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ABSTRACT

We investigate the young stellar population in the Vela Molecular Ridge, Cloud-D (VMR-D),

a star forming (SF) region observed by both Spitzer/NASA and Herschel/ESA space telescope.

The point source, band-merged, Spitzer-IRAC catalog complemented with MIPS photometry

previously obtained is used to search for candidate young stellar objects (YSO), also including

sources detected in less than four IRAC bands. Bona fide YSO are selected by using appro-

priate color-color and color-magnitude criteria aimed to exclude both Galatic and extragalactic

contaminants. The derived star formation rate and efficiency are compared with the same quan-

tities characterizing other SF clouds. Additional photometric data, spanning from the near-IR

to the submillimeter, are used to evaluate both bolometric luminosity and temperature for 33

YSOs located in a region of the cloud observed by both Spitzer and Herschel. The luminosity-

temperature diagram suggests that some of these sources are representative of Class 0 objects

with bolometric temperatures below 70 K and luminosities of the order of the solar luminosity.

Far IR observations from the Herschel/Hi-GAL key project for a survey of the Galactic plane are

also used to obtain a band-merged photometric catalog of Herschel sources aimed to indepen-

dently search for protostars. We find 122 Herschel cores located on the molecular cloud, 30 of

which are protostellar and 92 starless. The global protostellar luminosity function is obtained by

merging the Spitzer and Herschel protostars. Considering that 10 protostars are found in both

Spitzer and Herschel list it follows that in the investigated region we find 53 protostars and that

the Spitzer selected protostars account for approximately two-thirds of the total.

Subject headings: Stars: formation — Stars: protostars — (Stars:) circumstellar matter —

catalogs

1. Introduction

The Vela Molecular Ridge Cloud-D (hereafter VMR-D) (260◦ . ℓ . 264◦; |b| . 1◦) is part of a giant

molecular complex located along the Galactic plane (260◦ . ℓ . 272◦; |b| . 3◦ Murphy & May 1991) and is

then well suited to represent a typical star forming region (SFR) of our Galaxy. For this reason a subregion

of this cloud has been the subject of many previous papers, dealing with different observational aspects

of the star formation (SF) as, e.g., the presence of outflows (Wouterloot & Brand 1999; Elia et al. 2007),

1Dipartimento di Matematica e Fisica, Università del Salento, I-73100 Lecce, Italy
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jets (Lorenzetti et al. 2002; Giannini et al. 2005, 2013), and clustering (Massi et al. 2000). The continuum

submillimeter emission in the VMR-D cloud was surveyed by Massi et al. (2007) who catalogued 29 resolved

dust cores and also obtained a further list of 26 unresolved candidate cores. More recently, thanks to the

opportunity offered by the Spitzer Space Telescope, the VMR-D region was observed with the IRAC (λ

= 3.6, 4.5, 5.8, 8.0 µm) and MIPS (λ = 24, 70 µm) focal plane instruments, obtaining in this way six

mosaics, covering about 1.2 deg2, that have been analyzed to produce a merged photometric Spitzer-IRAC

point-source catalog (hereinafter Spitzer-PSC) complemented with MIPS photometry (Strafella et al. 2010,

hereinafter Paper I). Further observational progress was made when the BLAST experiment (Pascale et al.

2008) mapped the whole Vela Molecular Ridge in the far-IR (FIR) spectral region (λ = 250, 350, 500 µm),

complementing in this way the Spitzer spectral coverage towards long wavelengths. These observations were

discussed by Olmi et al. (2009) who obtained a catalog of dense cores/clumps in the VMR-D cloud. The

last important observational progress was made with the Herschel Space Observatory which, surveying the

Galactic plane in the framework of the Hi-GAL key project, partially mapped the VMR-D region in the

FIR spectral range (λ = 70, 160, 250, 350, 500 µm) with an almost double spatial resolution and sensitivity

with respect to BLAST. Here we also analyze these observations for the first time, thanks to the support

of the Hi-GAL collaboration that provided us with the corresponding calibrated maps. These have been

used to extract five single band photometries that constitute another important spectral extension of our

information about this region.

Utilizing these observations as well as the photometric catalogs made available by the 2MASS and

WISE all-sky surveys, we have the opportunity to study in much more detail the young stellar objects

(YSOs) located in the VMR-D cloud. These objects can be efficiently identified through their infrared colors

(see, e.g., Harvey et al. 2007; Gutermuth et al. 2009; Kryukova et al. 2012) that we also exploit here to

discriminate genuine YSOs from other contaminant populations of both Galactic and extragalactic origin.

All these observational data and tools give us the opportunity to investigate, with unprecedented sensitivity

and accuracy, the characteristics of the SF in the VMR-D cloud.

In Paper I, we already considered a subsample of 8796 sources, detected in all the four IRAC bands out

of the ≈ 170,000 sources listed in the Spitzer-PSC, to carry out a preliminary study of the YSO population

in this cloud. Here, to obtain a more complete and accurate view, we revisit our previous preliminary census

of the YSOs by including, besides the sources already considered in Paper I, all the other sources detected

in at least two out of the four IRAC bands, with the additional requirement that sources detected in only

two bands are also detected in the MIPS 24 µm band.

As in Paper I, we adopt the usual classification of the YSOs based on the near and mid-IR spectral

slope defined as α = d(log λFλ)/d(log λ), a parameter originally introduced by Lada (1987) to characterize

the spectral energy distribution (hereinafter SED) of these objects that is still largely used and generally

interpreted as a proxy of the evolutionary phases experienced by the YSOs. In this scheme, it is customary

to distinguish four different classes of YSOs, according to the value of this slope in 2 . λ(µm). 20 spectral

interval : Class I with α > 0.3, flat spectrum (hereinafter FS) for −0.3 < α < 0.3, Class II for −1.6 <

α < −0.3, and finally Class III showing α < −1.6. Given the evolutionary significance usually attributed

to this parameter (but see also Chen et al. 1995; Young & Evans 2005, for alternative schemes), Class I

objects represent an early phase in the evolutionary path of the YSOs towards the ZAMS. Their spectral

slope is produced by a central object that already attained its entire initial main-sequence mass, but is still

surrounded by a remnant infall envelope and possibly an accretion disk. This description naturally implies

the existence of an even earlier phase, the Class 0 as originally suggested by André et al. (1993), in which

the central object is at the end of the free-fall phase but is still increasing its mass by accreting material from
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a thick surrounding envelope. This fact makes the Class 0 phase difficult to detect in the near IR and then

difficult to classify in the framework of the aforementioned scheme. In this observational classification both

Class 0 and I are representative of early protostars still surrounded by a remnant infall envelope, although

only in the Class 0 stage the envelope is presumed to be more massive than the central object and then

opaque to near and possibly also to mid-IR wavelengths (both ranges hereinafter referred to as MIR).

To study the SF mechanism in the VMR-D cloud we proceed along two approaches, both aimed to select

candidate protostellar sources by exploiting all the information collected on the continuum emission. The

first consists in selecting protostellar candidates by analyzing the Spitzer observations through a pipeline

based on the criteria used by Harvey et al. (2007) and Gutermuth et al. (2009), that have been proven to

be effective in isolating different kinds of possible contaminant sources. In the following, we shall refer to

these sources as “Spitzer selected” and their analysis will be based on the SEDs assembled by collecting all

the available photometries in what we shall call the MIR catalog. The second approach adopts the FIR

point of view because it is based on the analysis of the Herschel observations that, being carried out at

longer wavelengths, are more sensitive to cold and young protostars. The sources selected in this way will

be referred to as “Herschel selected” and their SEDs will be arranged in the FIR catalog resulting from the

Herschel photometry complemented with all the available photometries at shorter and longer wavelengths.

Merging the results obtained in these two ways we expect to obtain a more complete view of the protostellar

population in VMR-D as well as new insights on the SF process in this molecular cloud.

In the following, a brief account of the observational data obtained with Spitzer and Herschel is given in

Section 2 along with a description of the procedures involved in data reduction and photometry. This section

also illustrates how we obtain two multiwavelength source catalogs for the VMR-D region. The first, called

MIR catalog, by complementing our previous Spitzer-PSC catalog with a set of additional observational data

and the second, the FIR catalog, by assembling the five band Herschel photometry in a single band-merged

list of sources.

In Section 3 we select bona fide YSOs out of both catalogs by means of appropriate selection criteria

and in Section 4 we discuss the census and classification of these sources. We also obtain a new estimate

of the SF rate and efficiency that is more accurate than that obtained in Paper I based on the sole sources

detected in all the four IRAC bands.

In Section 5, bolometric temperatures and luminosities are derived for all those sources for which a

reasonably complete photometric information is available. Here the Lbol vs Tbol diagram is used to further

characterize the YSOs and infer on their evolutionary status.

In Section 6 we compare the SF rate and efficiency obtained for VMR-D with those obtained in other

SFRs and discuss the global protostellar luminosity function (PLF). For those sources detected by Herschel at

FIR wavelengths, the envelope mass has been also derived by exploiting a simple modified blackbody model.

The luminosity-mass diagram is briefly discussed in the light of the protostellar evolutionary scenario.

Finally, in Section 7, our conclusions are summarized.

2. Observational Data

The observational data on the continuum emission of the objects in VMR-D have been collected from

many different sources including existing catalogs, public surveys, and new observations as in the case of

the Herschel unpublished photometry. Dealing with a conspicuous amount of observational material spread
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over quite a large spectral interval, we decided to search for candidate YSOs exploiting all the spectral

characteristics of their continuum emission. Our approach is twofold and corresponds to adopt a “MIR point

of view” as well as a “FIR point of view” to identify protostellar candidates by means of procedures typically

adopted in previous studies of SFRs observed with Spitzer and Herschel, respectively. In the following, to

identify the sky regions involved in the different observations of the VMR-D cloud, we shall refer to Figure 1

that shows the 8 µm IRAC image of the VMR-D cloud with overlayed the contours delimiting the areas

observed by different instuments as well as the contour of the investigated cloud.

2.1. MIR catalog

We start considering the sources of the Spitzer-PSC catalog covering the region delimited by the cyan

polygon in Figure 1. To arrange all of the available continuum observations for an easy access and at the same

time obtain the SEDs, we generated a new catalog containing the fluxes from all the available photometric

surveys of this cloud from the near-IR to the submillimeter spectral range. This catalog is essentially a

spectral extension of our previous Spitzer-PSC catalog and contains, besides the Spitzer-IRAC/MIPS (3.6,

4.5, 5.8, 8.0, 24, 70 µm) photometry, also 2MASS (J, H, K bands), WISE (3.4, 4.6, 12, and 22 µm), Herschel

(70, 160, 250, 350, and 500 µm), and SEST-SIMBA (1200 µm) observations.

Given the heterogeneous nature of the observational data, we adopted specific criteria in associating

to the same source fluxes obtained at different wavelengths and with different spatial resolutions. This

is a typical problem in assembling information coming from different catalogs and it is usually mitigated

by requiring that the distance between the centroids of the sources to be associated is smaller than a

predetermined value depending on the spatial resolution of the specific catalogs. This is also our approach

even if more complex association procedures could be devised, involving further considerations on the flux

values to be associated and, in turn, on the possible underlying spectral shapes (see, e.g., Roseboom et al.

2009; Budavari & Szalay 2008). In our case we prefer to consider the positional uncertainty, instead of the

beamsize, as a measure of the spatial accuracy of a given catalog because it is usually evaluated after an

accurate statistical analysis and is generally more conservative. In this way we minimize possible mismatches

in associating to the same source the fluxes from different catalogs, especially in crowded regions, even if we

pay this choice with the risk to miss some source association.

Our procedure adopts the fiducial positions of the sources reported in the Spitzer-PSC catalog, in

this way considering the other catalogs as ancillary, and are used to find possible counterparts at other

wavelengths. The final product is a catalog containing the same number of entries as the Spitzer-PSC,

but complemented with the associated fluxes observed at different wavelengths. In Table 1 we report the

association radii adopted for the catalogs considered in this work, along with the associated beamsizes,

completeness fluxes, and relevant references.

In practice, we consider as acceptable the associations for which the distance ∆θ between the position of

the Spitzer-PSC source and the position of a source in a given catalog is less than the sum of the corresponding

uncertainties, namely ∆θ < δθPSC+ δθcat. In the case of multiple associations we always adopt the nearest

source to the fiducial Spitzer-PSC position, allowing however that multiple Spitzer-PSC sources could be

similarly associated to the same object of another catalog, a problem that will be taken into account later

in the analysis. After scanning all the considered catalogs for positional association with the Spitzer-PSC

sources we obtained a set of corresponding fluxes that, once assembled, constitute the MIR multiwavelength

catalog of our interest.
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2.2. FIR catalog

The VMR-D cloud is located across the Galactic plane and it has been partially mapped by the Herschel

space telescope during the completion of the Hi-GAL key project for a FIR survey of the Galactic plane

(Molinari et al. 2010). As is shown in Figure 1 the survey coverage is incomplete because at these longitudes

the observing strategy of the Hi-GAL survey preferred to follow the warp of the Galaxy instead of the

Galactic plane. The VMR-D cloud has been also mapped by the BLAST experiment at 250, 350 and 500 µm

albeit with a significantly lower spatial resolution and sensitivity. Because of this, in the following we prefer

to use the Herschel observations instead of the BLAST ones, alleviating in this way the problems related to

both the strong and variable background and the source confusion.

Thanks to the Hi-GAL consortium we obtained calibrated maps (Bernard et al. 2000) of our region in

which the artifacts introduced by the map-making technique have been removed or heavily attenuated by

means of a weighted post-processing of the maps themselves (Piazzo et al. 2012). The source detection and

photometry has been carried out on these maps by using the CuTeX package (Molinari et al. 2011), a software

specifically designed to detect and extract compact sources against a strong and variable background. In this

way we obtained five lists of sources, corresponding to the five bands of the Hi-GAL survey, that have been

merged adopting the association radii reported in Table 1 for the Herschel photometry. In assembling this

catalog the merging process proceeded from long to short wavelengths, updating the position of each merged

source with the coordinates corresponding to the source actually associated at the shortest wavelength, with

the aim to retain the position associated to the shortest detected wavelength.

Subsequently, to evaluate accurate bolometric quantities, we also extended the spectral information on

these FIR sources by complementing the merged Herschel catalog with Spitzer and WISE fluxes, at shorter,

and with 1.2 mm SIMBA fluxes (Massi et al. 2007), at longer wavelengths. In doing this we always adopt

the positional requirements reported in Table 1 to associate complementary fluxes to the fiducial positions

in the multiband catalog of the Herschel sources.

As for the previous MIR catalog, the merging procedure allows the possibility of multiple source as-

sociations, within the constraints in Table 1), a problem that will be taken into account in the subsequent

analysis of this FIR catalog.

3. Sources Selection

To obtain a census as complete as possible of the protostellar content in the VMR-D cloud we exploit

both the MIR and FIR catalogs based on the Spitzer and Herschel observations, respectively. Because in

the following analysis we select candidate protostars from these catalogs, here we separately illustrate the

selection procedure and the classification criteria adopted to characterize the selected sources.

3.1. MIR sources

A preliminary analysis, limited to the Spitzer sources detected in all the four IRAC bands, was already

presented in Paper I. Here we enlarge the data base to all the sources detected with photometric uncertainties

σ < 0.2 mag in at least three out of the four IRAC bands, augmented with those sources that, detected

only in two IRAC bands, are also detected in the MIPS 24 µm band. As a final addition, with the aim to

consider potentially interesting objects, we also include a few special cases that, detected in only one IRAC
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band, are particularly bright at λ = 24 µm and show a spectral slope that is compatible with a Class I SED.

While including sources detected in only three wavelengths helps mitigate possible selection effects due

to different sensitivities in the IRAC bands, considering also objects detected in only two IRAC bands and

in the MIPS 24 µm band allows us to include further sources that, for different reasons, could appear faint

in particular wavelengths as, e.g., transition disks with large inner holes or unusual circumstellar geometries

that could escape detection in some IRAC bands. The last addition of sources detected only in one IRAC

band aims to include potentially interesting sources that could represent deeply embedded objects barely

visible in the IRAC bands or even Class II sources with inner disk cleared from dust.

In this way we extracted a total number of 16391 sources whose distribution in the different typologies

is shown in the first row of Table 2. These constitute the working data base in which we search for candidate

YSOs by using specific selection criteria aimed to exclude both Galactic and extragalactic contaminants.

3.1.1. Selection phase

The first obvious step in selecting bona fide YSOs is to exclude from further investigation all those

sources that could be interpreted as reddened stellar photospheres. To this aim, following Harvey et al.

(2006), we compared the observed with the model fluxes, based on the stellar photosphere Kurucz-Lejeune

models, taken from the SSC’s Star-Pet tool 1. These fluxes are given just as they would be observed in

the IRAC and MIPS bands and are then directly comparable with our observational data. In this respect,

we scrutinized all the sources with at least three detections in the 2.2 ≤ λ ≤ 24 µm spectral region and,

considering the effects of the extinction law given by Flaherty et al. (2007), we found 12217 sources that

can be reasonably fitted with a reduced χ2 < 2.5 and then represent, most probably, reddened photospheres

that have been consequently excluded from further consideration. With this choice the probability that

some reddened normal star still contaminates our sample despite this filtering is less than ∼ 10%, a risk

that will be further mitigated by the subsequent selection steps. In Figure 2 we show the distribution of the

parameters involved in this procedure, noting that the bulk of the sources excluded by the adopted cut in

χ2 involves essentially objects with slopes −3.5 . α . −1.5 (bottom right panel) .

After this preliminary step (Step 1 in Table 2) we are left with 4174 sources that have been further

filtered adopting the selection criteria used by Harvey et al. (2007, see their Tab.1) to identify extragalactic

contaminants on the basis of the 4.5, 8.0, and 24 µm photometry. In this phase we also discarded sources

with both color [4.5]-[8.0] < 0.7 and spectral slope α < −1.6 as representing normal background stars

remaining even after the previous dereddening phase and visible in Figure 3 as a cloud of small black points.

Applying these criteria to our sample we eliminate 2217 sources whose different typologies are reported in

the row labeled “Step 2” in Table 2.

Excluding also these objects we count 1957 sources that have been further scrutinized with additional

color-color and color-magnitude criteria similar to those devised by Gutermuth et al. (2009, their appendix

A) to identify, and then exclude, further extragalactic as well as Galactic contaminants. Following these

authors our sources have been examined in three different phases, the first consisting in the identification

of sources whose colors are compatible with PAH contamined galactic and extragalactic sources, AGN, and

protostellar shocks. In this phase 484 sources (Step 3 row in Tab. 2) were flagged as contaminants so that,

1http://ssc.spitzer.caltech.edu/warmmission/propkit/pet/starpet/index.html
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excluding them from further consideration, we remain with 1473 sources. In Figure 4 the [3.6]-[4.5] vs [4.5]-

[5.8] diagram is shown with the two regions, delimited by the continuous line, corresponding to the colors

appropriate for shocks (upper left) and PAH contamined (lower right) sources (see also Gutermuth et al.

2009, fig.15).

As in the second phase of Gutermuth et al. (2009, appendix A), to include possible YSOs detected only

in the [3.6] and [4.5] bands but not at 24 µm, we reconsidered the whole catalog to select all the cases with

fluxes in JHK[3.6][4.5] bands, but requiring a photometric uncertainty σ < 0.1 mag in the JHK bands to

minimize chances to pick-up sources only because of the additional uncertainty implied by the dereddening

procedure at these shorter wavelengths. In this way we selected 48 sources that, however, do not satisfy

the phase 2 criteria of Gutermuth et al. (2009, appendix A) and then leave unaffected the total number of

candidate YSOs.

In the third phase we recovered sources that, although detected in only one IRAC band, are however

bright at 24 µm. These are potentially interesting sources because they could represent deeply embedded

objects barely visible in the IRAC bands or even Class II sources with inner disk cleared from dust. Because

of this we include in our sample of candidate YSOs all the sources with bright MIPS 24 µm photometry

([24] < 7) to mitigate extragalactic contamination, and color [X] - [24] greater than the corresponding color

expected for a SED with slope α = −0.3, namely [X] - [24] > 5.43, 4.77, 4.10, 3.22 for the four bands, where

[X] is the only available IRAC band photometry. In this way we recovered 4, 4, 0, and 1 sources with good

photometry in the IRAC 3.6, 4.5, 5.8, and 8.0 µm bands, respectively, increasing to 1482 the total number

of candidate YSOs. All of these nine additional sources also show good MIPS 24 µm photometry with

σ < 0.2 mag. Finally, we complete the selection by excluding 12 sources showing a particularly irregular

SED that cannot be represented by a single slope (see Table 2 and section 4.1 ), suggesting they are the

result of source confusion. The final list of candidate YSOs selected out of the Spitzer-PSC catalog is then

constituted by 1470 sources.

3.2. FIR sources

Another starting point to select candidate protostellar sources in the VMR-D cloud can be adopted by

using the Herschel observations that, arranged in a FIR catalog of compact sources as described in Section

2.2, can be exploited to analyze the SEDs. In this respect our approach to select candidate protostars is quite

different because at FIR wavelengths the observations are more sensitive to colder objects, complementing

in this way our view of the starforming process.

Basically, candidate sources are selected by adopting specific prescriptions (see also Giannini et al. 2012)

aimed to exclude cases that, also due to confusion problems, appear as spectrally inconsistent. To this aim

we first eliminate from our FIR-catalog the ambiguities due to the presence of multiple associations, retaining

only the nearest one to the fiducial catalog position, namely that determined in the band merging phase

(see section 2.2). Then, to prepare the analysis of the SEDs, we select the sources detected in at least three

out of the four Herschel bands at λ ≥ 160 µm, not peaking at 500 µm, and without a dip between three

adjacent wavelengths. In addition, we also require that these sources appear as resolved at λref = 250 µm,

a reference wavelength we assume to correspond to an optically thin regime (Elia et al. 2013). All of these

prescriptions are in view of exploiting a simple modified blackbody model to fit the Herschel FIR fluxes in

the subsequent classification phase.

The SEDs selected in this way have been in fact fitted with a simple modified blackbody model that
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assumes an optically thin regime for wavelengths λ > λ0 and an optical depth described by τ = (ν/ν0)
β ,

where β = 2 is appropriate for simple dust models and ν0 = c/λ0 is the frequency corresponding to τ = 1.

The model fluxes are computed from the relation:

Fν = (1− e−τν ) Bν(Td) Ω (1)

where Td is the dust temperature and Ω is the solid angle subtended by the source to the observer. The fact

Ω can be observationally constrained clarifies our previous requirement for resolved sources so that, to this

aim, we consider as spatially resolved all the sources with a deconvolved size satisfying:

FWHMλ,dec =

√

FWHM2
λ −HPBW2

λ > 0.6×HPBWλ (2)

where FWHMλ is the observed source size and HPBWλ is the instrumental half power beam width at the

given wavelength. Whith these choices, and assuming the VMR-D distance of 700 pc (Liseau et al. 1992),

the beam size and the minimum resolved size corresponds to ∼0.06 pc and ∼0.02 pc, respectively.

However, constraining Ω with the deconvolved size at λref = 250 µm is not strictly appropriate at all

wavelengths, due to the increase of the apparent size when colder and larger volumes becomes “visible” at

longer wavelengths. For this reason, before applying the fitting procedure, we normalized the fluxes obtained

at longer wavelengths to the same angular size by scaling them with respect to the ratio of the deconvolved

sizes, namely FWHMλref ,dec/FWHMλ,dec. This treatment is justified by the expectation that the radial

density law in the cores is of the kind ρ(r) ∝ r−2 implying for the mass that M(r)∝ r (Shu 1977), a situation

that in absence of a strong temperature gradient suggests the aforementioned flux scaling at optically thin

wavelengths (Motte & André 2001; Giannini et al. 2012).

Finally, by using a fitting procedure based on the Levenberg-Marquardt technique (Markwardt 2009)

we derive best fitting values for Td, and λ0, in this way also checking that the best fits always occur for

λ0 < 100 µm, a posteriori justifying our assumption of an optically thin regime at λ = 250µm.

4. Classification

Here we exploit the fluxes collected both in the MIR and in the FIR catalogs to classify the protostars

and characterize the SF process in the VMR-D cloud. In the following we discuss two different schemes we

use for classifying Spitzer and Herschel selected sources, respectively.

4.1. MIR sources

As described in the introduction, here we adopt the YSOs classification scheme based on the spectral

slope as evaluated in the MIR spectral range, with the addition of a further class, the Class 0. The latter

has been introduced to include objects in the earliest phases that are very faint or even undetected in the

MIR, being more easily detected in the FIR/submillimetric range. The physical basis for this scheme relies

on the evolutionary scenario in which a central object is initially surrounded by an envelope of gas and dust

whose spectral importance decreases with time in favour of an emerging hotter circumstellar disk. The global

spectral appearance consequently changes so that an external observer would classify the YSO depending

on the MIR spectral slope and then on the elapsed time from the end of the envelope dominated phase

corresponding to the Class 0 stage. However, due to the intrinsic MIR faintness during the Class 0 stage, the
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least evolved protostars cannot be efficiently identified in this spectral region so that other complementary

classification schemes have been proposed that are based on different observables as, e.g., the bolometric

luminosity and temperature (see Chen et al. 1995; Young & Evans 2005), quantities we shall consider later.

Here we limit ourselves to classify the candidate YSOs by considering the spectral slope in the interval

2 . λ(µm) . 24 and to this aim we use all the available fluxes collected in the MIR catalog. Two distibutions

are shown in Figure 5, corresponding to the slopes obtained for the YSOs located ON and OFF-cloud, 869

and 356 cases respectively. Hereinafter with ON-cloud sources we mean those projected within the yellow

contour line shown in Figure 1, corresponding to N(H2)=6.5×1021 cm−2 in the column density map obtained

by exploiting the Herschel/Hi-GAL observations with the same procedure adopted by Elia et al. (2013). After

regridding the 160, 250 and 350 µm maps onto the pixels of the 500 µm map, we computed the corresponding

cold dust temperature and column density maps. This has been done by fitting the modified black body

model in Equation (1) to the intensities observed at the different wavelengths in each pixel of our maps,

assuming the optically thin case as a justified approximation at these wavelengths. Note however that in

the region outside the Herchel-PACS coverage only the three SPIRE fluxes are available and then here we

derive less accurate column density values.

The final contour line obtained, beyond delimiting the cloud that is visible on our maps, corresponds

to a visual extinction of AV ∼ 3.5 that is approximately the extinction beyond which the largest number of

protostars are found in the Orion A molecular cloud (Lada et al. 2013) and the column density distribution

in the Auriga I cloud enters the low density region of the cloud itself (Froebrich & Rowles 2010).

Conversely the OFF-cloud sources, that we consider as representative of the background, are those

located outside the previous contour line. Our cloud is embedded in a larger complex so that what we define

background here could not represents the true Galactic background, but instead should be considered a

mixture of two components, one associated to the same Vela cloud and the other to the field. Despite this

ambiguity the subtraction of the OFF from the ON-cloud component, weighting for the corresponding solid

angles, remains appropriate to estimate the consistency of the “genuine” ON-cloud population.

The two histograms in Figure 5 show that earlier classes are relatively more abundant in the ON-cloud

region and simply reflect the statistics, obtained for the different classes at the end of the source classification

phase, that is reported in Table 3. In this respect it is worth noting that the counts in Table 3 do not change

significantly by moving the boundary line of the ON-cloud region up to ∼15% in column density.

In this analysis we also discarded 12 sources, reported in Table 2 as the Step 4 of the selection pipeline,

because their SED is probably affected by confusion problems. For these sources the linear fit in the log(λFλ)

vs log(λ) diagram could not reasonably account for their peculiar SED that appears monotonically decreasing

up to 8 µm, reminiscent of a Class III, and then suddenly rising in the 24 µm band.

We note however that, despite our efforts in eliminating the background contamination, the number of

Class III sources remains the most uncertain because the colors of the normal stars closely mimic those of

this class. Consequently, the number of the Class III sources should be considered more as an upper limit

than as an intrinsic characteristic of the cloud.

4.2. FIR sources

Our FIR catalog is based on the Herschel sources and thus it is expected to be particularly rich in cold

objects. In principle such objects can be either early protostars or quiescent cores and then it is essential
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to devise some criterium to distinguish protostellar from starless cores. This task can be accomplished by

considering that while starless cores should be characterized by a single cloud temperature, the protostellar

ones are instead expected to show a temperature gradient just because they harbour a protostar. To this aim

we use the modified blackbody model described by Equation (1) to fit the FIR spectral points, but excluding

the 70 µm fluxes since at this short wavelength the emission more likely results from warmer material and

is then useful to trace the early protostellar phases. In other words the observed 70 µm flux is taken as

discriminating the protostellar/starless nature of the sources depending on its compatibility with the flux

expected from the model that best-fits the SED at the longer wavelengts. Consequently, objects showing

a 70 µm flux exceeding the model flux by more than 3σ are considered protostars while in all the other

cases, including those without a 70 µm detection, we simply classify the sources as starless. In this phase,

to allow a reasonable fit of the SED at λ > 70 µm, we only consider Herschel sources showing at least three

detections in the 160 ≤ λ ≤ 500 µm spectral range.

This classification procedure is illustrated in Figure 6 where two typical fits obtained with the model in

Equation (1) are shown. In both cases we obtain a reasonable fit at λ > 160 µm but in the right panel the

70 µm flux is clearly in excess with respect to that expected on the basis of the model. Interpreting this as

a signature for the presence of a hotter embedded source, we classify this object as a candidate protostar.

The converse is valid for the left panel showing a source we classify as starless.

In this way we identified 31 protostellar and 100 starless sources in the overlap region covered by both

Herschel and Spitzer observations (see Figure 1) that reduce to 30 and 92 objects, respectively, when we

consider only those located in the ON-cloud region. Their positions are shown in Figure 1 as red crosses,

superimposed to the Spitzer 8 µm map of the VMR-D region, and their distribution in sizes is shown in the

left panel of Figure 7. The latter values are derived by using the deconvolved angular sizes observed at 250 µm

and assuming a distance of 700 pc. Note that, because we need to consider the 70 µm flux to discriminate

protostars, all these objects are confined to the region also covered by Herschel-PACS observations. In

Table 4 we summarize the result of this classification by exploiting the bolometric temperature, introduced

in the next section, as an alternative parameter to subdivide the Herschel protostars in classes.

5. Bolometric quantities

Motivated by the difficulties in classifying protostars relying on either the MIR (Lada 1987) or the

submillimeter (André et al. 1993) spectral range, Chen et al. (1995) introduced a model-independent clas-

sification scheme based on the bolometric luminosity and the so-called bolometric temperature, originally

defined by Myers & Ladd (1993). Because these two quantities can be derived observationally by using all

the available fluxes, the resulting classification scheme is independent of the spectral characteristics in a

predefined spectral range so that all the evolutive phases, including Class 0, can be more naturally included.

The drawback is that bolometric quantities are more difficult to estimate because their accuracy depends

on the observational coverage of the SED, particularly in the spectral region where most of the object’s

luminosity is emitted.

In this respect the SEDs of the protostellar sources, especially for the earliest objects, typically peak

at wavelengths longer than 24 µm so that the number of cases in which we can directly estimate the

bolometric luminosity is usually limited by the availability of the FIR fluxes. In our case, because the VMR-

D observations cover a wide spectral range, we can accurately compute the bolometric luminosity at least

for all those sources that have been detected in a large spectral range.
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5.1. Spitzer selected sources

We compute the bolometric luminosities of the Spitzer ON-cloud sources by using the fluxes reported in

the MIR catalog, recalling that this also includes the associated Herschel fluxes, as described in section 2.1.

Preliminarly we purge the MIR catalog from multiple associations with counterparts coming from another

catalog that satisfy the adopted positional constraint with more than one Spitzer-PSC source. In such cases

we leave only the nearest association to the Spitzer-PSC position, ensuring in this way that each associated

flux enters only one of the SEDs we consider. Furthermore, to obtain accurate luminosity values, we limited

our attention to consider only the sources satisfying all of these requirements:

- the SED is composed by at least six observed spectral points

- at least two FIR fluxes (λ ≥ 24 µm) are available

- at least three fluxes are available in the MIR (λ < 24 µm) spectral region.

As a consequence, because long wavelength fluxes are needed to accurately obtain bolometric quantities,

we practically focus our attention to the ON-cloud sources falling within the region surveyed by Herschel

PACS+SPIRE as is shown in Figure 1. With these criteria we practically select 33 objects whose SEDs are

Class I and FS and whose photometry is reported in Table 5. For these we assume a distance of 700 pc

(Liseau et al. 1992) to obtain the luminosity Lbol that is computed by using a power law piecewice integration

between data points, including a Rayleigh-Jeans tail extending toward the long wavelengths. For the same

objects we also compute the bolometric temperature given by (Myers & Ladd 1993):

Tbol = 1.25× 10−11 ν (3)

where ν is the mean frequency weighted with respect to the flux, defined as:

ν =

∫∞

0
νFνdν

∫∞

0 Fνdν
(4)

The result of this procedure is presented in Figure 8 where the bolometric luminosities and temper-

atures, computed for the 33 ON-cloud sources satisfying the preceding criteria, are shown superposed on

some evolutionary tracks taken from Myers et al. (1998). In the bottom of this figure we also report the

correspondence between Tbol and the evolutive classes suggested by Chen et al. (1995) and Evans II et al.

(2009). It is noteworthy that the VMR-D cloud shows a relatively large number of sources (7 out of 33)

that, classified as Class I (6 sources) and FS (1 source) according to their spectral slope in the MIR spectral

range, show however Tbol < 70 K suggesting instead that they could well be Class 0 objects as far as the

bolometric temperature is concerned. This result confirms that the Spitzer sensitivity is sufficient to detect

at least some of the Class 0 objects (Dunham et al. 2014) and in fact we find that in the VMR-D region

∼ 20% of the Spitzer selected protostars can well be Class 0 sources.

5.2. Herschel selected sources

Herschel observations are more sensitive to the early protostellar phases (see, e.g., Stutz et al. 2013)

and then give us the opportunity to complete our information on the early objects. In this perspective the

bolometric temperature and luminosity for the 30 protostellar and the 92 starless Herschel ON-cloud sources
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have been computed by using the merged FIR catalog described in section 2.2. However, this catalog also

includes complementary fluxes in the MIR spectral range so that we always use all the available fluxes,

that for the ON-cloud protostars are reported in Table 6, to obtain the source luminosities. The resulting

luminosity distribution is shown in the right panel of Figure 7 where a trend is apparent for the protostars

to be, on average, more luminous than the starless cores. As expected, an opposite trend can be seen in the

size distribution shown in the left panel where the protostellar sources appear as more compact objects with

respect to the starless ones.

By computing the bolometric temperatures from Equation (3) we also obtain the corresponding luminosity-

temperature diagram that is shown in Figure 9. It can be directly compared with Figure 8 because both refer

to the same region of the VMR-D, namely the intersection between the Herschel coverage, the Spitzer-PSC

catalog, and the ON-cloud region that is shown in Figure 1. In the same figure the positions of both the

Spitzer and Herschel selected sources are also shown.

Among these Herschel selected protostars we also find cases with Tbol < 70 K that can be classified as

Class 0 objects, even though in this case they are relatively more abundant (17 out of 30 protostars) than in

the Spitzer selected sample. This is clearly as expected because the earlier phases, corresponding to colder

objects, are more easily detected at the longer wavelengths of the Herschel observations.

It is however noteworthy that 10 out of the 30 Herschel protostars are also detected by Spitzer so that the

total number of protostars in this region amounts to 53 sources. We then find that the Herschel observations

are necessary to reveal 20 new protostars, corresponding to approximately one third of the total population

in the surveyed part of the VMR-D cloud.

For the protostars in common, in Table 7 we report the classification determined by using the two

schemes parameterized by the MIR spectral slope (Lada 1987) and by the bolometric temperature (Chen et al.

1995; Evans II et al. 2009), respectively.

Considering now that the angular extension of our ON-cloud investigated region is ∼ 0.48 deg2 and that

we adopted a nominal distance of 700 pc for the VMR-D, we find a protostellar surface density of ∼ 0.7 pc−2.

A comparison with the star formation scaling law derived by Lombardi et al. (2013) for the Orion molecular

cloud suggests that the VMR-D protostellar density would be compatible with a visual extinction AV ∼ 5.5,

a value we find inside our ON-cloud region delimited by AV ∼ 3.5.

6. Discussion

A preliminary analysis of the young stellar population in the VMR-D cloud was presented in Paper I,

but limited to the sources detected in all the four Spitzer-IRAC bands. Now, considering the full sample of

the Spitzer-PSC sources and adopting a more demanding selection procedure, we obtain a more complete

and reliable set of candidate YSOs to derive more accurate global properties of the SF in this cloud. Table 8

summarizes our results and, for the sake of comparison, also reports the results obtained by Evans II et al.

(2009) for the SF regions of the c2d Spitzer legacy program. The comparison with Paper I shows that,

despite the addition of sources detected in only three or even two IRAC bands, the number of FS and Class

II candidate YSOs is similar as a result of adopting more stringent criteria to reject reddened photospheres

in the selection pipeline (see Tab. 2 and Fig. 2). On the other hand, we select more Class I objects because a

significant number of additional sources, detected in three or two IRAC bands, cannot be fitted by reddened

photospheres and pass all the subsequent color-color and color-magnitude selection criteria discussed in
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Section 3. These are mainly sources detected at 3.6 and 4.5 µm, namely in the two more sensitive IRAC

bands that are approximately ten times more sensitive than the 5.8 and 8.0 µm bands. The flux distribution

of these additional sources peaks around 0.1 mJy showing that at these wavelengths they are faint objects

near the completeness limit of the Spitzer-PSC catalog (see Tab. 1). Note however that, for the sake of a

robust detection, these sources have been included in our analysis only if they also show a MIPS 24 µm

counterpart.

Similarly, the number of Class III objects is noticeably larger than that quoted in Paper I. In this case

the additional sources are mainly detected only in the first three IRAC bands. Despite a large fraction of

these three-band sources are actually discarded as reddened photospheres, a still consistent number survive

our selection steps, showing fluxes brighter than 0.1 mJy with a distribution peaking at 0.4, 0.3, and 0.25

mJy in the first three IRAC bands, respectively. In this respect we must consider that the VMR-D line of

sight crosses the Galactic plane and thus is particularly contamined by giant stars that, because of their

thin dust envelopes, can closely mimic a Class III SED, making it difficult to distinguish them from genuine

YSOs. In this respect we recall that also the 8 µm PAH emission, which can be produced in carbon rich

red giant envelopes as well as in blob of nebulosity, could bias the selection of Class III sources in particular

for the faint objects. Despite our efforts to mitigate this problem by adopting appropriate color constraints

in Section 3 and by subtracting the surface density of the YSOs seen outside the cloud (see Table 3), we

consider that the number of Class III sources quoted in Table 3 and 8 is the most uncertain.

6.1. Comparison with other SFRs

To compare the relative abundance of the different classes in VMR-D with those characterizing other

SFRs, we show in Figure 10 the number ratios for Class I, FS, and Class II sources obtained in the different

studies based on Spitzer observations, along with their uncertainties evaluated by assuming Poisson statistics.

In this diagram the Class I/FS ratio for the VMR-D is well in the range of the other SFRs, while the ratio

(ClassI+FS)/Class II appears clearly displaced toward the largest values. A possible sistematic shift in this

diagram could be produced by the interstellar reddening that tends to steepen the spectral slope and then to

produce a bias in the classification favouring the earlier classes. However, reasonable values of the interstellar

extinction toward VMR-D do not significantly influence the position in this diagram as is shown by the arrow

in Figure 10 that represents the effect of an interstellar extinction AV = 5 mag. Given the values estimated

for the insterstellar extinction toward VMR-D (AV ∼ 2mag, Cambresy 1999; Joshi 2005) we find that the

offset position of the VMR-D in this diagram cannot be explained by this effect and then more probably

reflects an intrinsic difference in the relative populations. That this can be the case is also shown by the

work of Hsieh & Lai (2013) who noted that the relative number of the YSOs in Perseus significantly change

if one considers the whole region or, separately, the two subregions extending eastward and westward of the

R.A.=54◦.3. To illustrate this point in Figure 10 we also report these two subregions as EPer and WPer, in

this way showing how they diverge from the position occupied by the Perseus considered as a whole.

Intuitively we can guess that, in terms of a single SF burst, early objects are initially favoured so that

both Class I/FS and (Class I+FS)/Class II number ratios should be relatively high. The absolute value and

the time dependence expected for these ratios are clearly related to the specific modeling of the physical

processes involved. Here we can only say that, if the position in this diagram has an evolutionary meaning,

the VMR-D cloud appears much more similar to WPer and Ophiucus than to the other SFRs. However, if

the SF occurs in multiple episodes or proceeds as a continuous process, Figure 10 cannot be easily interpreted

and theoretical modeling is decisive to disentagle the different effects, a matter that is however beyond the
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scope of the present work.

This simplified analysis suffers however at least two limits that should be considered in future work: the

possibility that Class II reddened disks can appear as FS sources (Dunham et al. 2014) and the presence,

among the Class I objects, of cases that could well be Class 0 on the basis of their bolometric temperature.

The first possibility tends to move the individual clouds toward the upper-left part of Figure 10 as could be

the case for Ori, Mon, and CepOB3 whose FS sources have been selected by Kryukova et al. (2012) with

criteria that are more restrictive than those used for the other SFRs. The second point on the possible

presence of some Class 0 among the Class I objects should not change the significancy of the diagram as

long as we simply reconsider that Class 0+I constitute a single counting bin. In this sense it is however

noteworthy the larger relative content of protostars in VMR-D, WPer and Oph, suggesting for these regions

a more recent SF event.

Once the YSOs are identified, further relevant quantities can be derived that characterize the SF in our

cloud. These are reported in Table 9 and are obtained for a distance of 700 pc and under some simplifying

assumptions as a mean mass of 0.5 M⊙, a binary fraction of 0.5, and an age of 2 Myr (Evans II et al. 2009),

the latter being an estimate of the time taken to pass through the Class II SED phase. It is interesting that,

as for the position of the VMR-D in Figure 10, we also find a greater similarity of the SF rate value to that

of the Ophiucus cloud than to those of the other SFRs.

6.2. Protostellar luminosity function

The PLF, determined by using all the protostars we find ON-cloud for which an accurate bolometric

luminosity has been obtained in section 5, is shown in Figure 11. The completeness luminosity Lcom ≃ 0.35

L⊙, shown as a vertical line, is evaluated on the basis of the completeness fluxes given in Table 1. In this

figure we report only sources located ON-cloud in the overlap region observed by both Spitzer and Herschel,

so that a comparison is possible between the ability of the two approaches to detect protostars. In particular

we select 33 Spitzer and 30 Herschel protostellar sources respectively so that, considering that 10 sources are

present in both samples, we conclude that in this region the Herschel observations contribute 20 additional

protostars to those detected by Spitzer, leading up to 53 objects the total number of protostars. Taken all

together these produce a more complete and representative PLF that is shown in the same Figure 11 with a

continuous line. In the same figure three curves are also superimposed representing the PLF expected, after

1 Myr evolution, by models considering competitive accretion, turbulent core, and two component turbulent

core, computed by Offner & McKee (2011) with an upper limit for the final stellar mass of 3 M⊙.

A comparison with the PLF already known for other clouds suggests that the high luminosity tail

extending beyond 100 L⊙ makes the PLF in VMR-D more similar to those found in the high mass SFRs

(Kryukova et al. 2012). The most luminous source, namely 42629 in the Spitzer-PSC numbering, is a Class

I in both classification schemes, based on the MIR spectral slope and the bolometric temperature, and is

located in the center of a bright IR cluster (IRS17, Liseau et al. 1992; Massi et al. 2000). A more quantitative

comparison with the luminosity distribution obtained in other SFRs is presented in Table 10 that summarizes

simple statistics corresponding to high and low-mass cases. The tabulated values suggest that the PLF in

the VMR-D is more similar to that exhibited by the high mass SFRs, especially after correction of the

reddening effect. Note however that our luminosities have not been corrected for this effect because they are

essentially associated to Class 0 and I objects whose luminosity is dominated by the FIR contribution and

is only marginally affected by the extinction.
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A much more important difference is due to the completeness luminosity that in our case is approximately

ten times that quoted by Kryukova et al. (2012). These authors in fact, adopting a remarkable relationship

they find between the bolometric and the MIR luminosity of the YSOs with α > 0, derive the bolometric

luminosity for a large number of objects with a well sampled SED in the MIR, in this way exploiting the

high sensitivity of Spitzer-MIPS 24 µm observations at the risk of an uncertain extrapolation. With this

method they sensibly enlarge the number of sources useful to obtain a better coverage of the low luminosity

tail of the distribution. In our case we adopt a more conservative approach and compute the bolometric

luminosity of Spitzer selected sources only when at least two good quality FIR fluxes are actually observed

in the 70–500 µm range, with the result of a larger completeness luminosity that is most probably the cause

of the differences seen in Table 10.

6.3. Envelope masses

Because the PLF depends on both mass and time, its relationship to the initial mass function of the

stars produced by the protostars is not straightforward. Ideally, one should know both the luminosity and

the age of an object to infer its mass on the basis of some theoretical model. In principle, because the

contributions to the observed luminosity come from a central object as well as from a surrounding disk and

possibly an envelope, a detailed modeling of the global SED is to be used to disentangle the masses of the

different components.

Nevetheless, in the early phases when the protostars appear as a Class 0/I, it is customary to simplify the

problem of deriving the envelope mass by assuming that the FIR emission is optically thin and is then useful

to trace the total envelope mass. In our case we could consider the subsample of the ON-cloud protostars

with an observed 500 µm flux, assuming that this is produced in an optically thin regime and adopting for

the dust temperature the value obtained by fitting the Herschel fluxes at λ ≥ 160µm (see Section 3) with the

model in Equation (1). However, given that most of our sources are resolved at Herschel wavelengths we can

also obtain the masses following the derivation in Pezzuto et al. (2012) that involves the angular extension

Ω of the emitting body:

M =
D2 Ω

kref

(

λ0

λref

)2

(5)

This expression allows us to derive the envelope mass for the 30 Herschel protostars (including the 7

cases without a 500 µm flux, see Table 6) because it does not depends explicitely on the observed flux at a

given wavelength. This dependence is hidden in the fitting of the observed FIR fluxes with Equation (1) that

gives also, as a by-product, the λ0 value, namely the wavelength at which τ=1. Similarly, we also extend

this same approach to the starless cores detected in at least three Herschel wavelengths at λ ≥ 160 µm.

The envelope masses have been then obtained adopting an emission coefficient kref=0.1 cm2 g−1 of gas

mass at λref=250 µm (Hildebrand 1983; Suutarinen et al. 2013) and a scaling law k = kref(λref/λ)
2. In

Figure 12 we present the resulting distribution of the envelope masses (upper panel) computed for both

protostellar and starless sources. Because in the latter case the derived values represent the true total mass,

it is interesting to compare the derived masses with the Bonnor-Ebert critical mass approximately given by

MBE ≈ 2.4 RBE a2/G, with a being the sound speed at the source temperature. Such a comparison offers

a simple way to separate prestellar from quiescent cores by simply assuming that masses M & 0.5 MBE are

bound and then should be considered as prestellar because they more probably evolve toward a protostar.

Assuming for RBE the observed deconvolved radius at 250 µm we find that M > 0.5MBE for 67 out of
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92 ON-cloud sources that we then consider as bound and potentially prestellar. In Figure 12 the distribution

of all the starless sources is shown as a dashed red line that merges, at M > 1M⊙, in the continuous red line

corresponding to the prestellar component, suggesting that all the cores more massive that the solar mass are

prestellar. Considering poissonian uncertainties and varying the binsize in reasonable limits ( 10% around a

bin size=0.2) we obtain for masses M > 1M⊙ a slope of -0.76±0.51 where the uncertainty is dominated by

the poor statistics. Even if this value is lower than that found in Vela-C molecular cloud by Giannini et al.

(2012) and in the outer Galaxy by Elia et al. (2013), given the large uncertainty involved we cannot claim

for meaningful differences.

In the same figure we also show (bottom panel) the Lbol vs Menv diagram for the VMR-D protostars with

superimposed the evolutive tracks computed by Molinari et al. (2008) for different initial envelope masses.

For comparison we also report the starless sources noting that they populate the low luminosity part of the

diagram and show a relatively smaller luminosity spread with respect to the protostars. A linear fit to their

distribution in this diagram give a slope that is shallower than that found in both Vela-C (Giannini et al.

2012) and the third Galactic quadrant (Elia et al. 2013), suggesting possible differences in the clump/core

forming mechanism. On the other hand the protostars are more widely distributed in this diagram, the

most of them being located on the rising branch of the evolutionary tracks corresponding to the main

accretion phase. Following André et al. (2000) we also report in this diagram two lines that delimit what

is thought to be the transition zone separating the low luminosity branch in which Menv > M⋆, generally

associated to the Class 0 phase, from the region in which Menv < M⋆ corresponding to the Class I and later

phases. Remarkably, in most cases the protostars fall below the transition region suggesting a very recent

star formation episode. However a similar distribution of the protostars is also seen in other SFR observed

with Herschel (Giannini et al. 2012; Elia et al. 2013) and this seems to be unrealistic, raising a problem of

consistency with the model. From an observational point of view, one possibility is that, due to our need to

know at least three fluxes at λ ≥ 160 µm to appropriately fit a modified blackbody, we introduce a selection

effect favouring the earliest objects, a point that should be better considered in future work.

7. Conclusions

In this work we have studied the YSO population in the VMR-D cloud by exploiting both the Spitzer-

PSC catalog, obtained from Spitzer observations and published in Paper I, and the recent Herschel observa-

tions carried out during the completion of the Hi-GAL key program involving part of this region. The main

results can be summarized as follows:

- A list of 1470 candidate YSOs, identified out of the ∼170,000 Spitzer-PSC catalog sources, has been

obtained through a selection pipeline designed to exclude reddened normal stars, as well as Galactic

and extragalactic contaminants.

- YSOs have been subdivided in classes according to their spectral slope in the near-mid IR and their

relative numbers (86, 53, 136, and 282 for Class I, FS, II, and III, respectively), obtained after sub-

traction of the estimated background population, have been compared with those characterizing other

star forming clouds showing that the YSO content in VMR-D is similar to that seen in Ophiucus and

in the western part of Perseus.

- The Spitzer-PSC catalog has been complemented to obtain the largest data set on the continuum

spectrum of the sources, including fluxes from the 2MASS and WISE public surveys as well as from
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new Herschel FIR observations and previous 1.2 mm SEST-SIMBA continuum mapping of the VMR-D

region.

- The Herschel/Hi-GAL maps (λ = 70, 160, 250, 350,and 500 µm) overlapping our VMR-D region have

been first used to identify the ON-cloud regions delimited by a column density N(H2)=6.5×1021 cm−2

and then analyzed to obtain a merged catalog of compact FIR sources useful for searching additional

protostars undetected by Spitzer. This catalog, complemented with fluxes coming from the Spitzer-

PSC catalog as well as from WISE and the 1.2 mm catalog, has been exploited to find and characterize

30 protostellar and 92 starless sources and to evaluate their bolometric luminosities and temperatures.

- Bolometric luminosities and temperatures have been also obtained for 33 Spitzer selected ON-cloud

protostars. These have been plotted in a Lbol vs Tbol diagram showing that 7 (six Class I, and one

FS) out of these 33 protostars can actually represent Class 0 objects due to their low bolometric

temperature (Tbol <70 K).

- The distribution of the luminosities of both the Spitzer and Herschel selected protostars show a bright

outlier, corresponding to the same object Spitzer-PSC 42629 (IRS17 in Liseau et al. 1992), suggesting

that VMR-D is also forming relatively high mass objects.

- The complete PLF of the ON-cloud region covered by both Spitzer and Herschel observations has

been obtained by merging together the 33 Spitzer and the 30 Herschel selected protostars. Given that

10 objects are in both samples we count a total of 53 objects and find that Spitzer is able to detect

approximately two-thirds of the protostellar population actually present in VMR-D. This stresses the

need for using also the Herschel observations in studying the earlier protostellar phases.

- The envelope masses have been obtained for all the Herschel protostellar sources detected ON-cloud and

for which an envelope temperature can be determined. A plot of the masses versus the corresponding

luminosities shows that, by comparison with evolutive tracks, we are mainly sampling objects in the

main accretion phase. A possibility is that a selection effect is implied by our preference for sources

also detected in the FIR, a choice that is dictated by the need to obtain accurate bolometric quantities.
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Table 1. Catalogs considered.

Name 2MASS WISE Spitzer-IRAC+MIPS Herschel SEST-SIMBA

Band J H K 3.4 4.6 12 22 3.6 4.5 5.8 8.0 24 70 70 160 250 350 500 1200

Beam size (′′) 2.5 – 3 6 – 12 1.7 – 6 7.6 12.3 18 25 36 24

Association radiusa (′′) 0.6 0.9 1 4 8 11 16 21 12

Completenessb flux (mJy) 0.76 1.23 1.67 4.9 2.7 3.2 5.3 0.05 0.05 0.29 0.4 2.0 500 1800 1100 600 600 600 20

Referencec 1 2 3 4 5

a1-σ positional uncertainty for 2MASS and WISE catalogs. For Spitzer, Herschel and SEST data the association radius is estimated

from the references given.

bCompleteness fluxes are meant for crowded regions: 2MASS 99%, WISE 95%, Spitzer 99%, Herschel: 90%, SEST: sensitivity limit.

cReferences: (1)Skrutskie et al. 2006, (2)Cutri et al. 2013, (3)Paper I, (4)Elia et al. 2013, (5)Massi et al. 2007.

Table 2. Spitzer Source counts through the selection pipeline.

Step 1234a 123X 12X4 1X34 X234 XX34 1XX4 12XX 1X3X X2X4 Total

0: first selectionb 8852(436) 7210(28) 151(12) 19(12) 30(19) 9(9) 1(1) 116(116) 2(2) 1(1) 16391

1: reddened stars -6110 -6063 -9 -10 -15 -6 0 -3 0 -1 -12217

2: Har07 criteriac -2059 0 -142 0 -15 0 -1 0 0 0 -2217

3: Gut09 criteriad -17 -467 0 0 0 0 0 0 0 0 -484

4: undefined slope -9 -3 0 0 0 0 0 0 0 0 -12

Total 657 677 0 9 0 3 0 113 2 0 1461e

aFour digits are used to refer to the IRAC bands in which the sources have been detected: e.g. 12XX refers to sources detected in the

first and second band only. The X23X column is not reported because no sources of this kind have been found.

bNumbers in parenthesis are sources showing also MIPS-24 µm fluxes.

cHarvey et al. (2007).

dGutermuth et al. (2009).

eNine bright 24 µm sources, detected in only one IRAC band, have been subsequently added (see text).

Table 3. VMR-D Statistics of the Spitzer YSOs (MIR catalog).

Region ONa OFFa OUTa TOT ON-OFFb

Ωc (deg2) → 0.54 0.52 0.14 1.20 0.54

Class I 105(12%) 22 22 149 82± 11 (15%)

Flat spectrum 58 (7%) 6 9 73 52± 8 (10%)

Class II 171(20%) 40 33 244 129± 14 (24%)

Class III 535(61%) 288 181 1004 236± 28 (51%)

aThe columns ON and OFF refer to regions inside and outside the column

density contour line derived from the Herschel observations and shown in

Figure 1. The OUT column refers to sources of the IRAC catalog outside

the coverage of the Herschel-SPIRE observations.

bThe difference has been weighted by the corresponding solid angles and

the estimated uncertainty is poissonian.

cSolid angle subtended by the different subregions.
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Table 4. VMR-D Statistics of the Herschel protostars (FIR catalog).

Regiona ON OFF

Ω(deg2) → 0.48 0.33

Class 0b 17 · · ·

Class I 12 1

Flat Spectrum 1 · · ·

aON and OFF have the same

meaning as in Tab. 3 but the cor-

responding solid angles are further

limited by the Herschel-PACS cov-

erage (see text).

bBased on the correspondence

between bolometric temperature

and classes (see text and Figure 9).
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Table 5. Photometry of the Spitzer selected protostarsa

ID PSCb RA DEC FJ ± ∆FJ FH ± ∆FH

FK ± ∆FK FW1 ± ∆FW1 FW2 ± ∆FW2 FW3 ± ∆FW3 FW4 ± ∆FW4 F3.6 ± ∆F3.6

F4.5 ± ∆F4.5 F5.8 ± ∆F5.8 F8.0 ± ∆F8.0 F24 ± ∆F24 F70 ± ∆F70 F160 ± ∆F160

F250 ± ∆F250 F350 ± ∆F350 F500 ± ∆F500 F1200 ± ∆F1200
c

1 8036 131.28840 -43.63255 · · · · · ·

· · · 0.00016 ± 0.00005 0.00025 ± 0.00009 0.0027 ± 0.0003 0.0165 ± 0.0013 0.000040 ± 0.000004

· · · · · · · · · 0.017 ± 0.003 · · · 1.09 ± 0.08

2.70 ± 0.06 3.08 ± 0.08 1.63 ± 0.06 · · ·

2 10558 131.31710 -43.86800 0.000682 ± 0.000057 0.000835 ± 0.000088

0.00076 ± 0.00010 · · · · · · · · · · · · 0.00069 ± 0.00003

0.00042 ± 0.00001 · · · · · · 0.0361 ± 0.0053 · · · 2.71 ± 0.03

· · · · · · · · · · · ·

3 17534 131.38797 -43.82994 0.051 ± 0.01 0.136 ± 0.004

0.29 ± 0.01 0.82 ± 0.05 0.94 ± 0.04 1.97 ± 0.02 9.01 ± 0.07 0.58 ± 0.02

0.60 ± 0.02 0.68 ± 0.02 1.08 ± 0.02 1.93 ± 0.26 25.5 ± 2.5 · · ·

· · · · · · 32.3 ± 0.1 · · ·

4 19124 131.40512 -43.31155 0.00099 ± 0.00006 0.0199 ± 0.0005

0.158 ± 0.003 1.44 ± 0.15 4.6 ± 0.7 2.12 ± 0.03 1.36 ± 0.03 1.13 ± 0.05

1.87 ± 0.08 2.44 ± 0.04 2.59 ± 0.07 0.94 ± 0.15 0.49 ± 0.01 · · ·

· · · · · · · · · · · ·

5 19667 131.41093 -43.91746 · · · 0.0023 ± 0.0002

0.0089 ± 0.0003 0.0233 ± 0.0005 0.0405 ± 0.0007 0.062 ± 0.001 0.259 ± 0.005 0.0263 ± 0.0007

0.0326 ± 0.0014 0.0419 ± 0.0008 0.050 ± 0.001 0.194 ± 0.008 0.48 ± 0.02 4.04 ± 0.03

16.70 ± 0.26 7.29 ± 0.07 4.79 ± 0.08 · · ·

6 21825 131.43290 -43.45194 · · · · · ·

· · · 0.00162 ± 0.00005 0.0088 ± 0.0002 0.053 ± 0.001 0.411 ± 0.006 0.0120 ± 0.0005

0.027 ± 0.001 0.053 ± 0.002 0.082 ± 0.002 0.361 ± 0.006 1.96 ± 0.02 1.98 ± 0.04

· · · · · · · · · · · ·

7 22262 131.43750 -43.44786 · · · · · ·

0.0021 ± 0.0001 0.00712 ± 0.00015 0.01389 ± 0.00026 0.0250 ± 0.0008 0.1386 ± 0.0034 0.00544 ± 0.00017

0.007139 ± 0.000290 0.011046 ± 0.000435 0.013362 ± 0.000505 0.000587 ± 0.000000 · · · 0.659356 ± 0.000453

· · · · · · · · · · · ·

8 23011 131.44509 -43.38967 · · · · · ·

· · · · · · · · · · · · · · · 0.000487 ± 0.000025

0.00157 ± 0.00007 0.00310 ± 0.00009 0.00297 ± 0.00009 0.0579 ± 0.0015 0.71 ± 0.02 0.86 ± 0.03

2.08 ± 0.02 2.12 ± 0.05 2.09 ± 0.06 · · ·

9 24056 131.45576 -43.88890 · · · 0.00081 ± 0.00009

0.0020 ± 0.0001 · · · · · · · · · · · · 0.0033 ± 0.0001

0.0043 ± 0.0002 · · · · · · 0.056 ± 0.001 0.432 ± 0.014 2.66 ± 0.02

10.16 ± 0.08 4.36 ± 0.04 8.84 ± 0.08 · · ·

10 26276 131.47872 -43.91127 0.00116 ± 0.00009 0.0028 ± 0.0002

0.0049 ± 0.0002 0.0064 ± 0.0001 0.0066 ± 0.0001 0.0064 ± 0.0003 0.021 ± 0.002 0.0052 ± 0.0005

0.0055 ± 0.0005 0.0048 ± 0.0003 0.0044 ± 0.0002 0.0226 ± 0.0007 · · · · · ·

2.84 ± 0.07 1.44 ± 0.04 0.940 ± 0.015 · · ·
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Table 5—Continued

ID PSCb RA DEC FJ ± ∆FJ FH ± ∆FH

FK ± ∆FK FW1 ± ∆FW1 FW2 ± ∆FW2 FW3 ± ∆FW3 FW4 ± ∆FW4 F3.6 ± ∆F3.6

F4.5 ± ∆F4.5 F5.8 ± ∆F5.8 F8.0 ± ∆F8.0 F24 ± ∆F24 F70 ± ∆F70 F160 ± ∆F160

F250 ± ∆F250 F350 ± ∆F350 F500 ± ∆F500 F1200 ± ∆F1200
c

11 37210 131.58937 -43.66819 · · · 0.00026 ± 0.00009

0.00067 ± 0.00009 0.00068 ± 0.00002 0.00180 ± 0.00004 0.0011 ± 0.0002 0.0183 ± 0.0011 0.00165 ± 0.00004

0.00200 ± 0.00007 0.00210 ± 0.00008 0.00212 ± 0.00006 0.0154 ± 0.0006 · · · · · ·

1.63 ± 0.03 2.42 ± 0.03 0.52 ± 0.04 · · ·

12 38922 131.60656 -43.90894 0.00074 ± 0.000078 0.0030 ± 0.0001

0.0061 ± 0.0002 0.0121 ± 0.0003 0.0210 ± 0.0004 0.0367 ± 0.0008 0.160 ± 0.004 0.0132 ± 0.0003

0.0193 ± 0.0005 0.0262 ± 0.0005 0.0374 ± 0.0008 0.1066 ± 0.0046 · · · 1.76 ± 0.02

· · · · · · · · · · · ·

13 39571 131.61333 -43.91638 · · · 0.00113 ± 0.00010

0.0020 ± 0.0001 · · · · · · · · · · · · 0.00164 ± 0.00004

0.00158 ± 0.00007 0.00131 ± 0.00004 0.00091 ± 0.00006 · · · · · · 6.95 ± 0.04

12.08 ± 0.07 · · · · · · · · ·

14 39589 131.61359 -43.71115 · · · · · ·

· · · · · · · · · · · · · · · 0.00147 ± 0.00004

0.00213 ± 0.00005 0.00290 ± 0.00006 0.0042 ± 0.0001 0.121 ± 0.004 3.19 ± 0.01 6.97 ± 0.05

21.65 ± 0.13 9.95 ± 0.07 5.31 ± 0.55 · · ·

15 41657 131.63487 -43.54801 · · · · · ·

· · · · · · · · · · · · · · · 0.000027 ± 0.000002

0.000030 ± 0.000002 · · · · · · 0.0201 ± 0.0005 · · · 0.584 ± 0.009

1.48 ± 0.02 2.17 ± 0.03 2.03 ± 0.02 · · ·

16 42629 131.64522 -43.90839 · · · 0.0092 ± 0.0007

0.093 ± 0.003 0.966 ± 0.056 4.8 ± 0.6 14.7 ± 0.1 84.7 ± 0.2 0.85 ± 0.03

1.87 ± 0.07 3.67 ± 0.11 3.4 ± 0.6 > 4d 458.6 ± 2.7 356.4 ± 1.8

458.6 ± 8.0 249.8 ± 1.7 116.3 ± 0.6 8.79

17 47368 131.69429 -43.33628 · · · · · ·

0.00088 ± 0.00010 0.00200 ± 0.00005 0.00424 ± 0.00008 0.0166 ± 0.0004 0.0585 ± 0.0031 0.00373 ± 0.00008

0.0056 ± 0.0001 0.0085 ± 0.0002 0.0125 ± 0.0002 · · · · · · 0.320 ± 0.004

1.357 ± 0.008 1.626 ± 0.015 · · · · · ·

18 47436 131.69495 -43.88731 · · · · · ·

· · · 0.00095 ± 0.00003 0.00333 ± 0.00007 0.0156 ± 0.0003 0.251 ± 0.005 0.00163 ± 0.00006

0.0030 ± 0.0001 0.00370 ± 0.00008 0.00382 ± 0.00007 0.114 ± 0.002 0.780 ± 0.005 1.95 ± 0.01

· · · · · · · · · · · ·

19 48046 131.70117 -43.88612 · · · · · ·

· · · · · · · · · · · · · · · 0.00098 ± 0.00002

0.00255 ± 0.00006 0.00409 ± 0.00009 0.00522 ± 0.00008 0.114 ± 0.007 1.83 ± 0.02 3.63 ± 0.04

· · · · · · · · · · · ·

20 50748 131.72791 -43.87676 · · · · · ·

0.00068 ± 0.00009 0.00199 ± 0.00009 0.0082 ± 0.0002 0.0297 ± 0.0007 0.131 ± 0.004 0.0053 ± 0.0001

0.0114 ± 0.0003 0.0212 ± 0.0004 0.0298 ± 0.0005 0.154 ± 0.003 0.540 ± 0.012 0.754 ± 0.015

2.26 ± 0.04 · · · 6.40 ± 0.02 · · ·
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Table 5—Continued

ID PSCb RA DEC FJ ± ∆FJ FH ± ∆FH

FK ± ∆FK FW1 ± ∆FW1 FW2 ± ∆FW2 FW3 ± ∆FW3 FW4 ± ∆FW4 F3.6 ± ∆F3.6

F4.5 ± ∆F4.5 F5.8 ± ∆F5.8 F8.0 ± ∆F8.0 F24 ± ∆F24 F70 ± ∆F70 F160 ± ∆F160

F250 ± ∆F250 F350 ± ∆F350 F500 ± ∆F500 F1200 ± ∆F1200
c

21 58569 131.80015 -43.37957 · · · · · ·

· · · 0.00164 ± 0.00006 0.0083 ± 0.0002 0.0121 ± 0.0004 0.089 ± 0.003 0.0026 ± 0.0002

0.0070 ± 0.0005 0.0110 ± 0.0006 0.0133 ± 0.0007 0.089 ± 0.005 2.55 ± 0.03 2.43 ± 0.06

3.92 ± 0.20 3.70 ± 0.06 2.42 ± 0.02 · · ·

22 59696 131.80945 -43.30581 0.0033 ± 0.0001 0.0074 ± 0.0002

0.0113 ± 0.0004 0.0199 ± 0.0007 0.032 ± 0.001 0.051 ± 0.002 0.147 ± 0.007 0.0194 ± 0.0005

0.0286 ± 0.0008 0.034 ± 0.001 0.0409 ± 0.0008 0.27 ± 0.04 1.21 ± 0.04 2.50 ± 0.03

3.80 ± 0.03 1.94 ± 0.04 1.52 ± 0.02 · · ·

23 65153 131.85542 -43.81557 · · · · · ·

· · · · · · · · · · · · · · · 0.0088 ± 0.0002

0.0183 ± 0.0006 0.0357 ± 0.0006 0.050 ± 0.001 0.49 ± 0.01 1.88 ± 0.02 2.90 ± 0.06

5.79 ± 0.03 3.02 ± 0.04 2.06 ± 0.04 · · ·

24 65982 131.86223 -43.45189 · · · 0.00058 ± 0.00008

0.00235 ± 0.00012 0.00080 ± 0.00002 0.00294 ± 0.00005 0.00837 ± 0.00063 0.0456 ± 0.0023 0.00534 ± 0.00015

0.00807 ± 0.00015 0.0118 ± 0.0002 0.01596 ± 0.00022 0.0520 ± 0.0010 0.543 ± 0.004 · · ·

· · · · · · · · · · · ·

25 68231 131.88064 -43.89669 · · · · · ·

· · · 0.00108 ± 0.00003 0.0068 ± 0.0001 0.0055 ± 0.0004 0.046 ± 0.002 0.00142 ± 0.00005

0.0044 ± 0.0001 0.0069 ± 0.0002 0.0068 ± 0.0002 0.042 ± 0.004 0.767 ± 0.005 2.66 ± 0.07

5.22 ± 0.03 2.78 ± 0.03 · · · · · ·

26 72151 131.91048 -43.82592 · · · · · ·

· · · 0.00021 ± 0.00002 0.00063 ± 0.00002 · · · 0.024 ± 0.002 0.00038 ± 0.00001

0.00047 ± 0.00002 0.00031 ± 0.00003 · · · 0.0100 ± 0.0003 · · · 1.19 ± 0.01

6.06 ± 0.03 5.54 ± 0.02 5.86 ± 0.02 · · ·

27 72976 131.91688 -43.43769 0.00047 ± 0.00005 0.00216 ± 0.00012

0.00415 ± 0.00015 · · · · · · · · · · · · 0.00640 ± 0.00019

0.00621 ± 0.00012 0.00643 ± 0.00014 0.00568 ± 0.00010 · · · · · · 4.409 ± 0.018

7.35 ± 0.65 8.95 ± 0.07 · · · · · ·

28 83949 131.99760 -43.65348 · · · · · ·

0.0011 ± 0.0001 0.00284 ± 0.00007 0.0056 ± 0.0001 · · · 0.007 ± 0.002 0.0023 ± 0.0001

0.0032 ± 0.0002 0.0041 ± 0.0002 0.0043 ± 0.0001 0.0135 ± 0.0005 · · · 1.44 ± 0.02

4.55 ± 0.02 3.07 ± 0.03 · · · · · ·

29 86208 132.01412 -43.85429 0.00275 ± 0.00012 0.00684 ± 0.00027

0.00938 ± 0.00031 0.01279 ± 0.00027 0.01784 ± 0.00033 0.0569 ± 0.0010 0.1436 ± 0.0038 0.01606 ± 0.00037

0.01977 ± 0.00066 0.02691 ± 0.00055 0.04102 ± 0.00059 0.1091 ± 0.0016 · · · 3.11 ± 0.02

10.07 ± 0.06 5.43 ± 0.03 2.73 ± 0.02 · · ·

30 113290 132.22921 -43.71078 · · · · · ·

· · · · · · · · · · · · · · · 0.000164 ± 0.000004

0.000104 ± 0.000004 · · · · · · 0.0191 ± 0.0033 · · · 0.461 ± 0.006

1.017 ± 0.02 1.44 ± 0.02 · · · · · ·
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Table 5—Continued

ID PSCb RA DEC FJ ± ∆FJ FH ± ∆FH

FK ± ∆FK FW1 ± ∆FW1 FW2 ± ∆FW2 FW3 ± ∆FW3 FW4 ± ∆FW4 F3.6 ± ∆F3.6

F4.5 ± ∆F4.5 F5.8 ± ∆F5.8 F8.0 ± ∆F8.0 F24 ± ∆F24 F70 ± ∆F70 F160 ± ∆F160

F250 ± ∆F250 F350 ± ∆F350 F500 ± ∆F500 F1200 ± ∆F1200
c

31 123062 132.32596 -43.93661 · · · · · ·

0.00069 ± 0.00009 0.00121 ± 0.00005 0.00227 ± 0.00005 0.0061 ± 0.0002 0.021 ± 0.001 0.00172 ± 0.00005

0.00246 ± 0.00005 0.00316 ± 0.00006 0.00331 ± 0.00005 0.0081 ± 0.0004 · · · 0.777 ± 0.006

2.19 ± 0.20 · · · 0.970 ± 0.007 · · ·

32 124358 132.33936 -44.03091 · · · · · ·

· · · · · · · · · · · · · · · 0.00110 ± 0.00002

0.00208 ± 0.00007 0.00319 ± 0.00007 0.00455 ± 0.00008 · · · 2.31 ± 0.03 3.52 ± 0.04

5.84 ± 0.04 4.32 ± 0.05 3.33 ± 0.08 · · ·

33 127425 132.37080 -43.99599 · · · · · ·

· · · · · · · · · · · · · · · 0.00050 ± 0.00001

0.00054 ± 0.00002 0.00055 ± 0.00002 0.00052 ± 0.00001 · · · · · · 0.899 ± 0.005

2.09 ± 0.06 2.02 ± 0.02 1.63 ± 0.02 · · ·

aCoordinates are given in degrees; fluxes (F ) and their uncertainties (∆F ) are given in Jy.

bID in the VMR-D PSC catalog (Paper I).

cThe uncertainty of the 1.2 mm flux is 20% (Massi et al. 2007).
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Table 6. Photometry of the Herschel selected protostarsa

ID RA DEC FW1 ± ∆FW1 FW2 ± ∆FW2 FW3 ± ∆FW3

FW4 ± ∆FW4 F3.6 ± ∆F3.6 F4.5 ± ∆F4.5 F5.8 ± ∆F5.8 F8.0 ± ∆F8.0 F24 ± ∆F24

FBLUE ± ∆FBLUE FRED ± ∆FRED FPSW ± ∆FPSW FPMW ± ∆FPMW FPLW ± ∆FPLW F1200 ± ∆F1200
b

1 131.18478 -43.70255 0.00221 ± 0.00005 0.00141 ± 0.00003 0.0025 ± 0.0004

0.046 ± 0.001 0.00053 ± 0.00004 0.00060 ± 0.00002 0.00067 ± 0.00003 0.00095 ± 0.00003 0.045 ± 0.001

0.35 ± 0.01 0.69 ± 0.01 1.51 ± 0.03 0.72 ± 0.09 0.49 ± 0.01 · · ·

2 131.28860 -43.63342 0.00016 ± 0.00001 0.00025 ± 0.00005 0.0027 ± 0.0003

0.0165 ± 0.0013 0.000044 ± 0.000003 0.00014 ± 0.00001 · · · 0.000091 ± 0.000020 0.0171 ± 0.0007

0.63 ± 0.02 1.09 ± 0.02 2.70 ± 0.03 3.08 ± 0.04 1.63 ± 0.03 · · ·

3 131.39476 -43.85289 · · · · · · · · ·

· · · 0.00175 ± 0.00008 0.00166 ± 0.00005 0.0041 ± 0.0002 0.0091 ± 0.0007 · · ·

19.4 ± 0.5 17.48 ± 0.44 40.6 ± 0.2 27.0 ± 0.1 · · · 3.17

4 131.40118 -43.86400 · · · · · · · · ·

· · · 0.0015 ± 0.0001 0.0016 ± 0.0001 0.0083 ± 0.0009 · · · · · ·

61.65 ± 0.17 76.48 ± 0.18 87.56 ± 0.60 93.30 ± 0.50 · · · 3.70

5 131.41060 -43.91772 0.0233 ± 0.0005 0.0406 ± 0.0007 0.062 ± 0.001

0.259 ± 0.005 0.0263 ± 0.0007 0.033 ± 0.001 0.0420 ± 0.0008 0.050 ± 0.001 0.194 ± 0.008

0.483 ± 0.012 4.04 ± 0.03 16.70 ± 0.26 7.29 ± 0.07 4.79 ± 0.08 · · ·

6 131.42451 -43.86047 · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

8.70 ± 0.06 54.36 ± 0.35 120.98 ± 0.11 75.20 ± 0.19 · · · · · ·

7 131.42975 -43.45671 0.00322 ± 0.00007 0.0156 ± 0.0003 0.0076 ± 0.00062

0.0937 ± 0.0027 0.00240 ± 0.00009 0.0052 ± 0.0002 0.0076 ± 0.0003 0.0080 ± 0.0003 · · ·

0.623 ± 0.009 2.70 ± 0.05 6.82 ± 0.03 4.59 ± 0.05 3.87 ± 0.04 · · ·

8 131.44052 -43.43735 · · · · · · · · ·

· · · 0.0026 ± 0.0002 0.0037 ± 0.0002 0.0044 ± 0.0002 0.0033 ± 0.0001 · · ·

0.399 ± 0.006 1.58 ± 0.01 5.62 ± 0.06 2.85 ± 0.04 1.66 ± 0.09 · · ·

9 131.44492 -43.38979 · · · · · · · · ·

· · · 0.00049 ± 0.00002 0.00157 ± 0.00007 0.0031 ± 0.0001 0.0030 ± 0.0001 0.0579 ± 0.0015

0.707 ± 0.009 0.860 ± 0.008 2.08 ± 0.02 2.12 ± 0.04 2.09 ± 0.16 · · ·

10 131.44581 -43.41722 · · · · · · · · ·

· · · · · · · · · · · · 0.000000 ± 0.000000 0.000000 ± 0.000000

0.847 ± 0.009 1.47 ± 0.01 4.92 ± 0.02 2.70 ± 0.03 2.79 ± 0.09 · · ·

11 131.52779 -43.66405 · · · · · · · · ·

· · · 0.00037 ± 0.00002 0.00048 ± 0.00002 0.0011 ± 0.0001 0.0020 ± 0.0001 · · ·

2.02 ± 0.02 6.94 ± 0.03 16.22 ± 0.06 · · · 9.23 ± 0.09 · · ·

12 131.58482 -43.47723 0.00029 ± 0.00002 0.00040 ± 0.00002 · · ·

0.005 ± 0.002 0.00046 ± 0.00002 0.00048 ± 0.00002 0.00055 ± 0.00002 0.00286 ± 0.00005 0.0071 ± 0.0002

0.56 ± 0.01 0.61 ± 0.04 1.00 ± 0.02 0.74 ± 0.01 0.64 ± 0.01 · · ·

13 131.61105 -43.70360 0.0056 ± 0.0001 0.0041 ± 0.00009 0.073 ± 0.001

0.137 ± 0.004 0.0035 ± 0.0001 0.00251 ± 0.00007 0.0079 ± 0.0007 0.016 ± 0.002 0.13 ± 0.02

5.14 ± 0.04 15.30 ± 0.07 15.24 ± 0.06 · · · · · · 2.78

14 131.61224 -43.93114 · · · · · · · · ·

· · · 0.00029 ± 0.00001 0.00087 ± 0.00004 0.00099 ± 0.00005 0.0004 ± 0.0001 · · ·

1.32 ± 0.02 5.86 ± 0.09 7.938 ± 0.042 5.053 ± 0.024 7.27 ± 0.040 · · ·

15 131.63194 -43.93623 0.0120 ± 0.0003 0.0119 ± 0.0002 0.275 ± 0.003

3.02 ± 0.07 · · · · · · · · · · · · · · ·

38.88 ± 0.23 27.91 ± 0.25 8.41 ± 0.15 19.20 ± 0.09 · · · · · ·
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Table 6—Continued

ID RA DEC FW1 ± ∆FW1 FW2 ± ∆FW2 FW3 ± ∆FW3

FW4 ± ∆FW4 F3.6 ± ∆F3.6 F4.5 ± ∆F4.5 F5.8 ± ∆F5.8 F8.0 ± ∆F8.0 F24 ± ∆F24

FBLUE ± ∆FBLUE FRED ± ∆FRED FPSW ± ∆FPSW FPMW ± ∆FPMW FPLW ± ∆FPLW F1200 ± ∆F1200
b

16 131.63538 -43.54644 · · · 0.00044 ± 0.00001 · · ·

0.023 ± 0.001 0.00019 ± 0.00001 0.00051 ± 0.00003 0.00066 ± 0.00003 0.00085 ± 0.00004 0.0201 ± 0.0005

0.26 ± 0.01 0.58 ± 0.01 1.48 ± 0.02 2.17 ± 0.03 2.03 ± 0.02 · · ·

17 131.64540 -43.91031 · · · · · · · · ·

· · · 0.85 ± 0.03 1.87 ± 0.07 3.666 ± 0.115 3.4 ± 0.6 >4.0c

458.6 ± 2.7 356.4 ± 1.8 458.6 ± 8.0 249.8 ± 1.7 116.3 ± 0.6 · · ·

18 131.80005 -43.37969 0.00164 ± 0.00006 0.0083 ± 0.0002 0.0121 ± 0.0004

0.089 ± 0.003 0.0026 ± 0.0002 0.0070 ± 0.0005 0.0111 ± 0.0006 0.0133 ± 0.0007 0.089 ± 0.004

2.55 ± 0.03 2.43 ± 0.06 · · · 3.70 ± 0.06 2.42 ± 0.02 · · ·

19 131.80984 -43.30710 0.056 ± 0.001 0.091 ± 0.002 0.159 ± 0.002

0.308 ± 0.008 0.054 ± 0.002 0.074 ± 0.002 0.105 ± 0.003 0.125 ± 0.002 0.27 ± 0.04

1.21 ± 0.04 2.50 ± 0.03 3.80 ± 0.03 1.94 ± 0.04 1.52 ± 0.02 · · ·

20 131.85530 -43.81571 0.0185 ± 0.0004 0.0432 ± 0.0008 0.109 ± 0.002

0.46 ± 0.01 0.0088 ± 0.0002 0.0183 ± 0.0006 0.0357 ± 0.0006 0.050 ± 0.001 0.49 ± 0.01

1.88 ± 0.02 2.90 ± 0.06 5.79 ± 0.03 3.02 ± 0.04 2.06 ± 0.04 · · ·

21 131.88019 -43.89773 0.00108 ± 0.00003 0.0068 ± 0.0001 0.0055 ± 0.0003

0.046 ± 0.002 0.00031 ± 0.00001 0.00085 ± 0.00003 0.00143 ± 0.00004 0.00168 ± 0.00003 0.042 ± 0.004

0.77 ± 0.01 2.66 ± 0.07 5.22 ± 0.03 2.78 ± 0.03 6.82 ± 0.02 · · ·

22 131.92834 -43.73021 0.0280 ± 0.0006 0.090 ± 0.001 0.330 ± 0.003

2.24 ± 0.02 0.042 ± 0.002 0.079 ± 0.002 0.124 ± 0.003 0.180 ± 0.004 1.16 ± 0.08

14.35 ± 0.05 10.99 ± 0.06 13.90 ± 0.03 5.23 ± 0.03 5.75 ± 0.06 0.103

23 131.96498 -43.42231 0.0040 ± 0.0002 0.0090 ± 0.0002 0.094 ± 0.001

0.205 ± 0.006 0.0029 ± 0.0002 0.0056 ± 0.0002 0.0098 ± 0.0002 0.0125 ± 0.0003 0.10 ± 0.01

1.26 ± 0.02 4.14 ± 0.03 6.06 ± 0.08 2.45 ± 0.03 0.968 ± 0.011 · · ·

24 132.06612 -43.78766 · · · · · · · · ·

· · · 0.000013 ± 0.000003 0.00030 ± 0.00001 0.00004 ± 0.00003 · · · 0.0268 ± 0.0007

15.08 ± 0.11 13.60 ± 0.08 11.90 ± 0.12 5.75 ± 0.04 3.66 ± 0.06 0.061

25 132.10312 -43.53003 · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

0.190 ± 0.004 1.69 ± 0.01 4.40 ± 0.02 5.40 ± 0.04 · · · · · ·

26 132.14529 -43.91617 0.00218 ± 0.00005 0.0051 ± 0.0001 0.0078 ± 0.0002

0.033 ± 0.002 0.00392 ± 0.00009 0.0059 ± 0.0001 0.0082 ± 0.0002 0.0099 ± 0.0001 0.021 ± 0.001

0.503 ± 0.004 1.27 ± 0.03 3.71 ± 0.03 3.36 ± 0.05 2.73 ± 0.02 · · ·

27 132.17854 -43.61838 0.00063 ± 0.00005 0.00059 ± 0.00003 · · ·

· · · · · · 0.00031 ± 0.00002 0.00029 ± 0.00002 · · · 0.0031 ± 0.0009

0.413 ± 0.003 1.54 ± 0.02 6.00 ± 0.02 6.50 ± 0.09 · · · 0.133

28 132.32057 -43.93255 · · · · · · · · ·

· · · · · · 0.00031 ± 0.00003 · · · 0.00053 ± 0.00003 0.0134 ± 0.0005

1.52 ± 0.02 2.15 ± 0.03 2.81 ± 0.08 1.66 ± 0.01 0.970 ± 0.007 · · ·

29 132.33763 -44.03125 · · · · · · · · ·

· · · · · · · · · · · · · · · 0.044 ± 0.004

2.31 ± 0.03 3.52 ± 0.04 5.84 ± 0.04 4.32 ± 0.05 3.33 ± 0.08 · · ·

30 132.36937 -44.07478 · · · 0.00099 ± 0.00003 · · ·

· · · 0.00033 ± 0.00005 0.0010 ± 0.0001 0.0016 ± 0.0002 0.00041 ± 0.00007 0.0049 ± 0.0005

3.96 ± 0.03 5.33 ± 0.03 6.79 ± 0.02 3.77 ± 0.04 3.06 ± 0.03 0.136

aCoordinates are given in degrees; fluxes (F ) and their uncertainties (∆F ) are given in Jy.

bThe uncertainty of the 1.2 mm flux is 20% (Massi et al. 2007).
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Table 7. Protostars detected by both Spitzer and Herschel

NAME RA DEC Classification ∆Θa

Spitzer-PSC (deg) (deg) MIRb FIRc ′′

8036 131.28840 -43.63255 I 0 3.1

23011 131.44509 -43.38967 I I 0.7

41657 131.63487 -43.54801 I 0 6.0

42629 131.64522 -43.90839 I I 6.9

58569 131.80015 -43.37957 I I 0.6

65153 131.85542 -43.81557 I I 0.6

68231 131.88064 -43.89669 I 0 3.9

124358 132.33936 -44.03091 I 0 6.4

19667 131.41093 -43.91746 FS I 1.4

59696 131.80945 -43.30581 FS FS 4.7

aDistance between the positions reported in the MIR and FIR

catalog.

bBased on the slope in the 2–24 µm spectral range.

cBased on the value of the bolometric temperature (see text).

Table 8. Comparison of the Spitzer YSOs in VMR-D with other SFRs

Region Area Dist YSO YSO YSO Class I Flat Class II Class III

(deg2) (pc) (deg−2) (pc−2)

this work 0.54 700 499 925 6.1 82 (17%) 52 (10%) 129 (26%) 236 (47%)

Paper I ” ” 297 522 3.5 39 (13.2%) 51 (17.3%) 142 (47.6%) 65 (21.9%)

Cha II 1.04 178 26 25 2.6 2 (8%) 1 (4%) 19 (73%) 4 (15%)

Lupus 3.10 150 94 30 3.3 5 (5%) 10 (11%) 52 (55%) 27 (29%)

Perseus 3.86 250 385 100 5.2 87 (23%) 42 (11%) 225 (58%) 31 (8%)

Serpens 0.85 260 227 267 13 36 (16%) 23 (10%) 140 (62%) 28 (12%)

Ophiucus 6.60 125 292 44 9.3 35 (12%) 47 (16%) 176 (60%) 34 (12%)

Table 9. Comparison of SF rate, efficiency and depletion time

Region SFR/Area SF efficiency depletion

(M⊙ Myr−1 pc−2) (MYSO/(Mcl+MYSO)) (Myr)

this work 2.3 0.014 96

Paper Ia 1.3 0.01–0.02 90–140

Cha II 0.65 0.030 66

Lupus 0.83 0.054 35

Perseus 1.3 0.038 50

Serpens 3.2 0.053 35

Ophiucus 2.3 0.063 30

aBecause the assumed mean mass was 1 M⊙ in Paper I, here the values

are recalculated for 0.5 M⊙ (se text).



– 29 –

Table 10. PLF statistics in log(L/L⊙)

Region N Meana Mediana σa Completeness(M⊙) Reference

VMR-D 53 0.31 0.25 0.58 0.35 This work

6 low-mass 122 -0.18(-0.09) -0.20(-0.13) 0.72(0.78) 0.05–0.01 Kryukova et al. (2012)

3 high-mass 425 0.15(0.28) 0.04(0.18) 0.76(0.77) 0.05–0.03 Kryukova et al. (2012)

18 low-mass 230 -0.03(0.07) -0.03(0.11) 0.75(0.73) 0.2 Dunham et al. (2013)

aNumbers in parenthesis are obtained after de-reddening.
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Fig. 1.— IRAC 8.0 µm image of the VMR-D investigated field with the positions of the Spitzer (cyan

circles) and Herschel (red crosses) protostellar sources located ON-cloud and in the common area surveyed

by both Spitzer and Herschel. The cyan polygon delimit the coverage of the Spitzer-PSC catalog (Paper

I), while the large tilted trapezoids delimit the coverage of the Herschel SPIRE (green) and PACS (red)

Hi-GAL observations analyzed in this work. The yellow contour line corresponds to a column density

N(H2) = 6.5× 1021 cm−2 and delimits the region we consider ON-cloud (see text). For a normal interstellar

extinction curve this corresponds to AV ∼ 3.5 mag.



– 31 –

Fig. 2.— Best fit parameters obtained after comparing the observed MIR SEDs with the reddened photo-

spheric emission models (see text). Upper panels: distribution of the spectral slopes α (left) and the reduced

χ2 values (right) obtained by fitting the SEDs. Lower panels: the distribution of the visual extinctions AV

corresponding to the best-fits (left) and the α vs χ2 scatter plot (right).
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Fig. 3.— The IRAC color-magnitude diagram [4.5] vs [4.5]-[5.8] showing the position of different objects.

Points represent background stars, triangles and circles are objects with α < 0.3 and α > 0.3, respec-

tively. Green and red symbols indicate objects that are rejected and passed, respectively, after applying the

Harvey et al. (2007) criteria (see text).
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Fig. 4.— Color-color diagram exploiting IRAC fluxes to select candidate YSOs according to the

Gutermuth et al. (2009) criteria. The reddening vector is also shown, corresponding to a visual extinc-

tion AV =50 mag and to the reddening law determined by Flaherty et al. (2007). Symbols are as in Fig.3,

except the black diamonds, in the lower left corner, that represent the locus of the stellar photospheres.
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Fig. 5.— Lower panel: the distribution of the MIR spectral slope α for the Spitzer selected candidate

YSOs. Sources located ON (solid line) and OFF-cloud (dashed line) are shown separately. The distinction

is referred to the position of the sources with respect to the contour line corresponding to 6.5×1021 cm−2 in

the column density map obtained by the Herschel observations (see text and Figure 1). In the upper panel

the same distributions are shown normalized.
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Fig. 6.— Examples of SED fits obtained with a modified black body model for a typical starless (left) and

protostellar (right) source. The deconvolved size at 250 µm (in arcsec) and the best fit temperature are also

indicated.

Fig. 7.— Distribution in size (left) and luminosity (right) obtained for protostellar (dashed) and starless

(continuous) sources detected ON-cloud by Herschel.
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Fig. 8.— Bolometric Luminosity-Temperature diagram obtained for the Spizer ON-cloud YSOs. By using

the classification criteria based on the MIR spectral slope red symbols correspond to Class I, green is used

for FS, and blue for Class II sources. Different symbols denote different FIR spectral coverage: the filled

circle is an object with with Herschel-SPIRE fluxes as well as 24 µm and 1.2 mm fluxes. Diamonds denote

sources with 24 µm flux but undetected at 1.2 mm, with (filled) and without (open) Herschel-SPIRE fluxes,

respectively. Finally triangles are objects without 1.2 mm flux and at least two fluxes in the 70–500 µm range,

but with (filled) and without (open) 24 µm flux, respectively. Evolutive tracks are taken from Myers et al.

(1998) and are labeled with the final stellar mass and the initial temperature of the outer envelope. In the

bottom, with dashed lines, the correspondence between Tbol and spectral class as defined by Chen et al.

(1995) is reported for comparison. The boundaries of the FS sources as suggetsed by Evans II et al. (2009)

are also reported with dotted lines.
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Fig. 9.— Bolometric Luminosity-Temperature diagram obtained for sources detected by Herschel. Filled

blue circles are used for protostars, while open red circles represent starless sources. The statistics of the

protostars is summarized in Table 4, their fluxes in Table 6, and their positions in the VMR-D cloud are

shown in Figure 1. Ten protostars, listed in Table 7, are in common with Fig. 8.
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Fig. 10.— The Class I/FS versus (Class I+FS)/Class II number ratio for Spitzer sources detected in different

clouds. VMR-D and WPer show a larger content of Class I and FS sources with respect to the other SFRs.

An arrow shows the displacement produced in the VMR-D position by correcting for an extinction of AV = 5

mag. Data for other clouds are taken from Hsieh & Lai (2013) for the c2d SFRs (Cha, Lup, Per, Ser, and

Oph, as well as EPer and WPer representing the eastern and western regions in Perseus). For RCW 38, Cep,

and IC 5146 we used the data in Winston et al. (2011); Kirk et al. (2009); Harvey et al. (2008) while for Ori,

Mon, and CepOB3 those given by Kryukova et al. (2012), respectively. Note, however, that Kryukova et al.

(2012) use more restrictive criteria in selecting FS sources and this probably reflects in the upper left position

of Ori, Mon, and CepOB3 in this diagram.
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Fig. 11.— PLF: Spitzer (dotted line) and Herschel (dashed line) protostars located in the Spitzer/Herschel

overlap region of VMR-D (see Fig. 1) and projected ON-cloud. The total luminosity function is shown with

a solid line accounting for 10 objects that are common to the two samples. The vertical line represents the

completeness limit based on the fluxes quoted in Table 1. Models from Offner & McKee (2011) including

competitive accretion (yellow), turbulent core (green), and two component turbulent core model (blue), are

also shown for comparison.
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Fig. 12.— Upper panel: mass distribution for starless and protostellar Herschel sources detected ON-

cloud. The red lines refer to the starless sources that are subdivided in unbound (dashed) and bound (solid)

cases. The dotted blue line indicates the protostellar sources of Table 6, while the vertical solid line is the

completeness limit implied by the photometry limits in Table 1. Lower panel: Lbol vs Menv diagram: filled

and open circles represent protostars and starless cores, respectively. Protostars classified as Class 0, I,

and Flat Spectrum in Table 4, are indicated with blue, magenta, and green filled circles, respectively. The

superimposed grey lines represent the evolutionary tracks computed for different initial envelope masses by

Molinari et al. (2008) to follow the path of a protostar in this diagram. The rising part corresponds to the

main accretion phase ending with the transition region between Class 0 and Class I objects. This region is

delimited by the two dashed lines taken from André et al. (2000) that ideally separate objects with Menv >

M⋆ (lower) from those with Menv < M⋆ (upper). The arrow shows the evolutionary direction and the red

straight line is a linear fit to the starless sources.


