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ABSTRACT

We present semi-analytical models and simplified N-body simulations with 104 particles aimed at probing the role
of dynamical friction (DF) in determining the radial distribution of blue straggler stars (BSSs) in globular clusters.
The semi-analytical models show that DF (which is the only evolutionary mechanism at work) is responsible for
the formation of a bimodal distribution with a dip progressively moving toward the external regions of the cluster.
However, these models fail to reproduce the formation of the long-lived central peak observed in all dynamically
evolved clusters. The results of N-body simulations confirm the formation of a sharp central peak, which remains
as a stable feature over time regardless of the initial concentration of the system. In spite of noisy behavior, a
bimodal distribution forms in many cases, with the size of the dip increasing as a function of time. In the most
advanced stages, the distribution becomes monotonic. These results are in agreement with the observations. Also,
the shape of the peak and the location of the minimum (which, in most of cases, is within 10 core radii) turn out to
be consistent with observational results. For a more detailed and close comparison with observations, including a
proper calibration of the timescales of the dynamical processes driving the evolution of the BSS spatial distribution,
more realistic simulations will be necessary.

Key words: blue stragglers – globular clusters: general – methods: analytical – methods: numerical –
stars: kinematics and dynamics

1. INTRODUCTION

Globular clusters (GCs) are dynamically active systems that,
within the timescale of the age of the universe, undergo nearly all
of the physical processes known in stellar dynamics (Meylan &
Heggie 1997). Gravitational interactions and collisions among
single stars and/or binaries are quite frequent, especially in the
highest density environments (e.g., Hut et al. 1992). They can
also generate populations of exotic objects, like X-ray binaries,
millisecond pulsars, and blue straggler stars (BSSs; see, e.g.,
Paresce et al. 1992; Bailyn 1995; Bellazzini et al. 1995; Ferraro
et al. 2001, 2009; Ransom et al. 2005; Pooley & Hut 2006).

GCs are also old systems where all stars more massive than
∼0.8 M�, the typical main sequence turn-off (MS-TO) mass,
should have already exhausted their core hydrogen reservoirs
and evolved toward the sub-giant branch or later phases.
Nevertheless, in all well-studied GCs (e.g., Sandage 1953;
Ferraro et al. 1992, 1999) BSSs are observed as a population
of core hydrogen-burning stars along an extrapolation of the
MS, in a region of the color–magnitude diagram (CMD), which
is bluer and brighter than the MS-TO. Their position in the
CMD and direct measurements suggest that these objects are
more massive than the MS-TO stars, with typical masses of
∼1.2 M� (Shara 1997; Gilliland et al. 1998; De Marco et al.
2005; Ferraro et al. 2006a; Lanzoni et al. 2007b; Fiorentino et al.
2014). To solve this apparent paradox, two main mechanisms for
the formation of BSSs have been proposed, both involving close
physical interactions among stars: mass transfer in primordial
binary systems (McCrea 1964; Zinn & Searle 1976) and direct
collisions between unbound stars (Hills & Day 1976). The two
formation channels could be at work simultaneously within the
same cluster, probably depending on the local density (e.g.,

Fusi Pecci et al. 1992; Bailyn 1992; Ferraro et al. 1995, 2009).
However, their relative efficiency is still a matter of debate
(e.g., Sollima et al. 2008; Knigge et al. 2009; Chatterjee et al.
2013; Sills et al. 2013, see also Hypki & Giersz 2013) and
distinguishing BSSs formed by either of the two mechanisms is
a very hard task. The only notable exceptions are the detection
of spectroscopic signatures of the mass transfer process in 47
Tucanae and M30 (Ferraro et al. 2006a; Lovisi et al. 2013,
respectively) and the discovery of two distinct BSS sequences,
likely connected to the two formation processes, in M30 and
NGC 362 (Ferraro et al. 2009; Dalessandro et al. 2013b,
respectively).

BSSs are also considered to be powerful probes of GC
internal dynamics (e.g., Bailyn 1992; Ferraro et al. 1995, 1999,
2003, 2006b; Davies et al. 2004; Mapelli et al. 2004, 2006).
In particular, Mapelli et al. (2006) first noted that, in some
GCs, the position of the minimum of the BSS radial distribution
nicely corresponds to the radius where the dynamical friction
(hereafter DF) time equals the cluster age. Ferraro et al. (2012)
put this observable in an evolutionary context, connecting the
shape of the observed BSS radial distribution with the cluster
dynamical age, thus defining the so-called dynamical clock,
a fully empirical tool that is able to measure the stage of
dynamical evolution reached by these stellar systems. In most
of the surveyed GCs, the number of BSSs, normalized to the
number of stars in a reference population (like sub-giants, red
giants, or horizontal branch stars), shows a bimodal behavior
as a function of radius: it is peaked in the center, has a dip at
intermediate radii, and rises again in the cluster outskirts (e.g.,
Ferraro et al. 1993; Lanzoni et al. 2007a; Beccari et al. 2013,
and references therein). A similar behavior has also recently
been found in the extra-Galactic GC Hodge 11 in the Large
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Magellanic Cloud (Li et al. 2013). In a few other cases, the
BSS radial distribution shows only a central peak (Ferraro et al.
1999; Lanzoni et al. 2007b; Ferraro et al. 2009; Contreras Ramos
et al. 2012), while in ω Centauri, NGC 2419 and Palomar 14
(Ferraro et al. 2006b; Dalessandro et al. 2008; Beccari et al.
2011, respectively) it is equal to the radial distribution of the
normal cluster stars. Such a flat BSS radial distribution has also
been found in dwarf galaxies (Mapelli et al. 2009; Monelli et al.
2012). Indeed, the comparative analysis performed by Ferraro
et al. (2012) in a sample of 21 Galactic GCs demonstrates that
these stellar systems can be grouped on the basis of the shape
of their BSS radial distribution, each group corresponding to
families of different dynamical age. The interpretative scenario
is the following.

Being significantly more massive than normal cluster stars,
BSSs are expected to experience a relatively fast segregation
process, mainly as a “natural” consequence of the action of DF,
that makes them progressively sink toward the cluster center. In
general, a “test” star of mass mt, orbiting at an average radius r
in a field of lighter stars with average mass 〈m〉 decays toward
the cluster center over a time

tdf(r) � 〈m〉
mt

tr(r), (1)

where tr(r) is the relaxation time at the mean orbital radius r.
Clearly, once the other parameters are fixed, the larger the value
of mt, the faster the object sinks to the center. Moreover, tr
is expected to increase with radius, because of its dependence
on local density and velocity dispersion (see, e.g., Binney &
Tremaine 1987). Therefore, heavy stars (as BSSs) orbiting at
large 〈r〉 will decay extremely slowly, virtually unaffected by
DF (unless they are on very eccentric orbits). Instead, BSSs
that are closer to the center will decay quickly. On the other
hand, because of their smaller masses, the reference population
stars will be less affected by DF, compared to BSSs. It is thus
reasonable to expect that, over time, the region in which the
normalized BSS fraction (nBSS/nref) is depleted by DF extends
increasingly outward. In that region, the behavior of the local
BSS fraction exhibits an absolute minimum (at rmin) between a
central peak (made up of BSSs already decayed, plus collisional
BSSs formed there) and an external rising branch (due to
BSSs that have not had enough time to appreciably decay to
the center).

Thus, it is reasonable to expect that in dynamically young
clusters the minimum of the BSS radial distribution should
be close to the center, while for increasing dynamical age, it
should be observed at larger and larger distances. Therefore,
rmin can be used as the hand of a “clock,” able to measure the
stage of the dynamical evolution reached by stellar clusters,
with DF being the internal engine of this clock (of course, for
a meaningful comparison among different clusters, rmin has to
be normalized to a characteristic scale length, as the core radius
rc). Such a tool would also allow us to recognize cases where
the relaxation process has not started yet,5 from those where it
is more advanced, possibly even close to the core-collapse (CC)
phase. It may even help to distinguish between systems with a
central density cusp due to CC, from those with a cusp due to an
intermediate-mass black hole. The empirical indication of the
validity of this simplified, DF-based, picture is provided by the

5 Note that this method, involving relatively bright stars, is much more
effective than any other approach proposed thus far to measure the level of
mass segregation (or the lack thereof).

tight correlation found between the position of the minimum
in the observed BSS radial distribution and the relaxation time
computed at the core or at the half-mass radius (see Figure 4
in Ferraro et al. 2012). The trend has been also confirmed by
additional observational studies (see Dalessandro et al. 2013a,
2013b; Beccari et al. 2013; Sanna et al. 2014).

From the theoretical side, Monte-Carlo and N-body simula-
tions have been used to study the radial distribution of BSSs
in GCs (Mapelli et al. 2004, 2006; Hypki & Giersz 2013;
Chatterjee et al. 2013) and binary systems in open clusters
(Geller et al. 2013). Indeed, these are the main routes to eval-
uate the role of DF in shaping the BSS distribution, since they
offer deep insights on the influence of other important colli-
sional phenomena, like those associated with close encounters
and “binary burning” (mainly taking place close to, or imme-
diately after, the cluster CC). Therefore, our group is adopting
numerical approaches with gradually increasing levels of real-
ism, in order to precisely evaluate and disentangle the role of the
various dynamical mechanisms involved. In Alessandrini et al.
(2014), we used a coupled analytical/N-body approach in the
specific case of BSSs in a GC (i.e., test particles only slightly
more massive than the average, orbiting a background field with
a mass spectrum), to ascertain that the observed bimodalities
cannot be due to a non-monotonic radial behavior of the DF
timescale.

Here we first discuss a semi-analytical approach to the prob-
lem, assuming that DF is the only process driving the BSS sec-
ular evolution (Section 2). Then, we present collisional N-body
simulations to take into account further dynamical mechanisms
playing a role in determining this evolution (Section 3). Discus-
sion and conclusions are presented in Section 4.

2. SEMI-ANALYTICAL MODELS

2.1. Basic Assumptions

We neglect BSSs formed through stellar collisions and only
deal with the population generated by mass transfer activity
in binary systems. We further assume that BSS progenitors
are dynamically inert hard binaries, meaning that they suffer
only from the effect of DF, and, moreover, their probability to
actually become BSSs is independent of the cluster environment.
Under these assumptions, we can model the BSS progenitors
as point particles with masses equal to the sum of the binary
components. Moreover, we assume that the progenitors that
eventually give rise to BSSs are, at any time, just a random
subsample of the overall progenitor population: hence, at any
time, the radial distribution of these binaries well represents
that of actual BSSs. In other words, it is assumed that BSSs and
their binary progenitors (that we assume to be point particles)
are indistinguishable.

Moreover, we consider the cluster to be an isolated system,
with a discrete mass spectrum consisting of only three species,
which are meant to represent MS stars below the TO (the
lightest component, which primarily contributes to both the
overall gravitational potential and DF), BSSs (the most massive
component), and the reference population (the component with
intermediate-mass stars and to which BSS star counts are
normalized, corresponding to red-giants or horizontal branch
stars in observational studies).

2.2. The Models

As a first step in understanding the specific role of DF in
shaping the observed BSS radial distributions, we followed
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a semi-analytical approach in which other simplifying assump-
tions are adopted in addition to those discussed above.

We considered here the cluster dynamics governed by a static
“mean” gravitational field (�), due to MS stars (“field” stars)
only. We then assumed that � remains fixed in time and is
generated by a constant, spherically symmetric and isotropic
distribution of field stars, each of which is assumed to have a
mass m. Their phase-space distribution f(r, v) is defined such
that f (r, v)drdv is the number of these stars in the phase-space
volume element drdv (with r = |r| and v = |v|).

Within this field, we considered the evolution of the stars in
the two heavier components (that we call “test” stars) under the
effects of the DF against field stars. We neglected the self-gravity
acting on all of these components, as well as any interaction
between test stars. Hence, the stellar motion of any test star,
with mass mt, position r, and velocity v, is determined solely by
the underlying gravitational field � and by the DF deceleration
that we describe following the Chandrasekhar (1943) formula
(see, e.g., Binney & Tremaine 1987)

adf = −4π ln ΛG2m(m + mt)g(r, v)v−3v, (2)

where

g(r, v) ≡ 4π

∫ v

0
f (r, w)w2dw (3)

is the number density at radius r of field stars moving more
slowly than the considered test star. Assuming that field stars
are distributed according to the Plummer (1911) distribution
function with a fixed scale length r0, an analytical expression
(see Equation (A5) in the Appendix) can be derived for g(r, v),
while the gravitational field is given by

�(r) = − GM(
r2 + r2

0

)3/2 r, (4)

with M being the total mass in the field star component. Thus,
once numerical values for m, mt, M, and r0 are chosen, the DF
deceleration acting on BSSs and the reference stars is completely
determined. In particular, we assigned to BSSs a mass of 3m and
to the reference population stars a mass of 2m. In physical units,
this choice can be thought to correspond to m = 0.4 M� for
the mean stellar mass below the MS-TO, 0.8 M� for stars in the
reference population and 1.2 M� for BSSs, all being appropriate
values for the case of Galactic GCs.

As initial conditions for the time evolution of the two evolving
components, we generated a set of NBSS = 300 and a set of
Nref = 1200 positions and velocities for their representative
particles, following the same Plummer distribution function
used for the field stars. Of course, in real clusters, the relative
abundance of BSSs with respect to the reference population
is much lower than it is assumed here. However, such a large
number of BSSs is adopted to limit the Poisson noise. To this
end, we also generated 20 sets of initial conditions by changing
only the random seed, and we then merged the snapshots of the
resulting simulations after reporting the center of mass of each
snapshot onto the origin of the coordinates. In addition, for each
particle in each snapshot, we merged the three projections (along
each coordinate axis), thus obtaining (from a statistical point of
view) three times more stars. In this simplified approach, such
an overabundant BSS population has no consequences on the
system evolution, while it gives some spurious effects in the
N-body simulations, which we will discuss later in Section 3.1.
The assumption of the same initial distribution function for both

Figure 1. Double-normalized ratio (RBSS) between the projected number of
BSSs and that of reference stars, in various radial bins around the cluster center
and at different evolutionary times (see labels), that were found from the semi-
analytical simulations. Time is expressed in units of the half-mass relaxation
time trh. The solid curve is the running average of the RBSS radial behavior. Also
labeled is the slope (b) of the rising branch beyond the dip (see the text). The
number of radial bins is variable due to the employed adaptive binning method.

kinds of particles and the field component is empirically justified
by observations: in fact, BSSs are found to share the same radial
distribution as normal cluster stars in dynamically young GCs,
where DF has not been effective yet in segregating massive
stars toward the cluster center (see the cases of ω Centauri,
NGC 2419, and Palomar 14 in Ferraro et al. 2012, and references
therein).

Starting from these initial conditions, the orbit of each test
star, evolving under the total acceleration a = � + adf , was
time-integrated by means of a second order leapfrog algorithm
(e.g., Hockney & Eastwood 1988) with a constant time step.
At given times, a snapshot of the system was extracted and the
projected number distribution of the two heavier stellar species
was derived in a series of concentric annuli around the cluster
center. To further improve the statistics, we superimposed the
positions of the test particles in all 20 realizations, as well as
their projections on the three coordinate planes (similarly to
what was done in the N-body model, see Section 3).

2.3. Results

Consistently with the observational quantities defined
in Ferraro et al. (1993), in Figure 1, we plot the
“double-normalized” BSS radial distribution RBSS(r) ≡
(nBSS(r)/NBSS)/(nref(r)/Nref), i.e., the ratio between the rela-
tive fraction of BSSs and that of reference stars in each radial
bin, at various evolutionary times. The radial distance is ex-
pressed in units of r0, while times are in units of trh, namely
the relaxation time computed at the half-mass radius (Binney
& Tremaine 1987, Equation (8.72)) of the field star system:
rh = r0(22/3 − 1)−1/2 � 1.3r0 for the Plummer distribution.

To guarantee both a good radial sampling and a large enough
number statistic, we set a minimum threshold (n) to the number
of BSSs and a minimum threshold (Δr) to the width of each
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Figure 2. Same as in Figure 1, but considering the snapshots of only one
simulation and with no merging of coordinate planes.

radial bin. Then, the actual width of each bin was automatically
determined as the minimum value larger than Δr such that
nBSS � n in that bin. In Figure 1, we chose n = 300 and
Δr = 0.1r0 for all times, except at late stages (t = 5.1), where
n = 100 was used in order to get enough resolution also in the
outer regions where the number of BSSs is quite small, and for
t = 0 where Δr = 0.4r0. Uncertainties on the number ratios
were estimated from the law of propagation of errors, assuming
a Poissonian statistic for nBSS and nref .

For illustrative purposes, Figure 2 shows the RBSS(r) profiles
obtained by considering only one simulation in one projection
direction. For obvious reasons, in doing this plot we had to
reduce the BSS number bin threshold, n, by a factor of �10 and
Δr by a factor of a few times. Unsurprisingly, with respect to
Figure 1, a strong increase of the Poisson noise can be seen,
especially in the outer regions where the number of particles is
the lowest. This example illustrates the importance of reducing
counting noises, which was done when applying the averaging
procedure described above.

In order to properly characterize the shape of the RBSS
distribution and the location of its minimum (rmin) in each
snapshot, we first computed the running average6 〈RBSS(r)〉,
with the aim of reducing fluctuations due to poor statistics. Then,
rmin was defined as the distance from the cluster center of the
absolute minimum of this average. While a flat behavior is set
by construction at the initial time, a bimodality rapidly develops
(see Figure 1). Moreover, the minimum of the normalized BSS
radial distribution progressively drifts outward at increasing
evolutionary times (note that r0 is constant by construction
in these Plummer models), until an almost flat behavior is
established at late stages (t � 10trh). These results qualitatively
confirm what was suggested by the intuitive picture discussed
above, namely that DF by itself can give rise to a bimodal
BSS distribution. On the other hand, we note that although a
central peak begins to develop from the very beginning, it is

6 It is a simple and central moving average with a window width of three bins.

Figure 3. Time evolution of the position of the absolute minimum, rmin (dots),
normalized to the Plummer characteristic scale radius, for all the snapshots in
which RBSS(r) has an appreciable bimodality (b � 0.01; see the text). The solid
line is a fitting ∼t2 law.

then rapidly leveled-off, at odds with what is observed in real
clusters. This is because, in this simplified model, the frictional
decay of both kinds of test stars continue indefinitely with an
unaltered efficiency, thus causing the great majority of these
stars to eventually decay to the innermost radial bins where, as
a consequence, the peak in nBSS/nref is dumped to nearly its
initial value (i.e., RBSS = 1). Indeed, the innermost five bins
(r/r0 < 1) in the bottom panel of Figure 1 contains ∼95% of
the total test stars.

To quantify the level of bimodality of the distribution, we
defined the parameter b as the slope of the line that best-fits
〈RBSS(r)〉 in the region of the rising branch (specifically for
rmin � r � rmin + 4Δr). A visual inspection of the snapshots
indicates that the dip in RBSS(r) can be well appreciated when
b � 0.01.7

The time behavior of rmin, as measured in all distributions
having b � 0.01, is plotted in Figure 3. From the inspection of
this figure, we can state that (despite the large fluctuations): (1)
the RBSS radial behavior shows a significant level of bimodality
most of the time for 0.5 � t/trh � 7; (2) there is a clear tendency
of rmin to drift outward. The gaps among groups of rmin values
shown in this figure (e.g.,between t/trh � 4.2 and �5.5), as well
as the linear anti-correlation within these groups, are an effect
of the adaptive binning procedure.

3. N-BODY SIMULATIONS

To get deeper insights into the role played by DF and,
possibly, other collisional effects on the observed shape of
the BSS normalized radial distribution, we followed a more
realistic approach, making use of self-consistent, collisional

7 We note, however, that an automatic parameterization of the bimodality is
not an easy task since the shape of the region where the minimum of the
distribution is located significantly changes with time. In particular, at late
stages of the cluster evolution, this region broadens and the b parameter tends
to become less sensible and easily loses the bimodal behavior.
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N-body simulations. The same basic assumptions outlined in
Section 2.1 have been adopted.8 Nevertheless, here we have an
accurate and self-consistent dynamical treatment of the various
fully interacting stellar components, naturally including DF and
close encounters, which are responsible for various dynamical
phenomena (e.g., Meylan & Heggie 1997; Heggie & Hut 2003).

The simulations were performed using the direct N-body
code NBODY6 (Aarseth 2003) with its Graphic Processing Unit
extension enabled. We adopted the “Hénon units” (also known
as N-body units) discussed in Heggie & Mathieu (1986), where
G = M = −4E = 1, with G being the gravitational constant,
M the total GC mass, and E the total GC energy (the sum of
potential and kinetic energy, negative for a bound system). In
these units, the half-mass relaxation time is (Giersz & Heggie
1994):

trh = 0.138Nr
3/2
h

ln (0.11N )
, (5)

where N is the total number of particles (stars). While trh varies
during the evolution because of the changes in both rh and N
(a star is removed from the system when its total energy is
positive and it is outside 10rh; see Aarseth 2003, Section 9.6),
in the following, the time will be measured in units of trh as
evaluated from the initial conditions (at t = 0). Note, finally,
that, due to the freedom of scaling the simulation from Hénon to
physical units, only the mass- and number-ratios of the species
are relevant to the dynamics of the system, given the total number
of stars.

3.1. Setting up the Simulations

We fixed the total number of stars to N = 104. Moreover,
the same initial conditions were adopted for the three mass
components: at t = 0, they all follow a King (1966) model
with the same central dimensionless potential W0 and King
radius. Such as in the semi-analytical models, this corresponds
to assuming no initial mass segregation and an observationally
justified flat radial distribution for the ratio between the number
of BSSs and that of reference stars initially. To check for possible
dependences of the results on the initial cluster concentration,
we ran three sets of simulations for three different values of
W0, namely W0 = 4, 6, 8 (corresponding to King concentration
parameters c ∼ 0.84, 1.2, 1.8, respectively).

As in the semi-analytical model, we assumed the reference
population stars to have a mass of mref = 2m, and BSSs to
have masses of mBSS = 3m. The relative number of the three
species is more tricky, since real clusters’ BSSs are numerically
negligible with respect to the other two populations, but here a
high-enough statistic is needed to obtain meaningful results.
We therefore assumed NMS = 8500 and, as in Section 2,
Nref = 1200 and NBSS = 300, in order to get a reasonable
compromise between realistic values and a good statistical
sampling. As was done in the model of Section 2, in this case,
we also generated 20 sets of initial conditions and merged the
snapshots of the resulting simulations, as well as the projections
on the coordinate planes, in order to obtain, at any sampled
time, a “super-snapshot” made up of 20 × 3 × 104 = 6 × 105

particles.9 The unrealistically high fraction of BSSs increases

8 While only single stars are generated in the initial conditions of the
simulations, binary and multiple systems can form dynamically during the
evolution.
9 This number actually refers to the beginning of the simulations, for a
certain fraction of stars escapes from the system during its evolution (because
of evaporation and/or ejection).

Figure 4. Evolution of three Lagrangian radii, Rp (expressed in Hénon units),
enclosing the indicated percentage, p, of the total mass, for the three stellar
components in the simulations started with W0 = 4: BSSs (solid blue line);
reference component (short-dashed red line); MS stars (long-dashed line). The
dotted line represents the behavior of the core radius of the reference component,
rc(t). For the sake of clarity, one in every 20 snapshots (∼ trh/10) are considered
in this plot.

the collisionality of the system in the central region, with
the effect of making the evolution toward the CC faster.
Nonetheless, in this preliminary study, we preferred to keep
the statistical fluctuations low, even at the price of assuming a
less realistic fraction of BSSs. However, in order to determine
the importance of the enhanced collisional effect that this
choice implies, an additional, more realistic, cluster model with
N = 105 (and Nref = 3000, NBSS = 300) was also considered
but, due to the huge computational costs, no statistical sampling
was possible for the initial conditions and only one simulation
(with W0 = 8) was performed in this case.

All simulations were run for several initial half-mass relax-
ation times or until NBODY6 failed to meet the desired mini-
mal energy conservation accuracy (we set the QE parameter in
NBODY6 input file to 10−4; see Aarseth 2003). We then extracted
a snapshot per Hénon unit of time. Since the typical crossing
time of our models is of the order of several Hénon time units,
this ensures that the evolution of individual star orbits is tracked
in a relatively fine-grained way.

3.2. Results

Before going further into describing the BSS radial distri-
bution resulting from the N-body approach, it is worth analyz-
ing the overall evolution of the simulated stellar systems. In
Figures 4–6, the evolution of three representative Lagrangian
radii (Rp, with p being the percentage of the total mass they
enclose in three dimensions) is reported for the three mass
components and for each of the considered W0 values, while
Figure 7 refers to the N = 105,W0 = 8 case. We chose
R10, which roughly measures the size of the core region, R99,
which corresponds to the very outer halo, and an intermedi-
ate Lagrangian radius delimiting a region of the cluster not

5



The Astrophysical Journal, 799:44 (10pp), 2015 January 20 Miocchi et al.

Figure 5. As in Figure 4 for the simulations started with W0 = 6.

Figure 6. As in Figure 4 for the simulations started with W0 = 8.

participating to the late expansion phase of the system. Their
behaviors essentially confirm those expected from the known
collisional relaxation processes in multi-mass systems, of which
extensive descriptions can be found in the literature (e.g.,
Heggie & Hut 2003; Gürkan et al. 2004; Khalisi et al. 2007,
and references therein). Here, it is worth pointing out that
the heavier components evolve toward a core-contraction (R10
decreases), while the halo (R99) monotonically expands, with
the evolutionary timescale being shorter for the heavier mass
components (see Equation (1)). The halo expansion occurs
mainly because the kinetic energy of (dynamically “cold”) halo
stars increases during close encounters with (“hot”) core stars,

Figure 7. Same as in Figure 6 for the simulation with N = 105 stars, of which
NBSS = 300, Nref = 3000.

especially in the central denser region. Incidentally, this mecha-
nism also explains the apparent lack of core-contraction for the
(lighter) field stars (their R10 is never contracting), which is due
to the injection of kinetic energy from the contracting cores of
the heavier components.

In the same figures, we also report (as dotted lines) the time
evolution of the core radius of the reference population. To be
as close as possible to the observational procedures adopted
for real clusters, we searched for the best-fit King model to
the central portion of the projected number density profile of
the reference population and we defined rc as the radius at
which the surface density drops to half its central value. This
corresponds well to the core radius adopted in observational
works and it allows a meaningful comparison among BSS radial
distributions determined in different GCs (see Ferraro et al.
2012). The behavior of rc is close to that of R10: it shows a
well-defined contraction phase, followed by an expansion. The
relatively sudden turnaround of rc and R10 flags the onset of the
so-called the CC process.

It can be seen that in our 104 particle N-body simulations,
the CC phase starts at tCC/trh � 3.7, 2.5, 0.7 for W0 = 4, 6, 8,
respectively. As expected, the CC time is anti-correlated with
the initial cluster concentration (i.e., with the collision rate in
the core; see the “heavy tracers” case in Fregeau et al. 2002).
However, we point out that the particular values of tCC/trh are
not meant to be used for a close comparison with observational
data since they are specific to the simplified initial conditions
adopted here. In fact, the evolution of the simulated systems is
unrealistically influenced by the heaviest components, which are
largely overabundant (NBSS/Nref ∼ 0.25 and Nref/NMS ∼ 0.14)
with respect to reality. Indeed, it is well known that, in general,
the higher these ratios, the faster the collisional relaxation and
the earlier the CC time, compared to the single-component case
(see, e.g., the comprehensive discussion in Section 1.2 of Gürkan
et al. 2004, and references therein; see also Table 2 of Fregeau
et al. 2002). Thus, it is reasonable to expect that in a real GC,
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where the total stellar mass in BSSs and reference populations
relative to the total cluster mass is much lower than in our N-body
models, the evolution is comparably closer to that of a single-
component system, characterized by a later core-contraction
phase.

This is indeed confirmed by the N = 105 simulation results,
where the number ratios among the different populations are
more realistic. As shown in Figure 7, the CC time in this
simulation is increased by a factor of 2.3 (tCC/trh � 1.6 for
W0 = 8) with respect to the 104 particle case. This comparison
clearly shows that the 104 particle simulations presented here
are too rough to provide accurate estimates of the characteristic
timescales of the various dynamical processes. However, they
can be used to investigate interesting trends and draw qualitative
conclusions. The analysis of the trends shown in Figures 4–6 is
indeed quite instructive.

In particular, the behavior of the Lagrangian radii as a func-
tion of time nicely highlights the properties of environmental
conditions in which DF operates in real clusters. In fact, at odds
with the static environment considered in the semi-analytical
model, real clusters have time evolving environments where DF
drifts heavy stars toward the center, first, in a contracting core
(until the CC occurs), and then in an expanding core (after the
CC). Thus, in the late evolutionary stages, DF can be somehow
contrasted by the core expansion. However, it is worth noticing
that R10 for the BSS population is significantly smaller than the
typical size of the central peak in observational studies. Hence
its time behavior (which is qualitatively similar to that of R10
and rc for the reference population) is not expected to have a
significant impact on the overall shape of the BSS distribution,
apart from a possible increase of the width of the peak and a
stabilization of its height in the post-CC regime.

3.3. Formation of the Bimodal Behavior

Within the “evolutionary” picture described above, we now
examine the RBSS profiles of the simulated N-body systems
and compare them to that obtained from the semi-analytical
model and the observations. The single super-snapshot shows a
noisy behavior, hindering the automatic analysis of the BSS
distribution, which risks losing important features (such as
the depth of the minimum) and failing to achieve a reliable
evaluation of the bimodality. For this reason, we used the
adaptive binning procedure described in Section 2.3 to build
the RBSS profiles. The prescriptions adopted to determine the
location of the minimum (rmin) and to evaluate the bimodality
level (b) can also be found in that section. According to the
observations, the distance from the cluster center was scaled
to the instantaneous value of rc, which was computed as
described above.

In the lowest concentration case (W0 = 4, not shown
here) a central peak in the BSS radial distribution is soon
developed and the external portion of RBSS(r) rapidly decreases
without forming a significantly bimodal pattern. This can be
understood by the fact that the timescale of the frictional decay
depends predominantly on the density of the field stars (e.g.,
Alessandrini et al. 2014), and this density decreases more
gradually with radius in low concentration clusters than in those
highly concentrated. Hence, in the case of W0 = 4, the DF
timescale increases more slowly outward (i.e., its efficiency
keeps relatively high up to a larger radius) than for W0 = 6, 8.
This can be seen in Figures 4–6, by comparing the slope of the
inner Lagrangian radius behavior with that of the intermediate
radius for the BSSs in the pre-CC phase. It is evident that in the

Figure 8. RBSS profile (dots) for the N-body simulations starting with W0 = 8, at
different evolutionary times (see the labels). Dashed line: initial (unsegregated)
value of RBSS. The solid curve is the running average of RBSS and the bimodality
indicator (b) is also reported. The arrow marks the location of the absolute
minimum, rmin.

W0 = 4 case the trends of these two radii show more similar
slopes than for W0 = 6, 8. This means that in the W0 = 4 model
the BSSs decay at a rate that is almost independent of the radius
(at least up to R90), thus causing the double-normalized ratio
to evolve very quickly toward the unimodal pattern. In fact, in
order to ensure the persistence of a bimodal distribution, the
BSSs orbiting in the outskirts have to decay much more slowly
than those orbiting in the inner region.

Representative examples of the radial distributions obtained
in simulations with initial potentials W0 = 8 and W0 = 6
are shown in Figures 8 and 9, respectively, for the labeled
evolutionary times (in units of the initial trh). By construction,
RBSS(r) is nearly constant and close to unity at the initial time.
As the evolution proceeds, a bimodal behavior develops, with
an increasingly high central peak and a dip at intermediate radii
(see also Figure 10). A number of interesting features can be
inferred from these simulations:

1. all snapshots show the formation of a sharp central peak in
the BSS radial distribution, regardless of the initial value of
W0 (including W0 = 4);

2. at odds with the findings of the semi-analytical models the
central peak is a quite stable feature;

3. the number of BSSs that drift to the center, because of the
effect of DF, increases as a function of time;

4. in many cases, the BSS distribution is bimodal (Figure 10).
This effect is somehow mitigated by a progressive decrease
of NBSS in the external regions, which makes the detection
of bimodality difficult and needs to be further investigated;

5. the width of the dip seems to increase as a function of time,
in good agreement with the observations;

6. in the latest snapshots, the simulated BSS distribution
shows a monotonic behavior, with most of the BSSs
segregated in the central part and the external radial bins
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Figure 9. Same as in Figure 8 for the N-body simulations starting with W0 = 6.

Figure 10. Time evolution of the position of the absolute minimum of the RBSS
profile (dots), in units of the instantaneous core radius, for the simulations started
with W0 = 8. A fitting exponential law (∼ 1 − exp(5t/trh)) is shown as a solid
curve. Only RBSS profiles for which b > 0.01 have been considered (see the
text). The dotted line indicates tcc, the time of the core-collapse.

being essentially devoid of BSSs (see the bottom panel of
Figure 9), in agreement with the BSS distributions observed
in Family III clusters (Ferraro et al. 2012);

7. in the cases where the bimodality is clearly distinguishable,
an outward drift of the dip for increasing evolutionary time
is seen before the CC phase (see Figure 10).

Figure 11. RBSS profiles at different evolutionary times for the simulation run
with N = 105 and W0 = 8. Symbols and labels are the same as in Figure 8.

Remarkably, the shape and width of the central peaks in
Figures 8 and 9 are also very similar to those observed in real
clusters belonging to Family II (i.e., those actually showing a
bimodal BSS distribution; see Ferraro et al. 2012). In fact, as is
apparent in their Figure 2, the large majority (∼85%) of these
systems have rmin smaller than 10rc, consistently with the results
of both our simulations with concentrated initial conditions and
with the semi-analytical model results.

These results seem to be confirmed (at least qualitatively) by
the RBSS profiles obtained from the more realistic simulation run
with N = 105 and starting with W0 = 8 (see Figure 11), which
will be deeply investigated and discussed in a forthcoming paper.

4. DISCUSSION AND CONCLUSIONS

In this paper, we have presented the results of a number
of simulations aimed at exploring the connection between
the evolution of the BSS spatial distribution and the cluster
dynamical age. In this first study, we adopted simplified initial
conditions and the simulations are not meant for a detailed and
direct comparison with observational data but, rather, the goal
was to explore the fundamental dynamical aspects driving the
evolution of the BSS spatial distribution. Our results show a
few features in nice qualitative agreement with observations
and suggest that the dynamical mechanisms explored in this
paper provide a promising route for the interpretation and
understanding of the empirical dynamical clock found in our
previous studies.

Our main result is that, because of the effect of DF, the
BSS radial distribution develops a central peak and a minimum
independently of the initial cluster concentration. In particular,
the semi-analytical model (which, among all of the possible
dynamical processes, takes into account DF only), shows
the rapid formation of a bimodal distribution with a dip
progressively moving toward the external regions of the cluster.
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However, this model fails to reproduce the formation of a long-
lived central peak, which is instead observed in all dynamically
evolved clusters (Ferraro et al. 2012). The results obtained from
(preliminary) N-body simulations show the formation of a sharp
and stable central peak and the development of a dip in the BSS
radial distribution, regardless of the initial W0. In spite of the
noisy behavior of the snapshots, it can be stated that a bimodal
distribution is set in many cases and the size of the dip tends to
increase as a function of time until (in the latest evolutionary
phases) the distribution becomes monotonic (in full agreement
with the observations).

It is worth recalling the main differences between the two
approaches we followed. (1) In the semi-analytical approach,
the distribution of field stars is static, while, in the N-body
simulations, the field component evolves self-consistently with
time, following the core contraction and, especially, the halo
expansion. (2) in the N-body system, various collisional phe-
nomena originating from two-body and three-body interactions
with small impact parameters are acting during the entire evolu-
tion, while the semi-analytical model takes into account only the
DF effect (i.e.,the consequence of two-body interactions with
large impact parameters). Despite the higher degree of realism
of the N-body approach, from the dynamical point of view, the
performed simulations are far from being representative of real
clusters because of a number of particles that is too small (104)
and an unrealistically high fraction of heavy species (especially
BSSs) with respect to the lighter background component. The
main effect of these limitations is to induce a global evolution of
the system that is too fast (see Figures 6 and 7), producing unre-
alistically short dynamical timescales for the simulated clusters,
especially in the lowest concentration (W0 = 4) case. Thus, it is
very possible that the low-mass stars (which are mainly respon-
sible for the DF action on the test stars) in a real GC behave
much more like the static background in the semi-analytical,
DF-only approach, than in our (small) N-body simulations (see
the long dashed curves in Figures 6 and 7).

More realistic simulations are therefore necessary to investi-
gate this possibility and to properly follow the time evolution of
the BSS radial distribution. In fact, while hints of a progressive
outward movement of rmin are found in some of the simulations
presented here, no reliable constraints can be obtained about
the characteristic timescales of this process and the precise way
the shape of the dip changes with time and the external cluster
regions become devoid of BSSs. More realistic simulations are
also needed to clarify exactly which are the internal “engines”
of the dynamical clock. The preliminary results presented here
clearly point out that DF is able to set the peak and the dip in
the BSS distribution. However, we still have to determine which
is the dominant phenomenon (and in what regime) that is able
to drift rmin toward the external cluster regions (either DF only,
or also the core expansion after the CC, or further dynamical
processes). Certainly, the presence of primordial binaries and
an external tidal field should also be taken into account because
the former would presumably favor a smoother collisional evo-
lution of the system (by mitigating CC) and the latter would
limit the expansion of the low-mass stars halo. These more re-
alistic N-body simulations are in progress and will be described
in forthcoming papers.
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APPENDIX

DYNAMICAL FRICTION IN A PLUMMER
DISTRIBUTION FUNCTION

The semi-analytical treatment of DF of Section 2 is based on
a numeric calculation of the deceleration suffered by a star on a
given orbit in a Plummer potential. In the following, we provide
all of the relevant details.

The distribution function leading to the Plummer model, with
total mass M and characteristic radius r0, is

f (r, v) = k

[
−ψ(r) − v2

2

]7/2

, (A1)

with k a normalization constant and

ψ(r) = − GM√
r2 + r2

0

(A2)

the gravitational potential. The corresponding mass density
generating this potential is

ρ(r) = ρ0r
5
0

(r2 + r2
0 )5/2

= −ψ5ρ0

σ 10
, (A3)

with ρ0 ≡ 3M/4πr3
0 being the central density and σ ≡

(GM/r0)1/2 a characteristic velocity. Thus, the integral in
Equation (3) yields

g(r, v) = −4π23/2kψ5
∫ v(−2ψ)−1/2

0
w2(1 − w2)7/2dw

= −4π23/2kψ5
∫ ∞

u

y8(1 + y2)−6dy, (A4)

where the substitutions w = v(−2ψ)−1/2, y = (w−2 − 1)1/2

have been applied and u ≡ (−2ψv−2 − 1)1/2. The last integral
gives

g(r, v) = g(ψ, u) = αψ5

[
1

2
tan−1(u)

+

(
u9

2
− 79

21
u7 − 64

15
u5 − 7

3
u3 − u

2

)
(1 + u2)−5 − π

4

]
,

(A5)

with α ≡ 7π
√

2k/16.
In order to determine k and then α, from Equation (3) applied

to the escape velocity (u = 0), we note that

ρ(r) = mg(ψ, 0) = −7
√

2

64
π2mψ5k. (A6)

Thus, comparison with Equation (A3) implies that k =
32

√
2ρ0(7π2mσ 10)−1 and α = 4ρ0(πmσ 10)−1.
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