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Abstract

This paper presents the analytical solution of the inverse ray tracing problem
for photons emitted by a star and collected by an observer located in the
gravitational field of the Solar System. This solution has been conceived to
suit the accuracy achievable by the ESA Gaia satellite (launched on 19
December 2013) consistently with the measurement protocol in General
Relativity adopted within the RAMOD framework. The aim of this study is to
provide a general relativistic tool for the science exploitation of such a
revolutionary mission, whose main goal is to trace back star directions from
within our local curved space-time, therefore providing a three-dimensional
map of our Galaxy. The calculations are performed assuming that the massive
bodies of the Solar System move uniformly and have monopole and quad-
rupole structures. The results are useful for a thorough comparison and cross-
checking validation of what already exists in the field of relativistic astrometry.
Moreover, the analytical solutions presented here can be extended to model
other measurements that require the same order of accuracy as that expected
for Gaia.

Keywords: light propagation, space astrometry, general relativity, gravitation
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1. Introduction

To fully exploit the science of the Gaia mission (ESA, [1]), a relativistic astrometric model
needs to be able to cope with an accuracy of few micro-arcseconds (uas) for observations
within the Solar System.

Gaia acts as a celestial compass, measuring arcs among stars with the purpose to
determine their position via the absolute parallax method. The main goal is to construct a
three-dimensional map of the Milky Way and unravel its structure, dynamics, and evolutional
history. This task is accomplished through a complete census, to a given brightness limit, of
about one billion individual stellar objects.

Since the satellite is positioned at Lagrangian point L2 of the Sun—Earth system, the
measurements of Gaia are performed in a weak gravitational regime and the solution of
Einstein’s equation, i.e. the space-time metric, can take the general form

8ap = Nap + hap: ey

where |hqs| < 1 and |d;h,p| < 1 can be treated as perturbations of a flat space-time, and
represent all the Solar System contributions to the gravitational field. Their explicit
expression, however, can be described in different ways according to the physical situation
we are considering. This means that, for the weak-field case, h,5 can always be expanded in
powers of a given smallness parameter, expansion usually made in powers of the gravitational
constant G (post-Minkowskian approximation, PM) or of the quantity 1/c (post-Newtonian
approximation, PN); note that in the PM approach one can still make a further expansion in
powers of 1/c¢ signifying that a solution for light rays in the PM approximation is more general
than the corresponding solution in the PN one. The estimates performed inside the near-zone
of the Solar System are sufficiently well supported by an approximation to the required order
in the small parameter ¢ = (v/c), which amounts to about 10~ for the typical velocities of our
planets. Moreover, for the propagation of the light inside the Solar System, the sources of
gravity should be considered together with their internal structure and geometrical shape. This
is particularly true when the light passes close to the giant planets. In other circumstances it is
an unnecessary complication to consider the planets different from point-like objects
especially when the model is devoted to the reconstruction of stellar positions in a global
sense. However, at the pas level of accuracy, i.e. (v/c)® = €3, the contribution to the metric
coefficients by motion and internal structure of the giant planets needs to be taken into
account, in particular if one wants to measure specific light deflection effects, as for example,
those due to the quadrupolar terms. For this purpose, calculations are here performed
assuming that the massive bodies of the Solar System move uniformly and have monopole
and quadrupole structures.

The scope of this paper is to present an analytical solution for a null geodesic of the
metric (1) consistently with the requirements of the Gaia astrometric mission and according to
the RAMOD framework [2, 3]. RAMOD uses a 3 + 1 description of space-time in order to
measure physical effects along the proper time and in the rest-space of a set of fiducial
observers according to the following measurement protocol [4]:

(i) specify the phenomenon under investigation;
(i1) identify the covariant equations that describe the phenomenon;
(iii) identify the observer making the measurements;
(iv) choose a frame adapted to that observer allowing space-time splitting into the observer’s
space and time;
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(v) understand the locality properties of the measurement under consideration (namely,
whether it is local or non-local with respect to the background curvature);
(vi) identify the frame components of the quantities that are the observational targets;
(vii) find a physical interpretation of the above components following a suitable criterion;
(viii) verify the degree of the residual ambiguity, if any, in the interpretation of the
measurements and decide the strategy to evaluate it (i.e., comparing to what already
known).

The main procedure of the RAMOD approach is to express the null geodesic in terms of
the physical quantities that enter the process of measurement, in order to entangle the entire
light trajectory with the background geometry to the required approximations. Finally, the
solution should be adapted to the relevant IAU resolutions considered for Gaia [5].

Solving the astrometric problem implies the compilation of an astrometric catalog with
the accuracy of the measurement model. Indeed there exist several models conceived for the
above task and formulated in different and independent ways ([6—8] and references therein).
Their availability must not be considered as an ‘oversized toolbox’ provided by the theoretical
physicists. Quite the contrary, they are needed to put future experimental results on solid
grounds, especially if one needs to implement gravitational source velocities and retarded
time effects. From the experimental point of view, in fact, modern space astrometry is well
poised to cast the light of knowledge into a largely uncharted territory (see for example [9] in
[10]). Such a huge push-forward will not only come from high-precision measurements,
which demand suitable relativistic modeling, but also in the form of absolute results which
need to be validated. In this regard, it is of capital importance to have different and cross-
checked models, which can exploit different solutions to interpret the same experimental data.

For the reason above, inside the Consortium constituted for the Gaia data reduction (Gaia
CU3, Core Processing, DPAC), two models were developed: (i) GREM (Gaia RElativistic
Model, [6]) baselined for the Astrometric Global Iterative Solution (AGIS), and (ii)) RAMOD
(Relativistic Astrometric MODel) implemented in the Global Sphere Reconstruction (GSR)
of the Astrometric Verification Unit at the Italian data center (DPCT, the only center, together
with the DPC in Madrid, able to perform the calibration of positions, parallaxes and proper
motions of the Gaia data). RAMOD was originated to satisfy the Gaia validation require-
ments; however, the procedure developed can, indeed, be extended to all physical mea-
surements implying light propagation. It is the aim of this investigation to substantially
improve the theory of light propagation within the RAMOD framework. In particular, in order
to fully accomplish the precepts of the measurement protocol above, it is useful to isolate the
contributions from the derivatives of the metric terms at the different orders retained. The
choice of the space-time coordinates that justifies form (1) of the metric allows one to think
that the metric perturbations and their derivatives mainly carry information about the back-
ground gravity.

The article is organized as follows. Section 2 is devoted to the definition of the math-
ematical environment needed to make the null geodesic explicit at the desired accuracy; to
this purpose we introduce a suitable classification of the RAMOD equations in terms of the
metric perturbations and their derivatives. In section 3, we set the appropriate approximations
that allow the analytical solution of the astrometric problem. In section 4, we show the
specific solution for light deflection by spherical and non-spherical gravitational sources.
Finally, in section 5, we deduce the analytical solution of the trajectories of the light signal
emitted by the stars and propagate through the gravitational field within the Solar System. In
the last section we summarize the conclusions.

Below we list the notations used; we adopt signature +2.

3
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Notations
e Greek indices run from O to 3, whereas Latin indices from 1 to 3;
e °,: partial derivative with respect to the a coordinate;
e °’: scalar product with respect to the Euclidean metric 6;;
e ‘x’: cross product with respect to the Euclidean metric §;;;
o tilde-ed symbols ‘ ~’ refer to quantities related to the gravitational sources;
e repeated indices like u, v for any four vectors u%, v* means summation over their range
of values;
Tap] : antisymmetrization of the indices a, f3;
V. covariant derivative;
V,: a-component of the covariant derivative;
V (f): spatial gradient of a function f;
we use geometrized unit, namely G = 1 and ¢ = 1.

2. The RAMOD equations for Gaia

The fundamental unknown of the RAMOD method is the space-like four-vector 7% , which is
the projection of the tangent to the null geodesic onto the rest-space of the local barycentric
observer, namely the one locally at rest with respect to the barycenter of the Solar System.
Physically, such a four-vector identifies the line-of-sight of the incoming photon relative to
that observer.

Once defined £“, the equations of the null geodesic take a form which we shall refer to as
the master-equations. Neglecting all the O (h?) terms, these read [3, 11]:

e’ i 1
Y Fping = Lhge =0, 2
i 0 = 5000 (2)
o _ L5 (0 - hoo) + Zfzf(h =L )
dO' ) ij,0 00,i kj,i ) ij,k
5i 1 ki
+ ' (hyoi + hiio — hoik) — EhOO,k — 0"T'hoi0 + hyoo = 0. 3)

Here, o is the affine parameter of the geodesic,
do =dr + O(h), “)

and ¢ is the coordinate time.

In order to solve the master equations one should define appropriate metric coefficients.
To the order of € [1], which is what is required for the accuracy targeted for Gaia, one has to
take into account the distance between the points on the photon trajectory and the barycenter
of the ath gravity source at the appropriate retarded time, together with the dynamical con-
tribution to the background metric by the relative motion of the gravitational sources*. More
specifically r(’;l) is the retarded distance defined as

ity (0, 8') = x'(0) — xi(&), Q)

4 We want to stress that the effects arising from this retarded time are not those, aberration-like, of the light coming
from a moving source, rather the deflections caused by a moving gravitational source on the photons coming from
another light source.
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where x' and & are the photon and source positions, and ' is the parameter considered as
function of the time ¢’ along the ath source world line. The retarded position of the source is
fixed by the intercept of its worldline with the past light cone at any point on the photon
trajectory. However, the retarded time ' = t — 1,y and the modulus of the retarded distance
I« are intertwined in an implicit relation which would prevent us to solve the geodesic
equations. Nonetheless, we show that it is possible to write an approximate form of the metric
which retains the required order of accuracy of €3, but where the dependence on the retarded
contribution is simplified.

By using the Taylor expansion around any 6 to the first order in €, we get for each
source:

X (8) m Xy (8) + ¥y (6)(6 = &), (6)
which allows to rewrite the retarded distance as

1y (0. 8') = x'(0) — X, (8) + ¥,y (6)(6 — &),
ie.

r(i(l) (6, 6’) = r(’;,) (0,6) + F(’a) (6, 6') + 0(172), (7
where we set 7, (6, &') = X, (6) — X(,) (6"). Nevertheless (' — &) is again proportional to

the retarded distance as measured along the source world line. In fact, considering the tangent
four-vector of the source world line

gy = —(“ﬁﬂg))(“a + 7% ),
where 7§, is the a-component of the four-velocity of the source relative to the origin of the

coordinate system and defined in the rest frame of the local barycentric observer u’, the
interval elapsed from the position of the source at the time ¢’ to that at 7 is

6 — 6= —ﬂ(a)an"
= - ﬂaﬂﬁ(Z)Ax/} + O(h)
~ Ax0 — 5,0, AxT + O(h), (8)

where Ax* = x*(6(¢")) — x*(6(t)). To the first order in ¥, we have along the generator of the
light cone

(rw(o, 6) - ¥ (5, &)

Ax" = 1 (0, &) + - +0(7), 9)
r(u)(gs 6)
then we get the following approximate expression for (5):
T (0. 8) % 1igy (0. 8) = ¥y (8)na (0. 6). (10)
or
K (0, &) % 1o (o, &) niy (0, 8) = 7, (5], (11)

where n(i,) (0,06) = r(’;l) / Ta). This is equivalent, to first order in ¥, to the distance found in [12]
and entering the expression of the metric, i.e.

5 Any four-vector which is orthogonal to a time-like one is space-like and will occasionally be denoted as a spatial
four-vector, see [4].
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7‘(@(6, 5’) ~ V(a) — l'(u) . V(a). (12)

The choice for the perturbation term of the metric has to match the adopted retarded
distance approximation together with the fact that the lowest order of the & terms is €2 and the
present space astrometry accuracy does not exceed the € level.

2.1. The n-body spherical case

From the above discussion, it follows that a standard suitable solution of Einstein’s equations
in terms of a retarded tensor potential [3, 13], is

ZM(a)
hoo = o(e?).
00 I + (6)
AM,, -
==, mjwﬂi@ +0(e).
b= 2+ 0( ). (13)

where M, is the mass of the ath gravity source, r,) is the absolute value of the position

vector of the photon with respect to the source, ' = &§ = (1 — hoo/2)7 () + O (h?) is the
coordinate spatial velocity of the gravity source. The above expression of the metric in case of
monopoles can be further specialized according to the most convenient one suitable for each
specific case, like the Liénard-Wiechert potentials used in [12].

Note that the time component of the tangent vector to the source’s worldline [3] is

a0=§—;=1+%+;—;+0(h2)+0(e4) (14)

while that of the local barycentric observer is

dr
u® = —

=1+ % + 0(h2). (15)

Then from (14) and (15) we derive the following relationships in the linear approximation

d5=dt(1 —%—%2)+0(h2)+0(e4), (16)

and

da:dt(l - %)+0(h2)+0(e4). (17)
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Within the approximation (12) the perturbation of the metric is expressed as

M
hOOZZZ (a)

o T

hoi = — 4ZM(m Vi + (9(65),

(1 + N, - V(a)) + (9((:‘4),

PR
=2 S0+ (). a
a

or, by simplifying the notation
hoo=h =~ Zh(”) = ZZM(H)%)(I + N, - \Nl'(u)) + (9(64),
a a (a
h()l' =-2 hﬁl ~ =2 Zh(a)\?,-(a) + 0(63),

hij=h & + (9(54). (19)

In the following, ), unless explicitly expressed, will indicate a function with arguments
o and 6. Moreover, to ease notation we drop the index (a) wherever it is not necessary.

Let us consider a space-time splitting with respect to the congruence of fiducial observers
u in the gravitational field of the Solar System [2]. The field equations can be rewritten in
terms of the shear, expansion and vorticity of the congruence u (see [13]). For our purpose it
is enough to consider only the expansion term and the vorticity (see [11]).

The master equations (2) and (3) are obtained by retaining the vorticity term at least to the
order of O (hy;), and the expansion to the order of O(dphgy) and O (dphy;). In the case of a
vorticity and expansion-free geometry, the RAMOD master equations are named RAMOD3
master equations [2]

7k
% + z’z-’(hk,,i = %h,j,k) + %Z"Z’hoo,i ~ %hoo,k +0(h?) =0, (20)
where 7° = 0. Taking into account that 77 ’5,;,» =1+ (9(62), equations (2), (3), and (20) can
be reduced respectively to:

a?’ - 1
—:—2Z-~(Z’h,-)+—h + o(r?), 21
L= 2 () + o 0() o
az* 3 k(i 1 5% _ i 7i ki
= (z h,i) thy = 0o = 2(E - 9+ 20 (z h) - P (i), 22)
~k 2
+(v*n)  +0(r) (23)
and for the static case (hq50 = 0 and ¥ = 0)
7k
9 EZk(i’h,i) ~ g +0(h) =0. (24)
c 2

As mentioned in the introduction, in order to fully accomplish the precepts of the
measurement protocol, it is useful to isolate the contributions from the derivatives of the
metric at the different retained orders.

This allows us to classify the master equation as follows:

7



Class. Quantum Grav. 32 (2015) 165008 M Crosta et al

e RAMOD3a (R3a), the spatial derivatives of the metric are considered while h; are
neglected
a?* 3ok
& _ 2 (Z’h,»)+h + 0( 1) = R3a)t, 25
=5 (Thi) + hi+ 0(07) = R3w) (25)

e RAMOD3b (R3b), the spatial and time derivatives of the metric are considered while A,
are neglected

a’ 1 2\ — 0

E=5h’0+(9(h)=(R3b), (26)
dfk k 1_/( 2\ — k

- = Rt = o+ O(1?) = (R3b)~. 27)

e RAMOD4a (R4a), the spatial derivatives of the metric are considered including A,

ccliio = (R3b)° - 2(Z - 7)(Z'h;) + O(h?) = (R4a), 29

o

(ilik = (R3b) — 2(7 - ¥)hy + 2\7"(2’71,,-) +O(h?) = (Réa). (29)
o

o RAMOD4b (R4b), the spatial and time derivatives of the metric are considered including

hoi
az°
—— = (R4)® + O(h?) = (R4D)", (30)
do
o _ (Rday — 207 (wih) | +2(v*h) + O(h?) = (R4b) 31)
do mo .0 - '

Given the nature of the expansions, we expect that the solutions will reflect consistently
the order of accuracy of the different classes; however it is certainly possible that their ranges
can overlap in different geometric configurations between the sources and the observer.
Moreover, the classification that we have so far introduced turns out to be extremely useful
for the implementation of RAMOD models and the testing of them through consistent internal
checks at different levels of accuracy, allowing also a very simple procedure to identify where
the possible discrepancies can arise.

Beside this new classification of the RAMOD master equations, it is clear that the
solutions call for an explicit expression of the metric terms. In general, for any integer m:

"7 =mri ("2 = —m(f )y, (32)

From the last computation one could expect that in the case of mapped trajectories for a
RAMOD?3-like model (see [2, 11]) the term x}) should be retained, since each mapped spatial
coordinate depends on the ¢ value of the local one-parameter diffeormorphism. In this respect,
note that the null geodesic crosses each slice S(¢) at a point with coordinates x’ (¢ (¢)), but this
point also belongs to the unique normal to the slice S(#) crossing it with a value 6 = 6 (x', 1)

8
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that runs differently for any spatial coordinate and therefore does not coincide with the proper
time of the local barycentric observer. Therefore

dox’ = (aaxi(a))(doo(xi(/l), z)) —0.

Now, by using the retarded time approximation we get:

—m ~/ —m— \m—1 i ~ ~i
(r); (0, a) = —mr) l(1 + e - v)m [n(a)(l + 2n( - v) - v] + Oh) (33)
and
("5" (0, 6") = mrd ™ (nw - B)(1 + nw - B)" + Oh). (34)
Let us define the photon impact parameter with respect to the gravity source position as:
dy =1y = 0*(n - 7) (35)
and, for sake of convenience, let us define also:
- 7k [~ 7
df, = vy = (% - 1)- (36)

Finally, according to the previous derivatives, making them explicit, denoting n(’;) = r(l;) / a)

and d(’;) / Ra) = d,f(a) , the master equations assume the following expressions, valid up to the €*
order:

¢ RAMOD3a:
M, _
__22 r(){(_ (n(u).f)—dn())(1+2n(a) V(u))
a (a)
- 8T vw) + di, | + 0() + 0(), 37

where in case of zero velocity we recover the static RAMOD recorded as follows
e RAMOD3s (R3s):

B
& a3 8 (- 0) - af, |+ o). @)

a r(d)

Similarly for the other classification items we have:

« RAMOD3b:
5 -5) o)+ 0(0) >
C(lj—zk = R3) - 7F Y5 M (nw - 7) + 0(72) + 0(12). (40)
d a (a)
« RAMOD4a
‘C‘f = (R3b)° + 4? r(:” [(2-9)(Z-nw)]+0(57) + 0(#?), @D
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7t My -
‘21—0 = (R3b) + 4? r(za‘))[z x (ng x v)]k +0(?) +0(r?). @2

It is clear that, to the order of €3, we do not need to include the time derivative of Ay
since these are at least of the order of ¢* and should be neglected. Therefore, we do not
consider RAMOD4b, as defined earlier, which contains the time derivative of hgy, and the
second order velocity contributions.

2.2. The case for an oblate body

Now, let us consider the ath source and define

_ 1 & R(a) .
hw = 2Mwhw = 2M@p—| 1 = me(—] Py(cos 0)) |, (43)

Ha m=2 Ha

which means to take into account the mass multipole structure of the ath body where P,, are
the Legendre polynomials, M(,, the mass of the body, R, its equatorial radius, 8, the co-
latitude, and J,, the coefficients of the mass multipole moments. With this choice our
considerations are confined to the case in which the object ellipsoid of inertia is an ellipsoid of
revolution and the directions of the spatial coordinate axes coincide with those of the principal
axes of inertia [14].

A rigorous treatment of an n-body multipolar expansion should take into account the
different orientations of its axis of symmetry. However, this contribution decreases so quickly
that at any accuracy currently attainable it turns out to be an unnecessary complication, since
just one planet at a time would give a detectable effect.

Considering equations (12) and (19), the derivatives of the metric coefficients, with
retarded time approximation, have the following expressions:

k - 0 m
h_(a),k =( _ n(za) (1 + 2n(, - 17) + ka][l - Z]m( R(a)] Pm(COS 9((,)):|
m=2

T Ta) Ta)
o0 m
+VL(1 +l’l(a)'\7){ Z Jm[f(a)] [m(l +n(a)‘\7)mpm(0089(a))
(a) m =2 (a)
k k . N —
R Rt |

_ 0P i & (Rw)”
h(a),():(n( )2 ﬂ](l +n(a)-ﬂ(a)) 1 - Z]m( ()] Pm(cos H(a))

Ta) m=2 \ T
m
1 A v, [ Ra
+—(1 +n(a)-v) —Z]m (Pm(COSG(a))O
Ra) m=2 Ha) ’

+ mBn(cos H(Q))n((:T.ﬂ(l + e - V)mJ »
(@)

(45)
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where n' = ri/r. A general n-body solution should include the multipolar structure of the
sources. Nevertheless, according to the current astrometric accuracy and for an oblate body,
the quadrupole approximation can be considered enough (see [6]). If we omit the higher
multipole moments and restrict ourselves only to m = 2, denoting by s* the axis of the sources
which is normal to the source equatorial plane, B, (cos 0(,)) is approximated as:

3(s(a) . r(a, 6’))2

1 3 2 2 1
P(cosby, )= — =& =S Mo —Sa V) (1 +ngy- V) — =,
2( <>) 20(0 5 > 2(() @ ~ S )( @ ) >
(46)
which to first order in ¥ becomes
3 1
PQ(COS 9(,1)) = E(S(a) . I/l(a))z(l + 2n(g) - 17) = 3( S I’l(a))(S(a) : \7) - 5 + 0(172);
47)
therefore
k k 2
_ N(a) - vk 5 | 3@ | 50w - nw)
h()ykz— 1+2n()'v +—+J2Ru
’ o ( ’ ) o “ o 2
- 1 5 2 -
+ (s - "(a>)2("(a) : V) 5" 3(5a) - ”(a))(%) : V) - g(”m) : V)]
vk 35 . -
+ 2,,(‘(‘1) [1 — 3(S(a) . I’L(a))z] + r(i) I:(S(a) . V) — (S(a) . n(u))<1 + 3n(u) . V)]
+0(%),
(48)
and
_ N -V 3LRG[ne-7 5
(@),0 = ¢ )2 + 24( ) [ ( )2 - E(I’Z(u) . \7)(S(a) : n(d))2:| + 0(\72) (49)
a) Ha)

By taking into account the target accuracy of Gaia (see [6, 15]), the velocity contributions
for an oblate body should be neglected. However, for sake of consistency and completeness
with the assumptions adopted in this work, neglecting, a priori, terms which are part of the
solution is not justified, even if the application to Gaia will surely dismiss many of them.
Probably a Gaia-like mission that achieves a few sub-microarseconds in accuracy will benefit
from these analytical contributions, especially in regards to a cross-checking comparison
between different approaches. In this case it would be better to consider a metric which
properly contemplates all the complexities of a non-spherical gravitational body; that, at the
moment, is out of the scope of the present paper and deserves a dedicated work (see,
e.g., [14]).

Therefore, the RAMOD reduced master equations which take into account the quadru-
pole structure for the ath single source consistently with the notation used above finally
become:
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e RAMOD3aQ (R3aQ)

) 2LRE M, (2 - ) [ 55 - nw)?
@ _ (R3ay 4 2R M@ ] ot e ( ) @ " @)

4 N(a) 2 2

o T

+9(st0) - @)1 - 7) = % ~ 3(sw - @) (5w ) — %(nw) ' V)]

‘(2

RLE RPN 2 o

= G - 1)1+ 3(n - v))]} +0(7%) + 0(1?) = R3aQ),

(|

(50)
where we define dslfa) = s(];) -7t - S(a))-
In case of velocity equal to zero, the above equations become:
dzg, 2hRE M | 3 (7 - ny)
~ R3syk = @@ gk T TS ) = 1
e & o 2| e 2 [5Cs0 - nw)? =1]
s,
+ 3[7( 5 ) - dxk}(s(u) “nEy) ¢t O(hz) = (R3sQ)". (51
« RAMOD3bQ (R3bQ)
Aoy M bRy [ @7 5
= (R3b)° + -= -V . 2
. (R3b) 2 5 5 (”(a) V)(S(a) (a))
+0(7) + 0(1?) = (R3bQ), (52)
dz;
@ _ (R3aQ)* — 7*(R3bQ)" + 0(7%) + 0(r?) = R3bQ. (53)
do
e RAMOD4aQ (R4aQ)
dZiay M Ra 3.5
— R3bQ)" — — 7@ (7 N\ 27 )55 - n)? — 1
2= R0 = (7 ) { () [ 3G o = 1]
= 3(7 - 5) (5@ - 1)} + 0(72) + 0(h) = (R4Q), (54)
z AM@whR ( 3
a (@20 = Nk
@ _ (R3bQY — 2@ { =(2 % na x9)[ 55w - nw)* = 1]
o Ta) 2

+3(2 % 7 % 5,) (st - n(u))} + 0(v~2) + 0(h2) = (R4aQ)~. (55)
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3. Light propagation through the Solar system and parametrized trajectories

When a photon approaches the weak gravitational field of the Solar System, heading to a
Gaia-like observer, it will be subjected to the gravitational field generated by the mass of the
bodies of the system while it will be rather insensitive to the contribution to the field due to
their own motion. If one compares the scale of the Solar System and the photon crossing time
through it—approximately 10 hours in total—the gravitational field of the Solar System
cannot significantly change in a dynamical sense during such time, to the point that the source
velocity can be considered constant all along the photon trajectory. This last remark facilitates
the solution of the RAMOD equations.
Let us make explicit the vorticity of the congruence u:

Wpo = PLW)PL () Vgt p)
= V[/,I/l,,] + M[ﬂl;t,,], (56)

where P (u) = 5, + u®u,, is the metric induced on each hypersurface of simultaneity of u.
Considering that u%u, = —1, and u®V,u” = i, we deduce:

@ps = —No1, 961100 + Ophe10 + (30(?70[,)%]0)

which implies

weo =0,
we; =0,
Wi = a[ihj]o. (57)

Taking into account the metrlc (19) equatlons (57) show that if we want a vanishing vorticity
we have to choose AV X 7 + V (h) x ¥ = 0, which is satisfied if the velocity of the source
is zero, i.e. a static case, or is constant, which corresponds to the case of our Solar System as
mentioned above.

Now, within the scale of a vorticity-free geometry, from the Frobenius theorem (see
[13]), the space-time can be foliated and one can always map the whole geodesic onto the
hypersurface of simultaneity of the local barycentric observer at the time of observation. In
this case the mapped trajectory can be expressed in a parametrized form with respect to the
centre-of-mass (CM) of the gravitationally bounded system [11]:

Xi=& 4 / 7ids, (58)
where

° 5 is the 1mpact parameter with respect to the CM of the gravitationally bounded system,

ie., 5U€ f = 0 + O(h) at the point of the closest approach with modulus 5 = 5,j§ 5
e 7 = ¢ — 6, being 6 the value of geodesic parameter at the point of the closest approach.

Furthermore, if we approximate the quantity 7 "in terms of small perturbations with
respect to the unperturbed light direction #:

=7+l + (5{7")2 4o (59)

we note that the term (67 i) has not to be integrated in the right-hand side of master
equations (2) and (3) because it is of the order of the deflection, i.e. €> or O(h) (see also [16]).
This implies that equation (58), for our purpose, can be approximated as:

13
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xi= g+ B+ o')e+ 0(R2). (60)
Following these assumptions, the approximated retarded distance can be parametrized as
ri(o. &)~ &+ (& + 6')e = ¥(5) = 7(3)r (o, 5), 61)
and the distance r(ia) can be reformulated as
ri(o, &) m ri(t) — 7(8)F, (62)
where
ri(2) =&+ (Z,;',+52")f—xf(5)=f,,+ (Z,ﬁ,+52")f 63)

is the relative distance on the slice at the time of observation without the contribution of the
source velocity, while

pl=g (64)

is the relative distance between the point of maximum approach of the photon to the CM and
the source CM. Figure 1 sketches the relationship among these vectors on the slice
corresponding to the time of observation.

By using the scalar (-) and vectorial (x) products and the parametrization, the impact
parameter (35) with respect to the source becomes:

d(2) =[x (r(5)x )] (65)
Note that the previous relation does not depend on ¢ by definition, so it coincides with

di =[x (7, x7)] (66)
or, with the approximation (59),

df =k - Ty (7, Iy). (67)

with modulus d, = ./d,, - d,. Moreover, we can assume that f/dp o~ l/tan;(, where y is the
angle between the direction at the observer towards the point of maximum approach to the
source (along the unperturbed light direction) and its CM. In this case it is

_ 2 -
d Oy 7 ly- 7
r(#) ~ Sm” 1+ (e 2") sin 72 + 2M cos  sin . (68)
X dp dp

4. Light deflection by spherical and oblate spheroidal gravitational sources with
constant velocity

Condition (57) constrains the solution of the geodesic equation to specific circumstances. In
particular we do not consider equations (R4a)* and (R4aQ)* since they derive from the terms
0yih jj0, which are null because of our physical assumption that the sources move with constant
velocity. As far as the light deflection is concerned, we expect that the velocity contributions
become relevant in affecting light propagation in the case of close approach when general
relativistic effects become of the order of Gaia’s expected accuracy together with the

14
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Figure 1. Mapped trajectories and relative source positions f(ia) =x - )?(’;Z) on the

hypersurface corresponding to the time of observation 7,, where x’ and & are the
positions, respectively, of the photon and the gravitational source (colored discs M),
M), etc) with respect to the centre-of-mass CM (yellow disc) of the gravitationally

bounded system; £ "is the impact parameter of the light trajectory with respect to the
CM and P the point of maximum approach of the photon to the CM; £, is the light
direction at the star and ' (z,) is the detected light direction at the observer.

multipolar structure of the source. In this section we proceed to make the solutions for light
deflection explicit according to the RAMOD classification.
4.1. Monopole contribution without velocity: R3s case

This solution includes only the spatial derivative of the metric as in the static case.
Then equation (38) can be integrated as follows:

Algs, = 2ZM@{ff” [%Zg(@, 1) - d,f]%} +0(n). (69)
namely:
7k Lokrs k o dt 15 (% tdE )
Aljy, =23 M, [Ez’ﬂ(zﬂ 7)) - d,,]/f S+ b / Spro(m). oo

i.e. (see table 1 for the list of the solved integrals)

Alpy, = 2ZM(0)%{ [%z};k(z‘g 7)) - d,’,‘][ (Z- n)] - %f},"[ (n- rp)]} (71)
a P
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Table 1. List of the recurrent integrals. They are named according to the order of
magnitude in r () in the numerator and denominator of the integral, indicated in the
subscripts respectively on the left-side and on the right-side of the slash.

Notation  Corresponding expressions

r(?) Ji2 42y i)+
Ioso arctan[(lg - r)/d,]
Lo Log(r- 8y + 1)
Ion 1/r

I 1/r2

Iors 1/r3

Iosa 1/r*

10/5 1/r5

Iose 1/r®

I (g - r)fr

hLn Cy - r)/r?

L (g - V)/"3

s o - r)fr*

s Cy-n/r’

Lise Ly - r)/r®

b (r-fp)/r

b (r - #)/r?

b3 (r - 7)1

by (r- fp)/r4

bys (r- i)/

Ly (r- fp)/rﬁ

which reduces to

i Grite di 2, )
Algs, =23 M) —7[7] - P[fﬂ ]+ o(n?). (72)
a 7 p

In the case of a source placed at infinity ({7,2],C = o).

k

Tl n@lproe).

2r(3,)

Al %2 Y M

if the observable shift with respect to the initial direction at infinity is
56k=c_1[0><A)'c><6]k,Weget

k
ok~ 2 ) M —%[1 +on(2,)] +0(h2). (74)
a p

Formula (74) recovers the one used by Klioner (2003).

16
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4.1.1. Monopole light deflection due to one body. Let us apply equation (38) to the
computation of the light deflection due to one body, for example, the Sun, and check if we
recover the results in literature for grazing rays [17].

With respect to the local barycentric observer u® = e?§¢’, the total light deflection is
given by the modulus:

A7 = \/P(u)aﬁAfaAZﬁ = \/(gaﬂ + uauﬂ)AZaAZﬁ. (75)

We have to consider only the Euclidean metric &;;, since A7 *is of the order of h. Moreover

ij>
the definition (75) implies a projection with respect to u®, and in the static case ¢ 0= 0;
therefore, we limit the integration to the following expression

~k 1 © 2kf 0 ék
ALY = 2MBm| = f — ¢ _dr - f ——= 47|, (76)
2 J - 22 32 — o 2 372
(&+2) (&+2)
which yields the well known solution:
! = gM(S““). a7

We can also check the validity of our assumption by limiting the integration at the observer.
Considering the source at infinity, from (68)

_ 2y i
k [ sin
Alps, =2 ) My DY - Z
Iy,
¢ d,,\/1+(f;p)sm;( +2( )cos;(sm;(
dk by - 7, + %, )sin y
- d—’; (5 o+ %) +1|¢+0(r), (78)
g d\/l+( ;) sin y? +2( )cosxsm)(
I’
and in the limit y < 1, since %, /d,, = cos y /sin y, we obtain
k d,
7 P
Al 2 Mg St o(n?). (79)
a p
Then the modulus in the case of one body is again:
Al = EM (80)

These results check the validity of RAMOD master equation when it is applied to one
single body and make us confident to proceed with the solution for a n-body system.

4.2. Monopole and velocity contribution: R3a case

This solution includes the perturbations depending on the spatial derivative of the / term and
the retarded distance approximation. According to the assumption of section 3 we consider

17
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also the velocity of the source constant, i.e. not dependent on #. For sake of simplicity, let us
denote:

{7;(215 . fp)

Di=d} - — (81)
75 (2 v
Dk = d* - % (82)

In the case discussed here we limit ourselves to the integration of the following terms:

)f: d—f + [—2D,’§(Zg - 7) + 2y (7, - v)]

r

%, 244+ _ _ %, £244 %, 2
AT A= ST A
(83)

In addition to the static case solution whose form appears in equation (72), the solution of
the R3a master equation is:

—k . % {7 ) Ty
Al = Atk +2 32 —d2[—“(zﬂ.v~)[:_2] _D;;(,ap.ﬁ)[M]

<1

Algy, ~ Algs, + 2 ZM@{ —2D§ (7, -
a

r

T

D, I Y. 7tk
+ kad,,—d—(dp-v)+g((v><r1,)-(rprg)) arctan 7

P

POV, (o-m)|
+ | DE(2y - ) = =(d, - V) || ——=| } + O®) + O(+?).
( o v) ( » V):l " () (V )
¢ (84
If the source is at infinity and in the limit of y < 1, i.e. at the observer and for grazing
rays, these contributions vanish in the case of one body.

4.3. Monopole and velocity contribution: R3b case

This solution includes the perturbations depending on the time derivative of the 4 term
according to the retarded distance approximation. Assuming the source velocity is constant,
we have to integrate:

ATy, ~ ZM@{(@ ) f & (5 v) f g} (85)

r r

Al ~ Algs, — Ty Alpy, (86)

The solution is straightforwardly:
_ M _ z _ 2
algyx T G (G- @[ (e 2)] ] 6
a P

~k ~k ~k 70
Algy, = Algs, — Ly Algy,. (88)




Class. Quantum Grav. 32 (2015) 165008 M Crosta et al

For a stellar source at infinity and in the case of light rays grazing only one gravitational
source, from table 1 these contributions result:

Alpsy %2 Y Mg (s ‘j), (89)
a dP
_ d* by - A (# -
A[1§3b R~ 4;-’\4(4:) d_l,% 1+ ( ﬂz p) - fé‘ ( ;d]f ) . (90)

4.4. Monopole and velocity contribution: R4a case

The (R4a)* equations include the perturbations depending on the spatial derivative of the h;
term, i.e. those depending on the mass-current contribution. According to the constraint on the
vorticity imposed by the physical assumption as discussed in section (3), we have to consider
only equation (R4a):
70 0 S T % dz % £df
A[R4a zA[R3b+4ZM(a)({!Z‘ . V)[(fg . Vp)[ 7 + A F:I, (1Y)
a

T

ATE, AT, (92)
i.e.
=0 =0 My , - - = = o A\ T
AlRy, ~ Algy, + 4 Y — (2 - v){(zﬂ )8 )] - [(n- r,,)]f } (93)
a p
AT, ~ AT, (94)

Again, as for R3b case, considering a source placed at infinity and in the limit of a
grazing light ray, we get at the observer:

— Ma 7 2
AglgMzzz d;){(fp-ﬁ)+4(€g~\7)(fg'fp)}’ ©3)
a P
Ak, ~ 4ZM(2”) a1+ ([ﬂ'zﬁ”) - Zéf(Apz' ’) : (96)
a P

4.5. Light deflection by a static oblate body: R3sQ case

For sake of convenience, from now on we drop the suffix (). Considering that the quadrupole
structure of the source may be relevant in affecting light propagation only during close
approach, here and after, to compute the quadrupole contribution, we refer only to a single
body. Moreover, as in section 5.2, we denote:
_k —_
Ly(ly - s
praar - D7), ©7)
2
where s* is the axis of the source normal to its equatorial plane. Equation R3sQ (51) can be
integrated with respect to the parametrized trajectory as follows

19
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T T LR AT A A T
’ 7

r £

+ [Zg —2(s- Zg)ka:I f iif +5(s - #,)[ 2(s - Zs)D}

ai(sm)] [T ws(s E)[ (s B)Df - B (s )]

r

x f ’ fz‘:f — 50y (s Iy) f ’ fS‘f} +o(m). (98)

T r r

namely (for the details of the solution see table 1 and the appendix),

- M 7 PR R 2
AZII;SSQ = 6J2R2_d2 { [10/3]f"Clk + [1’]()/3,]_f Czk + [TIO/S]f C‘f + [Il/l]f C;{c
P

(1

+ (Bl €k + [hs|Cé + (s + C7"[12/5]::“C§} +o(r). (99)

If we consider a grazing light ray emitted by a star located at infinity, the above equations
reduce to:

M
2
dP

Alpssp = 6LR*=2{ 2CK} + 0(12). (100)

Similarly to the spherical case, let us compute the total light deflection nearby a single
gravity source. In this case, we expect that our formula reduces to the available expressions
known in the literature [14, 15, 18, 19]. For this scope we can assume:

o d) = 7 = & the radial vector;
° dlf / d, = —n* the unit radial vector;
sk . . .
e /, = t* the tangential vector to the line-of-sight;

e & = d, the impact parameter;
e and mF = (Z x n)* the orthoradial direction.

Then:

Alpsso = 4J2R2d%{n"[1 — (s 07 = 4]+ 26 [ s = 60 ]} + o),

(101)

and, by expressing the vector s* as linear combination in terms of the orthonormal basis
(t,n, m)

sk =(s -0tk + (s - ) + (s - mym*, (102)
we obtain the same formula deduced in Crosta and Mignard [19]:

Azk = AZ}IQES + AZ;SAQ

2 2
:451&{[1 + JZR (1 — (s 0% =2(s - n)Z) nk 4 lei (s - m)(s - n)mk} (103)
P

2
p p

20
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4.6. Quadrupole contribution with velocity: R3aQ case

Equation (50) in function of the parametrized trajectory becomes:

~k ~k ~k
Algsag = Algs, + Algsgo

+ 2]2R2M{[2Dk + 3DX(s - v)] Af" % - [D§(9(s ) (s - P)

20 0) = 30t (s =0t ) 5 0)] [

vaf(s (5 9) [ & - [D3(o(s- s 0

+2(Zy - 7)) = Iy (9(s - )<s 7 +2(#, 7))

# 30K (s By)(s )+ 30L (- 9)(s-Bo) + (s 2) (8- 9)) | [ 55

+27(S.fp)[D§((s~fp)(£g 7) +2(s - (7)(fp.ﬁ))_gg(s_fp)(fp_ﬁ)]/:" fdgf
[9zg(s Ty)s ) + 205 (g 9) = 30K (L - 9)((s - B) + (s 7))

_ % £2ds _
+ 2Dk (s- eg)Z]/f E9E 21 (5 ) D

- A (s ) )+ ()5 )] [ 5
+ 27[‘§(s 0y) (% - v)]/ Ti;h} +0(7?) + 0(1?). (104)

Namely, from table 1 and the appendix, we denote

~ = ~ M 7, 2 . 7,
A€£3aQ = Alg, + AZ;MQ + Jszﬁ{ [Ton0]' Cs + [Josa] Cioy + [£lona] Cfy
P

+ [10/6]foclkz + [TIO/s]foclkz + [11/2]::"611]2 + [11/4]::”C1ks + [11/6]:0CIk6
+ [balich + [helicl) + 0(2) + o). (105)

For a source at infinity and in the limit of y < 1 the above contributions vanish as in the case
of a mass monopole moving with constant velocities.

4.7. Quadrupole contribution with velocity: R3bQ case
From equations (53) we have to solve
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P 2

UG VA-SE G (LR R0

r

e lln6n)] [0

_ _ 7oV ‘f(,d" Z'V 2, rde
Aglg3bQ = A€1(§v)3b + 3M]2R2{ p2 [ ar + 9 [ Tar

tor
= s(s B[ 305 E) (5 9) + (B 0)(s - )| [ 5
_ %[(s . Zﬂ)Z(Zﬂ ‘7)] /: f;(jr} + 0(172) " O(hz)’ (106)
Alfarg = Alirag — I R3Q) + 0(7) + 0(1?). 107,

Expressing the above formulae in terms of the solutions of the integrals listed in table 1, these
quantities read

> 5 MhLR? z - R £
Af;e)sbg = 431231; + Tzz{ [10/3];C19 + [TIO/s]f“Czo + [TIO/S];CZI + [11/1];

p

Cyn + [11/3]:”(:23 + [ﬂ/s]?’cm + [12/3]:’6'25 + [12/5]::”6'26} + 0(172)
+o(#), (108)
Algspg = Algsag — LyAlpsg + O(72) + O(h2). (109)

For a stellar source at infinity and in the limit of light ray grazing the gravity source,
we get:

. o 2MLR?
Algspo = Algy, + chzz +0(7?) + 0(h?), (110)
P
Az = Algsag — By Algyg + O(72) + O(12). (111)

With the same notations of the single static source, the above equations collapse to

7 7 MIR?
Algyyo = Algs, + di [~ o[1=46-n? = 2]+ 2606 M- v
p

+ 0(\72) + o(hZ), o

~k ~k MU R?
Alpypg = Algsyp + 3

{zk(n [ 146 - nP=(s - 17

— 2tK(s - )(s - m)(t - v)} + 0(\72) + O(hz). (113)
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4.8. Quadrupole contribution with velocity: R4aQ solution

The integral expressions of equations (54) and (55) with the physical assumption of a source
moving with constant velocity are:

% df

AlRsap = Algspp — 4M 2R (15 - v){—[%(fﬂ 7))+ 3(s - Zg)(s - f,,)] / —

’
- [% + 3(s . fg)z] [fa i: + [%(s . fp)z(fg : fp)] [fa d—f

£ r t r
5 . “N(7 . . % tdt
+5(s- Vp)[2(s-fﬂ)( ﬂ'rp)+(s-rp)]/; Tr7T
— _ R % £2d¢
+ E(S fg)[(fg rp)(s . ﬂ) + 2(S . 1’)]/7 Tr77:
5, i 2de )
A }, +0(%) + (),
(114)
Algspg = Algaag + O(72) + O(h2). (115)
Considering table 1 and the appendix, the solution reads:
_ ] 2IMwhaRE, - . . .
Af}?zmg = MI?%Q - (222 @ ( g ‘7){ [10/3];C27 + [f10/3];C28 + [fl()/s]f"
P
Coo + [ﬁ/]]?cso + [11/3]::0(731 + [11/5]:”(332 + [12/3]?(?33 + [12/5]?@34}
+0(72) + o(h?), (116)
Algyag = Algyg + O(72) + O(12). (117)

For a source located at infinity and in the limit of the small angle y between the directions
at the observer towards the body CM and the point of closest approach of the light trajectory,
we obtain:

2
AlRyap = ARy — %(Zﬂ - F)Cyo + O(72) + 0(R2),  (118)
14
Aljaag = Algsag + O(72) + O(12). (119)

Again, with the same conventions of the static source, for the time component we deduce
finally for the light deflection:

_ _ 16 M4 aRE
Alpyap = Alpsyo + %u DG mGs - 1)+ 0(57) + 0(2). (120)
p

5. Photon trajectory

The first integration of RAMOD equations gives the estimates of the deflection effects and the
left-hand side results dx®/dz — Z,". The contributions to * obtained with this first integration
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gives the quantity needed to solve the astrometric problem, namely the sphere reconstruction
by the cosine of the observed angle between the light direction and the spatial axes of
observer’s tetrad. A different kind of work can be done with the second integration which
solves the ray tracing for the photon emitted by a star and intercepted at the observer’s
location, thus obtaining the quantity Ax* = x*(%,) — x*(f4) at the different approximation
levels. This quantity is needed to address the problem of a relativistic consistent astrometric
parameters that can be used for further applications in the on-going work needed for the Gaia
sphere reconstruction.

5.1. Monopoles

In the case of monopoles with constant velocities, the integral to be solved is the following:

k

. b i dy rt,
ko= 7kpz - ;2P 2 2
Axky, =I5 a2 + 2 §a M(a){ . / Iondé = =% / Imdr} +o(m). (121)

P *

k k M(a) 2[; - o f/) N ~ D[]j N - fn N
AXpz, = Axpss + 22 PP —dp?( 9" v) / tlyndt — T(rp . v) / I, pd?

®

a P
_D"d D, d, v b (5 Pox " ods
+ Vp—d—p(p.V)-FE((Ver)-(rpX g)) ‘/‘;y 0/047
- N A
+ | DE(Zy - v) - %ﬂ(d,, : v)]/ hpde ¢t + 0(v?) + 0(h?),
i ’* (122)
0o 50, . May [, N [o . (7 o [T .
AxR3b= Zo AT + Z d2 {(l"p . V) /; I dt — (fpj . V) [ Iz/ld’[}
a p * T
+ 0(v2) + O(hz), (123)
Axky = Axka, — Oy AxDsy + O(VZ) + O(hz), (124)
and
Ax®, = AxO Ma - PN % . 2 R
XRag = AXxg3p, + 42 PR (fg . v) (fﬂ . rp) /T L dz — / Ld?
a 14 * T
+ 0(v2) + 0(h2), (125)
Axpyy = Axpsp, (126)

where 7, = [%(%,) is the line-of-sight direction at the observer used also to solve the

boundary value problem [20], and the relationship Az = ({7,5 - Ar) holds, where At = £, — 7.
and Arf = ri(£,) — ri(£y).

Then, the trajectory is composed of the following terms (see the appendix), where each
one of the listed solutions represents an increasing accuracy:

24



Class. Quantum Grav. 32 (2015) 165008 M Crosta et al

_ iy" _ : db
Ax,@s = ffAf + 2§M(l¢){—%[Log(r -y + r)] - d—';[r]f;;} + O(hz), (127)

T
p

7k - %,
Al = Axiss + 223(;) dp[d/i(fﬂ D)= 35 v)][ardan [ i r]]
a p

5k 7k
~|a2af+ %‘Z‘((V x 7y) - (7 x By)) + %‘Z‘(ﬁp ) (#, - Z,J)]
X ELog(r)]?:k} +0(n?) + 0(»?), (128)

2 d,-v)
Axsy =042 + Y Myd —(Zs - 7)[ Log(r- & +1)[" + w[r]?*

d;
+0(n?) +0(»?) (129)
Axfiyy = Axi, — LiAxgs, + O(12) + 0(v?), (130)
and
AxRy, = Axfly, — 4 3 Mo( 8y - 7)[ Log(r - & + r)] +0(h?) + 0(»?), (131)
Axfy = Axfsy, + O(12) + 0(1?). (132)

5.2. Quadrupoles

Similarly, the inclusion of the quadrupole terms, at the first order in 2 and v, gives additional
contributions to the following trajectories (see table 1 and the appendix for the detailed
expressions of each term) where, accordingly to the monopole case, each one of the listed
solutions represents an increasing accuracy:

ml[ck 2650 5) 20k o Cko Lk
Axgs,g = 6L R2— —12 - M —82 (Ll - —22[12/1]; - —32
20| 4 3d 3d d’ 3d
%o k1% k %o Csk %o k[~ %o
X [12/3]%* + Gy [r]ffk - Cs [10/1]%* - T[IO/3L* + C; [110/1]f*
k ~
+ CTB[‘?I()B];}, (133)
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p
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Sdps 2dp Sdg [ O/O]p 9 [T O/O]f ( 14—dp 9)

. 1 ~ 7
X [Log 17, + (i + s+ (s 7,)ch) [

P 3¢ty 3(f - 7)Chs
4d; 4d;

- 3ck :
+ (fﬂ . fp)clks + rp2C1k7 + 418)[11/2],;*

+ ﬁg(c{; + (- ) Cl+ 120K [l

- #(C{% + (gﬂ : fp)c1ks + Cf%)[bm]il},

P (134)
M| Cio 2C21((7g ) ff’) 2Cy ., Co 2
Axgpp = Axpy, + hR* =3 | = - 2 + == |[hn] = =5 [Bn]s
a2 || a2 3d? 3d? 2
Cy ZCZG(Eﬂ ) fl’) 2 : Z Cy £
[ &+ = [ns]" + Culrl?, = Cullon]s = =2[Ios]
[3d§ 3d1‘,‘ [ 2/3]7 2l ]f* | 0/1]T 3 [ 0/3]T
a2
. TR Cs
+ Cos[2lon [} + pd—z[fll/,%]f';},
P (135)
~k
Ax1§3bQ = AxéSb_ZﬂAxlg%Q’ (136)
and, finally,
M5 Cy 2C29(Z“ ) fl’) 2G4 ‘
0 _ 0 2 0
AxR4aQ = AxR3bQ - 2J2R d_g(gﬂ . V){[d_[% - 3d;‘ + 3d§ [Il/l]f*
c Z, c 2, : e, C 2,
- —228[12/1]% - —292 [Lis]s + Caolrle + Cai[lon]?, — ﬁ[lon]w
a2 "M T 32 R ¢ e~ T3 LU0
6 Chy 2
+ CakS[HO/l]{; + T[ﬂma];; , (137)
Axfaap = AXp 138
XRaap = AXR3pg- (138)
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6. Conclusions

The Relativistic Astrometric MODel (RAMOD) is a mathematical tool conceived to model
the astrometric measurements made by an observer in space. Since its original purpose was to
address this problem for the ESA Gaia mission, whose final astrometric accuracy requires the
physical model to be accurate at the pas level, RAMOD had to take into account the general
relativistic corrections due to the bodies of the Solar System. The calculations here are
performed assuming that the massive bodies move uniformly and have monopole and
quadrupole structure.

Despite the apparent straightforwardness of the task and the linearity of the metric given
the weak gravitational field regime inside the Solar System, the solution of the inverse ray
tracing problem, which allows us to reach the aim above, is rather intractable unless treated
numerically, particularly if retarded time contributions need to be accounted for [3]. As far as
RAMOD is concerned, the reason lies mainly in the fact that the main unknown of the
differential equations is the observed direction as projected on the rest space of the local
barycentric observer and represents locally what the observer measures of the incoming
photons in his/her gravitational environment. This aspect transforms the geodesic equation
into a set of nonlinear coupled differential equations which comprises also that for the time
component. The original version of the RAMOD model was therefore numerical and although
successful in its applications with the inclusion of the relativistic satellite attitude [20], it was
hard to control and compare with similar astrometric models even with a comprehensive error
budget for stellar positions [21].

Here we present a fully analytical solution of a system of differential equations up to the
€3 level everywhere in the Solar System, which is therefore able to assure a pas-level accuracy
consistent with the precepts of the measurement protocol in General Relativity, and that can
also be utilized under observing conditions more demanding than those of the Gaia mission.

The analytical solution is general enough to be applicable to other missions conceived to
exploit photon trajectories and extends within the RAMOD formalism (since other similar
solutions are already known from the literature) the analysis of the trajectory perturbations
due to gravitating sources with a non-negligible quadrupole structure. While the retarded time
approximation adopted here and the solution for the static cases recover the results obtained
by similar astrometric models (as proved also in [11]), the solutions including the constant
velocity of the source give rise to different expressions that deserve to be carefully evaluated
in a dedicated work as it was done, for example, in [5] and [22], especially in consideration of
the recent applications done with the Time Transfer Function approach [23]. At first glance, in
fact, the presence of the time component 7° for the local-line-of-sight has not been con-
templated in other models and the 7 k components do not show complete coincidence. A
proper comparison, both analytical and numerical, will establish the physical significance of
this unexpected discrepancy as one carries on with the implementation process of the
astrometric observables from which the relativistic astrometric parameters with their appro-
priate variance and, possibly, covariance values are deduced. This however cannot be treated
in this work and deserves a separate publication as done, e.g., in Klioner and Peip [24].

Finally, we state that the main results of this article are equations (121)—(138), which
represent the light trajectory through the gravitational fields of uniformly moving bodies
having monopole and quadrupole structures. In the context of the application of the RAMOD
model to the problem of the Gaia astrometric observations, the expressions AZ“ for the light
deflections are fundamental as they represent the missing ingredient for the analytical defi-
nition of the astrometric observable.
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Appendix. Expressions of the coefficients in the quadrupole deflection formulae

This appendix lists the coefficients which appear in the expression for light deflections and
light trajectories in the case of an oblate body. Each coefficient depends on the linear com-
bination of the constant vectors (with respect to the parameter 7) such as fé , D[’,‘, D}, etc and
are denoted in order of appearance.

zk . {7 2
cl = bls-b) 2“) [2dp4 3242 - 3(#, Eg)4];
6d?
Zs _
2" = gﬂg(s [g)z(rp fg)rp,

Dk A% Pl .,
C4k=é _l+4(5d;2'p) +("p ﬂd),?(s ﬂ)[—S(s fp)—S(fp dé)]

(s 2y R - i U) (s - &) 20
e T R IO P SR S
2Us -7 ) Z, Py L
ct= D = (;dzrp) +(rp gd)gs ﬂ) _(S fp)_i_(rp ﬂl(s ﬂ)
p p
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