within their typical dispersion).

(ii) We choose the peak frequency of the comoving spectrum
to be ν ′

0 = 1 keV at all points in the jet. This is motivated by the
finding (Ghirlanda et al. 2012a) that the peak of GRB spectra seems
to cluster in the comoving frame.6 To choose a different value for
ν ′

0 amounts to move vertically the coloured curve in Fig. 7.

With the above assumptions, we used equation (6) to calculate the
observed spectrum and equation (8) to compute the corresponding
Eiso in the [1−104 keV] band. The solid coloured line in Fig. 7
represents the resulting sequence of Eiso(θv) and Epeak(θv) for our
Gaussian SJ with the parameters given in Table 1. Data points
(for comparison) are bursts from the Swift BAT complete sam-
ple (Salvaterra et al. 2012) which is flux limited and 97 per cent
complete in redshift; the pink dashed lines represent the Am-
ati correlation and the 3σ dispersion of the data points as com-
puted by Nava et al. (2012) using the same sample. Changing
the value of εc (a dispersion of εc is necessary to reproduce the
LF, as discussed in the preceding section) amounts here to mov-
ing horizontally the coloured curve: assuming σlog εc = 0.5 dex, we
coloured the portions of the plane spanned by the curve when log εc

varies within ±σ (darkest shade), ±2σ and ±3σ (lightest shade),
respectively.

We conclude that this model is compatible with the interpretation
of the Amati correlation as a sequence of viewing angles, with
the dispersion of the observed points being due to the intrinsic
dispersion in the total jet energy and possibly in the peak of the
comoving spectrum.

6 One could also take ν′
0 = ν′

0(θ ), i.e. give a structure to the peak of the
comoving spectrum, and this would certainly lead to different results. Since
we have no argument to prefer such a choice, we limit ourselves to the
simpler case discussed in the text.

MNRAS 450, 3549–3558 (2015)

 at O
sp S G

erardo on June 14, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


3556 O. S. Salafia et al.

5 D I S C U S S I O N A N D C O N C L U S I O N S

To some extent, structure is an inevitable feature of GRB jets, since a
uniform jet with discontinuous edges is clearly unphysical: indeed,
a Gaussian jet structure has been often described as a more realistic
version of the uniform jet structure (e.g. Zhang & Mészáros 2002)
and it is expected to reproduce most of the features of the latter
when the viewing angle is small enough (Kumar & Granot 2003).

In this view, our Gaussian SJ model is to be understood as a
proxy for a jet in which both the emissivity and the Lorentz factor
decrease rapidly away from the axis. Our results then indicate that
the simplified ‘ultrarelativistic uniform (top-hat)’ jet model, while
very useful, likely predicts too little off-axis energy emission with
respect to any more realistic counterpart. This might be a clue to
the still missing observation of ‘orphan afterglows’: the jet can be
narrow (which is a necessary condition, in the collapsar scenario,
for the jet to break out the progenitor star envelope without wasting
too much energy), and still be visible at viewing angles larger than
its typical angular dimension,7 contrary to the uniform jet model
(Perna & Loeb 1998). This affects also the interpretation of the LF
of GRBs: the high rate of underluminous events and the wide range
of observed luminosities (from 1047 erg s−1 up to 1054 erg s−1) are
readily explained without invoking the existence of different burst
populations (Pescalli et al. 2015).

How standard can be the jet of GRBs in this picture? The observed
break in the LF of long GRBs at L∗ ∼ 3 × 1052 erg s−1 (Wanderman
& Piran 2010) sets a natural scale for the luminosity. Within the
quasi-universal SJ hypothesis, this luminosity corresponds to the
typical jet seen on-axis. The on-axis Eiso of the typical jet is thus
E∗ ∼ 3 × 1053 erg (the jet total energy Ejet = Eγ /η ≈ 2πθ2

c εc de-
pends on the angular dimension θ c of the jet, and it is Ejet ≈ 1051 erg
for θ c = 3◦). The fact that we do observe more energetic GRBs (up to
Eiso ∼ 5 × 1054 erg) means that some dispersion in the jet energy is
necessary to account for it. On the other hand, a dispersion of around
0.6 dex in the maximum luminosity L∗ is needed to reproduce the
LF. As discussed in Section 4.1.1, this limits the dispersion on the
jet total energy below 1 dex. Fig. 7 shows that 0.5 dex is enough to
account for the dispersion in the Amati correlation. We can con-
clude that the jet of GRBs in this picture can be rather standard,
with a total energy that lies within a factor of 10 from the typical
Ejet ≈ 1051 erg in most cases. This is exactly what one would expect
by the association of GRBs with supernovae Ib/c, since the latter
should have rather standard progenitors.

The explanation of the Amati correlation as a viewing angle effect
has been proposed several times in the past, within a variety of jet
models (e.g. E04; Yamazaki et al. 2004; Lamb et al. 2005; Levinson
& Eichler 2005; Graziani et al. 2006; recently also in a photospheric
emission model by Lazzati et al. 2013, where the jet structure is
computed through relativistic hydrodynamical simulations of the
jet break out). The result presented in Section 4.2 shows that this
interpretation is possible also in our simple model, at least within the
discussed assumptions. In this view, the dispersion of the observed
correlation is due to the intrinsic dispersion on the jet total energy
(and possibly on the comoving peak energy).

We conclude by stressing (as noted in Section 4.1) that in this
simplified model we neglected the possible evolution of the univer-
sal jet parameters with redshift, which might play an important role
in determining the LF and other observational features of the GRB

7 The reduction of the expected number of orphan afterglows is a common
feature of SJ models, see Rossi, Perna & Daigne (2008).

population. We also assumed no correlation between emission time
and luminosity, for the reasons explained in the last paragraph of
Section 4.1.1.
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APPENDIX A

A1 Derivation of the formula for Eiso(θv)

As a first step, consider a uniformly expanding hemispherical shell
which emits radiation for a small time interval �t, during which
the radius does not vary appreciably (see Fig. A1 for a sketch of
the geometry). For definiteness, we set up two coordinate systems:
the origin of the first (call it K) is the centre of the hemisphere, and
its z-axis lies on the line connecting this point to the observer. The
spherical coordinates of this system will be referred to as (r, θ , φ).
The second system (K1) is centred on the observer, and its z1-axis
coincides with z, but it is oppositely oriented. The corresponding

Figure A1. An uniformly expanding hemispherical shell emits radiation
for a short time interval, during which its radius is nearly constant and equal
to R. An observer is at a distance d � R. Each point of the hemisphere is
moving in a different direction, thus contributing differently to the flux due
to relativistic beaming.

spherical coordinates will be called (r1, θ1, φ1). If there is no sig-
nificant absorption, the flux received by an observer at a distance d
is (neglecting cosmological corrections)

F (ν, t) = 1

d2

∫
S(t)

dφ1 sin θ1dθ1 r2
1 dr1 jν(r1, t − r1/c), (A1)

where S(t) is the equal arrival time surface for photons received at
time t, and jν is the specific emissivity. To obtain the corresponding
fluence F (ν), we must integrate over time. This allows us to ‘rear-
range’ the emission times so that we do not need to bother about
the equal arrival time surfaces, i.e.

F (ν) = 1

d2

∫
�t

dt

∫
V (t)

dφ1 sin θ1dθ1 r2
1 dr1 jν(r1, t), (A2)

where V(t) is the emitting volume at time t. Now we introduce some
simplifications:

(i) the hemisphere is far away from the observer (d � R), so that
we can safely set r1 ≈ d, sin θ1 ≈ θ1 and θ1 ≈ sin θ R/d;

(ii) since we integrate φ1 from 0 to 2π, we can equivalently
integrate over φ;

(iii) we assume that the emitting volume is geometrically thin,
i.e. it is a hemispherical shell of width �r.

Since dr1 cos θ = dr, we have

F (ν) = R2

d2

∫
�t

dt

∫ π/2

0
sin θ dθ

∫ 2π

0
dφ

∫
�r

jν(r, t) dr. (A3)

Now we use the relations jν = δ2 j ′
ν′ (Rybicki & Lightman 1979),

where δ is the relativistic Doppler factor8 and primed quantities
refer to the comoving frame, and dr = δ dr′ to integrate over �r′

and obtain

F (ν) = R2

d2

∫
�t

dt

∫ π/2

0
sin θ dθ

∫ 2π

0
dφ δ3I ′

ν′ (θ, φ, t), (A4)

where I ′
ν′ is the comoving specific intensity. Integrating over dt =

dt′/δ and dν = δ dν ′ to get the bolometric fluence, we have

F = R2

d2

∫ 2π

0

∫ π/2

0
δ3 〈I ′〉(θ, φ) �t ′ sin θ dθ dφ, (A5)

where 〈I′〉 is the average comoving intensity during the emission
time �t′. If the sphere emits uniformly, 〈I′〉 does not depend on θ

and φ: in this case the integral is analytic, yielding

F = π R2� (1 + β)2 (2 − β)

d2
〈I ′〉�t ′. (A6)

By definition we have Eiso = 4π d2F , so we finally get

Eiso = 4π2(1 + β)2(2 − β)R2 �〈I ′〉�t ′. (A7)

As stated in Section 3.1, in the ultrarelativistic limit the isotropic
equivalent energy is indistinguishable from that of a spherical ex-
plosion, which yields Eiso = 4πε by definition, thus in this case we
have

16π2R2 �〈I ′〉�t ′ = 4πε (A8)

so that we can make the identification

〈I ′〉�t ′ = ε

4π R2 �
. (A9)

8 We are implicitly assuming that the emissivity is isotropic in the comoving
frame.

MNRAS 450, 3549–3558 (2015)

 at O
sp S G

erardo on June 14, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://arxiv.org/abs/1503.0044
http://mnras.oxfordjournals.org/


3558 O. S. Salafia et al.

Since the shell is geometrically thin, the intensity coming from a
point (θ , φ) is due only to the local emitting volume, so in this
approximation we can think of equation (A9) as a relation between
local quantities, namely

〈I ′〉(θ, φ)�t ′(θ, φ) = ε(θ, φ)

4π R2 �(θ, φ)
. (A10)

We thus substitute this equivalence back into equation (A5) and
multiply it by 4π d2, to get

Eiso =
∫ 2π

0

∫ π/2

0

δ3(θ, φ)

�(θ, φ)
ε(θ, φ) sin θ dθ dφ. (A11)

In words, this equation tells us how to weigh the contribution from
each element of the hemisphere in order to take into account the
relativistic effects and the local energy density ε(θ , φ).

As long as the expansion is purely radial, this equation holds for
elements of any surface – in other words, setting R = R(θ , φ) does
not affect the validity of the derivation. In the case of a SJ we have
ε = ε(θ ), � = �(θ ) and, if the observer is off-axis, the Doppler
factor δ must take into account the angle between the line of sight
and the velocity of each point of the surface. A little geometry
allows one to write

δ(θ, φ, θv) = 1

�(θ ) [1 − β(θ ) cos α(θ, φ, θv)]
(A12)

with

cos α(θ, φ, θv) = cos θ cos θv + sin θ sin φ sin θv, (A13)

where we assumed (without loss of generality) that the line of sight
lies on the z–x plane.9

9 Some authors prefer to set the coordinates so that the line of sight lies on
the y–z plane: in this case, one would have

cos α(θ, φ, θv) = cos θ cos θv + sin θ cos φ sin θv.

Finally

Eiso(θv) =
∫

δ3(θ, φ, θv)

�(θ )
ε(θ ) d�. (A14)

Summarizing, the formula above gives the apparent structure of
a jet, given its intrinsic structure (i.e. ε(θ ) and �(θ )), seen under
a given viewing angle θv, under the assumption that the emission
comes from a thin, transparent volume, whose surface R(θ , φ) does
not change significantly during the emission.

A2 Derivation of the formula for F (ν, θv)

We can also derive the corresponding formula for the time integrated
spectrum F (ν) as a function of the viewing angle θv. First, let
us write the comoving specific intensity I ′

ν′ as (I ′
0/ν

′
0) f (ν ′/ν ′

0, α),
where I ′

0 is a normalization constant, ν ′
0 is some preferred frequency

and f (ν ′/ν ′
0, α) is a dimensionless function that defines the shape of

the comoving spectrum, which depends on an array α of parameters.
Let us also call fα the integral of f (x,α) over all positive xs. Then
we rewrite equation (A9) as

I ′
0 = ε

�t ′fα 4π R2 �
. (A15)

Starting again from equation (A4), taking into account the above
definitions we end up with

F (ν, θv) = 1 + z

4π d2
L

∫
δ2(θ, φ, θv)

�(θ )

f (x,α)

ν ′
0fα

ε(θ ) d�, (A16)

where the comoving spectral shape f (x, α) is to be evaluated at
x = (1 + z)ν/(δν ′

0).
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