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ABSTRACT

We developed an algorithm to find and characterize gravitationally lensed galaxies (arcs) to perform a comparison
of the observed and simulated arc abundance. Observations are from the Cluster Lensing And Supernova survey
with Hubble (CLASH). Simulated CLASH images are created using the MOKA package and also clusters selected
from the high-resolution, hydrodynamical simulations, MUSIC, over the same mass and redshift range as the
CLASH sample. The algorithmʼs arc elongation accuracy, completeness, and false positive rate are determined and
used to compute an estimate of the true arc abundance. We derive a lensing efficiency of 4±1 arcs (with length
�6″ and length-to-width ratio �7) per cluster for the X-ray-selected CLASH sample, 4±1 arcs per cluster for the
MOKA-simulated sample, and 3±1 arcs per cluster for the MUSIC-simulated sample. The observed and
simulated arc statistics are in full agreement. We measure the photometric redshifts of all detected arcs and find a
median redshift zs = 1.9 with 33% of the detected arcs having zs>3. We find that the arc abundance does not
depend strongly on the source redshift distribution but is sensitive to the mass distribution of the dark matter halos
(e.g., the c–M relation). Our results show that consistency between the observed and simulated distributions of
lensed arc sizes and axial ratios can be achieved by using cluster-lensing simulations that are carefully matched to
the selection criteria used in the observations.

Key words: galaxies: clusters: general – gravitational lensing: strong – methods: numerical – methods:
observational – methods: statistical

1. INTRODUCTION

The occurrence frequency of giant gravitationally lensed arcs
—those most elongated, highly nonlinear lensing features—is
sensitive to the matter distribution within the cores of galaxy
clusters. The statistics of giant arcs can thus provide useful tests
of the structure formation. Cosmological models can be tested
by comparing the observed giant arc abundance with the
expected abundance from ray-tracing cosmological simula-
tions. In an early study of arc statistics, Bartelmann et al. (1998,
hereafter B98) first suggested that the predicted arc abundance
by ΛCDM is lower than the observed abundance by
approximately an order of magnitude. This order-of-magnitu-
depuzzle has stimulated a significant amount of research
toward understanding the most important arc-producing effects.
The proposed effects include the triaxiality of cluster mass
profiles (Oguri et al. 2003; Dalal et al. 2004; Hennawi
et al. 2007; Meneghetti et al. 2010), the amount of intervening
large-scale structure (Wambsganss et al. 2005; Hilbert
et al. 2007; Puchwein & Hilbert 2009), the rapid increase in
the lensing cross section during the major mergers (Torri
et al. 2004; Fedeli et al. 2006; Hennawi et al. 2007; Zitrin et al.
2013), the background galaxy redshift distribution (Wambs-
ganss et al. 2004), the cosmological parameters (Bartelmann
et al. 2003; Meneghetti et al. 2005; Fedeli et al. 2008; Jullo

et al. 2010; D’Aloisio & Natarajan 2011b; Boldrin et al. 2015),
the cluster selection criteria (Horesh et al. 2010, 2011), the
baryonic mass distribution, primarily in the form of brightest
cluster galaxies (BCGs) and substructures (Flores et al. 2000;
Meneghetti et al. 2000, 2003, 2010; Hennawi et al. 2007), and
the baryon-dragging effects due to cooling (Puchwein
et al. 2005; Rozo et al. 2008). Inclusion of these effects
hasgone a long way toward explaining the “arc statistics
problem.” However, the tension between the observed arc
abundance and the predicted number remained at the level of
factor 3, at least for clusters at low redshifts (z<0.3; Horesh
et al. 2011). Moreover, a consensushas not yet been reached
on which of these physical processes are the dominant ones.
To see whether the remaining discrepancies can be resolved,

efforts need to be made on both theoretical and observational
fronts. On the theoretical side, all effects that impact arc
abundance should be included in the simulations to make them
more realistic. A straightforward example is to compare the
lensing cross section in simulations with dark and baryonic
matter against dark-matter-only simulations (Meneghetti et al.
2003; Puchwein et al. 2005; Killedar et al. 2012). On the
observational side, larger, carefully selected cluster samples
with ample redshift information are needed. All analyses will
also benefit from the utilization of automated procedures for
selecting giant arcs as rigorous comparisons must be done
using an identical arc selection process for both the actual data
and simulated data. In this respect, visual inspection, by which
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early arc statistics studies were conducted, is not an optimal
approach as unquantifiable biases can potentially be introduced
when classification is done by eye. Several groups have
devised tools to search for arcs in an automated manner
(Lenzen et al. 2004; Horesh et al. 2005; Alard 2006; Seidel &
Bartelmann 2007). Most recently, Horesh et al. (2010, 2011)
measured the observed abundance of arcs in a sample of 100
clusters observed with the Hubble Space Telescope (HST),
using an automated and objective arc finder. The observed
statistics were compared to those from a simulated data set of
cluster images. The simulated images were produced by ray-
tracing through a large sample of clusters produced in N-body
simulations, realistically simulating the observational effects,
and then searching for arcs in these simulated clusters using the
same arc-finding algorithm. Horesh et al. (2011) found
excellent agreement between the observed and simulated arc
statistics, particularly for their main subsample of X-ray-
selected clusters at redshifts 0.3<z<0.6. However, tension
between the observations and simulations remained at other
redshiftranges, particularly for the subsample at z<0.3.
Moreover, none of the above groups havequantified the
performance of their arc finders, such as the arc detection
completeness or the false positive rate. Without that informa-
tion, the arc finders’ ability to predict the “true” arc abundance
is limited.

In this paper, we measure the observed abundance of giant
arcs from the Cluster Lensing And Supernova survey with
Hubble (CLASH) sample (Postman et al. 2012). Giant arcs are
found in the CLASH imagesand in simulated images that
mimic the CLASH data, using an efficient automated arc-
finding algorithm whose selection function has been carefully
quantified. CLASH is a 524-orbit multicycle treasury program
that targeted 25 massive clusters with 0.18<z<0.90.
Twenty of the CLASH clusters are selected based on their
X-ray characteristics. The X-ray-selected CLASH sample
contains clusters with Tx�5 keV and with X-ray surface
brightness profiles that have low asymmetry. The five
remaining clusters were selected based on their expected
lensing strength (large Einstein radii, typically θEin>30″ for
zs = 2 or high magnification areas). Although the cluster
sample is smaller than the one analyzed by Horesh et al. (2010,
2011), the CLASH observations are deeper, and photometric
redshift information is available for all arcs brighter than about
26 AB mag (all the magnitudes hereafter are AB mag). In
addition, our arc finder is capable of detecting fainter arcs than
previous studies. As a result, the total number of arcs that we
find is comparable to that in the Horesh et al. studies. We
simulate artificial clusters with the same mass and redshift
range as the CLASH sample by using the N-body simulation-
calibrated semianalytic toolMOKA (Giocoli et al. 2012)and
directly from the high-resolution, hydrodynamical simulations,
MUSIC (Meneghetti et al. 2014), and perform ray-tracing
simulation to prepare large sets of realizations for the simulated
cluster images. We correct the raw arc counts in both the
observations and simulations for incompleteness, false positive
detections, and arc elongation measurement bias. This allows
us to conduct a direct comparison between the data and the
simulations under different theoretical scenarios.

This paper is organized as follows: we describe the arc finder
algorithm and its implementation in Section 2 and in the
appendices; we demonstrate the arc finder detection efficiency
and overall performance in Section 3; we present the arc

abundance results for the CLASH observations in Section 4;
we describe the cluster simulation and ray-tracing calculations
in Section 5; we compare the observed and simulated arc
abundance results in Section 6, specifically testing the
dependence of the abundance on the source redshift distribu-
tion and c–M relation in Section 7; and a discussion and
summary are given in Sections 8 and 9, respectively.
Throughout the paper, we adopt a ΛCDM cosmology
with parameters Ωm=0.3, ΩΛ=0.7, σ8=0.83, H0=
100 h km s−1 Mpc−1, and h = 0.7 (Planck Collaboration
et al. 2014).

2. CONCEPTUAL DEVELOPMENT OF THE ARC FINDER

In early works on arc statistics, arc detection was performed
by visual inspection owing, in part, to the complex shapes of
arcs and the crowded environments in which they are found.
An automated arc-finding algorithm has three key advantages
over visual search methods. First, the detection process is
reproducible and can be implemented by anyone who learns
how to run the code. Second, it can be applied to a large
number of real and simulated images. Finally, the detection
efficiency and false positive rate can be accurately quantified
using artificial objects implanted in real data or using simulated
images created by ray-tracing sources through lens models. The
biggest challenge to developing such an algorithm is creating a
definition of an arc for the purpose of detection that can be
implemented in a robust manner using parameters that can be
easily quantified from astronomical images.
An ideal arc finder should have the following characteristics:

1. The arc finder should be able to suppress image noise to
enhance the contrast of real, low surface brightness arcs
without significantly altering the intrinsic shape char-
acteristics of these faint objects.

2. The selection of pixels belonging to arcs should, if
possible, not be based on a global fixed intensity
threshold as the intensity can vary significantly across a
lensed image.

3. The arc finder must employ rules to reject spurious
detections such as diffraction spikes from bright stars or
edge-on disk galaxies.

4. The arc finder must be able to process many images in a
reasonable amount of time.

Here we describe an algorithm for identifying giant arcs—
the arcs we are most interested in analyzing in this work.
The algorithm was designed to reasonably comply with the
above criteria. The parameters that define what we consider
to be a giant arc, such as the minimum length and length-to-
width ratio, are presented in Section 3.2. Figure 1 shows
a flowchart of the steps involved in the algorithm and
summarizes its key components. The detailed descriptions of
the various steps that compose the algorithm can be found in
Appendices A–F.

3. ARC FINDER TESTING AND PERFORMANCE

3.1. Simulating Arcs

To compute the true arc abundance from the detected one,
we must quantify the incompleteness and false positive rate of
the arc finder using a combination of actual and simulated data
sets. The most robust way to simulate arcs is via ray-tracing, in
which light rays from objects in a source plane are shot toward
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the observer, deflected by the lens plane, and projected onto the
image plane (the “sky” as seen by the observer). To quantify
the incompleteness and false positive rate, one needs to trace a
large number of simulated arcs, which is often very CPU
intensive. Moreover, we need full control of all the input
parameters of simulated arcs to perform the tests efficiently,
and this becomes difficult to do solely by ray-tracing objects
that are placed randomly on the source plane.

Furlanetto et al. (2013) use a different approach to simulate
the arcs. Their basic idea is to represent an arc as a curved
ellipse with its main axis being a segment of a circle. The
model arc is then superposed directly on an image at various
locations. The arc’s shape is set by various parameters (e.g.,
length, width, curvature, and orientation) chosen to mimic the
shapes of real lensed galaxies. The surface brightness
distribution is set using a Sérsic law profile. The intensity
parameters include the Sérsic index and the intensity at the
center of the arc, which allows one to assign any magnitude or
the total flux to the simulated arcs. However, this simple
analytic prescription does not precisely reproduce the proper-
ties of real arcs. For example, the “painted-on” arcs tend to
have a deficit of surface brightness at their long ends, which
can result in shape measurement biases, especially for faint
arcs. For a robust comparison between the real data and
simulations, the “painted” arc method falls short of the fidelity
that is required.

We adopt a hybrid approach to simulate the arcs: simulate a
representative set of arcs via ray-tracing with a range of l/w
ratios and surface brightnesses and then “paint” these template
arcs onto the background images. This approach keeps the
advantages of both methods: realistic arc rendering and fast
performance. First, we perform ray-tracing by using a
simulated cluster lens with a Navarro–Frenk–White (NFW)

profile and a simulated background source with a Sérsic profile.
Second, we fine-tune the distance from the source to the caustic
line of the lens and carefully measure the l/w ratio of the
formed arcs. We keep those arcs with l/w ratio that are closest
to integer values as templates, as shown in Figure 2. We then
create many additional simulated arcs by arbitrarily rotating the
template images and by adjusting the total flux as desired.
These arcs are then inserted into both simulated and actual
CLASH images for our arc finder performance testing. A
detailed discussion on the general detectability of arcs as a
function of source properties can be found in Meneghetti
et al. (2008).
In order to accurately determine the arc detection complete-

ness, we must account for the effects such as light contamina-
tion from cluster galaxies, variable sky background, and
instrumental noise. We accomplish this by inserting the arc
templates into actual CLASH detection images (a weighted co-
addition of all of the Advanced Camera for Surveys [ACS]and
WFC3-IR images for a given cluster). An example of a CLASH
detection image, with the BCG subtracted out, is shown in
Figure 3. We simulate a total of 14,700 arcs spread over seven
different l/w values and seven different total flux values. For
the purpose of computing a measure of the algorithm’s
detection completeness, we only look at the fraction of
simulated arcs that are detected, even though we are inserting
the simulated arcs into real cluster data with real arcs. The
completeness is then just the ratio of the number of the
simulated arcs detected to the total number of arcs simulated.
The inverse of this ratio, fincom=Nsim/Ndet,sim, is then the
multiplicative factor that we will apply to any raw arc count to
correct for incompleteness.
We also utilize the F814W CANDELS (Grogin et al. 2011;

Koekemoer et al. 2011) images in the false positive rate test

Figure 1. Flowchart of the arc-finding algorithm.
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because there are no strong lensed sources in the CANDELS
fields. We select images from the CANDELS “Wide programs”
(e.g., the UDS and COSMOS fields), which have similar total
exposure times to the CLASH detection images (∼50,000 s),
and split these mosaics into smaller images that match the
angular size of the CLASH co-added images. We run the arc
finder on the CANDELS data and compute the surface density
of detections as functions of both the l/w threshold and the
total arc length, l. This constitutes the basis for our false
positive correction function.

We use the CLASH data with simulated arcs to measure our
arc finder completeness as a function of arc length, l/w ratio,
and arc signal-to-noise ratio (S/N). Here we define the S/N of

the arc as I Ii i i,bn
2( )så å + , where Ii is the intensity from

the source at pixel i and i,bn
2s is the combined variance due to

the sky background and all sources of detector noise at pixel i.

In our completeness test, the total flux of each drawn arc is
adjusted to match the assigned S/N value. We use the
CANDELS images to assess the arc finder false positive rate.
Figure 4 shows the completeness versus the l/w detection
threshold, (l/w)thr, at S/N=3 and10. The completeness
remains at a high level (>80% for S/N=10) whenl/w�
(l/w)thr; Figure 5(a) shows the false positive rate in the
CANDELS data as a function the l/w detection threshold when
the minimum arc length is set to 2″. The detected number of
false positives is slightly above 10 arcmin−2 at low (l/w)thr,
while it decreases rapidly as (l/w)thr increases. Figure 5(b)
shows the false positive rate as a function of the length of the
objects when the l/w threshold is set to 7. The number of false
positive detections peaks in the length bin l5 6 < . The
spurious detections canthusbe suppressed if we adopt a
minumum length threshold of l�6″.

Figure 2. Four arc templates with integer l/w ratios of 6, 7, 8, and 9, respectively, produced by the ray-tracing simulations.
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We have not applied this minimum length threshold to our
completeness test because the identification of the arcs does not
depend on the length (only depends on l/w and S/N).
Moreover, the intensity gradient along the ridge line of
the arc should be smaller than that in the perpendicular
direction, which means that the length measurement should be
more immune to the noise effects. To test that, we measure the
ratio of the detected length to the true length of the simulated
arcs. Figure 6(a) shows the distribution of the ratio at three
different S/N levels. The dashed lines indicate the median
value of the ratio. We can see that both the distribution and
the median value remain statistically similar at different S/N
levels.

3.2. Determination of the Optimal l/w Detection Threshold

In previous studies, the l/w detection threshold is typically set
to 7.5, 8, or 10. Generally, the reason to set a high l/w threshold
is to avoid the inclusion of highly elliptical and edge-on spiral
galaxies into the arc sample. In general, the lower l/w threshold
one uses, the more contamination one gets. Hence, it is desirable
to find anl/w threshold that maximizes the completeness level
and minimizes the false positive rate. We now use our measured
estimates of the completeness and false positive rate as a
function of the minimal l/w to identify the optimal l/w threshold
to use in the construction of our final arc catalog. We do this by
identifying the smallest l/w threshold at which the surface
density of detected simulated arcs, Ndet, exceeds the surface
density of false positive detections, Nfpr, by a factor of 5 or more.
The results of this test are shown in Figure 6(b). We find that the
ratio N l w N l wdet thr fpr thr( ( ) ) ( ( ) )  is always larger than 5
when the l/w detection threshold is larger than 7. We thus adopt
the l/w detection threshold of 7 in our analysis of the arc
abundance. The false positive rate for l/w�7 and an arc length
threshold l�6″ is 1.5±0.4 arcmin−2. We use this false
positive rate to correct our corresponding raw arc counts.

3.3. l/w Elongation Bias, Incompleteness, and False Positive
Rate Correction

There are three statistical corrections we need to apply to the
raw counts of the giant arcs. First, the detected l/w is not equal
to the true l/w. The background noise and/or the segmentation
boundaries of a detected object may systematically affect the
determination of the l/w ratio. We need to determine how the
detected l/w ratio deviates from the true l/w ratio at different
S/N levelsand correct for this elongation bias in a statistical
sense. For example, as shown in Figure 7, the detected l/w
ratio of arcs can be biased high by image noise, as the noise
tends to make arcs appear thinner than they actually are.
Second, we need to apply the incompleteness correction
(presented above) as there will always be some real arcs that
are missed by our detection algorithm. Third, we need to apply
a false positive correction as there are always some objects
misidentified by the arc-finding algorithm. We apply all these
three corrections in deriving the final observed and simulated
arc abundances.
To compute the l/w elongation bias correction, we collect all

the detected arcs with measured l/w�6.5,12 and we assign
them to one of three bins: 6.5�l/w<7.5, 7.5�l/w<8.5,
and l/w�8.5. We also assign their corresponding true l/w
ratios to one of three bins: l/w = 7, l/w = 8, and l/w�9. We
further split each bin into three sub-bins by their S/Ns: S/
N<5, 5�S/N<10,and S/N�10. We then calculate the
mean value and standard deviation of the correction factor for
the elongation bias fbias=Ntrue/Ndet, where Ntrue and Ndet are
the number of simulated arcs and detected arcs in each bin,
respectively.

Figure 3. (a) CLASH detection image for Abell 1423 shown with 30 “painted” arcs with l/w=7. The BCG and a handful of its satellites are first subtracted off
before the arc finder is run. (b) The arcs that are detected are shown. The field of view of both images is 2 7×2 7.

12 In practice, we set the l/w threshold to be 6.5 instead of 7. The bias
correction is then done by comparing the arcs with detected ratios in the range
6.5�l/w<7.5 to the number with true l/w = 7.
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The true arc count, Ntrue, is then computed as follows:

N N f f N

N
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, 1
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where Ndet,i is the observed number of arcs in each bin and i
goes over all the bins. As shown in Figures 8(a) and (b), most
of the measured l/w are biased high, especially for the arcs
with intrinsically low l/w. The completeness remains above
80% for all the cases. Here, biased high means that arcs with
“true” low l/w have their l/w values systematically over-
estimated. The mean ratio of the observed l/w to the “true” l/w
also appears to be dependent on the true l/w ratio, as shown in
Figure 7.

3.4. Comparison of Arc Finder’s Performance with a
Previous Code

We compare the arc detection efficiency of our arc finder
with that of the only publicly available arc-finding code from
Horesh et al. (2005). We simulate a large amount of arc with
different l/w ratios and draw Gaussian random noise onto the
arcs to produce simulated arc images with seven different S/N
levels. We run both arc-finding algorithms on these simulated
data sets.
Figure 9 shows the detection rate versus the arc S/N level

for arcs with true l/w = 7, 10, at a detection threshold l/w�7.
We have computed the S/N for detected arcs found using each
of the algorithms using the definition given in Section 3.1. For
the bright arcs (S/N>10), the detection rates for both arc
finders remainhigh (>90%); for faint arcs (5�S/N<10),
the Horesh et al. (2005) arc finder’s detection rate drops
rapidly, while our algorithm’s detection efficiency remains
higher than 90%; for very faint arcs (S/N<5), our detection

Figure 4. Completeness as a function of the l/w threshold for seven different true l/w ratios at (a)S/N = 3 and (b) S/N = 10. The dashed lines indicatel/w=(l/
w)thr, and the error bars denote the 1σ rms error.

Figure 5. (a) False positive rate per unit area as a function of the detected l/w threshold for arcs with S/N�3. (b) False positive rate per unit area as a function of the
arc length for arcs with l/w�7. Results are based on running the arc finder on CANDELS data. The error bars denote the 1σ rms error.
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rate drops to about 80%. The advantage of our intensity-
gradient-based arc-finding algorithm is nicely demonstrated in
Figure 9, especially for the detection of large arcs with low
surface brightness.

4. ANALYSES OF THE CLASH DATA

4.1. Arc Statistics for the CLASH Sample

The CLASH observations for each cluster consist of 16
broadband images (spanning the range 0.23μ–1.6μ) using the
WFC3/UVIS, WFC3/IR, and ACS/WFC instruments on
board HST. The cluster properties are listed in Table 1. We
run our arc finder on the detection (ACS+WFC3/IR) image
created for each cluster. We detect a raw total of 187 arcs with
l/w�6.5 in 20 X-ray-selected CLASH clusters. After
applying our minimum arc length criterion l�6″, the arc
count drops to 81 giant arcs selected from the 20 X-ray-selected
CLASH clusters. Correcting for the elongation bias and
incompleteness brings the total number of detected arcs in 20
X-ray-selected clusters to 104±12. After further correcting
for the false positive rate, we find a lensing efficiency of 4±1

arcs per X-ray-selected cluster. Throughout this paper, the
lensing efficiency denotes the number of arcs per cluster. There
are 28 arcs with l/w�6.5 and l�6″ detected in the five high-
magnification CLASH clusters, corresponding to a mean value
of 5±1 arcs per cluster after all corrections are applied.
Figure 10 shows the distributions of number of arcs per cluster
for the X-ray-selected cluster sample and the high-magnifica-
tion cluster sample. Figure 11 shows the comparison of the
detection images with the raw output of the arc finder with l/
w>7 for five CLASH clusters.

4.2. The Arc Redshift Distribution

We determine the photometric redshift distribution of the
lensed background galaxies detected by our algorithm using the
photometric redshifts derived with the Bayesian-based BPZ
package (Benítez 2000; Benítez et al. 2004; Coe et al. 2006).
Spectral energy distribution (SED) templates are redshifted and
fitted to the observed photometry. The BPZ code adopts a prior
that the empirical likelihood of redshift is a function of both
galaxy magnitude and galaxy morphological type (e.g., bright
and/or elliptical galaxies are rare at high redshift). We used 11
SED templates originally from PEGASE (Fioc & Rocca-
Volmerange 1997) that have been recalibrated based on
photometry and spectroscopic redshifts of galaxies in the
FIREWORKS catalog (Wuyts et al. 2008). We obtain the
photometric redshift distribution of all the detected arcs and
find that they have a median photometric redshift zs=1.9. We
also find that there is a significant fraction of arcs with zs∼3
(34% of the detected arcs have photometric redshift larger than
3). Figure 12 shows the arc number counts as a function of
redshift before and after correcting for the measurement bias,
incompleteness, and false positive rate. To compute the
photometric redshift distribution of our arc sample, we sum
up the individual posterior redshift probability distributions of
each detected arc. The mean uncertainty of the photometric
redshifts in CLASH is σz∼0.03(1+z), andthuswe sample
the probability distribution using the bin size Δz=0.4, which
is twice as large as the uncertainty of the arc with the highest
redshift. The summed distribution prior to correction for our
selection function and elongation bias is shown as the blue line

Figure 6. (a) Distribution of the ratio of the detected length to the true length at three different S/N levels. The colored dashed lines denote the median values of the
distribution.(b) Ratio of the number of detections per unit area to the false positive rate per unit area as a function of the detected l/w threshold. The dashed lines
indicatel/w=(l/w)thr, and the error bars denote the 1σ rms error.

Figure 7. Ratio of the observed l/w to true l/w as a function of the arc S/N.
The height of the shaded regions denotes the 1σ rms errors on the ratio.
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in Figure 12. To correct for the selection bias, incompleteness,
and false positive rate, we re-sum the probability distribution
for each arc after first multiplying by the appropriate correction
factors. The fully corrected redshift distribution, derived in this
way, is shown by the red line in Figure 12. Figure 13 also lists
the distribution of arc S/N, arc AB magnitude in the F814W
filter, arc l/w ratio, and the normalized angular distance of the
arc from the cluster center. Table 2 lists the properties of all the
detected arcs in the sample of 20 X-ray-selected clusters,
including the equatorial and pixel coordinates, length, l/w
ratio, radial distance from the arc center to the cluster center,
the normalized radial distance by r200, the photometric redshift,
and the AB magnitude in the F814W band. In Table 2, we do
not exclude the objects with photometric redshifts that are
significantly smaller than the corresponding cluster redshift.
Such probable foreground sources are considered to be false
positive detections. We eliminate false positive detections
statistically when we calculate the arc redshift distribution in
the CLASH sample.

5. MOKA LENSING SIMULATIONS

5.1. The MOKA-simulated Cluster Sample

In order to confirm or resolve the arc statistics problem, we
require realistic model predictions to compare with the
observed CLASH arc counts. In previous studies, mock
clusters were selected from N-body simulations using either
dark matter only (Wambsganss et al. 2004; Hilbert et al. 2007;
Horesh et al. 2010) or dark matter with other ingredients
(Puchwein et al. 2005; Gottlöber & Yepes 2007; Hilbert et al.
2008; Rozo et al. 2008; Meneghetti et al. 2010). The simulated
clusters were then projected onto the plane of the sky as viewed
from various directions to create the 2D mass models.
However, the total number of clusters and/or their mass and
redshift ranges used in these prior studies are not optimally
matched to the CLASH data set. Therefore, we generate a
simulated cluster sample by running the publicly available
MOKA package (Giocoli et al. 2012). MOKA uses simulation-
calibrated analytical relations to describe the dark matter
and baryonic content of clusters, which allows one to
incorporate all the cluster properties that are relevant for
strong cluster lensing. For example, for each halo, a triaxial
NFW profile and a random orientation are assigned. The
axial ratios are generated from the prescriptions of Jing &
Suto (2002). The halo concentration, c, and its dependence
on cluster mass, M, and redshift are modeled based on the
c–M relation of Bhattacharya et al. (2013) The joint weak-
lensing + strong-lensing analysis by Merten et al. (2015)
andUmetsu et al. (2014) indicates that the observed c–M
relation derived from the 20 X-ray-selected CLASH clusters
agrees with the relation presented in Bhattacharya et al. (2013).
The scatter in the concentration value at a fixed mass is
welldescribed by a Gaussian distribution instead of a
lognormal distribution, with rms∼0.33. We adopt this scatter
in our MOKA simulations. The dark matter substructures,
the central BCG, and adiabatic contraction are also incorpo-
rated into the MOKA-generated models. MOKA is computa-
tionally efficient and is able to create a single simulated
cluster lens model in a few CPU seconds on a personal
computer by using a fast semianalytic approach. The details of
the code and its implementation can be found in Giocoli
et al. (2012).

Figure 8. All the detected arcs with l/w�6.5 are assigned to three l/w bins (horizontal axis). (a) Elongation bias correction factors in three l/w bins.(b)
Incompleteness correction factors in three l/w bins. The error bars denotes the 1σ rms error.

Figure 9. Comparison of the arc detection completeness between our arc finder
(solid curves) and the Horesh et al. (2005) arc finder (dashed curves) for arcs
with l/w = 7, 10. The error bars denote the scatter. For bright arcs with S/
N>10 both arc finders maintain a high detection rate (>90%),while for faint
arcs with lower S/N levels, our arc finder exhibits considerably higher
detection efficiency. The error bar denotes the 1σ rms error.
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For our study, we create 640 mock clusters with the same
mass and redshift range as the 20 X-ray-selected CLASH
clusters (32 different realizations for each corresponding mass
and redshift). In particular, the density profile of the main halo
follows an NFW profile, while the density profile of the
subhalos is chosen to be a truncated singular isothermal sphere
profile; the spatial density distribution of the subhalos follows

the measurement from numerical simulations by Gao et al.
(2004); the mass resolution of the subhalos is 1010Me. We
calculate the deflection angle, convergence, and shear fields for
each projected mass distribution. The angular resolution of the
simulated cluster images is 0 065, which matches the pixel
scale in the CLASH images.

5.2. Background Source Images and Ray-tracing Method

To create the sky scene from the MOKA mass models, we
follow a methodology similar to that in Horesh et al. (2011): we
choose galaxies from the F775W UDF image as the sample of
sources to be lensed by our simulated cluster mass models. This
ensures that we have a realistic background field that
incorporates the observed distributions of galaxy morpholo-
gies, redshifts, luminosities, angular sizes, and ellipticities
directly into our simulation. We then simulate the lensed UDF
images via ray-tracing, as briefly described in Section 3.1.
Adopting the thin lens approximation, the lensing can be
described by the lens equation,

z, , 2s( ) ( )b q a q= -

where θ is the image position, β is the source position in the
source plane, and α is the deflection angle, which has a weak
dependence onsource redshift. Coe et al. (2006) have
produced a UDF photometric redshift catalog and a corre-
sponding segmentation map containing 9821 objects detected

Table 1
The CLASH Cluster Sample

Clustera αJ2000 δJ2000 zClus M200c

[1015 Me h−1]

X-Ray-selected Clusters

Abell 209 01:31:52.57 −13:36:38.8 0.206 0.95±0.07
Abell 383 02:48:03.36 −03:31:44.7 0.187 0.87±0.07
MACS 0329.7–0211 03:29:41.68 −02:11:47.7 0.450 0.73±0.10
MACS 0429.6–0253 04:29:36.10 −02:53:08.0 0.399 0.80±0.14
MACS 0744.9+3927 07:44:52.80 +39:27:24.4 0.686 0.70±0.04
Abell 611 08:00:56.83 +36:03:24.1 0.288 0.85±0.05
MACS 1115.9+0129 11:15:52.05 +01:29:56.6 0.352 0.90±0.09
Abell 1423 11:57:17.26 +33:36:37.4 0.213 ...
MACS 1206.2–0847 12:06:12.28 −08:48:02.4 0.440 0.86±0.11
CLJ 1226.9+3332 12:26:58.37 +33:32:47.4 0.890 1.56±0.10
MACS 1311.0–0310 13:11:01.67 −03:10:39.5 0.494 0.46±0.03
RXJ 1347.5–1145 13:47:30.59 −11:45:10.1 0.451 1.16±0.19
MACS 1423.8+2404 14:23:47.76 +24:04:40.5 0.545 0.57±0.10
RXJ 1532.9+3021 15:32:53.78 +30:20:58.7 0.345 0.53±0.08
MACS 1720.3+3536 17:20:16.95 +35:36:23.6 0.391 0.75±0.08
Abell 2261 17:22:27.25 +32:07:58.6 0.224 1.42±0.17
MACS 1931.8–2635 19:31:49.66 −26:34:34.0 0.352 0.69±0.05
RXJ 2129.7+0005 21:29:39.94 +00:05:18.8 0.234 0.61±0.06
MS 2137–2353 21:40:15.18 −23:39:40.7 0.313 1.04±0.06
RXJ 2248.7–4431 (Abell 1063S) 22:48:44.29 −44:31:48.4 0.348 1.16±0.12

High-magnification Clusters

MACS 0416.1–2403 04:16:09.39 −24:04:03.9 0.420 ...
MACS 0647.8+7015 06:47:50.03 +70:14:49.7 0.584 ...
MACS 0717.5+3745 07:17:31.65 +37:45:18.5 0.548 ...
MACS 1149.6+2223 11:49:35.86 +22:23:55.0 0.544 ...
MACS 2129.4–0741 21:29:26.06a −07:41:28.8a 0.570 ...

Note.
a Central cluster coordinates derived from optical image.

Figure 10. Occurrence frequency of arcs per cluster for 20 X-ray-selected
CLASH clusters (blue) and for the subsample of five high lens magnification
CLASH clusters (red).
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Figure 11. Left: detection images of five CLASH clusters; right:raw output maps produced by the arc finder with l/w>7.
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above an 8σ level. Based on the redshift catalog, we assign all
the UDF sources among 20 redshift bins with bin widths of
Δz=0.3. In each redshift bin (α is then fixed) we perform the
ray-tracing to generate the simulated lensed image and combine
each of the simulated lensed objects from all bins into a final
image. Finally, we match the noise levels in the simulations to
that in the CLASH images.

6. COMPARISON BETWEEN SIMULATED IMAGES AND
REAL OBSERVATIONS

We run the arc finder on all 640 simulated images. A raw
total of 3304 arcs with l/w�6.5 and l�6″ are detected in
640 simulated realizations. We correct this total number of arcs
for elongation bias and incompleteness and obtain
3585±165 arcs, giving a mean of 4±1 arcs per cluster after
applying the false positive correction. This value matches the
observed lensing efficiency of 4±1 precisely. There is no
significant difference between the arc abundance detected in
the observations and that detected in the MOKA simulations.

Figure 11. (Continued.)

Figure 12. Photometric redshift distribution of the detected arcs in the CLASH
X-ray-selected sample. The blue solid line denotes the redshift distribution of
the raw data counts, which is computed based on the full posterior probability
distribution of the detected arcs; the red dashed line denotes the redshift
distribution after the elongation bias, incompleteness, and false positive
correction, which is computed based on the corrected full posteriorprobability
distribution. The error bar represents the 1σ Poisson error.
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Examining the observed and simulated distribution of number
of arcs per cluster (Figure 14), a Kolmogorov–Smirnov (K-
S)test13 yields a p-value = 0.92, indicating that the null
hypothesis that both distributions are drawn from the same
parent distribution cannot be strongly rejected. We further test
the lensing efficiency as a function of cluster redshift by
dividing the observed and simulated samples into two
subsamples by their redshift: zCL�zmedian and zCL>zmedian,
where zmedian=0.352. For each subsample, we compare the
observed and simulated number distribution (see Figure 15) of
the lensing efficiency. On average, the higher-redshift clusters
are slightly more efficient lenses than the lower-redshift
clusters, but the differences are all at marginal statistical
significance. The K-S testindicates that, in both redshift bins,
the observed and simulated distributions of the lensing
efficiency are consistent with being drawn from a common
population (p-values are 0.99 and 0.65 for the lower- and
higher-redshift bins, respectively). We summarize our arc
statistics results for the observations and simulations in Table 3.
The second and third columns in Table 3 denote the lensing
efficiency of the observed and simulated samples, respectively;
the fourth column is the p-value of the K-S test on the observed
and simulated distributions.

We now explore the relationships between the lensing
efficiency and the cluster’s redshift, mass, concentration, and
effective Einstein radius AE,effq p= for CLASH and

MOKA samples, where A is the area enclosed by the tangential
critical curve. Figure 16 shows the lensing efficiencies as
functions of cluster redshift, mass, central concentration, and
θE,eff. Since the CLASH sample does not span a very wide
range in the cluster redshift, mass, and concentration, it is
perhaps not surprising that there are no clear correlations
between the lensing efficiency and the redshift, the mass, or the
concentration for both the CLASH and MOKA samples.
However, there is a very significant correlation between the
MOKA lensing efficiency and θE,eff, and the correlation can be
described by the following formula:

N 0.03 0.01 arcsec 0.81 0.22 , 3Earc ,eff
1.54 0.08( ) [ ] ( ) ( )q=  + 

as the dashed line in Figure 16(d) shows. The nonzero value of
the y-intercept reflects a contribution from false positive
detections (consistent with our estimation from simulations)
and intrinsic scatter.

7. WHAT IS THE DOMINANT DETERMINANT OF
CLUSTER LENSING EFFICIENCY?

We now assess the relative importance of the redshift
distribution of the lensed sources and the c–M relation of the
clusters on the resulting giant arc abundance. We accomplish
this by conducting a series of simulations where we alter either
the redshift distribution of the background galaxies or the
assumed c–M relation. While other effects such as dark matter
substructure, halo triaxiality, and the mass profile of the
BCGmay also play a role in determining the distribution of arc

Figure 13. Distribution of (a) S/N, (b) AB magnitude, (c)l/w ratio, and (d) normalized angular distance RD/r200 of all the detected arcs in the CLASH sample.

13 The K-S test performed here uses the ks_2samp routine from the SciPy
package.
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Table 2
Detected Arcs and Properties

Cluster Arc ID R.A. Decl. x y l (″) l/w RD (″)a RD/r200 z AB mag (F814W)

Abell 1423 1 179.33 33.60 2204.00 1905.00 6.82 9.67 43.09 1.09 0.62 22.61
L †2 179.30 33.62 3553.00 3227.00 6.14 7.61 82.69 2.10 0.00 24.29
Abell 209 1 22.96 −13.61 2760.00 2738.00 11.90 10.00 23.16 0.62 3.50 21.73
Abell 2261 †1 260.59 32.12 3542.00 1698.00 7.08 8.89 84.98 1.84 0.00 24.39
L †2 260.61 32.12 2505.00 1994.00 8.46 10.55 32.18 0.70 0.33 23.01
L 3 260.62 32.13 2165.00 2317.00 6.72 7.92 24.54 0.53 3.54 23.75
L 4 260.60 32.13 2902.00 2395.00 10.55 14.29 26.77 0.58 1.80 22.07
L †5 260.64 32.13 1324.00 2620.00 13.06 23.34 76.98 1.67 0.27 23.79
L 6 260.61 32.15 2577.00 3516.00 6.64 10.20 66.94 1.45 1.35 23.22
Abell 383 1 42.03 −3.54 1620.00 2246.00 6.80 7.03 54.43 1.30 0.73 25.74
L 2 42.02 −3.53 2181.00 2462.00 12.36 14.63 17.70 0.42 4.22 22.94
L 3 42.01 −3.53 2553.00 2616.00 19.23 22.41 15.27 0.36 0.89 20.15
L 4 42.02 −3.53 2114.00 2579.00 7.32 7.91 15.79 0.38 3.12 23.20
L 5 42.03 −3.53 1566.00 2735.00 6.33 8.56 49.75 1.18 2.46 25.06
L †6 42.01 −3.53 2314.00 2691.00 8.43 9.01 1.04 0.02 0.30 21.93
L 7 42.00 −3.53 2828.00 2893.00 7.48 17.11 34.96 0.83 6.31 23.92
L 8 42.01 −3.52 2281.00 3035.00 20.42 31.37 22.65 0.54 5.00 23.33
L 9 42.01 −3.52 2281.00 3024.00 7.87 16.59 21.94 0.52 3.24 24.81
Abell 611 1 120.24 36.06 2335.00 2665.00 25.66 30.64 15.35 0.40 1.12 20.44
L †2 120.26 36.06 1358.00 2727.00 7.02 7.37 75.89 2.00 0.27 19.75
CLJ 1226 1 186.74 33.54 2838.00 2253.00 6.30 9.52 26.72 1.52 2.79 25.90
L 2 186.75 33.54 2164.00 2394.00 14.22 12.37 23.10 1.31 2.30 24.96
L 3 186.75 33.55 2144.00 2742.00 8.47 19.19 28.47 1.62 3.45 23.79
MACS 0329 1 52.41 −2.19 3049.00 2869.00 7.96 9.55 43.27 1.56 1.03 23.28
L 2 52.42 −2.18 2685.00 3153.00 6.20 9.45 44.66 1.61 3.35 24.25
MACS 0429 1 67.40 −2.90 2752.00 1709.00 6.48 8.01 52.93 2.08 1.67 24.22
L 2 67.40 −2.89 2499.00 2200.00 10.69 12.24 18.83 0.74 1.35 21.79
MACS 0744 †1 116.22 39.44 2682.00 1488.00 7.00 7.56 66.12 3.43 0.41 20.22
L 2 116.23 39.45 2128.00 2078.00 6.41 7.74 36.39 1.89 4.79 23.85
L †3 116.20 39.45 3147.00 2191.00 7.32 7.32 45.92 2.38 0.14 18.48
L 4 116.23 39.46 1969.00 2581.00 6.75 9.40 35.47 1.84 4.73 23.99
L 5 116.23 39.46 2033.00 2625.00 6.10 8.37 32.04 1.66 4.41 24.43
L 6 116.20 39.46 3477.00 2652.00 7.56 14.86 63.92 3.32 4.11 23.76
L 7 116.21 39.46 2839.00 2632.00 6.77 7.71 23.47 1.22 1.17 20.34
MACS 1115 1 168.96 1.49 2602.00 2228.00 14.44 18.05 18.34 0.58 2.46 23.08
L 2 168.98 1.50 1586.00 2402.00 9.53 15.25 60.03 1.90 1.76 24.83
L †3 168.97 1.50 2500.00 2374.00 7.76 7.60 7.74 0.25 0.42 20.91
L 4 168.97 1.50 2355.00 2371.00 10.65 12.58 12.57 0.40 4.21 21.72
L 5 168.96 1.51 2896.00 2911.00 14.52 16.16 37.20 1.18 4.12 22.91
L 6 168.96 1.51 2578.00 3022.00 7.14 7.11 34.71 1.10 3.25 24.41
MACS 1206 †1 181.55 −8.81 2247.00 2078.00 6.69 7.04 28.16 0.99 0.55 20.26
L 2 181.54 −8.80 2790.00 2454.00 14.27 15.73 19.47 0.68 1.05 19.76
L 3 181.54 −8.80 3292.00 2420.00 6.54 7.51 52.08 1.83 2.41 24.64
L †4 181.55 −8.80 2477.00 2438.00 11.97 10.88 0.92 0.03 0.49 23.77
L 5 181.57 −8.80 1618.00 2471.00 8.39 12.32 56.79 1.99 1.56 23.19
L 6 181.53 −8.79 3484.00 3134.00 8.36 8.57 78.90 2.77 0.72 19.30
MACS 1311 1 197.75 −3.17 2881.00 2742.00 6.25 7.66 29.33 1.30 2.83 24.77
MACS 1423 †1 215.93 24.07 3433.00 2050.00 9.84 17.73 66.78 3.12 0.00 23.74
L 2 215.95 24.07 2606.00 2128.00 6.13 7.80 24.49 1.14 1.47 23.92
L 3 215.94 24.07 2804.00 2120.00 8.80 15.30 30.97 1.45 2.57 23.94
L 4 215.95 24.08 2378.00 2773.00 8.18 11.48 20.10 0.94 1.79 22.72
L 5 215.95 24.09 2576.00 3211.00 7.70 11.46 47.03 2.20 3.16 24.47
MACS 1720 1 260.06 35.60 2757.00 2042.00 8.33 11.23 33.32 1.20 4.38 24.29
L 2 260.07 35.60 2621.00 2346.00 8.60 10.80 11.90 0.43 0.82 23.23
MACS 1931 1 292.96 −26.59 2559.00 1917.00 9.71 11.49 37.90 1.38 3.55 24.23
MS 2137 1 325.06 −23.66 2422.00 2713.00 14.81 12.99 14.59 0.46 1.77 21.78
L 2 325.07 −23.65 2181.00 2903.00 10.75 14.08 33.37 1.05 1.71 23.95
L 3 325.07 −23.65 2215.00 3046.00 10.93 12.95 39.93 1.26 1.97 23.86
RXJ 1347 1 206.87 −11.77 3032.00 1776.00 12.76 21.51 55.55 1.82 1.64 23.58
L 2 206.87 −11.76 3141.00 2064.00 9.07 11.79 46.58 1.52 2.43 21.57
L 3 206.87 −11.75 3117.00 2872.00 7.02 10.12 43.42 1.42 4.28 24.63
L 4 206.88 −11.75 2521.00 2951.00 6.82 7.51 29.92 0.98 0.78 21.46
L 5 206.88 −11.74 2549.00 3162.00 7.83 13.50 43.50 1.42 3.78 24.22
RXJ 1532 †1 233.22 30.34 2841.00 2088.00 7.75 9.30 34.16 1.25 0.27 22.25
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number counts, we focus here on studying the impact of the
redshift distribution and c–M relation as these are potentially
the most important effects. As shown below, however, we find
that the lensing efficiency of CLASH-like clusters is not very
sensitive to the redshift distribution of the background galaxy
population so long as there is a significant fraction of the source
galaxy population that lies at z>1. We also find that the
lensing efficiency is quite sensitive to the dark matter
concentration distribution.

7.1. Simulated Lenses, Background Sources
All at zs = 1 or zs = 2

We start by testing how the source redshift distribution
affects the arc abundance. We use the same 160 simulated
MOKA clusters but we first set all the UDF source redshifts to
zs = 1 and then, in a separate realization, set all source redshifts
to zs = 2 to see the impact of a delta function redshift
distribution (which is obviously an extreme assumption). We
then perform the ray-tracing to create 640 new simulated
images for each case. We run the arc finder on these images and

detect 1748 and 3764 arcs in total, respectively, when zs = 1
and zs = 2. After applying statistical corrections, we find
lensing efficiencies of 2±1 (zs = 1) and 5±1 (zs = 2). The
lensing efficiency decreases by a factor of about 2 when the
background redshift distribution is a delta function with all
sources at zs = 1. However, when putting all sources at zs = 2,
one obtains a similar lensing efficiency to that obtained when
using a realistic UDF redshift distribution. The distributions of
arc number per cluster for these three cases are shown in
Figure 17(a). K-S tests indicate that the arc number distribu-
tions when using the UDF redshift distribution and using a
delta function at zs = 2 are consistent (p-value = 0.45). The arc
number distribution when assuming a zs = 1 delta function
differs significantly from that with a UDF redshift distribution
or zs = 2 delta function redshift distribution (K-S test p-
value = 3.5×10−6).

7.2. CLASH Mass Models (CLMM), UDF Redshift Distribution
for the Background Galaxies

Given the CLMM, we would like to check whetherthe UDF
field is representative as a background source for the
simulations. We use the publicly available mass models of 19
CLASH X-ray-selected clusters (Zitrin et al. 2015) to lens the
UDF source galaxiesand to create 152 simulated images. We
detect 656 arcs from these images, corresponding to a lensing
efficiency of 3±1. This efficiency differs from that found for
the actual CLASH images (4± 1) by 0.7σ. The distributions of
arc number per cluster are consistent with one another (see
Figure 17(b)). A K-S test gives a p-value = 0.42.

7.3. CLMM, Background Sources All at zs = 1 or zs = 2

We now assess whether the lensing efficiency is altered
significantly when using the CLMM along with delta function
redshift distributions. Again, we arbitrarily place all the UDF
sources at redshift zs=1 and zs = 2and perform ray-tracing
through 19 CLASH mass models to create 152 new simulated
images for each case. We detect a total of 414 and 670 arcs for
the zs = 1 and zs = 2 source distributions, respectively. These

Table 2
(Continued)

Cluster Arc ID R.A. Decl. x y l (″) l/w RD (″)a RD/r200 z AB mag (F814W)

RXJ 2129 1 322.41 0.08 2890.00 2044.00 7.42 7.79 38.34 1.36 3.17 23.61
L †2 322.44 0.09 1394.00 2310.00 6.26 9.57 73.09 2.60 0.00 24.96
L 3 322.42 0.09 2295.00 2528.00 7.20 7.83 13.81 0.49 1.55 22.65
RXJ 2248 1 342.18 −44.54 2613.00 1950.00 6.15 6.89 36.42 1.31 3.08 24.18
L 2 342.16 −44.54 3371.00 2095.00 8.91 11.34 62.35 2.25 3.09 24.02
L 3 342.18 −44.54 2622.00 2084.00 8.06 10.83 28.10 1.01 1.64 23.35
L 4 342.17 −44.54 2830.00 2074.00 6.61 9.53 34.94 1.26 2.75 24.42
L 5 342.19 −44.53 2227.00 2545.00 10.12 10.26 18.06 0.65 1.41 22.36
L 6 342.19 −44.53 2039.00 2697.00 13.95 17.47 32.67 1.18 1.38 21.32
L 7 342.17 −44.53 2853.00 2642.00 6.19 7.28 24.70 0.89 1.41 22.35
L 8 342.19 −44.53 2343.00 2684.00 7.32 8.80 15.81 0.57 3.76 24.48
L 9 342.20 −44.52 1664.00 2902.00 9.44 13.06 60.38 2.18 1.36 25.23
L †10 342.21 −44.52 1358.00 2943.00 6.42 7.33 79.70 2.87 0.00 21.79
L 11 342.20 −44.52 1743.00 2930.00 10.16 14.05 56.68 2.04 2.79 24.33
L 12 342.20 −44.52 1856.00 3108.00 6.95 7.97 57.66 2.08 1.96 24.89
L †13 342.21 −44.52 1629.00 3261.00 6.73 6.85 75.27 2.71 0.40 19.07
L 14 342.20 −44.52 1909.00 3340.00 6.49 7.68 66.85 2.41 0.85 24.11

Note.
a RD = radial distance from the arc center to the cluster center in units of arcseconds; IDs with † denote the false positive detection.

Figure 14. Comparison of distribution of arc number per cluster between the
X-ray-selected CLASH sample and the MOKA-simulated sample with the
same mass and redshift range.
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correspond to lensing efficiencies of 2±1 and 3±1. Similar
to thosein the MOKA simulations, the lensing efficiency and
distribution of arc numbers are similar for simulations with
UDF redshift distribution and zs = 2 (p-value = 0.5),whereas
the lensing efficiency for zs = 1 is again about 2 times lower
than that with a UDF redshift distribution and zs = 2, and the
arc number distribution for zs = 1 is also significantly different
(K-S p-value = 1.8×10−4). Figure 17(c) shows the distribu-
tions of arc number per cluster for the three samples.

7.4. Different c–M Relations, UDF Redshift Distribution for the
Background Galaxies

Here we show how the arc abundance depends on the cluster
c–M relation. Using the UDF redshift distribution, we re-
simulate 160 new clusters and simulated images with MOKA
by adopting the c–M relation in Neto et al. (2007), instead of
Bhattacharya et al. (2013). We detect 230 arcs from 160
realizations using the Neto et al. (2007) c–M relation, which,
after corrections, yields a lensing efficiency of 1±1. The
lensing efficiency is a factor of 4 lower using the Neto et al.
(2007) c–M relation than when we adopt the Bhattacharya et al.
(2013) c–M relation. This arc abundance is seen to be quite
sensitive to the parameters of the c–M relation. As above,
Figure 17(d) shows the arc number distributions of three
samples.

8. MUSIC LENSING SIMULATIONS

Although the lensing efficiency in semianalytic MOKA
simulations is in excellent agreement with that found in the
CLASH observations, it is important to make sure that this is a
robust result. Thus, we study a different suite of simulations to
determine the arc abundance using simulated clusters drawn
directly from high-resolution, hydrodynamical simulations. For

this, we use a set of mock clusters taken from the MUSIC-2 N-
body/hydrodynamical simulations (Meneghetti et al. 2014).
The MUSIC-2 sample (Sembolini et al. 2013; Biffi et al. 2014)
consists of a mass-limited sample of re-simulated halos selected
from the MultiDark cosmological simulation. This simulation
is dark matter only and contains 20483 particles in a (1 h−1

Gpc)3 cube, which was performed in 2010 using ART
(Kravtsov et al. 1997) at the NASA Ames Research Center.
All these simulations are accessible from the online MultiDark
Database2. The run was using the best-fitting cosmological
parameters to WMAP7+BAO+SNI (ΩM = 0.27, Ωb = 0.0469,
ΩΛ = 0.73, σ8 = 0.82, n = 0.95, h = 0.7). There were 282
cluster-scale halos in the simulation box that are more massive
than 1015 h−1Me at redshift z=0 and are selected to construct
our sample. All these massive clusters were re-simulated both
with and without radiative physics. The initial conditions for
the re-simulations were generated in a finer mesh of size 40963,
by following the zooming technique described in Klypin et al.
(2001). By doing so, the mass resolution of the re-simulated
objects corresponds to mDM=9.01×108 h−1Me and to
mSPH=1.9×108 h−1Me, which was improved by a factor
of 8 with respect to the original simulations. The parallel
TREEPM+SPH GADGET code (Springel 2005) was used to
run all the re-simulations. Snapshots for 15 different redshifts
in the range 0�z�9 are stored for each re-simulated object.
The snapshots that overlap with the redshifts of the CLASH
clusters are at z=0.250, 0.333, 0.429, and 0.667.
These re-simulated cluster halos were originally used to

estimate the expected concentration–mass (c–M) relation for
the CLASH cluster sample (Meneghetti et al. 2014; Merten
et al. 2015). As in these works, we use the X-ray image
simulator X-MAS (Gardini et al. 2004) to produce simulated
Chandra observations of the halos, and we use them to further
identify objects that match the X-ray morphologies and masses
of the X-ray-selected CLASH clusters. The c–M relation from
our X-ray-selected set of simulated clusters agrees with that
directly derived from the CLASH data at the 90% confidence
level (Merten et al. 2015) and is fully consistent with the
stacked weak-lensing signal derived from the ground-based
wide-field observations (Umetsu et al. 2014). We perform ray-
tracing through these X-ray-selected simulated clusters (BCGs
and radiative physics are not included) to lens the UDF sources
and create 100 simulated CLASH images.

Figure 15. Lensing efficiency as a function of cluster redshift. The 20 X-ray-selected CLASH clusters are divided into two subsamples by their cluster redshift:
zCL�zmedian and zCL>zmedian, where zmedian=0.352. (a) and (b) list the comparison of the number distribution of the subsamples between the observation and
simulation.

Table 3
Comparison of Observed and Simulated Cluster Lensing Efficiencies

Redshift CLASH MOKA p-value of
Range Observations Simulations K-S Test

All Clusters 4±1 4±1 0.92
zCL�zmedian 3±1 3±1 0.99
zCL>zmedian 5±1 6±1 0.65
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8.1. Lensing Statistics of MUSIC-simulated Samples and
Comparison with Real Observations

We run the arc finder on the 100 MUSIC-simulated images
and detect a total of 343 arcs with l/w�7 and l�6″. We
correct the total number of arcs for the elongation bias and
incompleteness, yielding a final number of 447±24 arcs,
which corresponds to a mean value of 3±1 arcs per cluster
after application of the false positive correction. The MUSIC
lensing efficiency is fully consistent with the lensing efficiency
of the observed CLASH X-ray-selected sample (4± 1).
Figure 18(a) shows the observed and simulated distributions
of arc number per cluster. A K-S test between these two
distributions has a p-value = 0.95. We also explored the
dependence of the lensing efficiency on the l/wmin and lmin in
the MUSIC simulations (Figures 18(b), (c)). The lensing
efficiency decreases with increasing l/wmin and lmin values,
which is consistent with the behavior seen in the CLASH
observations. We summarize the main arc statistics results of
this paper in Table 4: the second column in Table 4 is the
rounded-off value of the mean lensing efficiency (number of
arcs per cluster); the third column is the significance of
difference in lensing efficiency between the specific simulation
sample and that derived for the observed CLASH X-ray-
selected sample. As with the MOKA simulations, the MUSIC-
simulated clusters yield cluster lensing efficiencies that match

that seen in the observations when the simulations adopt a c–M
relationship and a source redshift distribution that matches the
observations.

9. DISCUSSION

Since the arc statistics was originally proposed as a
cosmological probe, many previous studies have investigated
the sensitivity of the arc abundance on various cosmological
effects. Cosmology enters the strong-lensing properties of the
galaxy clusters in two ways: first, the arc abundance depends
on the angular-diameter distance and volume,which are
determined by the cosmological expansion; second, the arc
abundance depends on the cluster abundance and internal
structure, which are cosmological sensitive. N-body simula-
tions and semianalytic approaches have been utilized in earlier
studies to explore the sensitivity of arc abundance on σ8
(Wambsganss et al. 2004; Li et al. 2006; Fedeli et al. 2008),
and an increaseing function of arc abundance with σ8 has been
observed, though whether the large increments in arc
abundance when increasing the σ8 are quantitatively reliable
is not clear.Boldrin et al. (2015) havestudied the arc
abundance dependence on σ8 and Ωm for a given survey area.
They use MOKA to generate mock clusters with different mass
and redshift and populate them into the light cones spanned by
the survey region. They identify the increasing functions of arc

Figure 16. Comparisons of the lensing efficiency between the CLASH and MOKA samples for (a) the corresponding cluster redshift, (b) mass, and (c) concentration.
(d) Relation between the lensing efficiency and the effective Einstein radius θE,eff for all the CLASH and MOKA data points. With the upper left outlier excluded, the
dashed line gives the best-fitting curve for all the MOKA data points.
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abundance with both parameters. The arc abundance seems
more sensitive to σ8 than Ωm, because σ8 has an effecton the
cluster formation time, which in turn affects the cluster internal
lensing properties such as triaxiality and concentration.
However, the degeneracy between two parameters for the arc
abundance limits its ability to distinguish different cosmolo-
gies. The arc abundance sensitivity on various dark energy
models has also been studied, which includes a constant
equation-of-state parameter w 1¹ (Bartelmann et al. 2003) and
time-varying w parameter (Meneghetti et al. 2005);the arc
abundance could change by at most a factor of 2 even with a
substantial change in w. Jullo et al. (2010) and D’Aloisio &
Natarajan (2011b) studied how cosmology affects the arc
statistics through geometry effects. They found the expansion
function; thus, the cosmological models can be constrained
from the ratio of the lensing efficiencies at different redshifts.
To achieve competitive results, however, the mass distribution
of the clusters must be determined with very high precision,
and a sample of about 10 clusters contaning about 20 arc
families each is needed. Moreover, the arc statistics could even
change by 30% with different non-Gaussianity parameters
based on a theoretical framework (D’Aloisio & Natarajan
2011a). Therefore, these studies may indicate that, amongall
the cosmological parameters, the arc abundance seems to be
most sensitive toσ8. Interestingly, most of the simulations in

early arc statistics works have adoped a typically higher σ8
value (∼0.9–0.95; σ8=1.12 was adopted in B98) than the
current concensus from WMAP7 and Planck, which could have
made the discrepancy between the simulations and the
observations even larger. It implies that at least the deficit of
cluster abundance under different cosmologies might not be the
main solution to the “arc statistics problem” in the first place.
Since the dependence of the cluster internal lensing properties
on σ8 is still not well known, we simply adopt the value of
σ8=0.83 along with other cosmological parameters from the
Planck results (Planck Collaboration et al. 2014). We believe
that our conclusion would not change significantly unless there
is large revision in the the Planck value for σ8.
As one of the promising candidate solutions to the arc

statistics problem, the impact of source redshift distribution on
the arc abundance has been emphasized by many previous
studies. Wambsganss et al. (2004) studied the magnification
probability for light rays propagating across a cosmological
scale and found that the probability of high-magnification
events highly depends on the source redshift. They concluded
that the arc abundance should have a steep increase with source
redshift because the number of halos suitable for strong lensing
increases exponentially with redshift, and they suggest this as
the solution for the arc statistics problem. Bayliss et al. (2011)
andBayliss (2012) haveestablished a large sample of arcs

Figure 17. Comparison of the distribution of arc number per cluster between diffrent samples. (a) Comparison of the arc number distribution between samples with
MOKA mass models and different source redshift distributions; (b) comparison of the arc number distribution between the CLASH sample and CLMMs (CLASH
mass models) using the UDF redshift distribution; (c) comparison of the arc number distribution between samples with CLMMs and different source redshift
distributions; (d) comparison of the arc number distribution between samples with the same source redshift distributions and mass models, but implemented with
different c–M relations.
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(105) from the Sloan Giant Arcs Survey (SGAS) and from the
Second Red Sequence Cluster Survey (RCS2) and study the
redshift distribution of the arcs. They find that arcs with g�24
have a median redshift of zs∼2. Bayliss (2012) claims that the
arc statistics problem can be solved by adopting their measured
redshift distribution and using the scaling of the optical depth
given in Wambsganss et al. (2004). However, Li et al. (2005)
and Fedeli et al. (2006) show that the scaling of the optical
depth is very different from what was assumed by Wambsganss
et al. (2004) and that the Wambsganss et al. (2004) assumption
that the magnification is a good measure for the l/w ratio of an
arc is not justified in detail. Furthermore, it is unclear
whetherthe arc identification used by Bayliss (2012) (e.g., by
curvature radius of arcs and by visual inspection) might bias the
selection in favor of luminous and highly curved arcs. If so, the
corresponding arc abundance and redshift distribution could
also possibly be biased.
Our results show that the simulations performed with either a

UDF redshift distribution or a delta function redshift distribu-
tion at zs = 2 give very similar arc abundances. When we
change the redshift distribution of the background sources to a
delta function at zs = 1,the arc abundance drops by a factor of
2 rather than the order-of-magnitude change in the arc
abundance noted in some previous studies (e.g., Wambsganss
et al. 2004). The factor of 2 change is consistent with Horesh
et al. (2005, 2011), who also used UDF images as background
sources to perform the ray-tracing. Horesh et al. (2005) used

Figure 18. (a) Comparison of the number distribution between the CLASH sample and MUSIC sample.(b) Lensing efficiency as a function of lmin for arcs with l/
w�7 for different samples.(c) Lensing efficiency as a function of l/wmin for arcs with l�6″ for different samples.

Table 4
Comparison of Lensing Efficiency between Observation and Simulation

Parameter
Lensing
Efficiency Difference relative to

CLASH X-Ray-selec-
ted Sample

Observation (X-ray-selected
sample)

4±1 L

Observation (high-magnifica-
tion sample)

5±1 0.7σ

CLMM + UDF z-distn 3±1 0.7σ

CLMM + (zs = 1) 2±1 1.4σ

CLMM + (zs = 2) 3±1 0.7σ

MOKA + UDF z-distn 4±1 L

MOKA + (zs = 1) + (B13)
c–M

2±1 2.2σ

MOKA + (zs = 2) + (B13)
c–M

5±1 0.7σ

MOKA + UDF z-distn +
(N07) c–M

1±1 2.2σ

MUSIC + UDF z-distn 3±1 0.7σ
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the same simulated clusters at zc=0.2 as used in B98 to lens
the UDF sources and found an arc abundance that was 3 times
higher than that in B98. They attributed this overabundance to
the use of a source number density that was 3.2 times higher
than that in B98. They found that changing the source redshift
distribution from a delta function at zs=1 to a realistic UDF
distribution results in only a small change in the final arc
abundance. These results suggest that the redshift distribution
does not have a major impact on the final arc abundance unless
one selects a distribution that significantly underpopulates
galaxies in the z>1 range.

The MUSIC-simulated halos do not have BCGs at the center
and do not implement complex gaseous physics. However,
Killedar et al. (2012) havecompared the arc production
efficiency of the adiabatic simulations with some more
sophisticated simulations that include effects such as gas
cooling, star formation, and feedback from active galactic
nuclei and supernova+galactic winds. The comparable results
indicatethat the implementation of baryonic physics will
probably not lead to a significant change in the arc abundance
derived from simulations without such processes.

Previous studies have already revealed the correlation
between the lensing cross section and the Einstein radius,
θE,eff, from N-body simulation (Meneghetti et al. 2011) and the
semianalytic calculations (Redlich et al. 2012). Our study
confirms this correlation as reflected by the dependence of the
number of arcs per cluster on θE,eff, as shown in Figure 16(d).
The relation between the MOKA cluster lensing efficiency and
θE,eff in our study is well fitted by a linear relation in log–log
plane with a slope of 1.54±0.08, which is flatter than the
slope 1.79±0.04 in Meneghetti et al. (2011) and 2.4±0.04
in Redlich et al. (2012). The detection of this correlation in our
MOKA simulations is due to the relatively large size of the
MOKA cluster sample (640 simulated clusters), whereas the
CLASH sample is too small to robustly unveil this correlation.
For the arc abundance of ∼5 per cluster, the fractional error for
an ensemble of 32 realizations is 1 5 32 8%.´ ~ There-
fore, to measure the correlation observationally to 10% and to
detect a ∼15% deviation from such correlation, we need

201 0.1

5

2( ) =´ clusters in each mass bin, and we probably need
a cluster sample with size ∼ 200 if 10 different mass bins are
expected.

We are able to identify the relative significance of several
key physical effects that contribute to the arc abundance
enhancement. As Table 4 shows, varying the source redshift
distribution leads to, at most, a factor of 2 variation in the arc
abundance. Variation of the c–M relations will affect the matter
distribution of the inner cluster core and, hence, lead to
variations in the arc abundance. Using several recent estimates
of the c–M relation (Neto et al. 2007; Bhattacharya et al. 2013)
results in variations of the arc abundance by up to a factor of
∼4–5. Using the most recent estimates of the c–M relation in
simulations appears to produce excellent agreement with the
observed arc abundance. However, quantities such as mass and
concentration alone are not sufficient to reflect the likely
complex dependencies of the arc abundance on various effects.
As shown in Figures 16(b) and (c), the arc abundance fails to
exhibit a strong dependence on either the concentration or the
cluster mass alone, for both the CLASH and MOKA samples.
By contrast, the effective Einstein radius, θE,eff, is a good
indicator of the lensing efficiency.

Given our results, even without fully understanding the
cosmological dependence of the arc abundance, we could still
conclude that the initial “arc statistics problem” appears to have
been largely due to inadequate modeling of the mass
distributions of the clusters and, secondarily, due to inadequate
modeling of the background source number density and
redshift distribution. In addition, the previous use of mostly
visual identification of arcs may have resulted in an inadequate
modeling of the false positive contamination rate and
completeness corrections. We can divide the contributions
from different physical effects on cluster lensing efficiency into
three general categories: the cluster abundance, the background
source redshift distribution, and the individual cluster lensing
cross section. Our study would suggest that the lensing
efficiency is more strongly dependent on the individual cluster
lensing cross sections than on the source redshift distribution.
However, different cosmology could alter both the cluster
abundance and the individual cluster lensing cross sections, and
the relative significance of such factors has not been explored
in this study given the small cluster sample size. Future large
cluster surveys (e.g., DES, LSST, Euclid, WFIRST) will
definitely help to answer this question. We suspect that two
other related problems in lensing, the overconcentration
problem and Einstein radii problem, where it has been found
that some real clusters at intermediate redshift have denser
cores than clusters of similar mass produced in simulations
(Broadhurst & Barkana 2008; Oguri & Blandford 2009;
Richard et al. 2010; Sereno et al. 2010; Merten et al. 2015)
and where some real clusters have larger Einstein radii than
expected in standard ΛCDM cosmology, may well be due to a
combination of insufficiently accurate cluster simulations and
observational sample selection effects.

10. SUMMARY

We have carried out an observational and theoretical study of
the arc statistics problem in clusters of galaxies. We have
devised an automated arc finder to efficiently and objectively
detect arcs. We test our arc finder using a large number of
simulated cluster images and have quantified the incomplete-
ness and false positive rate in arc detection. We also investigate
how image noise affects the shape determination of the arcs and
statistically correct for the observed elongation bias. We run
our arc-finding algorithm on 20 X-ray-selected CLASH
clusters and five high-magnification CLASH clusters. After
correcting for arc shape elongation bias, incompleteness, and
false positive rate, we find a large arc (l/w>6.5 and l�6″)
lensing efficiency of 4±1 arcs per cluster and 5±1 arcs per
cluster, respectively, for the X-ray-selected and high-magnifi-
cation-selected CLASH samples.
We simulate mock clusters using both the MOKA

semianalytic cluster generator and the MUSIC-2 N-body
results. In both cases, we focus on simulated clusters that have
the same mass and redshift range as the CLASH clusters. For
the MOKA simulations, we use ray-tracing to create 640
simulated cluster realizations with the F775W UDF image as
the same background source. For the simulations extracted
from the high-resolution, hydrodynamical simulations
(MUSIC), we identify halos that, in addition to having similar
redshifts and virial masses as the CLASH clusters, are also
selected to have similar X-ray morphologies to those of the
CLASH clusters. We find a lensing efficiency of 4±1 arcs per
cluster in the MOKA simulations and 3±1 arcs per cluster in
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the MUSIC simulations. These lensing efficiencies both match
the observed lensing efficiency of 4±1 arcs per cluster. We
also study the arc abundance dependence on the cluster redshift
by splitting the sample into two bins divided at the median
sample redshift of zmedian=0.352 and find no significant
differences in either the overall lensing efficiency orarc
redshift distributions. The dependence of the MOKA and
MUSIC lensing efficiencies on lmin and l/wmin also matches
that seen in the observed CLASH ones.

For the future, the relatively short running time (less than 5
minutes for images with 3000× 3000 pixels) of our arc finder
allows us to perform large-scale “blind” searches for giant arcs in
various other surveys, especially those with moderately
high-angular resolution such as WFIRST and Euclid. Moreover,
continued study of the correlation between the arc abundance and
the θE,eff should be conducted to assess just the reliability of using
arc abundance (which is an observable) as a predictor of θE,eff.
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APPENDIX A
INTEGRATED QUANTIZED INTENSITY

DIFFERENCE CRITERION

The following appendices provide further details about the
arc finder algorithm. Specifically, we provide short summaries
of the key steps performed to go from the initial science image
to the final arc catalog. We begin by convolving our HST
images with a square top-hat kernel with an edge dimension of
0 065 to modestly enhance the contrast of the faint and thin
arcs. Most source detection algorithms work in intensity space,
which means that the performance of these algorithms largely
depends on how the detection threshold is chosen. A higher
threshold will yield a catalog with lower completeness for faint
objects, while a lower threshold will lead to less precise
segmentation and a higher false positive rate. To avoid the
nontrivial determination of an optimal detection threshold, we
focus on three very general properties of giant arcs:

1. Giant arcs, like all real astronomical sources, have a net
positive amount of flux on average after subtracting off a
suitable background level.

2. Giant arcs have substantial angular lengths.
3. Giant arcs are highly elongated objects.

The above general properties imply that, on average, the
intensity difference between the pixels belonging to the arc

should be positive and the elongated and distorted morphol-
ogies of arcs should also be reflected in the angular distribution
of these intensity differences. Use of the nonparametric
intensity differences has a genuine advantage in the arc
detection game: we can, in principle, detect faint structures
almost as easily as bright structures. For this key reason, we
perform the primary arc detection process in intensity
difference space. To do this, we first lay down a grid of points
on the smoothed image, at spatial scale n, that is somewhat
larger than the arc widths we wish to find. At each grid point
we then determine whether each of its eight adjacent grid points
(up, down, left, right, upperleft, upperright, lowerleft,
lowerright) is brighter or fainter than this pixel. We quantify
this local set of flux differences by assigning a value of +1 for
a positive difference (the central pixel at grid position (i, j) is
brighter than a given surrounding pixel) and a value of −1 for a
negative difference (the central pixel at grid position (i, j) is
fainter than a given surrounding pixel). We sum up these values
for all eight directions. A grid point that was brighter than all of
its surrounding grid points would thus have a final value of +8.
A grid point that was brighter than sixof its surrounding grid
points would have a final value of 6–2=+4. And so on. As
arcs are highly elongated, pixels lying along the ridge line of an
elongated arc will tend to have at least 4 or 5 adjacent pixels
that are fainter than those at a given grid position. The value
assigned to these pixels will thus be at least 2 or higher
(5–3=2). In general, the brighter pixels in an arc will tend to
have higher integrated quantized intensity difference values
than the fainter pixels. Given that some giant arcs may have
complex intensity profiles, we set the threshold for the
integrated quantized intensity difference to be the lowest
positive value, which is +2. If we adopt a higher positive
threshold, we find that some complex arcs are segmented into
several smaller arc detections. The threshold of +2 is the most
conservative in maintaining the overall structural shape of the
arc candidates. We note that the exact choice of threshold
value, however, does not significantly impact the contents
of the final sample of large (l�6″) and highly elongated
(l/w�7) arc candidates. The effect of the quantized intensity
difference threshold is primarily on the number of small and
less elongated sources in the initial detection process.
Choosing a proper grid spacing scale, n, is important.

Generally, the spacing scale n should be larger than the typical
arc’s width, and it should beneither too large nor too small, to
avoid extending the grid points to nearby bright structures or
limiting the grid points around the arc rigid lines. To determine
the scale, we visually select 58 giant arcs from our CLASH
F814W imagesand manually measure the arcs’ FWHMin the
direction perpendicular to their ridge lines.14 Figure 19 shows
the distribution of the preselected arc’s FWHM. Note that the
median value of these 58 arcs is 0 33 and most of the arcs’
widths are less than 0 72. In principle, we should traverse as
many grid scales as possible to optimize the detection of the
arcs, which is computationally expensive. We adopt two
different scales,0 39 and 0 78, to make sure that both narrow
and wider arcs can be effectively detected in a relatively short
computational time. The results based on each scale are
combined as the input to the next step.

14 To measure the FWHM, we first draw a line crossing the intensity maxima
that is perpendicular to the arc’s ridge line andthen use a Gaussian profile to fit
the intensity of pixels that fall on the line. We approximate the Gaussian
FWHM as the FWHM of the arc.
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As noise pixels may have regions with zero-valued or
negative integrated quantized intensity difference,15 another
obvious advantage is that we are able to effectively clip out
noise pixels and make the arc detection task significantly
easier, even in the presence of a bright diffuse background, as
might be encountered in the halo of a bright foreground cluster
galaxy.

APPENDIX B
THE LOCAL INTENSITY DIFFERENCE CRITERION

In certain regions (especially in the inner cores of bright
galaxies), applying the integrated quantized intensity difference
criteria only will leave the segments with the diffraction pattern
(see Figure 20(a)). To suppress these effects, we apply another
criterion by comparing the intensity of the central pixel with the
mean value of all 8 adjacent pixels over the image. The selected
pixels should satisfy the two criteria below:
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Figures 20(b) and(c) show the integrated quantized intensity
difference maps of MACS 0717 before and after applying the
above criteria. We can see that the number of diffraction
artifacts in the image is significantly reduced.

APPENDIX C
INITIAL IMAGE SEGMENTATION

To identify specific arcs, we need to locate regions of
contiguous grid points in the integrated quantized intensity
difference map with sums in excess of +2. We have now
replaced the challenge of finding objects in intensity space with
the task of finding contiguous regions in this quantized
intensity difference space. We avoid using any global selection
criterion on number density since the number density varies
largely across the whole image. Hence, the contiguous regions
are selected by their local number density of the grid points in
the quantized intensity difference space. Based on the simple

fact shown by Figure 20(d), if the contiguous region is
enclosed by circle S1, the local averaged number density inside
S1 must be larger than that inside circle S2, which has the same
center as S1 but a larger radius. The details of contiguous
regions’selection are as follows: (1) we make three convolved
images using three spherical uniform kernels (k1, k2, and k3)
with increasing size (0 52, 1 04, and 1 56); (2) we subtract an
image convolved with a broader kernel from one convolved
with a narrower kernel, to obtain two residual images (k2–k1,
k3–k2); (3) we then select all the pixels that have positive
values in both residual images.
The selected contiguous regions include a few small and less

elongated blobs that are not real sources. We set an area
threshold A>100 pixels and an eccentricity16 threshold
e>0.85 to remove these artifacts. As shown in Figure 20
(b),the noise has been suppressed and most giant arcs have
been retained.

APPENDIX D
SUPPRESSION OF DIFFRACTION SPIKES

Diffraction spikes from bright stars are the features likely to
account for most of the false positive detections. The normal
way to remove the star spikes is to locate the position of bright
stars and then manually mask out the diffraction pattern. Here
we adopt a different approachthat eliminates the need to know
the position of the bright stars or the direction of the spikes in
advance.
Our approach is to merge the diffraction spikes with each

associated star and eliminate the combined source as a whole.
To do this, we enhance the strong intensity gradients near
bright stars and their diffraction spikes by applying unsharp
masking. The unsharp masking enhances the peak and
dampens the wings of the intensity distribution. As a result,
some dark halos can be observed around the stars or bright
elliptical galaxies, which are shown in Figure 21(a). Empiri-
cally, we note that most of the pixels belonging to the dark halo
regions in CLASH data tend to have an intensity value lower
than −0.01e−s−1, and we use this intensity as a threshold to
identify these halos. We then dilate the segmentation
boundaries around a dark halo in all directions to fill the gaps
between the segments (Figure 21(b))and combine the “dilated”
images with the initial segmentation image obtained in
Appendix C (Figure 21(c)). Most of the diffraction spikes
merge with the segments of their mother stars as a result of
performing this combination. We then label all the connected
components17 in the combined image and calculate the
maximum pixel intensity of each labeled connected compo-
nent. Stars typically have maximum intensity values greater
than 10e−s−1, while other objects barely have the maximum
intensity value larger than 2e−s−1; therefore, we can

Figure 19. FWHM distribution of the preselected 58 giant arcs from CLASH
F814W images. The median FWHM is around 0 33, and most of the arc
widths are less than 0 72. The exception among this sample is from the cluster
MACS 1206, which includes a giant arc with width ∼1 3.

15 For noise pixels, if their distributions are independent, the integrated
quantized intensity difference should be equal to 0.

16 The eccentricity here is equal to the eccentricity of the ellipse that has the
same secondmoments as the measured object.
17 Whether a pixel connects to its neighbors or not is characterized by the pixel
connectivity. Usually there are two types of connectivity: four-connected and
eight-connected. Four-connected pixels are connected horizontally and
vertically, or diagonally; eight-connected pixels are connected horizontally,
vertically, and diagonally. In terms of pixel coordinates, in the four-connected
case, every pixel that has the coordinates (x±1, y) or (x, y±1) is connected
to the pixel at (x, y); in the eight-connected case, in additionto four-connected
pixels, each pixel with coordinates (x±1, y±1) or (x±1, y±1) is
connected to the pixel at (x, y). In this paper, all the adjacent eight-connected
pixels are considered to belong to the same connected component.
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conservatively set 10e−s−1 as the threshold to remove those
bright stars along with the diffraction spikes (Figure 21(d)).

APPENDIX E
FINAL IMAGE SEGMENTATION

The initial segmentation boundaries for objects detected in
intensity difference space tend to have systematically larger
surface area than the corresponding segmentation boundaries in
pixel intensity space. Hence, we refine the initial segmentation

map to correct this small effect. We first define, for each
detected segment, a “bounding box” that spans the region from
the minimum x, y coordinates to the maximum x, y coordinates.
We then iteratively clip out pixels with very high (low)
intensity within this box until the pixel intensity reaches
convergence at ±3σ around its median value. We then estimate
the local background and noise level within the box. Since faint
arcs are most likely missed or broken into small arclets at a
high detection threshold, we set the threshold for the re-

Figure 20. (a) Segment with the diffraction pattern that needs to be suppressed by the local average criteria; (b, c)integrated quantized intensity difference map of the
MACS 0717 F814W image, before and after applying the local average criteria, respectively; (d) idea of local selection of contiguous regions: to draw circles with
different size on each pixel and calculate the average number density within the circles, and select those grid points that have higher average number density within
smaller circles.
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segmentation to be proportional to the object’s estimated local
S/N. Hence, objects with low surface brightness will be
remapped using a lower detection threshold than that used for
brighter objects, allowing all sources to achieve their best
segmentation (see Figure 22).

APPENDIX F
UTILIZATION OF THE LENGTH, LENGTH-TO-WIDTH

RATIO, AND PERIMETER-TO-LENGTH RATIO

Once all images are processed through the preceding steps,
we can begin the arc identification process. We identify giant
arcs from among all detected sources primarily by their large
ellipticity. For each source, we calculate the total area,

perimeter length, and position of the peak intensity from the
distribution of all the connected pixels.18 Using the coordinates
of the pixel with the peak intensity value in a given source, we
locate the farthest point away from that maximum that is still
within the boundaries of the source. We also locate the farthest
point away from that point, then calculate the sum of the
distances from these two points to the peak pixel position, and
take this distance as the length of the segment. There are many
ways to define the width of the segment: the image segments
can be fitted by simple geometrical figures such as ellipse,

Figure 21. Black halo regions are identified from the unsharp masked image by setting the threshold to −0.01e−s−1. The halo segments are “dilated” (expanded) and
combined with the normal detection image so that the stars start to merge with the diffraction spikes. Most of the diffraction spikes can be removed by setting the
maximum intensity value of the labeled segments less than 10e−s−1.

18 We utilize ndimage (a Python image processing module) to quickly
calculate the mentioned parameters of the detected objects.
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circles, rectangles, and rings (Miralda-Escude 1993; Bartel-
mann & Weiss 1994),and therefore the width of the segment is
approximated by the minor axis of the ellipse, the radius of the
circle, the smaller side of the rectangle, or the width of the
ring.Dalal et al. (2004), Horesh et al. (2005), and Hennawi
et al. (2007) approximated the width by dividing the area by its
length; Meneghetti et al. (2008) proposed a more robust way to
measure the width, by traversing the width profile of the arc
and approximating the arc width as the median value of the

profile. In this study, considering the computational efficiency,
we adopt the former method: i.e., all the giant arcs are treated
as rectangles and width = area/length, to determine the width
of the segment in this paper. To test whether this definition of
width will introduces bias in the measurement of l/w, we use
the approach in Meneghetti et al. (2008) to re-calculate the
width of all the detected arcs and compare with those in the
former definition. Figure 23 shows the comparison of the ratio
of two widths with the newly defined width. The dashed line
denotes the median value of the ratio, which is about 10%
higher than that in our definiton. Therefore, our l/w (width)
measure may be slightly biasing high (low).
The final step is to remove those detected segments that are

not very likely to be large lensed galaxies by requiring objects
to satisfy three additional criteria:19 (1) their perimeter-to-
length ratio must be �3; (2) their minimal length must be
greater than a fixed value, which is discussed in Section 3.2; (3)
their minimal length-to-width ratio must be greater than a fixed
value, which is determined in Section 3.2. Criterion 1elim-
inates elongated objects with irregular morphology, and
criterion 2both maintains the consistency with the concept of
the “giant” arcs and prevents the domination of the spurious
detection, as we discuss in Section 3.1. We include all objects
that satisfy these three constraints inour final arc candidate
catalog.

Figure 22. Left: original images of arc; middle: primary segmentation; right: images after the segmentation re-determination. The local background and noise level
within the box are estimated, and the detection threshold is set to be proportional to its S/N level.

Figure 23. Comparison of two definitions of the width of arc: the y-axis is the
ratio of the newly defined width to our width; the x-axis is the newly defined
width. The solid line representswnew=wour, while the dashed line denotes the
median value of the ratio of the two widths.

19 In this study, we do not need to specify the orientation of the giant
tangential arcs relative to the cluster center. This allows us to apply our
algorithm to less relaxed clusters that may not have a well-defined center.
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