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8Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, B.C. V6T 1Z1, Canada
9Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
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ABSTRACT
We present timing observations of 4-ms pulsars discovered in the Parkes 20-cm multibeam
pulsar survey of the Galactic plane. PSRs J1552−4937 and J1843−1448 are isolated objects
with spin periods of 6.28 and 5.47 ms, respectively. PSR J1727−2946 is in a 40-d binary
orbit and has a spin period of 27 ms. The 4.43-ms pulsar J1813−2621 is in a circular 8.16-d
binary orbit around a low-mass companion star with a minimum companion mass of 0.2 M�.
Combining these results with detections from five other Parkes multibeam surveys, gives a
well-defined sample of 56 pulsars with spin periods below 20 ms. We develop a likelihood
analysis to constrain the functional form which best describes the underlying distribution
of spin periods for millisecond pulsars. The best results were obtained with a lognormal
distribution. A gamma distribution is less favoured, but still compatible with the observations.
Uniform, power-law and Gaussian distributions are found to be inconsistent with the data.
Galactic millisecond pulsars being found by current surveys appear to be in agreement with a
lognormal distribution which allows for the existence of pulsars with periods below 1.5 ms.

Key words: methods: statistical – stars: neutron – pulsars: general.

1 IN T RO D U C T I O N

Millisecond radio pulsars (MSPs) are fascinating objects to study.
Their phenomenal rotational stability allows them to be used for
a wide variety of fundamental physics experiments including as a
Galactic-scale observatory to search for low-frequency gravitational
waves (see e.g. Hobbs et al. 2010). Ever since the discovery of the
first MSP (Backer et al. 1982) it has been clear that the difficulties in
detection imply that the Galactic population of MSPs is substantial.

� E-mail: Duncan.Lorimer@mail.wvu.edu

Early studies showed that the population of MSPs is comparable to
that of normal pulsars (see e.g. Kulkarni & Narayan 1988; Johnston
& Bailes 1991).

The continued improvement of data acquisition systems over the
past 20 yr has led to a dramatic increase in survey sensitivity to
MSPs. The number of known MSPs in the Galactic disc (i.e. those
not associated with globular clusters) is now 228 (Manchester et al.
2005).1 Because of the great success of blind surveys of the Galactic
field (for a review, see Stovall, Lorimer & Lynch 2013), and targeted

1 http://astro.phys.wvu.edu/GalacticMSPs
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Figure 1. Integrated pulse profiles each showing 360◦ of rotational phase at 20 cm wavelength for the four MSPs described in this paper. Data were obtained
with the Parkes digital filterbank systems.

searches of Fermi sources (Ray et al. 2012), for the first time in a
decade, Galactic MSPs outnumber their counterparts in globular
clusters.

The Parkes multibeam pulsar survey (PMPS) of the Galactic
plane is the most successful large-scale search for pulsars so far
undertaken. Six previous papers in this series have presented tim-
ing parameters for 742 newly discovered pulsars and have dis-
cussed various aspects of the survey results (Manchester et al. 2001;
Morris et al. 2002; Kramer et al. 2003; Faulkner et al. 2004; Hobbs
et al. 2004; Lorimer et al. 2006; Crawford et al. 2013). Over the
past 5 yr, several re-analyses of the survey data have been carried
out. Keith et al. (2009) discovered a further 28 pulsars by applying
new candidate sorting algorithms to the data processed earlier by
Faulkner et al. (2004). Eatough, Keane & Lyne (2009) applied a
new interference removal technique to a small portion of the data
and discovered a further four pulsars. In a further reanalysis, Keane
et al. found one fast radio burst (Keane et al. 2012) and 10 rotat-
ing radio transients (Keane et al. 2010) in addition to the 11 found
originally by McLaughlin et al. (2006). Mickaliger et al. (2012)
reported the discovery of the 34.5-ms binary pulsar J1725−3853
as well as four other millisecond pulsars. One other binary MSP,
J1753−2814, has also been discovered as a result of this processing
effort (Mickaliger et al., in preparation). Following earlier discov-
eries using ‘stack-slide’ acceleration searches by Faulkner et al.
(2004), Eatough et al. (2013) report the discovery of 16 pulsars in
a coherent acceleration search of the data. Ongoing processing by
Einstein@Home volunteers (Knispel et al. 2013) has resulted in the
discovery of a further 23 pulsars.

In this paper, we present timing solutions for four MSPs dis-
covered in the PMPS. Preliminary discovery and confirmation ob-
servations of these pulsars were previously published by Faulkner
et al. (2004). The total number of pulsars found in the survey so far
stands at 833. Since extensive population studies of the normal pul-
sar population as revealed by the PMPS have already been carried
out (Faucher-Giguère & Kaspi 2006; Lorimer et al. 2006), in this
paper we focus our discussion on the spin-period distribution of the
MSP population. The plan for this paper is as follows. In Section 2,
we present the basic timing parameters, pulse widths, mean profiles
and flux densities for the four new MSPs. In Section 3, we com-
pile a sample of MSPs and use it to carry out a likelihood analysis
to constrain the underlying distribution of spin periods. The main
conclusions are summarized in Section 4.

2 FO U R MI L L I S E C O N D P U L S A R S

The pulsars were discovered using the processing schemes de-
scribed by Faulkner et al. (2004). Following the confirmation and
positional refinement procedures described by Morris et al. (2002),
each pulsar was observed regularly at Parkes using initially the

512 × 0.5 MHz analogue filterbank system (Manchester et al. 2001)
and subsequently the digital filterbank systems (Manchester et al.
2013). For each pulsar, pulse times of arrival were determined from
the individual observations using standard pulsar timing techniques
(see e.g. Lorimer & Kramer 2005) implemented in the PSRCHIVE soft-
ware package (Hotan, van Straten & Manchester 2004).2 A model
containing the spin, astrometric and (if necessary) any binary pa-
rameters was fitted to the arrival times using the TEMPO2 timing
package (Hobbs, Edwards & Manchester 2006). Arrival times were
referred to TT(TAI) and the DE421 planetary ephemeris (Folkner,
Williams & Boggs 2008) was used. Timing parameters are ex-
pressed in ‘TCB’ units native to TEMPO2 (see Hobbs et al. 2006, for
the definition of TCB). Integrated pulse profiles are shown in Fig. 1.

Timing parameters from these analyses along with various
derived quantities are presented in Tables 1 and 2. For PSR
J1727−2947, time-of-arrival uncertainties were multiplied by a fac-
tor ranging between 0.85–1.5 for different backend systems to main-
tain a reduced χ2 value close to unity. Also listed in Table 1 is the
post-fit root-mean-square residual. The values obtained from our
timing so far are relatively large (17–78 µs) and indicate that these
pulsars are unlikely to be useful additions to MSP timing arrays.
Although proper motions in right ascension have been measured
for PSRs J1813−2621 and J1843−1448, we are unable to measure
a significant proper motion in declination because of the low eclip-
tic latitude of these pulsars. Flux densities at 1400 MHz and pulse
widths at 50 per cent of the peak level based on the profiles shown
in Fig. 1 are listed in Table 1.

For two of the MSPs, J1727–2947 and J1813–2621, significant
levels of polarized emission was measured and these are shown in
the integrated pulsed profiles in Fig. 2. Rotation measures for both
these pulsars were determined using the rmfit tool within PSRCHIVE

with conservative estimates of the uncertainties.
PSRs J1552−4937 and J1843−1448 bring the total number of

isolated MSPs known in the Galactic disc to 37. When compared to
the sample of 172 MSPs for which an orbiting companion has been
confirmed, the fraction of observed isolated MSPs currently stands
at 18 per cent. An outstanding issue in our understanding of MSP
population is to explain this population in a self-consistent fashion.
In particular, an open question is whether isolated MSPs formed in
a different way from binary MSPs. We discuss this issue further in
Section 3.6.

PSR J1727−2947 is a relatively long-period MSP (P ∼ 27 ms)
in a mildly eccentric (e ∼ 0.04) 40-d binary system. With a min-
imum companion mass of ∼0.8 M�, the system is most likely a
member of the so-called ‘intermediate-mass binary pulsar’ (IMBP)
class (Camilo et al. 2001) with a relatively massive CO white dwarf
companion. The parameters for PSR J1813−2621 imply that it is

2 http://psrchive.sourceforge.net
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Table 1. Spin, astrometric and derived parameters from the timing analysis of four MSPs. All astrometric parameters are given in the J2000
coordinate system. The reduced χ2 values from each fit is listed as χ2

r . Figures in parentheses represent the uncertainties in the least significant
digit and are the nominal 1σ TEMPO2 uncertainties. Distance estimates are based on the pulsar DM using the Cordes & Lazio (2002) NE2001
electron-density model. Pseudo-luminosities are computed by multiplying flux density by distance squared. Characteristic ages, magnetic fields
and spin-down luminosities are based on the spin period and period derivative (see e.g. Lorimer & Kramer 2005) and account for the contributions
due to the Shklovskii effect and Galactic acceleration.

Parameter PSR J1552−4937 PSR J1727−2946 PSR J1813−2621 PSR J1843−1448

RA (hh:mm:ss.s) 15:52:13.2709(4) 17:27:15.09493(17) 18:13:40.59165(10) 18:43:01.3750(3)
Dec. (dd:mm:ss.s) −49:37:49.744(11) −29:46:36.797(17) −26:21:57.055(18) −14:48:12.61(3)
Proper motion in RA (mas y−1) −3(3) 0.6(9) −7.3(9) 10.5(19)
Proper motion in Dec. (mas y−1) −13(8) 0(8) −22(16) 12(15)
Epoch of position J2000 J2000 J2000 J2000
Spin period (ms) 6.2843113814174(12) 27.0831832440066(12) 4.4300116286341(18) 5.4713308755095(6)
First derivative of spin period 1.900(4) × 10−20 2.4632(3) × 10−19 1.2466(6) × 10−20 6.209(18) × 10−21

Dispersion measure (cm−3 pc) 114.19(8) 60.74(3) 112.524(9) 114.51(7)
Rotation measure (rad m−2) – –61(32) 136(8) –
Epoch of period (MJD) 54 033 54 723 54 058 53 934
Data span (MJD) 52 860–55 206 52 666–56 781 52 696–55 419 52 696–55 152
χ2

r / degrees of freedom 1.00/132 1.45/208 0.90/134 1.16/115
Post-fit rms residual (μs) 78 43 17.5 49

Flux density at 1.4 GHz (mJy) 0.14 0.25 0.65 0.57
Pulse width at 50 per cent of peak (ms) 0.9 1.8 0.66 1.0
Distance (kpc) 4.8 1.4 2.9 2.9
Pseudo-luminosity (mJy kpc2) 3.2 0.49 2.1 4.8
Intrinsic period derivative 0.7(1.1) × 10−21 2.426(7) × 10−19 −0.6(1.7) × 10−21 −0.5(1.1) × 10−21

Characteristic age (Gy) >15 1.77 >5.6 >14
Surface magnetic field (108 G) <2.1 25.9 <2.4 <1.9
Spin-down luminosity (1033 ergs s−1) <1.1 0.48 <5.7 <1.5

Table 2. Measured and derived orbital parameters for PSRs
J1727−2946 and J1813−2621 which use the ‘BT’ binary model
(Blandford & Teukolsky 1976) and the ‘ELL1’ binary model (Lange
et al. 2001), respectively. Parameters listed are the binary period (Pb),
projected semimajor axis (a sin i), orbital eccentricity (e), first and sec-
ond Laplace–Lagrange parameters (ε1 and ε2), longitude and epoch
of periastron (ω and T0) and epoch of ascending node (Tasc). Figures
in parentheses represent 1σ TEMPO2 uncertainty in the least significant
digits. For PSR J1813−2621, we also list the corresponding values of
e, ω and T0 computed from the Laplace–Lagrange parameters. The
Keplerian mass function (4π2 G(a sin i)3/P 2

b , where G is Newton’s
constant), and the minimum companion mass (calculated assuming a
1.4 M� pulsar and setting, i = 90◦) are listed.

PSR J1727−2946 J1813−2621

Binary model BT ELL1
Pb (d) 40.307 710 94(3) 8.159 760 702(10)
a1sin i (light second) 56.532 497(5) 5.592 583(3)
e 0.045 629 43(16) 2.7+1.2

−1.1 × 10−6

ω (◦) 320.396 25(20) 289+28
−18

T0 (MJD) 54 711.471 69(3) 54 061.5+6.0
−4.0

ε1 – −2.5(10) × 10−6

ε2 – 9(8) × 10−7

Tasc (MJD) – 54 054.932 8319(6)

Mass function (M�) 0.1194 0.002 82
Min. comp. mass (M�) 0.827 0.188

very representative of the low-mass binary MSP population. Inter-
preting the orbital parameters in the standard way (see e.g. Lorimer
& Kramer 2005), we infer a companion mass of at least 0.2 M�,
typical of a low-mass white dwarf. Optical studies of these com-
panions may provide further insights into the nature of these two
binary systems.

For nearby MSPs, it is well known (see e.g. Damour & Taylor
1991) that two significant contributions to the observed period
derivative are the effects of secular acceleration (sometimes re-
ferred to as the ‘Shklovskii effect’, Shklovskii 1970) and Galactic
acceleration. For a pulsar of period P, transverse speed V, accel-
eration �a, distance D with an intrinsic period derivative Ṗint, the
observed period derivative

Ṗobs = Ṗint + P

(
a · n̂

c
+ V 2

cD

)
, (1)

where n̂ is a unit vector along the line of sight to the pulsar and c is
the speed of light. Following the discussion in section 3.1 of Nice &
Taylor (1995) to compute these effects, and assuming a 25 per cent
uncertainty on the distances, computed using the NE2001 electron
density model (Cordes & Lazio 2002), we calculated or placed
limits on Ṗint for each pulsar and list our results in Table 1. The
resulting characteristic age and magnetic field strength estimates
for these pulsars are also indicated in Table 1. As can be seen,
for all but PSR J1727−2946, these effects account for most of the
observed period derivative.

3 THE SPI N-PERI OD D I STRI BUTI ON O F
GALACTI C MSPs

The large sample of over 1000 normal pulsars detected in the various
Parkes multibeam surveys has provided significant advances in our
understanding of the normal pulsar population (see e.g. Faucher-
Giguère & Kaspi 2006; Lorimer et al. 2006). The observed sample
of MSPs is substantially less numerous because of their generally
lower luminosity and observational selection effects. Nevertheless,
the large sky coverage and uniformity of the observing systems of
the multibeam surveys provides an excellent sample to begin char-
acterizing their population. Recent work by Lorimer (2013) models

MNRAS 450, 2185–2194 (2015)
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Figure 2. Integrated polarization profiles for the two MSPs for which significant RMs were detected. The top panels of each plot show the polarization position
angle as a function of pulse phase. The bottom panels show total intensity (bold line), linear polarization (solid line) and circular polarization (dotted line).

this population via Monte Carlo realizations of synthetic pulsars
drawn from distribution functions. These synthetic populations are
subsequently ‘observed’ with realistic models of the surveys to
produce samples that can be compared with the observed data. In
this paper, we focus on constraining the spin-period distribution of
MSPs.

For this study, we define an MSP as a pulsar with P < 20 ms.
Our final sample of 56 MSPs is drawn from detections by this sur-
vey (PMPS), the Swinburne Intermediate Latitude Survey (SWIL;
Edwards et al. 2001), the Swinburne High Latitude Survey (SWHL;
Jacoby et al. 2007), the Parkes High Latitude Survey (PH; Burgay
et al. 2006), the Perseus Arm Survey (PA; Burgay et al. 2013), and
the Deep Multibeam Survey (DMB; Lorimer, Camilo & McLaugh-
lin 2013). The basic parameters of this sample of pulsars are sum-
marized in Table 3. For the purposes of population analyses, this
sample of pulsars is a very natural one to analyse, since the pulsars
were found using the same telescope, receiver and data acquisi-
tion system. Since the sensitivity of this system is well understood
(Manchester et al. 2001; Lorimer et al. 2006), our survey models
are reliable. In addition, since the surveys were all carried out at
20 cm wavelength, we need not make assumptions about MSP flux
density spectra in order to extrapolate results from surveys carried
out at other frequencies.

3.1 Likelihood analysis description

Following earlier work (e.g. Cordes & Chernoff 1997), we adopt
a likelihood analysis to constrain the period distribution. In our
approach to this problem, the probability pi of detecting pulsar i
in the sample with period Pi, and dispersion measure DMi can be
written as follows:

pi = f (P | a, b)D(Pi, DMi). (2)

In this expression, as usual in statistical parlance, the ‘|’ symbol de-
notes a conditional probability. The quantity f(P| a, b) represents the
probability density function (PDF) of the period which we seek to
constrain. All the models considered in this work can be described
by two parameters which we refer to here generally as a and b. Spe-
cific parameters will be defined below. The detectability function,
D, reflects the probability of detecting the pulsar in one of the six
surveys mentioned above and therefore appropriately accounts for
their non-uniform period sensitivity. Note that in this analysis, we

assume that any loss of sensitivity due to binary motion is negligible
given the significant number of acceleration searches that have been
carried out on these data (Faulkner et al. 2004; Eatough et al. 2013;
Knispel et al. 2013).

Given a model period PDF and a detectability model which we
describe in detail below, the likelihood function L(a, b) for a given
combination of a and b is simply the product of all the 56 individual
pi values. The optimal set of model parameters â and b̂ are those
which maximize L in a grid of parameter space over a and b. Once
the maximum likelihood Lmax has been found, the marginalized
PDF for a is then simply the distribution of L(a, b̂) (and vice versa
for the PDF of b). This approach provides PDFs for a and b as well
as a means for evaluating different period PDFs from the ratio of
the maximum likelihoods (i.e. the Bayes factor, K). For example,
given two model PDFs ‘x’ and ‘y’, K = Lmax,x/Lmax,y > 1 if model
x better describes the sample than model y. According to Jeffreys
(1961), a Bayes factor of between 1 and 3 is deemed to be essentially
indistinguishable from the best model while Bayes factors in the
range 3–10 begin to favour x over y. Bayes factors higher than 100
decisively favour x.

3.2 Detectability model

The detectability of a given pulsar, D, reflects how likely it is to be
found in the sample of 56 MSPs we will ultimately be applying this
analysis to. Calculating D therefore requires accurately accounting
for the difficulties in detecting each pulsar. Two approaches that
can be brought to bear on this problem are to (i) run large num-
bers of Monte Carlo simulations which model the detectability;
(ii) develop a simple analytical model. After initial experimentation
with the first approach, it became clear to us that the Monte Carlo
simulations require a large number of assumptions and significant
computational resources to carry out a sufficient number of real-
izations necessary to estimate D. We therefore followed the second
approach and calculate D for each MSP in our sample. The essence
of our approach, described in detail below, is to find for any line of
sight the flux density distribution of pulsars: p(S). The detectability
of a pulsar along this line of sight is then the fraction of such pulsars
visible by a survey. For the ith pulsar, we may therefore write

Di =
∫ ∞

Smin,i
p(S)dS∫ ∞

S0
p(S)dS

. (3)

MNRAS 450, 2185–2194 (2015)
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Table 3. The 56 MSPs used in the population study. For each pulsar, we
list the spin period (P), dispersion measure (DM), Galactic longitude (l),
Galactic latitude (b), whether this is a binary pulsar as well as the survey
which detected the pulsar. The surveys considered were the PMPS, PH,
PA, DMB, SWIL and SWHL.

PSRJ P DM l b Bin Survey
(ms) (pc cc−1) (◦) (◦)

0437−4715 5.76 2.6 253.4 −42.0 Y PH
0610−2100 3.86 60.7 227.7 −18.2 Y PH
0711−6830 5.49 18.4 279.5 −23.3 N SWHL
0721−2038 15.54 76.1 234.7 −2.9 Y PA
0900−3144 11.11 75.7 256.2 9.5 Y PH
0922−52 9.68 122.4 273.8 −1.4 Y PMPS
1022+1001 16.45 10.2 231.8 51.1 Y PH
1024−0719 5.16 6.5 251.7 40.5 N PH
1045−4509 7.47 58.2 280.9 12.3 Y SWIL
1125−6014 2.63 53.0 292.5 0.9 Y PMPS
1147−66 3.72 133.5 296.5 −4.0 Y PMPS
1216−6410 3.54 47.4 299.1 −1.6 Y PMPS
1435−6100 9.35 113.7 315.2 −0.6 Y PMPS
1546−59 7.79 168.2 323.5 −3.8 Y PMPS
1552−4937 6.28 114.6 330.0 3.5 N PMPS
1600−3053 3.60 52.3 344.1 16.5 Y SWIL
1603−7202 14.84 38.0 316.6 −14.5 Y SWIL
1618−39 11.99 117.5 340.8 7.9 Y SWIL
1629−6902 6.00 29.5 320.4 −13.9 N SWIL
1643−1224 4.62 62.4 5.7 21.2 Y SWHL
1652−48 3.78 187.8 337.9 −2.9 Y PMPS
1708−3506 4.50 146.8 350.5 3.1 Y PMPS
1713+0747 4.57 16.0 28.8 25.2 Y SWHL
1721−2457 3.50 47.8 0.4 6.8 N SWIL
1723−2837 1.86 19.9 357.3 4.2 Y PMPS
1725−38 4.79 158.4 349.4 −1.8 Y PMPS
1730−2304 8.12 9.6 3.1 6.0 N SWIL
1732−5049 5.31 56.8 340.0 −9.5 Y SWIL
1738+0333 5.85 33.8 27.7 17.7 Y SWHL
1741+1351 3.75 24.0 37.9 21.6 Y SWHL
1744−1134 4.07 3.1 14.8 9.2 N SWIL
1745−0952 19.38 64.5 16.4 9.9 Y SWIL
1748−30 9.68 420.2 359.2 −1.1 Y PMPS
1751−2857 3.92 42.8 0.6 −1.1 Y PMPS
1753−2814 18.62 298.4 1.4 −1.2 Y PMPS
1757−5322 8.87 30.8 339.6 −14.0 Y SWIL
1801−1417 3.62 57.2 14.5 4.2 N PMPS
1801−3210 7.45 176.7 358.9 −4.6 Y PMPS
1802−2124 12.65 149.6 8.4 0.6 Y PMPS
1804−2717 9.34 24.7 3.5 −2.7 Y PMPS
1813−2621 4.43 122.5 5.3 −3.9 Y PMPS
1826−24 4.70 81.9 8.3 −5.7 Y PMPS
1835−0115 5.12 98 29.9 3.0 Y PMPS
1843−1113 1.85 60.0 22.1 −3.4 N PMPS
1843−1448 5.47 114.6 18.9 −4.8 N PMPS
1853+1303 4.09 30.6 44.9 5.4 Y PMPS
1857+0943 5.36 13.3 42.3 3.1 Y PMPS
1905+0400 3.78 25.7 38.1 −1.3 N PMPS
1909−3744 2.95 10.4 359.7 −19.6 Y SWHL
1910+1256 4.98 38.1 46.6 1.8 Y PMPS
1911+1347 4.63 31.0 47.5 1.8 N PMPS
1918−0642 7.65 26.6 30.0 −9.1 Y SWIL
1933−6211 3.54 11.5 334.4 −28.6 Y SWHL
1934+1726 4.20 62.0 53.2 −1.1 Y DMB
1939+2134 1.56 71.0 57.5 −0.3 N DMB
2010−1323 5.22 22.2 29.4 −23.5 Y SWHL

Here, Smin, i is the minimum detectable survey flux density of this
pulsar which we compute from its pulse period, DM and pulse width
(an intrinsic pulse duty cycle of 10 per cent was assumed for each
pulsar). The term S0 represents the lowest flux density detectable in
the survey, i.e. the limit of Smin, i as P becomes large and DM tends
to zero. In paper VI of this series (Lorimer et al. 2006), we gave
expressions for computing Smin, i and refer the reader to this work
for details. The advantage of this approach to the problem is that
it does not depend on knowledge of individual distances to MSPs,
which are uncertain. The analysis also does not depend on detected
signal to noise or flux densities for any individual pulsars. Instead, it
takes advantage of prior information about the pulsar population to
calculate p(S) rigorously. As we show below, the final determination
of the detectability function for this sample of pulsars can be given
in terms of only two parameters which are robust to uncertainties
inherent in the assumptions.

The calculation of p(S) is most readily achieved from an applica-
tion of Bayes’ theorem which implies for a given line of sight the
following relationship between PDFs in flux density S and distance
D,

p(D|S) ∝ p(S|D)p(D). (4)

Because the distribution we seek, p(S), is simply p(S|D) marginal-
ized over distance, we can use equation (4) to show that

p(S) =
∫ ∞

0
p(S|D)dD ∝

∫ ∞

0

p(D|S)

p(D)
dD. (5)

To get expressions for p(D|S) and p(D), we use the results described
in section 3.3 of Verbiest et al. (2012). In this work, assuming a
lognormal pulsar luminosity function (see e.g. Faucher-Giguère &
Kaspi 2006) with mean μ and standard deviation σ , it is shown that

p(D|S) ∝ 1

D
exp

[
−1

2

(
log S + 2 log D − μ

σ

)2
]

. (6)

Verbiest et al. (2012) also show that, along a line of sight defined
by Galactic longitude l and latitude b, an axisymmetric distribution
of pulsars with the radial density profile found in paper VI leads to
the result

p(D) ∝ R1.9D2 exp

[
−|z|

h

]
exp

[
−ρ

|R − R0|
R0

]
. (7)

In this expression, z = D sin b is the vertical height off the Galactic
plane, h is the scaleheight of pulsars, ρ is a dimensionless parameter
used to scale the population over the Galactic disc, R0 = 8.5 kpc is
the Galactocentric radius of the Sun and the pulsar Galactocentric
radius

R =
√

R2
0 + (D cos b)2 − 2R0D cos b cos l. (8)

With these analytical results, it is then straightforward using numer-
ical integration of equation (5) to find the appropriate form of p(S)
for each l and b. This PDF is then numerically integrated according
to the limits in equation (3) to find Di .

Following the results of Bagchi, Lorimer & Chennamangalam
(2011) and Lorimer (2013), we adopted nominal parameter values
of h = 500 pc, ρ = 5, μ = −1.1 and σ = 0.9. Fig. 3 shows the
results of this calculation on our sample of 56 pulsars as scatter
plots of D as a function of P and DM. As expected, D is lower for
shorter period and/or higher DM pulsars. To approximate this trend
in the likelihood analysis, we set

D = [1 − exp(−P/α)] exp(−DM2/2β2), (9)
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Figure 3. Detectability as a function of period (in ms) and DM (in cm−3 pc).
The data points show our estimates of detectability for each pulsar which
we compute as described in the text. The grid shows our best approximation
to this behaviour using the two-dimensional detectability function defined
in equation (9) assuming the parameters α = 10 ms and β = 110 cm−3 pc.
For each data point, a vertical line is drawn showing its distance from the
best-fitting surface.

where simple fits to the data show that α 	 10 ms and β 	
110 cm−3 pc provide a good description of these trends, as shown
by the smooth surface in Fig. 3. The root-mean-square deviation
of the data from this surface is 0.1. As described in Section 3.5,
while the choice of duty cycle or population parameters assumed
in the detectability analysis impacts the values of α and β some-
what, the particular values of α and β do not significantly affect our
conclusions.

3.3 Period distributions investigated

We considered a variety of analytical functions to find the PDF
which best describes the spin period of the MSP population. The
simplest case of a uniform distribution is clearly not favoured by the
data. In preliminary investigations, we found Bayes factors relative
to other models of the order of 10−12 and disregarded it from further
analysis. Better approximations to the true period PDF can be found
by considering functions with some well-defined peak. All four
functional forms we investigate henceforth (i.e. Gaussian, gamma,
lognormal and power-law distributions) require two parameters.
In a similar way to paper VI, we refer to these parameters using
capital letters. The Gaussian distribution has a mean A and standard
deviation B,

f (P )gauss ∝ exp

[−(P − A)2

2B2

]
. (10)

The gamma distribution is parametrized by C and D,

f (P )gamma ∝ exp(−P/C)(P/C)D−1. (11)

The lognormal distribution is parametrized by E and F,

f (P )lnorm ∝ 1

P
exp

[−(ln(P ) − E)2

2F 2

]
. (12)

We also considered a power-law distribution parametrized by an
exponent G and a minimum period H as follows:

f (P )power = 0 for P ≤ H, (13)

f (P )power ∝ P G for P > H and P < 20 ms, (14)

f (P )power = 0 for P ≥ 20 ms. (15)

Note that the last boundary condition simply reflects our definition
of an MSP as a pulsar with P < 20 ms.

3.4 Application to the observed sample

Using the above method, we maximize L for each of the period dis-
tribution models. A program was written3 to implement the analysis
and derive marginalized PDFs of the resulting model parameters.
For each model, we normalized the detection probability and period
distribution such that∫ ∞

0
D(P , DM) f (P | a, b) dP = 1. (16)

This normalization ensures that the resulting likelihood values can
be compared with one another to compute Bayes factors. In the
results below, we give the Bayes factors for the best model relative
to each model under consideration.

The results of our analysis when applied to the observed sample
of 56 pulsars are summarized in Fig. 4 and Table 4. Fig. 4 shows
the marginalized posterior PDFs for each of the model parameters.
Table 4 lists the 95 per cent credible intervals for all the model
parameters. The highest likelihood values were obtained for the
lognormal model. The Bayes factors of the other models relative to
this one are also given in Table 4. These results indicate that the
lognormal and gamma distributions give by far the most plausible
descriptions of the MSP spin-period distribution.

3.5 Testing the validity of the analysis

Before discussing the impact of our results, it is important to demon-
strate the reliability of the parameter estimation approach and its
sensitivity to assumptions. To do this, we generated fake samples
of detectable pulsars with known period distributions and passed
these as input to the likelihood analysis. We used the PSRPOP soft-
ware package4 introduced in paper VI (see also Lorimer 2013) to
generate synthetic populations of MSPs for this purpose. As a start-
ing point, we distributed the model pulsars with model parameter
values of h = 500 pc, ρ = 5, μ = −1.1 and σ = 0.9. For the
period distribution, we then chose each of the four distributions in
turn and set the parameters A–H to be the notional values given in
Table 4 from our analysis of the real data. In each simulation, we
generated enough synthetic pulsars such that a total of 56 of them
were detectable by models of the PMPS, PH, PA, DMB, SWIL and
SWHL surveys available in PSRPOP. With each synthetic sample, we
first carried out a detectability analysis as described in Section 3.2
to determine values of the detectability-model parameters α and β

and then applied these in our likelihood analysis. We found that the
returned parameter values A–H from the likelihood analysis were
entirely consistent with the input values of the period distribution
of the parent population. In addition, we found that the method
consistently favoured the correct form of the input distribution by
assigning it the maximum likelihood. For example, when we gen-
erated synthetic populations assuming a lognormal distribution, we
consistently found the Bayes factors for the lognormal likelihood
model to be lower than the other distributions, as is seen for the
actual sample of MSPs. Similar results were found when other un-
derlying period distributions were assumed.

3 http://psrpop.phys.wvu.edu/pdist
4 http://psrpop.sourceforge.net
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Figure 4. Left and centre columns: marginalized posterior PDFs for each of the model parameters A–H (see equations 10–15 for definitions) obtained from
the likelihood analysis described in the text. Right column: corresponding PDF for f(P) for each distribution when the nominal parameter values given in
Table 4 are adopted.

Table 4. Results of the likelihood analysis for the period distri-
bution models considered. For each model, we list the median
and 95 per cent confidence interval on the parameters defined in
equations (10)–(15) along with the Bayes factor (K) computed
by dividing the lognormal model likelihood by the likelihood
of that model.

Model First parameter Second parameter K

Gaussian A = 0.7+1.7
−0.6 ms B = 5.8+1.0

−0.8 ms 738

Gamma C = 2.3 ± 0.4 ms E = 2.2+0.4
−0.3 13

Lognormal E = 1.5 ± 0.2 F = 0.58+0.12
−0.09 1

Power law G = −1.7 ± 0.4 H = 1.51+0.05
−0.20 ms 182

While the above results are very encouraging, they represent ide-
alized conditions in which we input the actual values of h, ρ, μ and
σ into the detectability analysis to determine α and β. In reality,
of course, these numbers are not known and are only approxima-
tions to the true distribution of MSPs. To examine how robust the
analysis is to changes in the assumed duty cycle, h, ρ, μ and σ , we
repeated the above procedure over a range of values to determine
α and β. The ranges we explored were 5–30 per cent duty cycles,
300 < h < 900 pc, 4 < ρ < 6, −2.5 < μ < −1.5 and 0.3 < σ < 1.5.
Although these led to variations in the detectability parameters in
the ranges 2 < α < 15 ms and 100 < β < 300 cm−3 pc, we still

found that the input parameter distributions were recovered and that
the correct distribution was favoured. An example of this is shown
in Fig. 5 in which we see the inferred PDFs from an analysis of a
fake population with a lognormal period distribution. These results
give us confidence that our analysis on the observed sample of 56
MSPs is providing reliable insights into their underlying spin-period
distribution, f(P).

3.6 Discussion

Based on the analysis presented in this paper, we have found evi-
dence favouring the underlying spin-period distribution of Galactic
MSPs to be lognormal in form. While a gamma distribution is com-
patible with the data, it is less favoured than the lognormal. Uniform,
power-law and Gaussian distributions are decisively ruled out in our
likelihood analysis as being good descriptions to f(P). We note that
the strong preference for a lognormal model found here is in con-
trast to the power-law model proposed by Cordes & Chernoff (1997)
based on a much smaller sample of MSPs. While the exponent of
our power-law model tested here (–1.7) is consistent with theirs, the
likelihood analysis strongly favours the lognormal model.

While our likelihood analysis weighs the different distributions
we tested against each other, some measure of the absolute agree-
ment between the lognormal model and the observed sample of 56
MSPs can be found by comparing the sample with the predicted
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Figure 5. Marginalized PDFs for the lognormal parameters E and F deduced from a fake population in which the true values were E = 1.4 and F = 0.46
shown as dashed vertical lines. In this case, the assumed population parameters for the detectability analysis were intentionally biased to be h = 900 pc, ρ = 4,
μ = −2.1 and σ = 0.5 and lead to a detectability model with α = 2.2 and β = 200. Even with such a bias, the PDFs successfully encompass the true population
values and favour the lognormal model by an order of magnitude over the three other models.

observed period distribution for this model. Combining our de-
tectability model and lognormal period distribution, the observed
period distribution takes the form

fobs(P ) ∝ 1

P
exp

[−(ln(P ) − E)2

2F 2

] (
1 − exp

[−P

α

])
, (17)

where the lognormal parameters E = 1.5 and F = 0.58 and the
detectability parameter α = 10 ms. As can be seen from the com-
parison of this function with the binned data from the 56-MSP
sample in Fig. 6, the agreement is excellent, with the reduced χ2

value being 1.1.
Since the sample of MSPs used in this analysis is based on sur-

veys carried out a decade ago, it is useful to confront the distribution
we obtained with the present sample of objects. This is shown in cu-
mulative form in Fig. 7 where it is seen that the 95 per cent credible
region of lognormal functions we derive is broadly compatible with
the present sample of 228 MSPs which have been detected in the
Parkes High Time Resolution Universe Surveys (Keith et al. 2010;
Barr et al. 2013), targeted searches of Fermi sources (Ray et al.
2012) and also in surveys at lower frequencies with Arecibo and
Green Bank (Deneva et al. 2013; Stovall et al. 2014). We note that
the observed sample lies to the upper end of the 95 per cent credible
region shown in Fig. 7. Future studies of this newer larger sample
of MSPs should, therefore, provide more stringent constraints on
the period distribution.

Figure 6. A comparison of the sample of 56 MSPs considered in this paper
with our best-fitting period distribution from equation (17) (solid line).

The general agreement with our lognormal model and the present
sample of MSPs suggests that the period-dependent selection effects
on these ‘first generation’ Parkes multibeam surveys (i.e. PMPS,
PM, PA, SWIL, SWHL and DMB) which we model in our de-
tectability function are much less severe in the present generation
of MSP surveys.
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Figure 7. Cumulative distribution functions showing the observed sample
of 56 MSPs (rightmost dashed curve), the 95 per cent credible region of our
best-fitting lognormal model (shaded band) and the current sample of 206
MSPs with P < 20 ms (leftmost dashed curve). The deviation between the
shaded band and the rightmost dashed curve highlights the observational
selection effects at short periods in our sample of 56 MSPs.

4 C O N C L U S I O N S

We have presented timing models for four MSPs found as part of the
PMPS of the Galactic plane. From a likelihood analysis of the sam-
ple of 56 MSPs detected with this earlier generation of PMPS, we
demonstrate that the underlying population of spin periods for MSPs
is compatible with a lognormal distribution. When this distribution
is confronted with more recent discoveries from other surveys, we
see that it is broadly consistent with the new results. It is important
to note that the distribution we have derived here applies to the
present-day MSP population. Although to first order, because of the
very low spin-down rates of MSPs, the birth spin-period distribu-
tion may not be significantly different (see e.g. Camilo, Thorsett &
Kulkarni 1994), further investigations are necessary to confirm this
conjecture.

Although the true period distribution for MSPs may not be as
simple as our analysis might initially suggest, it is clear that the
distributions considered here all allow for the existence of a small
fraction of pulsars with P < 1.5 ms. Based on the smooth curves
shown in Fig. 7, the fraction of such pulsars in the population is
around 3 per cent. The true fraction could even be higher than this
if we have overestimated the detectability of such rapidly spinning
pulsars. Given our estimate of the analytic form of the observed
period distribution given in equation (17), we find that the probabil-
ity of not detecting a pulsar in our sample of 56 MSPs with period
P < 1.5 ms in the current sample is 99.2 per cent. This is entirely
consistent with the lack of such pulsars in the sample so far. Further
discussion about the possibility of submillisecond pulsars can be
found in Levin et al. (2013) and references therein.

An inspection of the current sample of MSPs shows no statis-
tically significant difference between the spin-period distributions
of isolated objects versus binary systems. A useful approach which
is currently being pursued (Lazarus, private communication) is to
artificially add short period signals to existing search data sets and
directly test the effectiveness of pulsar search codes in recovering
these signals. The modelling techniques presented here may be use-
ful in further analyses of the MSP population which need to take
account of the different selection biases and observing frequencies
that have taken place since the completion of the initial Parkes

multibeam surveys. The techniques may also be applied to other
population parameters in which selection effects may be apparent,
for example the P − Ṗ distribution.
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