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ABSTRACT

Context. Dipole mixed pulsation modes of consecutive radial order have been detected for thousands of low-mass red-giant stars with
the NASA space telescope Kepler. These modes have the potential to reveal information on the physics of the deep stellar interior.
Aims. Different methods have been proposed to derive an observed value for the gravity-mode period spacing, the most prominent one
relying on a relation derived from asymptotic pulsation theory applied to the gravity-mode character of the mixed modes. Our aim is
to compare results based on this asymptotic relation with those derived from an empirical approach for three pulsating red-giant stars.
Methods. We developed a data-driven method to perform frequency extraction and mode identification. Next, we used the identified
dipole mixed modes to determine the gravity-mode period spacing by means of an empirical method and by means of the asymptotic
relation. In our methodology we consider the phase offset, εg, of the asymptotic relation as a free parameter.
Results. Using the frequencies of the identified dipole mixed modes for each star in the sample, we derived a value for the gravity-
mode period spacing using the two different methods. These values differ by less than 5%. The average precision we achieved for the
period spacing derived from the asymptotic relation is better than 1%, while that of our data-driven approach is 3%.
Conclusions. Good agreement is found between values for the period spacing derived from the asymptotic relation and from the
empirical method. The achieved uncertainties are small, but do not support the ultra-high precision claimed in the literature. The
precision from our data-driven method is mostly affected by the differing number of observed dipole mixed modes. For the asymptotic
relation, the phase offset, εg, remains ill defined, but enables a more robust analysis of both the asymptotic period spacing and the
dimensionless coupling factor. However, its estimation might still offer a valuable observational diagnostic for future theoretical
modeling.

Key words. asteroseismology – stars: solar-type – stars: oscillations – stars: interiors

1. Introduction

Evolved stars that have exhausted their central hydrogen and
are now performing hydrogen burning in a shell surrounding
the helium core are generally referred to as red-giant stars or
simply red giants (e.g. Cassisi & Salaris 2013, and references
therein). In this work, we concentrate on red giants with a mass
ranging from ∼1 M� up to ∼2 M�. These red giants are known
to exhibit solar-like oscillations, which are intrinsically damped
and stochastically excited by the convective motion of the outer
layers of the star (Goldreich & Keeley 1977; Duvall & Harvey
1986; Christensen-Dalsgaard et al. 1989; Aerts et al. 2010; Tong
& García 2015).

The seismic analysis of red giants was driven by the photo-
metric observations of space telescopes such as CoRoT (Baglin
et al. 2006; Auvergne et al. 2009) and Kepler (Borucki et al.
2010; Koch et al. 2010). The vast amount of data of unparalleled

photometric quality have led to numerous substantial break-
throughs in the asteroseismology of evolved low-mass stars. In
particular, a first major leap forward in our seismic understand-
ing of these stars was achieved by Kallinger et al. (2008) and
De Ridder et al. (2009) with the detection of non-radial modes
in the power-spectral density (PSD) of red giants. This detec-
tion allowed for the application of seismic analyses for the mea-
surement of the physical parameters describing the oscillations
(Dupret et al. 2009).

Our understanding of red giants drastically improved after
the detection of their mixed modes (Beck et al. 2011; Bedding
et al. 2011). These modes contain information from both the
deep, dense interior of the star and its convective envelope.
Mixed modes are due to the coupling between a region in the
core where the mode behaves as a gravity (g-) mode and a re-
gion in the envelope with pressure (p-) mode behavior; thus,
a mixed mode probes conditions both in the core and in the
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envelope. Exploitation of the detected mixed modes allowed
for the discrimination between two evolutionary stages, the red-
giant-branch (RGB; H-shell burning) and the red clump (RC;
He-core and H-shell burning) stars (Bedding et al. 2011; Mosser
et al. 2011a), as well as the detection of the rapid core rotation
of red giants (Beck et al. 2012; Mosser et al. 2012a).

During its nominal mission, the Kepler space telescope ob-
served more than 15 000 red giants (Huber et al. 2010; Hekker
et al. 2011b; Stello et al. 2013; Huber et al. 2014) before a sec-
ond reaction wheel broke down. In addition, three different star
clusters containing red giants were observed, allowing ensemble
studies to be performed (Hekker et al. 2011a; Miglio et al. 2012;
Corsaro et al. 2012). Detailed analyses of the oscillation spec-
trum of individual stars are also being carried out (e.g. di Mauro
et al. 2011; Baudin et al. 2012; Deheuvels et al. 2014; Corsaro
et al. 2015b,a). Furthermore, the reliability of the seismic tools
was tested by studying eclipsing binary stars (Hekker et al. 2010;
Frandsen et al. 2013; Gaulme et al. 2013; Beck et al. 2014;
Gaulme et al. 2014).

Meanwhile, various approaches to exploit the mixed modes
have been presented in the literature. The quasi-constant period
spacing of mixed modes due to their gravity-mode character al-
lows us to characterize the frequency pattern in the PSD of given
stars. This frequency pattern can be calculated using the asymp-
totic approximation of high-order low-degree gravity modes for
a non-rotating evolved star. The asymptotic period spacing for
the periods of such consecutive gravity modes with spherical de-
gree � is given as

ΔΠ�,asym =
2π2

√
�(� + 1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∫
g

N
r

dr

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−1

, (1)

where N is the Brunt-Väisälä frequency and the integration is
performed over the g-mode propagation cavity g (Tassoul 1980;
Christensen-Dalsgaard et al. 2011). Such pure gravity modes
have high mode inertias and therefore low photometric ampli-
tudes are expected (e.g. Dupret et al. 2009; Grosjean et al. 2014,
and references therein).

As a first estimate of the asymptotic period spacing,
ΔΠ�,asym, the observed period spacing, ΔP, between mixed
modes of the same spherical degree and consecutive radial order
can be used to deduce the asymptotic period spacing. Bedding
et al. (2011), Mosser et al. (2011a), Corsaro et al. (2012), and
Stello et al. (2013) used the average of all observed period spac-
ings between consecutive dipole mixed modes, ΔP, to character-
ize the evolutionary stage of the red giants. However, ΔP is not
equal to the quasi-constant asymptotic period spacing caused by
the gravity-mode character of the mixed modes and it therefore
does not contain the optimal information related to the stellar
core.

Mosser et al. (2012b) proposed a formalism based on the
work by Shibahashi (1979, see also Unno et al. 1989) to describe
the full observed frequency pattern of the dipole mixed modes in
the oscillation spectrum. This formalism is based on the asymp-
totic period spacing, ΔΠ�,asym, of pure high radial-order g-modes
and the coupling between regions of p- and g-mode behavior to
describe the pattern of the dipole mixed modes. The asymptotic
relation for the mixed modes in red giants was recently inves-
tigated and verified from detailed stellar and seismic modeling
by Jiang & Christensen-Dalsgaard (2014). In addition, alterna-
tive approaches have recently been proposed (e.g. Benomar et al.
2014) that rely on the mode inertia to determine the period spac-
ing. The challenge for all methods is to determine the value of

the period spacing of the dipole modes with the highest reliabil-
ity possible.

In this work we intend to evaluate the asymptotic relation
introduced by Mosser et al. (2012b) for selected red giants ob-
served by Kepler. Our work is a first step toward the compari-
son of the observationally deduced (asymptotic) period spacing
with the value calculated from theoretical stellar models tuned
to the star under investigation. Here we limit the examination
to whether the high precision of the derived period spacing re-
ported in the literature is supported by our methodology, which
covers a large parameter space.

2. Observations and sample

Our analysis is focused on red giants observed with the NASA
Kepler space telescope. The giants investigated in this work were
selected based on visual inspection of thousands of PSDs of the
best studied red giants. To be selected, the stars had to fulfill two
strict criteria:

– a single clear power-excess, showing pulsations with excel-
lent signal-to-noise ratios (S/N);

– no visual evidence of rotational splitting in non-radial modes
(Gizon & Solanki 2003; Ballot et al. 2006; Beck et al. 2012;
Goupil et al. 2013) since that complicates the direct compar-
ison to frequencies computed with theoretical models.

Using these selection criteria, we identified the three red giants,
KIC 6928997, KIC 6762022, and KIC 10593078 as good targets
for our analysis. The literature values of the global stellar param-
eters for these selected stars are presented in Table 1.

The Kepler observations of the three selected red giants were
performed in the long cadence mode with a non-equidistant sam-
pling rate of approximately 29.4 min, leading to a Nyquist fre-
quency of ∼283.5μHz (Jenkins et al. 2010). The Kepler dataset
covers a time base of 1470 d, leading to a formal frequency reso-
lution of 0.00787μHz. The Kepler light curves used in this work
were extracted from the pixel data for the individual quarters
(Q0-Q17) of ∼90 days each, following the method described
in Bloemen (2013). The final light curve and the power spec-
tral density were compiled and calibrated following the proce-
dure by García et al. (2011). Finally, missing data points up to
20 d were interpolated according to the techniques presented in
García et al. (2014) and Pires et al. (2015).

Subsequently, the Kepler light curves were investigated to
determine any systematics in the PSDs. Since KIC 6928997 fell
on the malfunctioning CCD module in Q5, Q9, and Q13, no
observations were obtained during those quarters, leading to
slightly stronger side lobes in its spectral window. However,
these side lobes were sufficiently weak so that they did not
produce significant frequency peaks that would complicate the
analysis.

The stars KIC 6928997 and KIC 10593078 were previously
studied by Mosser et al. (2012b, 2014), who reported their
asymptotic period spacing, ΔΠ�,asym, and coupling factor, q,
based on the asymptotic relation. We introduce the asymptotic
relation together with q in Sect. 4.2. The values for the asymp-
totic period spacing are consistent between the two studies, but
the uncertainties are markedly different: Mosser et al. (2012b)
stated ΔΠ1,asym = 77.21 ± 0.02 s with q = 0.14 ± 0.04 and
ΔΠ1,asym = 82.11± 0.03 s with q = 0.13± 0.04 for KIC 6928997
and KIC 105930078, respectively, while Mosser et al. (2014) de-
duced ΔΠ1,asym = 77.2± 1.4 s and ΔΠ1,asym = 82.1± 1.3 s. Here,
we take a data-driven approach to elaborate on the derivation of
those uncertainties.
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Table 1. Fundamental parameters for the stars in our sample.

KIC Kp (mag) Teff (K) log g (dex) [Fe/H]

6928997 11.584 4800 ± 90 2.62 0.21
6762022 11.532 4860 ± 90 2.72 0.01
10593078 11.567 4970 ± 100 2.88 0.17

Notes. Magnitudes and object identifiers in the Kepler input catalogue
(KIC) are from the Kepler Mission Team (2009); the other stellar pa-
rameters are from Pinsonneault et al. (2012).

3. Frequency analysis

The oscillation properties of solar-like pulsators are usually stud-
ied from their PSD diagrams. We start our analysis by determin-
ing the general shape of the PSD in Sect. 3.1. This allows us to
determine the frequency of maximum oscillation power, νmax,
defined as the central frequency of the envelope describing the
power of the oscillations. Next, we deduce the large frequency
separation, Δν, in Sect. 3.2, which describes the equidistant fre-
quency spacing for pure p-modes under the asymptotic descrip-
tion (Tassoul 1980, 1990). It is defined as

Δν =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝2
R∫

0

dr
c(r)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
−1

, (2)

where c(r) is the interior sound speed. This parameter is sensitive
to the mean stellar density (Ulrich 1986), while νmax has been
postulated to scale with the surface gravity g and the effective
temperature Teff (Brown et al. 1991; Kjeldsen & Bedding 1995;
Bedding & Kjeldsen 2003; Belkacem et al. 2011). Therefore,
these two quantities depend on the stellar mass and radius and
form the basis of the scaling relations broadly used in astero-
seismology to derive fundamental stellar properties of solar-like
pulsators (i.e. Stello et al. 2008; Gai et al. 2011; Silva Aguirre
et al. 2011, 2012; Miglio et al. 2013; Casagrande et al. 2014):

νmax =

(
M
M�

) (
R
R�

)−2 (
Teff

Teff,�

)−0.5

νmax,� (3)

and

Δν =

(
M
M�

)0.5 (
R
R�

)−1.5

Δν�. (4)

Solar values are indicated by a subscript � and we adopt the
values of Huber et al. (2011) for νmax,� and Δν�, which are
3150 μHz and 134.9 μHz, respectively.

In a subsequent step, we extract and identify the individual
oscillation modes. To characterize the parameters of each mode
in the PSD, we constructed a semi-automated pipeline. The de-
tails of the methods adopted for the extraction and identification
of the different modes are presented in Sect. 3.3. The results ob-
tained for the selected sample of red giants are given in Sect. 3.4,
and the detailed analysis of the observed dipole mixed modes is
further discussed in Sect. 4.

3.1. Determination of the background

The overall shape of the power spectrum of a solar-like oscil-
lator is generally described by a combination of power laws to
describe the granulation background signal and a Gaussian enve-
lope to account for the position of the oscillation power excess

(e.g. Harvey 1985; Carrier et al. 2010; Kallinger et al. 2010).
The unified model of the PSD, expressed as a function of the
frequency ν, is given by

MPSD(ν) =
[
Pgran(ν) + PGauss(ν)

]
· R(ν) +W, (5)

where each term is defined below.
The term corresponding to the granulation signal, Pgran(ν), is

expressed as a sum of s different Lorentzian-like profiles

Pgran(ν) =
s∑

i= 1

2πa2
i /bi

1 + (ν/bi)ci
, (6)

where each power law is characterized by its amplitude, ai; its
characteristic frequency, bi; and its slope, ci. In general, two
or three different terms are used to describe the granulation
contribution since the granulation activity occurs on different
timescales.

Harvey (1985) introducted a Lorentzian profile to describe
the granulation signal of the Sun. More recently, Carrier et al.
(2010) and Kallinger et al. (2010) found a super-Lorentzian pro-
file (i.e. a Lorentzian with a slope greater than two) to be more
appropriate. Kallinger et al. (2014) provided a detailed overview
of the determination of the shape of red-giant PSDs and sug-
gested that the description with a slope set to four is favorable.
However, in our analysis we choose to keep the slope as a free
parameter within the range two to four to allow more degrees of
freedom during the fitting phase for a better fit quality.

The shape of the power excess in the PSD is traditionally
described with a Gaussian function

PGauss(ν) = Pg exp

⎛⎜⎜⎜⎜⎝− (ν − νmax)2

2σ2
g

⎞⎟⎟⎟⎟⎠, (7)

while the instrumental noise W in Eq. (5) is assumed to be con-
stant. In addition to the above-mentioned contributions to the
global model of the PSD, the sampling effects of the dataset
need to be considered, since the discretization of the signal may
reduce the power of both the oscillation and the granulation con-
tributions (Karoff et al. 2013; Kallinger et al. 2014). This effect
is taken into account by including the response function, R(ν),

R(ν) = sinc2

(
πν

2νNyq

)
, (8)

where νNyq is the Nyquist frequency of the Kepler long cadence
data.

Estimates of the different parameters describing the back-
ground given by Eq. (5) are first obtained by means of a least-
squares (LS) minimization technique. We subsequently refine
these estimates by using a Bayesian Markov chain Monte Carlo
(MCMC) algorithm (e.g. Berg 2004). This technique minimizes
the following log-likelihood function, L(Θ) (Duvall & Harvey
1986; Anderson et al. 1990),

L(Θ) =
∑

k

{
log (M(Θ; νk)) +

D(νk)
M(Θ; νk)

}
, (9)

where D(νk) is the data for a certain frequency region k
and M(Θ; νk) is the model with the vector parameter
Θ = (Θ1,Θ2, . . . ,Θn) that has n dimensions. The logarithm
ensures a high numerical stability. In the current case, the data
we wish to describe, D, corresponds to the observed PSD and
M the general shape of the PSD. We use uniform priors for all
variablesΘi defining the modelM(Θ; νk), and so we set an upper
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Fig. 1. Power density spectrum of the Kepler photometry of
KIC 6928997. The individual components describing the background
of the PDS are indicated by black dotted lines, their joint effect by the
red full line, and the power excess by the red dashed line. Only the red
solid line is used as background during the extraction of the oscillations.

and lower boundary to each parameter with a uniform probabil-
ity distribution.

Upon convergence of the Bayesian MCMC routine, the
marginal posterior probability distribution is determined for each
fitting parameter. We accept the median value of this distribution
as the true value for a given parameter in order to capture skewed
distributions. Uncertainties on eachΘi are furthermore extracted
from the probability distribution. We present the determined de-
scription of the overall shape of the PSD of KIC 6928997 in
Fig. 1 and also indicate the individual model components.

3.2. Determination of the large frequency separation

In a second step, we deduce the global large frequency separa-
tion Δν. To this end, we calculate the autocorrelation function
(ACF) of the PSD over a predefined frequency region centered
around νmax. The region for the ACF method is defined by using
a multiple of the estimate for Δν, which is derived from a scal-
ing relation with the previously derived value of νmax. We use the
description by Stello et al. (2009) because it has been calibrated
on a large sample of stars. It is given by

Δνestimate = (0.263 ± 0.009) ν0.772± 0.005
max . (10)

Here, Δνestimate represents the estimated value for Δν through the
scaling relation. The frequency region νmax ± 2Δνestimate is then
passed to the ACF routine to determine a more precise value.
We choose to include only this region to be less influenced by
the variations of Δν with varying ν.

Next, we determine the maximum of the ACF in a region
around Δνestimate and further refine it by fitting a Lorentzian pro-
file. Through this approach, the obtained value for Δν is not sen-
sitive to the frequency resolution of the ACF. Similarly to the
PSD model fitting process, the initial estimates on the param-
eters of the Lorentzian profile are calculated by means of LS
minimization. These are finally passed to the Bayesian MCMC
algorithm, again assuming a uniform prior on the fitting param-
eters and the likelihood function defined in Eq. (9).

3.3. Extraction of the oscillation modes

Once νmax and Δν are accurately determined, we extract and
identify the individual oscillation modes. We choose to fit the
modes one radial-mode order at a time, i.e. we only consider

all significant modes between two consecutive radial-mode or-
ders np and np + 1, instead of performing a global fit. We define
this radial-mode order, np, as one of the radial modes and we
use it during the mode identification process. It differs from the
radial order of the mixed dipole modes, which we call mixed-
mode order and denote nm. The mixed-mode order is dependent
upon np and upon the radial order of the pure gravity modes, ng
(see e.g. Mosser et al. 2012b). Performing the fitting in a small
frequency range leads to fast convergence since the individual
modes are well separated and there are fewer free parameters
compared to fitting the full PSD at once.

A S/N criterion determines the significance of a given os-
cillation mode. We calculate this S/N by dividing the PSD by
its overall shape, Eq. (5), while excluding the Gaussian term,
Eq. (7). This general shape corresponds to the solid red line in
Fig. 1, while the power-excess is represented by the dashed red
line. Mode peaks are considered significant when their S/N is
higher than 7 times the average S/N in the frequency range of
that particular radial-mode order.

The profile of solar-like oscillation modes in a PSD is rep-
resented by a Lorentzian (Kumar et al. 1988; Anderson et al.
1990), described by

Pmode(ν) =
A2/πΓ

1 + 4
(
ν−ν0
Γ

)2
, (11)

where the amplitude, the full width at half maximum (FWHM),
and the central frequency of the Lorentzian profile are given
by A, Γ, and ν0, respectively. The profile of k significant oscilla-
tion modes in a given radial-mode order is then given by

Morder(ν) = W + R(ν) ·
⎡⎢⎢⎢⎢⎢⎢⎣ Pgran(ν) +

k∑
j= 1

Pmode, j(ν)

⎤⎥⎥⎥⎥⎥⎥⎦ . (12)

Both the white noise contribution, W, and the granulation con-
tribution, Pgran(ν), were determined during the fit to the PSD.
Therefore, we keep them fixed during the fitting process per
radial-mode order, i.e. only the parameters influencing the in-
dividual significant frequencies are varied. Again, we consider
the response function, R(ν), to account for the discrete sampling
of the photometric signal.

The developed semi-automated peak-bagging algorithm
consists of three different steps. First, all significant oscillation
modes in a given radial-mode order are fitted with Lorentzian
profiles superimposed on the derived background model of the
PSD in an automated manner. Second, an interactive fitting step
allows the user to have more influence on the fitting process
of the individual modes. This is sometimes necessary when the
LS minimization does not converge properly for the very long-
lived g-dominated mixed modes. Finally, once the initial guesses
for the parameters of the fit are sufficient, a Bayesian MCMC
algorithm determines the marginal posterior probability distri-
bution for each fitting parameter of an individual mode. The
likelihood for the Bayesian fit per radial-mode order is again
described by Eq. (9). We adopt uniform priors for both the cen-
tral frequency and the amplitude of a given peak, while a modi-
fied Jeffreys prior (Handberg & Campante 2011) is used for the
FWHM of the Lorentzian profiles.

The mode identification was performed for the retrieved
peaks by using a dimensionless reduced phase shift θ defined
from a frequency échelle diagram as

θ = (ν/Δν) −
(
np + ε

)
(13)

A82, page 4 of 14

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201527055&pdf_id=1


B. Buysschaert et al.: Testing the asymptotic relation for period spacings of red giants

Table 2. Determined seismic parameters of the stars in our sample.

KIC νmax (μHz) Δν (μHz)

6928997 119.13+0.39
−0.35 10.015+0.005

−0.005

6762022 41.02+0.18
−0.22 4.455+0.010

−0.009

10593078 206.98+0.25
−0.34 15.428+0.019

−0.020

Notes. Frequency of the oscillation power excess νmax, and large fre-
quency separation Δν, obtained with the Bayesian MCMC technique.
Uncertainties noted here are 68% confidence intervals.

and having a value in the interval −0.2 ≤ θ < 0.8. Here, ν and np
are the frequency and the radial-mode order, respectively, and ε
is a small constant that occurs from an asymptotic approximation
for the mode frequencies. This constant can be approximated
using the scaling relation presented in Mosser et al. (2011b), and
updated by Corsaro et al. (2012), which leads to radial modes
having θ ≈ 0.00 and quadrupole modes having θ ≈ −0.12 (see
also Tassoul 1980; Mosser et al. 2012a). Dipole p-modes, on the
other hand, have 0.2 ≤ θ < 0.8 and � = 3 modes have 0.1 <
θ < 0.2. We choose to estimate ε for each radial-mode order
from the radial modes assuming their θ to be exactly zero and
approximating np as �ν�= 0/Δν	−1, instead of using the empirical
scaling relation.

3.4. Results

The derived values for the global asteroseismic properties νmax
and Δν obtained by using the Bayesian MCMC methods are
presented in Table 2 together with their 1σ uncertainties corre-
sponding to a 68% probability that the true value is included in
the overall interval.

We find significant oscillation modes in regions between six
consecutive radial modes, corresponding to five different radial-
mode orders np. Therefore, throughout this work we consis-
tently restrict the analysis to the central five radial-mode or-
ders. Additional care is taken to only obtain frequencies that
could unambiguously be identified, i.e. no dipole mode was con-
sidered outside the expected region. Although other work of-
ten takes such modes into account, which increases the total
number of frequencies available, we choose to reject them. For
KIC 6762022, significant dipole modes only appear in its three
central radial-mode regions so we restrict our analysis to this
regime for this star.

4. Period spacing analysis

The dipole mixed modes in evolved stars take on an
acoustic-mode nature in the outer envelope and a gravity-
mode nature in the deep interior (Dziembowski et al. 2001;
Christensen-Dalsgaard 2004; Dupret et al. 2009; Montalbán
et al. 2010). This causes their period spacing to deviate from the
constant value expected for pure g-modes in the asymptotic ap-
proximation. The dipole mixed modes turn out to be detectable
at the stellar surface by means of high-precision photometry
(Beck et al. 2011; Bedding et al. 2011; Mosser et al. 2011a).

The period difference (expressed in seconds) between two
consecutive dipole mixed modes is formally called the observed
period spacing and is defined as

ΔP =
1
νnm

− 1
νnm+1

· (14)

The average of all observed period spacings, ΔP, is a good indi-
cator of the evolutionary stage of a given star (e.g. Bedding et al.
2011; Mosser et al. 2011a; Corsaro et al. 2012, see Table 3).

The observed period spacing measured from consecutive
mixed modes, ΔP, can be used to infer the value of the asymp-
totic period spacing of dipole mixed modes ΔΠ1, which is given
analytically by Eq. (1) for any spherical degree � > 0. Here we
test two different methods to derive ΔΠ1 and explore their re-
liability without considering frequency-dependent variations of
ΔΠ1 caused by structural glitches in the core of the star (Cunha
et al. 2015).

4.1. Lorentzian fitting to ΔP

To obtain a first estimate for the value of the asymptotic period
spacing, ΔΠ1, for a given red-giant star, we use an empirical
approach (see Stello 2012). This approach captures the mixed
character due to the pressure and the gravity nature of the dipole
modes seen in the observed period spacings, ΔP, related to the
mode bumping (Deheuvels & Michel 2010). When mixed modes
show a very strong gravity character, ΔP remains fairly constant
and close to the value of ΔΠ1. However, when the character of
the mixed modes becomes more pressure-like, a lower ΔP is ex-
pected and observed. Thus, the behavior of the mixed modes
can be captured by a convolution of a flat continuum, account-
ing for ΔΠ1 in the case of pure g-modes, and a Lorentzian profile
with negative height, taking the mixed mode nature into account
by reducing the strength of the g-mode character of the mixed
modes.

We choose again to work with the previously defined dimen-
sionless reduced phase shift θ since it allows for a more stable
fitting procedure. An average phase shift

θspacing =
θnm + θnm+1

2
, (15)

is assigned for each observed period spacing ΔP. This enables
us to describe the profile for the mixed mode period spacings as

Memp(θspacing) = ΔΠemp − H

1 + 4
(
θspacing−θ0
Γ

)2
, (16)

where H is the height of the Lorentzian profile centered at θ0
with a width Γ. A LS minimization technique is adopted to per-
form the process of fittingMemp to the observed period spacings
in terms of the parameters ΔΠemp, H, Γ, and θ0. Estimates on
the uncertainties on the individual free parameters are deduced
by means of a Monte Carlo approach. We randomly perturb the
extracted dipole frequencies 25 000 times within their respective
uncertainties and determine their ΔP and θspacing. For the pertur-
bation, we assume normally distributed errors. The fitting pro-
cess is repeated on each iteration and the scatter on the final set
of fitting parameters is then an indication of their uncertainties.
The results of this method are given for the three stars in Table 3
as the empirical values ΔΠ1,emp.

4.2. Exploration of the asymptotic relation

Mosser et al. (2012b) proposed deriving ΔΠ1 by solving the
equations of Shibahashi (1979) and formulated the approxima-
tion for a frequency of a dipole mode νm as

νm = νnp ,�=1 +
Δν

π
arctan

[
q tan π

(
1

ΔΠ1,asymνm
− εg

)]
. (17)
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The frequencies of the gravity modes are coupled to the fre-
quency of the pure p-mode νnp . The dimensionless coupling fac-
tor q describes the strength of the coupling between the grav-
ity mode cavity and the pressure mode region. It typically has a
value between 0.1 and 0.3 (Mosser et al. 2012b). The constant εg
is a phase offset that ensures the proper behavior for the g-mode
periods in the case of weak coupling. Mosser et al. (2012b) as-
sumed this constant to be zero. Here, we explore the possibility
of varying this phase offset rather than keeping it constant.

Because the asymptotic relation is an implicit equation for
νm, we solve Eq. (17) by means of a geometrical technique, over-
sampling the observed frequency resolution 1000 times, as de-
scribed by Beck (2013). Second-order asymptotics are consid-
ered for the pure pressure modes. Different approaches have
been proposed to derive ΔΠ1,asym with the asymptotic relation
from observations. Typically, a LS minimization with an initial
guess close to the expected value of ΔΠ1,asym is used to search in
a narrow range of solutions (e.g. Mosser et al. 2012b, 2014).

Our aim is to investigate in depth the solution of ΔΠ1 us-
ing the asymptotic relation and by exploring a three-dimensional
parameter space for (ΔΠ1,asym, q, εg), thus allowing us to under-
stand the reliability of the final estimate of the asymptotic dipole
period spacing. This is accomplished by means of a grid-search
method where we vary the parametersΔΠ1,asym and q over a wide
range of values, while εg is varied between 0 and 1. As far as
we are aware, it is the first time that the phase offset, εg, of the
asymptotic relation is considered a free parameter. The fit qual-
ity for a combination of values of (ΔΠ1,asym, q, εg) is quantified
by means of a χ2 test where we compute the difference between
the predicted asymptotic frequencies and those observed. The
adopted χ2 is defined as

χ2
grid(ΔΠ1, q, εg) =

1
N − 4

N∑
i

(
ν�= 1,i,obs − ν�= 1,i,asym

σ(ν�= 1,i,obs)

)2

, (18)

where ν�= 1,i,obs is the frequency of the ith observed dipole mixed
mode and σ(ν�= 1,i,obs) is its corresponding standard deviation
estimated by the Bayesian MCMC fit. The related frequency
from the asymptotic relation, the closest one to the ith observed
mixed mode ν�= 1,i,asympt, is calculated following Beck (2013)
and χ2

grid is normalized by N − 4 degrees of freedom, where N is
the number of observed dipole mixed modes for a given red-
giant star.

The value of ΔΠ1,emp determined in Sect. 4.1 acts as a start-
ing point for the ΔΠ1,asym axis in the three-dimensional parame-
ter space analysis. We let this parameter vary by up to ±10% of
the initial guess ΔΠ1,emp and sample with a resolution of 0.02 s
(0.04 s for RC stars). Solutions with a coupling factor q rang-
ing from 0.01 to 0.51 with a resolution of 0.005 were consid-
ered. The phase offset εg spanned from 0 to 1 with a step of
0.0025; we note that any values smaller than zero or larger than
one will behave like those in the used range owing to the pe-
riodicity of the tangent function. As such, we construct a grid
of several million points with dimensions (500, 100, 400); each
grid point represents a unique combination of (ΔΠ1,asym, q, εg).
At each meshpoint, we compare the calculated frequencies us-
ing the asymptotic relation with those extracted from the PSD
to obtain the most probable solution. This best set of values for
ΔΠ1,asym, q, and εg is given in Table 3.

To study each dimension in our three-dimensional parameter
space in more detail, we use marginal distributions. In practice,
we consider a minimum χ2

grid per gridpoint along one dimen-
sion to reduce the dimensionality and by marginalizing over this

Fig. 2. Derivation of ΔΠ1,emp for KIC 6928997 using the empirical ap-
proach of fitting ΔP, yielding ΔΠ1,emp = 81.14 s (red dashed). The
fit is done for the phase shift θ (top) and subsequently expanded to ν
(bottom), using the inverse relation of Eq. (13).

dimension we assess the correlation between the two remain-
ing dimensions. Applying this technique over two dimensions
enables us to construct confidence intervals for the third dimen-
sion since it represents the distribution of that dimension, simi-
lar to the computation of the marginal posterior probability in a
Bayesian MCMC analysis.

We construct the confidence intervals by relying on the the-
ory of χ2 statistics using χ2 tests, i.e. the χ2

α value for an α%
confidence interval. This χ2

α level corresponds to a χ2
grid value in-

dicating that the found χ2
grid minimum is the real minimum with

an α% certainty and is computed as

χ2
α =
χ2
α,k · χ2

grid, min

k
, (19)

with k = N − 4 degrees of freedom, χ2
grid, min the value for the

optimal solution, and χ2
α,k the tabulated value for an α% inclu-

sion of the cumulative distribution function of a χ2 distribution
with k degrees of freedom. We divide by the degrees of free-
dom because the χ2 test in Eq. (18) contains a sum of multi-
ple distributions. The multiplication by χ2

min accounts for the
difference between the optimal value and the expected value
of one. The parameter ranges in the one-dimensional marginal
distributions are then taken as the confidence interval for that
parameter.

4.3. Results

Figure 2 illustrates that the Lorentzian profile captures the mixed
nature of the dipole modes reasonably well for KIC 6928997. As
such, the value of ΔΠ1,emp can be used as a better starting point,
compared to ΔP, for the more elaborate three-dimensional pa-
rameter search. From the Monte Carlo analysis we were able to
determine the uncertainties for ΔΠ1,emp, which had a Gaussian-
like distribution for both KIC 6928997 and KIC 10593078. For
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Fig. 3. Correlation maps indicating the χ2
grid as a color map for KIC 6928997, as deduced from the asymptotic relation Eq. (17). The one-

dimensional marginal distributions are given in Fig. A.5. The χ2
grid levels are indicated by the various colorbars. Top left: correlation map of the

marginal two-dimensional parameter space (ΔΠ1,asym, q). The darkest shade indicates the most likely solution. Bottom left: correlation map of the
marginal two-dimensional parameter space (ΔΠ1,asym, εg). A strong correlation is observed between the two parameters. Bottom right: correlation
map of the marginal two-dimensional parameter space (q, εg). Correlation maps for the other two stars in our sample are given in the Appendix.

KIC 6762022, however, the profile indicated a bi-modal distri-
bution, leading to a much larger uncertainty on ΔΠ1,emp. This
is caused by a strongly gravity-dominated mixed dipole mode.
Performing perturbations of the two corresponding frequencies
will often give a ΔP value larger than the optimal ΔΠ1,emp, pro-
ducing the bi-modality of the Monte Carlo distribution.

Figures 3 and 5 show the different marginal distributions
for the mixed modes derived from the asymptotic relation for
KIC 692897 (the same figures are given in the Appendix for the
two remaining red giants of the sample) . We accept the ΔΠ1,asym
values derived with this method as our final values for ΔΠ1.

Studying the different marginal distributions enabled us to dis-
cuss the behavior of the asymptotic relation in more detail.

The correlation maps show that there is a significant correla-
tion between ΔΠ1,asym and the phase offset εg (bottom left panel
Fig. 3). This was anticipated from looking at Eq. (17), since both
parameters are present within the tangent-function. As such, it
is possible to have the same mixed-mode frequencies for vari-
ous ΔΠ1,asym combined with appropriate εg values. Also, fixing
εg to one unique value prohibits capturing the complete behav-
ior of the asymptotic relation. This is shown in Fig. 4, where we
indicate the correlation map between ΔΠ1,asym and q, assuming
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Fig. 4. Correlation maps indicating the χ2
grid as a color map for

KIC 6928997, as deduced from the asymptotic relation Eq. (17) and as-
suming εg is fixed at zero.

εg = 0. Since the phase offset is assumed to be constant, the
frequency space of the mixed modes is not fully sampled. Thus,
the color map mimics a correlation between ΔΠ1,asym and q and
produces a multi-modal behavior in the marginal ΔΠ1,asym dis-
tribution. No other significant correlations are observed between
the other parameters in the three-dimensional parameter space
or between the coupling factor, q, and the value of the tan-
gent term within the asymptotic relation, Eq. (17). However, the
marginal distribution of εg is sensitive to the sampling rate along
the ΔΠ1,asym axis. The larger the difference between consecu-
tive ΔΠ1,asym values, the stronger the wiggles are in the bottom
panel of Fig. 5. These wiggles are understood as the influence of
the correlation between ΔΠ1,asym and εg on the chosen sampling
rates. Performing a first-order perturbation analysis of Eq. (17),
assuming a constant q and νm, leads to the relation

δ(εg) =

∣∣∣∣∣∣∣
δ(ΔΠ1,asym)

ΔΠ2
1,asymνm

∣∣∣∣∣∣∣ , (20)

where δ(εg) and δ(ΔΠ1,asym) are the perturbations on εg and
ΔΠ1,asym, respectively. Considering δ(ΔΠ1,asym) as our chosen
sampling rate of ΔΠ1,asym indicates that we inherently sample
our εg axis. Using the accepted ΔΠ1,asym, approximating νm as
νmax, and taking the chosen sampling rate δ(ΔΠ1,asym) = 0.02 s
for KIC 6928997 results in a δ(εg) = 0.028, which is similar to
the size of the wiggles observed in the bottom panel of Fig. 5. A
smaller sampling rate along ΔΠ1,asym would provide a smoother
marginal profile at a computational expense. However, it is un-
likely that this smoother distribution would behave in a substan-
tially different way.

Second, the inclusion of the phase offset εg as a variable pa-
rameter permitted us to determine the correct confidence inter-
val for each parameter. Both ΔΠ1,asym and q are strongly con-
strained, while εg is not. The confidence interval for εg spans a
large portion of the parameter space. We mark the boundaries
for the various confidence intervals in Fig. 5. Nevertheless, the
above-mentioned correlation means that the phase offset must be

Fig. 5. One-dimensional marginal distributions for each parameter con-
sidered in the asymptotic relation for KIC 6928997 centered on the op-
timal solution, which is marked in blue. The χ2

95% value is shown by the
solid red line. The upper and lower boundaries for the uncertainty on the
individual parameters are given by the red dotted lines. The marginal
distribution for each parameter over the full three-dimensional grid is
given in Fig. A.5.

included if ΔΠ1,asym is to be studied in detail. In the present anal-
ysis, εg does not in itself provide very useful information owing
to its large confidence interval, but must be accounted for in the
study of ΔΠ1,asym and q. Despite this behavior of εg, we did not
lose any information since εg was artificially set to zero in previ-
ous studies, but we did gain a greater understanding of ΔΠ1,asym.

Lastly, we note that the marginal distributions of ΔΠ1,asym for
both KIC 6762022 and KIC 10593078 look significantly differ-
ent from that of KIC 6928997 (see figures in Appendix). The dis-
tributions of the first two show a different shape around the min-
imum χ2

grid value, resembling a local and a global minimum. A
possible explanation is the presence of buoyancy glitches, giving
rise to slightly differentΔΠ1,asym values for different radial-mode
orders. A detailed study of the dipole mixed-mode frequencies
per radial-mode order is of interest, but is beyond of the scope
of the current work.

We construct frequency and period échelle diagrams (such
as Fig. 6) for further visual comparison between the frequencies
of the dipole mixed modes extracted from the PSD and those
calculated with the asymptotic relation νm. Only very small dif-
ferences between the extracted dipole mixed modes and the cor-
responding νm are seen in the frequency échelle diagram. In
addition, the period échelle spectrum captures the behavior of
the mixed modes very well, confirming that the extracted modes
indeed show a mixed behavior, making the asymptotic relation
appropriate.

Differences between the values for ΔΠ1 derived by the two
methods are slightly larger than the uncertainties and more
pronounced for the confidence intervals of ΔΠ1 themselves.
Uncertainties determined from the three-dimensional parame-
ter space are significantly smaller. In addition, the asymptotic
relation provides information related to the strength of the cou-
pling between the different propagation zones and a slight hint
for the phase offset required for asymptotic theory. Our results
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Table 3. Results for the period spacing determined from the extracted dipole frequencies of Q0−Q17 Kepler data.

KIC ΔP Evolutionary ΔΠ1,emp ΔΠ1,asym q εg
state Empirical Asymptotic

[s] [s] [s] [s] [ ] [ ]

6928997 53.1 ± 11.2 RGB 78.3+4.2
−3.3 77.10+0.22

−0.13 0.111+0.023
−0.018 0.160+0.165

−0.271

6762022 210.3 ± 19.1 RC 261.9+25.9
−18.4

a 259.08+1.19
−1.63 0.240+0.091

−0.063 0.835+0.580
−0.420

10593078 53.7 ± 14.3 RGB 81.8+1.2
−1.0 82.48+0.47

−0.83 0.130+0.073
−0.054 0.755+0.608

−0.326

Notes. Confidence intervals are 95% except for ΔP, which corresponds to 68%. (a) the Monte Carlo routine resulted in a strong bi-model distribu-
tion. The uncertainty indicated here is when the correct peak is considered.

Fig. 6. Échelle diagrams comparing the solution of the asymptotic rela-
tion (ΔΠ1,asym = 77.1 s, q = 0.11 and εg = 0.16) with extracted modes
for KIC 6928997. Left: a frequency échelle diagram, comparing the fre-
quencies of the asymptotic relation to those from the mode extraction.
The extracted radial, dipole, quadrupole, and octupole modes are indi-
cated by blue squares, red dots, green triangles, and yellow diamonds,
respectively. The frequencies of the dipole mixed modes obtained from
the asymptotic relation, and having an observational counterpart, are in-
dicated by blue crosses. Right: a period échelle spectrum for the dipole
modes, showing the same comparison as in the left panel with the same
color coding. The black “+” indicate the frequencies for the mixed
modes obtained from the asymptotic relation without any observational
counterparts.

determined by means of the asymptotic relation agree with those
in the literature, yet are slightly different since we considered εg
to be a free parameter. The highest contrast is seen for the un-
certainties for ΔΠ1,asym. They range between those proposed by
Mosser et al. (2012b, 2014) and are asymmetric.

5. Conclusions

In this work, we analyzed the dipole mixed mode period spacing
of three red giants observed by the NASA Kepler space tele-
scope. Two are in the evolutionary stage of hydrogen shell burn-
ing, while the third was confirmed to be in the more advanced
helium core-burning phase. We determine the value for ΔΠ1, the
g-mode asymptotic period spacing, according to two different

approaches. First, we used an empirical fit to the observed pe-
riod spacings. Next, the description of the asymptotic relation is
used to study the three-dimensional parameter space of ΔΠ1,asym,
q, and εg. We were able to determine realistic confidence inter-
vals for both the asymptotic period spacing and the dimension-
less coupling factor. The phase offset εg, however, remains ill de-
fined owing to its large confidence interval. However, it is only
by considering εg as a variable parameter and using marginal
distributions that the determination of a confidence interval for
the asymptotic period spacing is simplified, because a fixed εg
provides a multi-modal behavior in the χ2 landscape.

The two approaches have very different computational ef-
ficiencies, but lead to compatible results. When analyzing large
samples of stars, our conclusion is that particular attention has to
be given to the techniques adopted to estimate the value of ΔΠ1,
and meaningful uncertainties are needed in order to be able to
perform a reliable comparison between observations and stellar
models. The results obtained in this work, allowing for a vary-
ing εg, provide reliable uncertainty estimates, which are in be-
tween those quoted by Mosser et al. (2012b, 2014), i.e. mean-
ingful estimates of the relative uncertainty of the period spacing
range up to 1%.

Determining the period spacing per radial-mode order con-
stitutes a next step forward, since the marginal distribution
of ΔΠ1,asym indicates a substructure around the optimal solu-
tion. This would provide information about possible structural
glitches in the core, which were ignored in this work. However,
this is only possible if enough dipole mixed modes are identified
per radial-mode order. Another possibility is to include the large
frequency separation as a fourth parameter in the study of the
asymptotic relation. At present, we have fixed this value since it
was deduced with a very high accuracy during the detailed fre-
quency analysis.
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Appendix A: Marginal distributions

Here, we present the various marginal distributions for the two
remaining red giants, KIC 6762022 and KIC 10593078. They
are similar to the figures presented in Sect. 4.3. In addition, we
provide the one-dimensional marginal distributions over the full
three-dimensional grid for each parameter and for each star.

Fig. A.1. One-dimensional marginal distributions for each parameter
considered in the asymptotic relation for KIC 6762022, centered at the
optimal solution. The linestyle and colors are the same as in Fig. 5.

Fig. A.2. One-dimensional marginal distributions for each parameter
considered in the asymptotic relation for KIC 10593078, centered at the
optimal solution. The linestyle and colors are the same as in Fig. 5.
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Fig. A.3. Correlation maps indicating the χ2
grid as a color map for KIC 6762022, as deduced from the asymptotic relation Eq. (17). The order of the

marginal two-dimensional correlation maps is the same as for Fig. 3.
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Fig. A.4. Correlation maps indicating the χ2
grid as a color map for KIC 10593078, as deduced from the asymptotic relation Eq. (17). The order of

the marginal two-dimensional correlation maps is the same as for Fig. 3.
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Fig. A.5. One-dimensional marginal distributions for each parameter
considered in the asymptotic relation for KIC 6928997. The final val-
ues for each parameter correspond to the best description for the dipole
mixed modes with the asymptotic relation and are marked in blue.

Fig. A.6. One-dimensional marginal distributions for each parameter
considered in the asymptotic relation for KIC 6762022, as indicated in
Fig. A.5.

Fig. A.7. One-dimensional marginal distributions for each parameter
considered in the asymptotic relation for KIC 10593078, as indicated
in Fig. A.5.
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