
2016Publication Year

2020-04-30T14:13:49ZAcceptance in OA@INAF

A user interface framework for the Square Kilometre Array: concepts and 
responsibilities

Title

MARASSI, Alessandro; Brajnik, Giorgio; Nicol, Mark; ALBERTI, Valentina; Le 
Roux, Gerhard

Authors

10.1117/12.2232903DOI

http://hdl.handle.net/20.500.12386/24379Handle

PROCEEDINGS OF SPIESeries

9913Number



PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

A user interface framework for the
Square Kilometre Array: concepts
and responsibilities

Marassi, Alessandro, Brajnik, Giorgio, Nicol, Mark, Alberti,
Valentina, Le Roux, Gerhard

Alessandro Marassi, Giorgio Brajnik, Mark Nicol, Valentina Alberti, Gerhard Le
Roux, "A user interface framework for the Square Kilometre Array: concepts
and responsibilities," Proc. SPIE 9913, Software and Cyberinfrastructure for
Astronomy IV, 991347 (26 July 2016); doi: 10.1117/12.2232903

Event: SPIE Astronomical Telescopes + Instrumentation, 2016, Edinburgh,
United Kingdom

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 30 Apr 2020  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



A user interface framework for the Square Kilometre Array: concepts
and responsibilities

Alessandro Marassia, Giorgio Brajnikb, Mark Nicolc, Valentina Albertia,Gerhard Le Rouxd 

aINAF - Osservatorio Astronomico di Trieste (Italy); bUniv. degli Studi di Udine (Italy); cUK
Astronomy Technology Centre (United Kingdom); dSKA South Africa (South Africa)

ABSTRACT
  

The Square Kilometre Array (SKA) project is responsible for developing the SKA Observatory, the world’s largest radio
telescope, with eventually over a square kilometre of collecting area and including a general headquarters as well as two
radio telescopes:  SKA1-Mid in South Africa and SKA1-Low in Australia.  The SKA project consists of a number of
subsystems (elements) among which the Telescope Manager (TM) is the one involved in controlling and monitoring the
SKA telescopes.
The TM element has three primary responsibilities:

● Management of astronomical observations
● Management of telescope hardware and software subsystems
● Management of data to support system operations and all stakeholders (operators,  maintainers,  engineers and

science users) in achieving operational, maintenance and engineering goals.

Operators, maintainers, engineers and science users will interact with TM via appropriate user interfaces (UI).
The TM UI framework envisaged is a complete set of general technical solutions (components, technologies and design
information) for implementing a generic computing system (UI platform). Such a system will enable UI components to
be instantiated to allow for human interaction via screens, keyboards,  mouse and to implement the necessary logic for
acquiring or deriving the information needed for interaction.  It will provide libraries and specific Application
Programming Interfaces (APIs) to implement operator and engineer interactive interfaces.
This paper will provide a status update of the TM UI framework,  UI platform and UI components design effort,
including the technology choices,  and discuss key challenges in the TM UI architecture,  as well as our approaches to
addressing them.

Keywords: human-machine interface, user interface, usage centered design, control room, alarm handling

1. INTRODUCTION

The SKA is a project with a large up-front design effort that will take several years to develop and deliver.  We are
thinking about architecture for an observatory that has not yet been built,  supporting two instruments that are not yet
fully defined and with a potential lifespan of 20-50 years. It seems sensible therefore to expect that many new features
and ways of viewing and working with the underlying systems will emerge during that time and the code needed will
change, quite often in unexpected ways.
We need an architecture that is both flexible and robust. It should allow changes to be made easily, and also be highly
decoupled.  We need it to be flexible because we need to adapt to better technological solutions and changing
requirements; we need to be robust, so it provides a trustworthy interface to complex and variable instruments; and we
need it to be highly decoupled so that when changes are made,  they have a minimum impact on the rest of the SKA
operations. 
Because of the diverse nature of the user interactions with TM (covering different locations,  type and stage of
interaction) it was decided that the Telescope Manager would not have a single monolithic UI system. To simplify the
definition of the various user interactions with the TM system,  the activities can be grouped based on the stages of
observation execution:
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Offline preparation:  covers all the preparation (proposals submissions and reviewing, scheduling block (SB) creation
and planning etc) activities that occur before a set of related SBs are executed on the Telescope.
Online observation execution: includes all the interactions with an active telescope to operate the instrument (including
handling of failures and alarms but also scheduling and configuring SBs)  so that observations can be executed
effectively.
Offline support:  is any activity not directly involved in the operation of TM but necessary to maintain effective
operations. This will include updates to software, failure diagnosis on the telescope systems and remote deployment of
software items.
The architecture design defines a UI console component (Online UI Manager)  as a portal or virtual container of UI
components.  Its main function is to implement a control mechanism whereby different UI components invoke other
components and collaborate together. Because of its structure, the Online UI Manager will imply navigation between all
its “children” UI components.

     Figure 1. SKA Telescope Manager User Interfaces
  

Architectural constraints The interface presented to a user of the SKA is likely to consist of a mix of browser-based
User Interfaces,  desktop applications and script based applications.  These various UIs coexist and run on a user's
physical (or virtual) desktop. For browser-based applications, the code is executed within the browser, and for other UI
applications this implies the code executes on the user’s physical machine to present the view to the user. 

Browser-based UIs The assumption is that browser-based UIs would be developed as web applications with a front-end
consisting of JavaScript, HTML and CSS. Reuse of elements between these UIs would primarily be by means of shared
libraries.  Components could be broadly defined as UI elements,  or collections of UI elements and their associated
properties.  Shared stylesheets would be used to ensure consistency of look and feel across UIs.  Advanced UI
visualisations would be provided by using or extending UI libraries such as Domain Driven Documents (D3.js).
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Having an agreed default strategy for client server communication between the TM UIs and their supporting applications
will simplify the deployment and configuration of the UIs, and make it potentially easier to extend UIs or to develop new
ones.  For SKA this is likely to be a combination of ReST services over HTTP (using JSON or XML)  for control
messaging between all UIs and the server,  with reception of events and dynamic data being pushed from publisher
sockets based on an agreed publish/subscribe model. 

Desktop applications are counted as any packaged applications executed on the desktop machine.  This covers both
compiled applications and Java applications run on the desktop machine using a locally installed Java Virtual Machine
(JVM). Where desktop applications share a common architecture and similar concerns, libraries of reusable UI elements
could be developed to ensure a consistency of look and feel. This would depend on the number of desktop technologies
chosen and the commonality between applications.

Script based applications are both the automated execution of observing scripts,  and also any ad hoc tasks executed
manually. The primary use of the UI framework would be providing UI elements for creating, managing and validating
these scripts and for creating the required interface points for these scripts to interact with other components or services.

A key challenge for the SKA with regard to the UI design, is the sheer size of the telescopes and as a consequence the
number of elements and their related data that users will need to manipulate. One example is handling the  large number
of alarms that may be raised in a given time window. SKA supports a flexible configuration of up to sixteen different
sub-arrays,  each of which may be scheduling different observations.  The interface has to present all the devices,  their
processes and any alarms raised in a comprehensible way.  In order to complete their tasks,  operators working in the
control room will have to sift information from this vast array of data,  checking the health status of the entire system,
determining the  validity of the scientific data produced and checking that the quality of the results  is sufficiently high.
Our stance is that a usage-centered approach to the design,  analysis and development of UIs is important,  as it will
reduce the risk of developing UIs that are suboptimal for such a situation.

This paper provides a status update of the TM UI framework, UI platform and UI components design effort, including
the technology choices and discusses key challenges in the TM UI architecture, and our approaches to addressing them.

2. BACKGROUND

A usage-centered design (UCD)  approach1 for interactive software applications is based on the early involvement of
users of the application from its conception. In practical terms, it means that feedback offered by users is considered in
analysis phases,  as well as design and evaluation (the first characteristic of a UCD process).  Also because building a
usable UI requires those involved in its construction to understand, and actually conceive, the mental model that users
will have of the application, the design process has, in practice, to be iterative. Finally, each iteration is based on design-
prototype-evaluate activities, where the evaluation is based on usability criteria.

Several techniques can be applied to establish such a kind of process, each aimed at informing the design process so that
better and better design decisions can be made as the partially specified UI is extended. Often designers proceed through
what is called “parallel design”, meaning that they conceive not only a single UI based on a few interaction ideas, but
develop a small set of alternative conceptual ideas2.  Each of these “concepts” are gradually refined and extended, and
eventually inferior ones eliminated through evaluation. Such organization of the work guarantees that design proceeds
not only through gradual refinement,  in an evolutionary way,  but also through qualitative discontinuities,  in a
revolutionary way.

In order to be effective (ie, produce results that are valid and useful) and efficient (and therefore be sustainable), users
need to be involved in structured ways, not simply by asking them casual questions and looking for their opinions.

Techniques that can be put in place to follow a UCD approach include structured interviews,  contextual enquiries,
sketching,  storyboarding,  user testing,  writing scenarios and personas,  among others1,3,4,5,6.  To some extent even in
situations where the user population is not well-known or well-defined the use of personas has proven to be a helpful
technique in focusing design thinking around the needs that the interface is being designed to support7.
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3. UIs OF SOME SKA PRECURSORS

An important aspect of understanding the needs of the SKA UIs is an appreciation of how these challenges have been
tackled by similar modern observatories and precursors projects for the SKA.  The following summaries give a broad
outline of the heritage on which the SKA is building. 

3.1 LOFAR

LOFAR8 is a large interconnected radio telescope using a vast array of omnidirectional antennas. The electronic signals
from the antennas are digitised,  transported to a central digital processor,  and combined in software to emulate a
conventional antenna. The project is based on a vast interferometric array of about 20,000 small antennas concentrated in
60  stations distributed across Europe.  The total effective collecting area is approximately 300,000  square meters,
depending on frequency and antenna configuration. The data processing is performed by a Blue Gene/P supercomputer
situated in the Netherlands at the University of Groningen.
LOFAR makes observations in the 10 MHz to 240 MHz frequency range with two types of antennas: Low Band Antenna
(LBA) and High Band Antenna (HBA), optimized for 10-80 MHz and 120-240 MHz respectively.

LOFAR User Interfaces
The entire observation process is overseen by Operators, Science Support and Software Support groups.
A certain number of user interfaces are provided for:

● Scheduling, Administration and Specification (SAS): given the specification, the main responsibility of SAS is
to schedule and configure the system in the right mode.  Additionally SAS facilitates the possibility to store
metadata of the system for a long term and make that information accessible for the user.

● Monitoring And Control (MAC): the main responsibility of MAC is to control the system (in real time) based
upon the actual configuration at that moment.  Additionally,  MAC facilitates the (real time) monitoring of the
present state of the system.

● System Health Management (SHM): SHM is identified as an autonomous block that predicts and acts on failures
of the hardware before it actually fails. Ideally it should even pinpoint which system component is the cause of
a failure. The reason for considering this block as separate from MAC is because of the scale of the system and
the percentage of time the system should be effectively operational.

There is a central control room, located at the ASTRON headquarters in Dwingeloo, with several operator screens. These
screens display a vast range of different sources of information including: correlator information, administration data
such as messages and active processes, IT infrastructure components monitoring based on Zabbix. There are windows
showing pipelines and ingestion processes of end products into the Long Term Archive (LTA), Short Term Archive
(STA) status.

The scheduler user interface shows information related to observations (times of the observations, whether they were
halted and whether there are internal  tests or system warm-ups).  The correlator  user interface shows the log of the
correlator  (packet  loss  statistics  and  log  output  of  observations  and  tests).  Zabbix  UI  produces  HTML plots  with
averages  of  CPU,  memory  usage,  load,  disk  usage  in  nodes  of  clusters  and  within  single  stations.  Zabbix  allows
authorised users, to configure alarms and set up targeted email alerts for each item being monitored. LOFAR Zabbix
monitors 24,000 items, 340 items sampled / second.

The query console (also called MoM, Management Of Measurements) is a UI for managing observations. It contains all
the information to configure the parameters for an observation. This is presented as a tree of projects, outlining which
images have to be merged, PIs, states, CPUs and other key parameters. MOM also contains detailed information about
processing pipelines and verification details for the observation status.

The Navigator windows shows the current status of all available hardware and running software, scheduler, observation
management tool (MoM). Navigator supports activities for managing alarms; it supports both geographical and device-
based drill-down, enabling the control-room operator system navigation to see devices status and detail operational and
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measurement data down to the level of an individual board. The Navigator UI shows an alarm summary at the end of the
page. Navigator log levels can be configured; look and feel can be customized; UI can be configured in order to show
different panels for different user roles (local approach).  Many instances of the Navigator UI can run simultaneously.
The navigator is based upon PVSS II, a SCADA (Supervisory Control And Data Acquisition) system. PVSS is used to
connect to hardware (or software) devices, acquire the data they produce and use it for their supervision, i.e. to monitor
their behaviour and to initialize, configure and operate them.

3.2 MeerKAT 

MeerKAT is a mid-frequency “pathfinder” radio telescope being developed as a precursor to the Square Kilometre Array
(SKA). The full MeerKAT extends its own precursor project, KAT-7 (Karoo Array Telescope), a seven-dish array which
is currently being used as an engineering and science prototype.

MeerKAT User Interfaces
High-level requirements for the MeerKAT user interface were defined by System Engineering and further refined
following an iterative development approach, combined with monthly demonstrations of prototype displays to relevant
stakeholders to obtain feedback which was included in the development cycle.

The MeerKAT UI9 main display is a landing page from which more detailed displays can be easily presented.  These
include health, alarms, observation scheduling, operator control and intervention, historical data, user logs, configuration
and theming. This main display consists of a main toolbar (with items like navigation links, current UTC, local solar and
sidereal time, alarm counter badges, and the logged-in user’s information), a bottom toolbar showing the current system
interlock status,  version and date information,  and a side navigation bar for quick navigation between displays.  The
selected display content occupies the rest of the space.  The landing page acts as a flexible dashboard.  The widgets
displayed can be customised to suit the needs of an individual authenticated user.

Graphical health displays were developed to assist in fast and efficient fault-finding and for viewing on large, heads-up
displays in the operator control rooms. These include the telescope system health overview display with system alarms
shown as an overlay at the top right and the main toolbar displayed at the top,  the sensor list display showing all the
monitor points of a selected resource as a scrollable list, the custom health display in which the user can build custom
health views to be then exported as a URI for reuse, pointing displays showing where all the antennas are pointing, in
terms of azimuth and elevation as well as right ascension and declination and a special weather display to show the
current local weather conditions.

The user can acknowledge and clear alarms via an alarm display, while alarm notifications are shown as counter badges
on the main toolbar and as an overlay on each browser tab, visible until the operator acknowledges the alarm. Every time
an alarm is received, a different severity related sound is played.

MeerKAT UI9 designers identified a subset of frameworks and libraries among UI technologies based on industry
popularity and peer recommendations.  From this shortlist of AngularJS,  EmberJS and CS-Studio BOY,  they selected
AngularJS as their preferred web architecture based on a number of criteria including open source licensing,
documentation, active developers and users community, pre-built standard and user-defined widgets, rapid prototyping
tools,  learning curve,  security,  Python and testing support having evaluated the chosen technologies by building
prototypes using each technology as a front-end design platform. 

The MeerKAT user interface implements a client-server architecture.  A front-end component provides the client-side
functionality and a back-end component provides the server-side functions.  Websocket technology is used to enable
interactive sessions with real-time flow of data between a browser and server.  Full-duplex,  single-socket connection
allows a client to send messages to a server and receive event-driven responses without having to poll the server for a
reply. 
The front-end technology stack is built using the AngularJS framework and makes use of Angular Material (Design) and
the D3.js (document driven data) JavaScript libraries. The front-end communicates with the back-end via a RESTful API
and websockets. The back-end technology stack includes an Nginx HTTP server and reverse proxy and a Redis database
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as the Publish/Subscribe provider for the socket level services. Python is the main programming language: the Tornado
web framework providing the web servers to support both normal HTTP requests and websockets.  A Python package
(Katportal) provides all the back-end services for authentication and authorisation, monitoring, control, querying system
configuration and to read data from storage.

3.3 ALMA

The Atacama Large Millimeter/submillimeter Array (ALMA) is an astronomical interferometer located in the Atacama
desert of northern Chile observing at millimeter and submillimeter wavelengths. It consists of 66 radio antennas, 54 of
them with 12 metre diameter dishes, and twelve smaller ones with a diameter of 7 metres. Most of the 12 m antennas can
be relocated within the ALMA site to form arrays with different distributions of baseline lengths. More extended arrays
will give high spatial resolution,  more compact arrays give better sensitivity for extended sources.  The telescope is
primarily divided into a main array of 12 m antennas, and the smaller Atacama Compact Array (ACA), which consists of
the twelve 7 m antennas and four of the 12 m antennas. ALMA has been fully operational since March 2013. 

ALMA User Interfaces
Science  lifecycle  includes  different  phases  such  as  proposal  preparation  and  management,  observation  preparation,
scheduling and execution, observation monitoring, project tracking, data processing and archiving, research involving
archived data access and post-processing.

Different UIs support each of the lifecycle phases as shown in Table 1.

     Table 1. ALMA user interfaces and tools

Interface Tool Technology

Proposal Preparation ALMA Observing Tool Java desktop “fat client”

Proposal Management Ph1M (Phase 1 Manager) Web application

Observation Preparation ALMA Observing Tool Java desktop “fat client”

Schedule Planning Schedule Planning Tool Web application

Dynamic Scheduling Dynamic Scheduling Assistant Java desktop

Observation Monitoring Java desktop

Telescope Operations Dashboard/OMC Web application/Java desktop

Quality Assurance Monitoring AQUA

Project Tracking Project Tracker Web application

ALMA developed a rich set of frameworks which underpin the design of many of the UIs. ALMA Common Software
(ACS) was originally developed to extend CORBA and provide a common infrastructure for all ALMA development.
Application code has access to strong common MVC framework for developing UIs and a container component model
for storing data in a way that is accessible to all applications. Data is stored in the form of XML documents in an Oracle
Database and can be accessed using a common set of services and automatically generated object bindings.

The ALMA Observing Tool is a Java Swing based desktop client that interacts with services hosted on a Tomcat server.
Ph1M (Phase 1 Manager), Schedule Planning, Dynamic Scheduling and Observation Execution are all Ajax based web
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applications built  using the ZK framework,  Hibernate and Spring and hosted on Tomcat servers.  The Planning and
Scheduling applications have a shared business layer. AQUA and Project Tracker are also JavaScript web applications
built using the same technologies.

The Operator Management Control (OMC) is a Java-based UI plugin framework while Dashboard is a web application
whose front-end technology stack includes Bootstrap, JQuery, D3, AngularJS, the back-end being provided by Django
(Python). The front-end communicates with the back-end via JSON messages over a RESTful API. 

The case of ALMA OMC: a usage-centered design approach
The operators of the ALMA Observatory monitor and control more than 50  mm/submm radio antennas and their
associated instrumentation from an operations site that is separated from this hardware by 35–50 km.

Early commissioning of ALMA used an operator interface implemented with a standard window, icon, menu, pointing
device (WIMP) toolkit10. Early experience indicated that this paradigm would not scale well as the number of antennas
increased towards its full complement. The WIMP model reaches a limit when there is so much information to present to
users that they cannot focus on details while maintaining a view from above.  On ALMA,  operators lost time as they
manipulated overlapping or tabbed windows to drill-down to detailed diagnostic data, losing a feeling for their position
in the process. The interface designers proposed a solution that replaced the top-level interface with a new multi-scale
interface that could take advantage of semantic zooming,  dynamic network visualization and other advanced filtering,
navigation and visualization features.  This solution would simplify the tasks performed by operators and let them
concentrate on the real issues at hand rather than continually re-organizing their use of screen space.

To address the challenge,  the ALMA software teams adopted a user-centered design approach11.  For two years,
astronomers,  operators,  software engineers and human-computer interaction researchers have been involved in
participatory design workshops,  with the aim of designing better user interfaces based on state-of-the-art visualization
techniques.  This process led to the development of those interface components and to a proposal for the science and
operations console setup that was based upon brainstorming sessions,  rapid prototyping,  joint implementation work
involving software engineers and human-computer interaction researchers, feedback collection from a broader range of
users, further iterations and testing. 

Cycles of design and implementation coupled with active user feedback characterize this project up through deployment.
Their design and development method is based on a user-centered design approach involving11:

● in situ interviews with operators and astronomers, who are the domain expert end-users of the ALMA Operator
Monitoring and Control (OMC) software

● participatory design workshops organized by the HCI researchers,  involving a small group of end-users
(operators, astronomers, etc.) and software engineers strongly committed to the project

● rapid software prototyping of ideas resulting from these workshops
● demonstration of these prototypes to a larger group of end-users, gathering feedback and new ideas
● high-quality implementation of the ideas identified through this process as software components shipped as

OMC plugins, integrated in the general development lifecycle.

This is a model for a user-centered design approach that could be usefully applied to the SKA design activities.  Key
features are the use of brainstorming,  low-fidelity prototyping,  feasibility assessment,  intensive prototyping,
demonstration of prototyped ideas to a larger group of end-users and continually gathering feedback.  The cooperative
development  continued  throughout  the  whole  of  the  development.  Teams  using  virtual  machines  and  prototypes
simulating  the  environment,  iterations,  testing  and  debugging  tools  to  present  evolving  designs  and  interfaces.
Importantly the ALMA OMC experience specifically links the approach adopted with an outcome that:

● provides users with a clear mental map of the instrument
● minimizes window management operations, mouse pointing and clicking to access a given piece of information
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● supports users in their primary tasks: monitoring the system, evaluating the quality of observations underway,
identifying and possibly anticipating potential problems, troubleshooting them, coordinating the actions of the
different actors

● enables fluid and efficient navigation, drilling down into the data with less pointing and clicking

Zoomable User Interfaces (ZUI), coupled with semantic zooming capabilities, have been used in order to pass from the
OMC’s WIMP original user interface design and implementation to a post WIMP solution.

ZVTM Java toolkit has been used, since it provides off-the-shelf components and features such as smooth panning and
zooming, magnification lenses, 9 pie menus and other post-WIMP features that require only limited effort to implement.
Implementing such features using WIMP toolkits such as Java Swing is not possible, and usually requires using lower-
level drawing APIs such as Java2D, making the development and code maintenance effort much more costly.

The toolkit also makes it easy to create graphical animations of most visual variables that define graphical objects. This
helps to reduce the cognitive load on users by providing a high-level of perceptual continuity between the different states
of the interface and the system.

In a pie menu the items are placed along the circumference of a circle at equal radial distances from the centre.  Pie
menus gain over traditional linear menus by reducing target seek time, lowering error rates by fixing the distance factor
and increasing the target size.  Visual filtering and layout adjustment have been implemented to visualize either all
antennas, or the antennas assigned to a specific array rendered with low-contrast colours. Adjacency matrices have been
implemented to visualize baselines and treemaps to represent hierarchies. Most user interface toolkits make it relatively
straightforward to implement such tree components (e.g. Java Swing’s Jtree).  Time series and chart visualization have
been implemented via ChronoLens framework and QuickLook relying upon JfreeChart.
Coordinated and Multiple Views have been implemented to simultaneously visualize in a coordinated manner (via a
synchronization mechanism of interaction events)  antenna control,  event logs and alarm panels,  block diagram of the
hardware in each antenna, information about the correlator, software components, and related information.

3.4 ASKAP

The Australian SKA Pathfinder (ASKAP) is a Square Kilometre Array (SKA) pathfinder radio telescope, comprising of
36 small-diameter (12-metre) reflector antennas forming a radio synthesis array with maximum baseline of 6 km, each
with a Focal Plane Array consisting of approximately 100 dual-polarised elements operating at centimetre wavelengths
and yielding a wide field-of-view (FOV) on the sky of about 30 square degrees.  It is located in the radio-quiet desert
Midwest region of Western Australia.

ASKAP is designed to be a mostly automated instrument and will spend much of its time carrying out surveys with little
human interaction.  Its software architecture12 is based upon EPICS framework for the Telescope Operating System
(TOS)  and the Internet Communications Engine (ICE)  middleware is used for the high-level service bus.  All the
components of the ASKAP architecture are explicitly loosely coupled, communicating with each other via the service
bus.  Any component can be developed in any language that has bindings for the Interface Definition Language (IDL)
provided by ICE. This currently includes Java, C++ and Python.

ASKAP User Interfaces
TOS and Data Processing are two major subsystems defined in the overall ASKAP System Architecture. TOS links to
various key components: the Operator's Display provides the interface for control and monitoring of the instrument by an
operator;  the Observation Management Portal provides the interface for the input,  modification and monitoring of
observing programs by the astronomer or science team and the Scheduler User Interface for the scheduling of
observations.
Two more interfaces have been implemented. The first is the OSL (Ops Scripting Library) a Python script and reporting
framework for engineering,  commissioning and initialisation and also command-line tools.  It is built on the same
interfaces as the observation management portal as such tools are used in commissioning to determine usage patterns for
user interaction and batch operations. The second is the engineering UIs developed using EPICS EDM.  These were
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initially developed in Qt 4.6 + epicsqt library (Australia Synchrotron), which later evolved into Control System Studio
(CSS)13 .

EDM is an interactive UI builder and execution engine maintained by the ORNL EPICS community while Control
System Studio is an Eclipse-based collection of tools to monitor and operate large scale control systems, such as the ones
in the accelerator community.  In particular CSS BOY, which is an Operator Interface (OPI) development and runtime
environment for building UIs with drag and drop functionality and instant connection to data.  It also allows using
JavaScript or Jython to manipulate the UI in a very similar way to using JavaScript in HTML.
In BOY, OPI Editor is a What You See Is What You Get (WYSIWYG) editor. The OPI Runtime works in a similar way
to modern web browsers.  The user of the system can display the OPIs either in tabs,  windows or views and navigate
OPIs forward or backward. An OPI is a regular XML file that can be edited in OPI editor or text editor and run in OPI
Runtime. No compilation is needed. BOY is a set of Eclipse plugins written in Java and has been tested to run well on
Windows, Unix and X OS platforms. 

4. USER CENTERED DESIGN ACTIVITIES FOR SKA UIs

Considering the lessons learned by SKA precursors and the inherent complexity of SKA systems and interactions,  a
user-centered design approach has been adopted in a pilot project deemed particularly significant among all SKA TM
user interfaces;  in the following part of the paper we give an overview of these activities in the context of the design of a
UI for alarm management.

User interface design is an iterative process that involves close liaisons between users and designers.  It covers topics
ranging from usage-centered design during analysis and design,  through to testing and validation in later application
lifecycle phases.  This involves deriving shared principles,  practices, methods and the tools to support the effective
participation of different development teams in the design of a well-integrated UI to the SKA systems.
Currently the three core activities in this process are:

● User and task analysis: understanding what the users will do with the system
● System prototyping: developing a series of prototypes for experimentation
● Interface evaluation: allowing the users to experiment and explore these prototypes 

The TM design activity relies on this usability prototyping as a core part of defining the design needs for the wider
system.  It is important to have early users’  feedback in the software design and development life cycle to elicit new
requirements, validate existing requirements, and highlight possible critical interactions. 

To understanding the possible operational context of alarm management for SKA users we collected information from
one of the precursors (LOFAR) and conducted several structured interviews during a field trip.  Over the three days a
team of three interviewers interviewed seven key staff to gather information about how alarm management is carried out,
what kind of UIs exist and how they are used.  The interviews were initially guided by an underlying structure of
concepts and several hypotheses that interviewers had formed based on existing sources of information before meeting
the interviewees.

Hand-written notes were later on transferred to a digital medium (a spreadsheet) and printed on cards attached to Post-It
notes. After removing duplicates and obvious mistakes, the remaining 550 notes were gradually added to a wall display
allowing time to consider how each set added changed the overall patterns. The notes were repeatedly clustered and re-
clustered by the interviewers.  During this activity some notes were clarified,  through discussion between the
interviewers, with new notes created to represent intermediate summaries. In the end these clusters were transferred to a
digital medium (a mind map),  which contained 250  categories (i.e.  intermediate concepts,  interpretations and
summaries),  covering these topics:  structure of the telescope,  types of alarms,  alarm policies,  procedures followed by
operators and on-duty scientists, UIs used by operators, broad usability problems of UIs, lessons learnt by the original
stakeholders.  This is an example of the KJ method (or affinity diagrams):  a qualitative analysis method aimed at
interpreting and comparing facts collected during interviews14. See Figures 2 and 3.
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     Figure 2: Example of some of the Post-It notes that were manipulated when creating the affinity diagram.

     Figure 3: A snapshot of the mind map that was produced for the affinity diagram, highlighting the width and depth of the  
     classification.

The analysis of the users of the system is a crucial point in the application of the UCD approach, because it helps to
address the user characteristics that can impact on the design of the interface. Its aim is to describe what are the activities
that the user performs to achieve his/her goals and how they would use the available technology to do it.
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Structured interviews of users of similar systems, conducted both at LOFAR and at Sincrotrone, resulted in the definition
of a set of user roles that take into account both the context within which the role is played and the characteristics of the
performance. This depicts the user’s distinctive behavior, values and knowledge revealing the nature of his/her work in
relation to the system that has to be designed.
In general, information collected in a profile describing a user role can be used to derive design objectives and to validate
a user interface. For example, a profile describes the operational model and risks under which the UI will be used; risks
refer to what is at stake if the user and the system fail in the correct completion of tasks.
Design objectives that can be derived from given operational  models can be:  operator speed and accuracy,  ease of
learning and of retention, ease of interpreting high volume or high complexity of information and similar measures. If
the operational model is such that users are highly trained and interaction is very frequent and prolonged, efficiency and
accuracy become more critical factors than learnability and retention.
The profile of the LOFAR control room operator is shown in the following as an example of the kind of information that
can be obtained performing user analysis.  We followed the excellent suggestions of Constantine and Lockwood1 of
representing each role according to the Context in which it is played,  the Characteristics of its performance and the
Criteria that the design should meet in order to support the role to successfully reach its objectives.

The Context in which the Operator role is played includes the description of the physical environment where the
Operator works, his/her social situation and his/her background and knowledge of the system. The environment is a quite
silent control room with a high rate of visual inputs where the Operator monitors the observation progress, the telescope
health,  and deals with alarms. The social situation of the role is based on the collaboration with the other member on
duty during the same shift and eventually with people working for third parties (such as telecom providers),  with
reference people at the station sites and at universities where data is archived. The Operator’s background expressed in
term of training,  education or experience,  should include engineering knowledge equivalent to a higher secondary
education,  followed by practical experience of engineering work,  or an engineering-based degree.  Moreover,  prior
knowledge of Linux and proven aptitude with technology associated with an analytical mindset are important.  The
Operator is usually an expert user of the system and is expected to be highly proficient in alarm management and to have
some scripting signal processing skills. 
The Characteristics of the performances highlight the Operator’s emotional state and the uniqueness of his/her
interaction with the system. The Operator performs high responsibility tasks devoted to identifying situations that can
potentially affect the quality of the observations. During his/her shift the Operator continuously monitors a huge amount
of information that describes the state of the system. In case of critical situation the Operator has to collaborate with the
scientist on duty helping in the decision of the reaction method.
Given this description of the Context and of the Characteristics of the role the Operator has to trust the information
he/she receives. They need the ability to configure the UI according to individual preferences and for the shown data to
be comprehensible. The most essential functional facilities, or criteria to support the role and accomplish these objectives
is:  a trustworthy and an efficient interaction (for example not needing to perform many clicks to get to the desired
data/action).

Findings so far collected,  classified and interpreted, were “projected” to the SKA situation. Differences between SKA
and the examined precursors were highlighted and considered in other design activities.  These were the definition of
scenarios3 and definition of essential use cases1.  The purpose is to hypothesize tasks that users of SKA are likely to
perform, and conceive functionalities of the UI that could support them. 

A scenario is a brief narrative description of what a typical user (for example an operator) would do with an hypothetical
UI of SKA in order to carry out some tasks (such as responding to some alarm). We adopted two types of scenarios: a
usage scenario, which does not refer to specific features of the UI, but simply highlights that the UI would support some
activity; the second type of scenario, an interaction scenario, emphasizes the specific features that the UI offers to the
user. For example, a usage scenario could say that:

The UI tells the operator that [the alarm]  is a serious problem that could require putting the antenna out of
service.

While an interaction scenario would say that:
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The operator types “o” “d” (“open detailed view”) to open the Detailed Alarm View and in the Procedures field
they see that this type of failure could require the shutdown of the antenna.

Essential use cases are used to represent goals that users might want to achieve.  More specific goals may be derived
from more general ones.  In the use case map,  essential use cases are linked through generalization,  inclusion and
extension relationships1.  This coarse-grained representation can be used as a task model (i.e.  a representation of how
designers expect that users would carry out relatively complex activities). 
As an example, the task CheckHealthStatus could be represented as in Figure 4 which shows that to check the health
status of the telescope an operator could perform the task ExamineSubsystemsWithKnownProblems or AnalizeAlarms.
AnalizeAlarms  could  in  turn  be  a  generalization  of  VerifyPresenceOfActiveAlarms  which  includes
ViewAlarmSummary.

Essential use cases differ from traditional UML use cases because they are not structured in main and alternative
scenarios (beware that the meaning of the word “scenario” in the context of UML use cases is different from what was
meant above,  with usage or interaction scenarios),  but their detailed description is given in terms of purpose (why a
particular user is involved in that use case) and in terms of user intents and corresponding system responsibilities. See
Constantine and Lockwood1 for more details.

Such an essential use case model allowed us to refine SKA requirements - which are mainly requirements from the point
of view of what the system has to do - into UI requirements - what human tasks should the UI support. 

     Figure 4 : CheckHealthStatus Essential Use Case

Sketching and storyboarding are techniques to materialize design ideas in such a way that any stakeholder, regardless
of his/her design experience, is able to decide if a given UI is appropriate or not for some task 2. Sketches are evocative
tools: they leave lots of details to imagination, and are indeed very valuable for eliciting new requirements from the
feedback  that  users  or  other  stakeholders  provide.  Furthermore,  because  a sketch  can  be  very  rough,  it  is  usually
relatively cheap to produce and to revise, and supports a parallel design process. A storyboard is essentially a scenario
described through sketches.
Figure 5 shows one of the sketches that were produced during the design process of the UI. It shows a panel dedicated to
alarm handling. The panel consists of a set of highly configurable subpanels that are intended to be resizable, dockable
and linkable between each other.  Their position can be changed by the user so that they may visualize the desired
information in the way they find most comprehensible or easiest to work with. The main part of the panel can be divided
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into three sections, one dedicated to the filtering options, one showing the Alarm List with the list of the alarms raised by
the system and one, at the bottom, called Alarm Summary.

The Alarm List panel can be linked to the Filter panel so that the former contains only alarms that satisfy the filtering
criteria.  This feature can also be disabled.  The Alarm Summary shows only the reported unacknowledged alarms in
decreasing time order. Buttons on the right side of the tables allow the user the ability to perform actions on the alarms,
i.e.  acknowledge,  mute,  shelve,  etc.  Overlaid to the main panel,  the detailed description of the selected alarm
(highlighted with light-blue contour)  is shown. It consists of three parts,  one with extensive information on the alarm,
including a description of the procedures to be adopted to solve the problem, the second with the available actions that
can be performed both on the alarm and on the sub-system and the third one with a summary of the status of the
observations in which the alarmed sub-system is involved. The UI should support keyboard navigation and shortcuts.

A storyboard can be used as a discussion document, with the aim of eliciting opinions of other stakeholders. We decided
to implement these sketches with one of the several existing tools (WireframeSketcher).  And with them we explored
several design ideas such as what kind of filters to use. This was an important decision, since focusing on a manageable
subset of data was one of the clearly identified challenges for SKA. Design tools such as the one mentioned could also
used to implement limited interactive features,  such as the definition of clickable hot spots that are linked to other
sketches to illustrate interactively the intended dynamics of the UI.

     Figure 5: A sketch of a screen of the alarm management UI showing the detailed view of an alarm

Formative user testing is a method, based on the think-aloud protocol, that is often used with sketches and storyboards
to better understand how suitable a design idea is, and possibly help to form a better one. The method is based on
sessions with a single user at the time, who is asked to describe how he or she would perform a task when given the UI
depicted in a sketch. Behind the scenes, a facilitator acts as a computer, and switches to another sketch when the user
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pretends to act in a certain way (such as pressing the acknowledge button). This is often called the “Wizard of Oz”
technique. 

The real value of the method comes from application of the think-aloud protocol: the user is asked to explain how the
screen is interpreted,  what cues lead to what conclusions,  why,  what actions are available,  what actions should be
available, etc. A skilled facilitator is able to acquire a lot of information about the mental model of that particular user
trying to do a particular task. 
When a formative test with a few (i.e. 3-5) users is carried out, usually a lot of information is acquired which allows deep
revisions of the UI (in terms of look and feel, in terms of labels, in terms of interaction structure).

The first formative tests on SKA storyboards are scheduled for June 2016.

5. TECHNOLOGICAL PROTOTYPING

Within the TM UI work-stream,  prototyping is also a key tool for the evaluation of technologies.  Based on the
documented lessons learned by precursors (MeerKAT, ASKAP, ALMA, LOFAR) and specific UI analysis conducted by
precursor sites (LOFAR), a set UI tools has been selected and they are being analyzed against SKA TM requirements.
The set includes TANGO tools (e.g.  Taurus and Sardana)  and general UI frameworks (such as AngularJS,  Django,
PyQT, PyTango, and TurboGears). 

The TANGO UI tools have been examined and can be divided into Desktop TANGO UI tools and those that provide a
web-based interface to a TANGO environment. The options for TANGO desktop development includes ATK based on
Java Swing, QTango based on C++ and Qt and Taurus based upon Python and PyQt. These all fulfill the basic SKA.TM
requirements and could be used to implement desktop UIs. However SKA.TM envisages the use of web user interfaces
as well and here there is not a well-established solution. TANGO actually offers two tool to implement web interfaces:
Canone,  based on PHP and Giga.  The Canone project was mostly abandoned in 2007,  while Giga is still under
development and results to be not mature enough to be used in the production. This means that at the moment adapting
an established web UI framework appears to be the best option for these interfaces unless additional resources are
invested in further development. 

The focus of the prototyping at this stage is not on developing a particular interface but rather to consider for each
selected frameworks how the tools and facilities might constrain the design of the UIs.  At this early stage of software
design we want to avoid the risk that the technology selection, rather than the needs of our customers would limit the
interfaces developed. 

The most appropriate design for any interactive system can not typically be achieved without some degree of iteration.
SKA is in the privileged position that good precursor systems exist which tackle some similar operational issues.
However many of these control systems operate at a much smaller scale than is envisaged for SKA in full operation. It is
extremely difficult, if not impossible, for users to explain what they want from a system they have not seen in order to
operate an observatory that does not yet exist. So we would expect that the first design of many of the UIs will identify
numerous areas where having seen the interface,  the users are in a far better position to describe the improvements or
changes required.  Based on the experience of observatories such as LOFAR and ALMA this may well take several
cycles of iteration and evolution.
From previous studies, there are a small number of technological features that determine the likely success of this type of
iterative development:

● An architecture  that  allows a loosely-coupled clean  separation  of  concerns  so that  it  is  easy to replace  an
interface  or an interface  component  with a  more usable functional  equivalent,  or to adapt  to technological
change.

● Favouring “narrow” interfaces with clearly defined responsibilities,  supported by an architecture that isolates
them from wider change yet, makes it easy for them to interact when needed. 

● A common framework or set of framework choices that makes it easy for knowledge and components to be
shared between teams working on different interfaces.
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● Consistency between interfaces so that users spend as little time as possible learning new skills or having to
switch between different models for the way interfaces work.

Specifically in the field of Control Room interface redevelopment for a large radio telescope,  there are a number of
excellent papers produced over the last few years relating to the redesign of the ALMA Operations Monitoring and
Control (OMC) system11,15  mentioned earlier.  The OMC paper also provides a useful description of the types of HCI
interface elements that they had found useful. We used this to identify some sample experimental tasks for this stage of
SKA UI prototyping. 

● Zoomable map/contextual pie chart:  in which information is presented spatially in geographical or
topographical arrangement showing a highly summarised perspective. At the highest level this may simply be a
colour indication of overall health.  As the user zooms into the interface and the element of interest becomes
larger more information is displayed. Clicking on an element of interest displays a set of options centered on the
object itself. 

● Treemap:  a hierarchy which represents as a 2D space using colour to indicate any issues.  Selecting a
component ‘zooms’ focus on that area of the grid and reveals the next level of the hierarchy.

● Efficient multi-scale and multi-focus visualization: the ability to combine graphical elements in a navigable
way.  This includes,  stacking and overlaying plots together (for instance to see performance of a group of
antennas),  displaying plots over other display elements (plotting observation targets over a scaled image of a
particular source), or to showing the position of key spectral lines against and observing bands. For series data
this includes the ability to zoom in to look in more depth at a narrow part of a time series and the ability to filter
data to remove specific elements that are not of interest.

This set of interface elements is similar to some of the interface elements developed by the MeerKAT SKA Pathfinder
team.9 Both the ALMA Dashboard15  and MeerKAT solutions used very similar technology choices. - a server-based
architecture supporting a browser-based user interface developed using a JavaScript framework. We were interested to
answer the following questions:

● Were there any strong technical or usability reasons for selecting one framework over another?
● Was it possible to develop the necessary rich graphical and interactive interfaces using a purely browser-based

solution? 

So far the time spent on this aspect of the prototyping has been limited. From developing basic UI elements similar to the
types of controls described above using React,  Angular/Angular 2  frameworks and combining these with the Data
Driven Documents (D3.js) visualisation libraries, the following seem reasonable conclusions:

● JavaScript frameworks are a useful and practical way to develop the front-end of web-based applications. We
would still need to do further work to be certain that they offer a fully scalable solution.

● There are no strong arguments currently for adopting a particular JavaScript framework. Having tried several
frameworks,  each is slightly different but they all support a separation of concerns into Model,  View and
Control responsibilities, and accepted patterns for developing encapsulated and sharable UI components.

● The D3 library copes well with large numbers of graphical elements and is flexible in the types of controls and
displays that can be created. The ability to create and manipulate richly interactive displays is possible in a web-
based solution.

● If a web-based approach is adopted for user interfaces outside the control room, there are the two areas where
non browser-based solutions still offer some advantages. These are the ability to store data locally on the client,
and to perform intensive processing locally to the user. 

● JSON structures exposed via a ReSTful interface offer a solid option for structured messages. Websockets offer
an equally practical approach for high capacity or near real-time data feeds. This approach is compatible with
most current technologies for developing UIs. The best way of managing socket subscriptions and testing these
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interfaces at anything close to the expected scale of SKA traffic is something that may be explored more fully
as part of the ongoing alarms prototyping work.

Another strand of the prototyping work was to review a possible architectural approach for providing interactivity
between UIs developed using differing technologies.  Was it practical to coordinate activity between interfaces and
maintain a coherent focus?

A small test prototype was created based on PyTango with a simple ZeroMQ messaging hub.  It tested the basic UI
Architecture principle that a central client-based hub was a practical option, and could support the type of client to client
communication needed for  managing opening  and closing of Uis and coordinated change of focus.  

Given a similar existing architecture is already widely adopted by a range of astronomy applications.  Extending the
prototype to explore using the Simple Message Application Protocol (SAMP)16 for this type of coordination would be be
a useful next step. 

More prototyping activity is focusing on the alarm-handling functionality, both applying existing specific Tango systems
and new UI proposals as outcome from the preceding precursors analysis.

On the practical aspects of the prototyping,  the technology decisions all seem reasonable.  The Tango framework and
tools support the types of basic control interfaces that are currently used at both radio telescopes and within high energy
physics experiments.  The current technologies available for developing front-end web solutions are capable of
supporting the types of sophisticated displays envisaged, at least based on an analysis of the needs of precursors.

6. CONCLUSIONS

Considering the lessons learned from precursors, it is clear that proper analysis and design activities are needed. These
should be focused on what combination of UIs will best support SKA users (operators, scientists on duty, schedulers,
PIs, etc) and based on usage-centered development practices. Such a usage-centered development approach can mitigate
product risks (i.e. those concerning with what will be developed and whether it will be the right solution) and consists of
several key steps:

1. To elicit new requirements in terms of activities that have to be supported (through techniques such as user
analysis, precursors analysis, affinity diagrams, brainstorming and focus group sessions among stakeholders)

2. To study the tasks that SKA users would have to carry out (through task analysis, use case modeling, scenario
definition, sketching and storyboarding)

3. To design and validate appropriate UIs (through refinement of sketches, storyboards and low-fidelity prototypes
and user testing).

On the one hand this activity will help refine requirements. To the extent that the UI is sketched in sufficient detail, the
UI can also be used in exploratory usability investigations (also involving end-users) to validate such requirements. On
the other hand,  the activity will provide enough details to clearly understand assumed or unexplored architectural
requirements for the underlying system, for instance that the operator while managing alarms might need to be able see
observations scheduled in a view filtered by specific resources.

The output from such a process will be a far better understanding of the user’s detailed requirements than would
otherwise be available. A set of artifacts that clearly describe these needs and requirements for all the users of TM is an
important input for defining or the architecture of UIs for the TM. This work is necessary for the implementation level,
investigation into which frameworks can best achieve these needs.  It also provides the context for investigating,
outlining the advantages and disadvantages of possible frameworks and making informed decisions.
For SKA, we are still very much at the start of this process. Already we can see that a consistent, structured approach to
keeping  the  user  experience  at  the  heart  of  our  design  efforts  is  the  best  way  to  guarantee  that  this  exceptional
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observatory develops and maintains the interfaces that will guarantee an equally exceptional experience to all its users
throughout the whole of its operational life.
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