
2016Publication Year

2020-05-07T16:04:21ZAcceptance in OA@INAF

From spin noise to systematics: stochastic processes in the first International 
Pulsar Timing Array data release

Title

Lentati, L.; Shannon, R. M.; Coles, W. A.; Verbiest, J. P. W.; van Haasteren, R.; et 
al.

Authors

10.1093/mnras/stw395DOI

http://hdl.handle.net/20.500.12386/24607Handle

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETYJournal

458Number



MNRAS 458, 2161–2187 (2016) doi:10.1093/mnras/stw395
Advance Access publication 2016 February 19

From spin noise to systematics: stochastic processes in the first
International Pulsar Timing Array data release

L. Lentati,1‹ R. M. Shannon,2,3 W. A. Coles,4 J. P. W. Verbiest,5,6 R. van Haasteren,7

J. A. Ellis,7 R. N. Caballero,6 R. N. Manchester,2 Z. Arzoumanian,8 S. Babak,9

C. G. Bassa,10 N. D. R. Bhat,3 P. Brem,9 M. Burgay,11 S. Burke-Spolaor,12

D. Champion,6 S. Chatterjee,13 I. Cognard,14,15 J. M. Cordes,13 S. Dai,2,16

P. Demorest,12 G. Desvignes,6 T. Dolch,13,17 R. D. Ferdman,18 E. Fonseca,19

J. R. Gair,20 M. E. Gonzalez,21 E. Graikou,6 L. Guillemot,14,15 J. W. T. Hessels,12,22

G. Hobbs,2 G. H. Janssen,10 G. Jones,23 R. Karuppusamy,6 M. Keith,24 M. Kerr,2

M. Kramer,6 M. T. Lam,13 P. D. Lasky,25 A. Lassus,6 P. Lazarus,6 T. J. W. Lazio,7

K. J. Lee,26 L. Levin,24,27 K. Liu,6 R. S. Lynch,28 D. R. Madison,29 J. McKee,24

M. McLaughlin,27 S. T. McWilliams,27 C. M. F. Mingarelli,6,30 D. J. Nice,31

S. Osłowski,5,6 T. T. Pennucci,32 B. B. P. Perera,24 D. Perrodin,11 A. Petiteau,33

A. Possenti,11 S. M. Ransom,29 D. Reardon,2,25 P. A. Rosado,34 S. A. Sanidas,22

A. Sesana,35 G. Shaifullah,5,6 X. Siemens,36 R. Smits,10 I. Stairs,19 B. Stappers,24

D. R. Stinebring,37 K. Stovall,38 J. Swiggum,27,36 S. R. Taylor,7 G. Theureau,14,15,39

C. Tiburzi,5,6 L. Toomey,2 M. Vallisneri,7 W. van Straten,34 A. Vecchio,35

J.-B. Wang,40 Y. Wang,41 X. P. You,42 W. W. Zhu6 and X.-J. Zhu43

Affiliations are listed at the end of the paper

Accepted 2016 February 16. Received 2016 February 16; in original form 2015 December 24

ABSTRACT
We analyse the stochastic properties of the 49 pulsars that comprise the first International
Pulsar Timing Array (IPTA) data release. We use Bayesian methodology, performing model
selection to determine the optimal description of the stochastic signals present in each pulsar.
In addition to spin-noise and dispersion-measure (DM) variations, these models can include
timing noise unique to a single observing system, or frequency band. We show the improved
radio-frequency coverage and presence of overlapping data from different observing systems
in the IPTA data set enables us to separate both system and band-dependent effects with much
greater efficacy than in the individual pulsar timing array (PTA) data sets. For example, we
show that PSR J1643−1224 has, in addition to DM variations, significant band-dependent noise
that is coherent between PTAs which we interpret as coming from time-variable scattering or
refraction in the ionized interstellar medium. Failing to model these different contributions
appropriately can dramatically alter the astrophysical interpretation of the stochastic signals
observed in the residuals. In some cases, the spectral exponent of the spin-noise signal can
vary from 1.6 to 4 depending upon the model, which has direct implications for the long-
term sensitivity of the pulsar to a stochastic gravitational-wave (GW) background. By using
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2162 L. Lentati et al.

a more appropriate model, however, we can greatly improve a pulsar’s sensitivity to GWs.
For example, including system and band-dependent signals in the PSR J0437−4715 data set
improves the upper limit on a fiducial GW background by ∼60 per cent compared to a model
that includes DM variations and spin-noise only.

Key words: methods: data analysis – pulsars: general.

1 IN T RO D U C T I O N

The recent direct detection of gravitational waves (GWs) from the
merger of a pair of black holes (Abbott et al. 2016) marks a turning
point in experimental physics. The entire GW spectrum is expected
to probe cosmological and astrophysical phenomena ranging from
quantum fluctuations in the very early universe at frequencies of
10−16 Hz, to merging binary neutron stars and stellar black holes
at frequencies of 102 Hz (Cutler & Thorne 2002). Multiple ex-
periments worldwide are or will be designed to observe different
regions of this spectrum. These include cosmic microwave back-
ground polarization tests (BICEP2/Keck and Planck Collaborations
et al. 2015), space-based interferometers such as the evolving Laser
Interferometer Space Antenna (eLISA; Consortium et al. 2013),
and a network of ground-based interferometers consisting of LIGO
(Harry & LIGO Scientific Collaboration 2010), Virgo (Acernese
et al. 2015) and KAGRA (Somiya 2012). Additionally, the high
precision with which the time of arrival (ToA) of electromagnetic
pulses from millisecond pulsars (MSPs) can be measured provides
a window into the nano-hertz GW Universe, for which the principal
source is expected to be merging supermassive black hole binaries
with masses of 108–1010 M�.

In particular, by using a set of MSPs, referred to as a pulsar timing
array (PTA; Foster & Backer 1990), the cross-correlation of the GW
signal between pulsars in the array (Hellings & Downs 1983) makes
it possible to discriminate between GWs and other potential sources
of noise in the data (e.g. Lentati et al. 2015b).

It was with this goal in mind that the International Pulsar Timing
Array (IPTA; Hobbs et al. 2010a; Manchester et al. 2013; Verbiest
et al. 2016) was formed as a collaboration between the three main
existing PTAs:

(i) the European Pulsar Timing Array (EPTA; Kramer &
Champion 2013),

(ii) the North American Nanohertz Observatory for Gravitational
Waves (NANOGrav; Demorest et al. 2013) and,

(iii) the Parkes Pulsar Timing Array (PPTA; Manchester et al.
2013) in Australia.

Recently, the first IPTA data release was completed (Verbiest
et al. 2016), combining observations from the three PTAs for a total
of 49 pulsars. In this paper, we investigate the properties of the
stochastic signals present in those pulsars.

A detailed review of pulsar timing can be found in, for example,
Lorimer & Kramer (2004). Briefly, the ToAs for a given pulsar are
recorded by an observatory as a series of discrete observations made
over a period of many years. Before any analysis can be performed,
these arrival times are corrected for the motion of the Earth by
transforming them into a common frame of reference, that of the
Solar system Barycentre.

At this stage a deterministic ‘timing model’ for the pulsar is
fitted to the ToAs which characterizes the pulsar’s astrometric and
timing properties, such as its position, and rotational frequency.

This can be performed using the TEMPO,1 and TEMPO2 (Edwards,
Hobbs & Manchester 2006; Hobbs, Edwards & Manchester 2006)
pulsar-timing packages, or more recently, using the Bayesian pulsar
timing package TEMPONEST2 (Lentati et al. 2014a, see e.g. Desvignes
et al., submitted, for the use of TEMPONEST for pulsar timing, and
e.g., Caballero et al. 2015; Shannon et al. 2015 for its use in noise
characterization). After subtracting the timing model from the ToAs,
we are left with the ‘timing residuals’, which contain any effects
not accounted for by the timing model.

In many pulsars, these residuals show time-correlated structure
that deviates significantly from what could be expected from instru-
mental noise alone. One possible origin for this structure is intrinsic
‘spin noise’ that arises from rotational irregularities of the neutron
star itself. This is generally regarded as an achromatic, stochastic
noise process with a red power spectrum, and while large statisti-
cal studies have been performed in the past (e.g. Hobbs, Lyne &
Kramer 2010b), much remains to be understood about spin noise.
It is precisely this uncertainty that makes studies into the properties
of spin noise so valuable, as most models for a stochastic GW back-
ground predict that this too will induce a red spectral signal in the
timing residuals (Rajagopal & Romani 1995; Jaffe & Backer 2003;
Wyithe & Loeb 2003; Sesana et al. 2004).

While ‘normal’ pulsars (with spin periods of ∼1 s) have been sys-
tematically observed to be affected by steep-spectrum spin noise,
some of the most stable MSPs show no sign of any intrinsic spin-
noise processes at the level of 100 ns, even after a decade of observa-
tion (e.g. Verbiest et al. 2009; Shannon et al. 2015). The low level of
the intrinsic noise, coupled with the relative scarcity of statistically
robust analysis on large samples of MSPs, makes characterizing and
predicting the properties of spin noise in MSPs difficult. This is of
particular importance given that the strength and properties of the
intrinsic spin noise will certainly affect the timeline for detection of
GWs using a PTA (e.g. Shannon & Cordes 2010).

In addition to this intrinsic spin-noise process, variations in the
pulse ToAs result from processes extrinsic to the pulsar, e.g. the
passage of the pulse through the Earth’s atmosphere, or even from
asteroid belts surrounding the pulsar (Shannon et al. 2013). The
dominant source of extrinsic noise for MSPs in the radio band,
however, is typically due to variations in the dispersion measure
(DM) introduced as our line of sight to the pulsar through the
ionized interstellar medium (IISM) changes with time (e.g. Keith
et al. 2013).

Early after pulsars were first discovered, temporal variations
in the DM were observed (Isaacman & Rankin 1977). As our
line of sight through the IISM changes so does the observed
column density of electrons along that line of sight. Observations
over long time spans have shown that these variations are largely
consistent with those expected for an IISM characterized by a
Kolmogorov turbulence spectrum. This results in a noise process in
the residuals with spectral exponent γ = 8/3 such that the

1 http://tempo.sourceforge.net/
2 https://github.com/LindleyLentati/TempoNest
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IPTA stochastic analysis 2163

Figure 1. Timing residuals for subsections of the PSR J1909−3744 (left) and PSR J1713+0747 (right) IPTA data sets for observations between 1200 and
1700 MHz, where all three PTAs have overlapping data. Timing solutions are obtained from the model in bold in Table 2. For clarity, a weighted average of
the residuals has been performed across 50 d epochs separately for each observing system. The different PTAs are indicated by colour; PPTA (black), EPTA
(blue), and NANOGrav (red). Error bars in all cases are given by (

∑
σ−2

i )−1/2, with σ i the formal uncertainty for ToA i provided with the data set, without
any modification from white-noise parameters, and where the sum is performed over all ToAs that fall within the averaging window. Finally, no power-law
noise processes have been subtracted from the data. While all three PTAs can be seen to track the broad features of the data sets, statistically significant
outliers are present. In this paper, we attempt to determine the optimal models for such data sets, and to determine the relative contributions of different noise
processes. These processes can include intrinsic spin noise, extrinsic DM variations including non-stationary ‘events’ such as the discontinuity seen in the
PSR J1713+0747 data set at MJD 54757, and additionally, terms due to excess system- or band-dependent noise.

variations are larger on longer time-
scales, see e.g. Armstrong, Rickett &
Spangler (1995). Deviations from this simple model how-
ever have also been observed, with recent analyses suggesting there
can be discrete changes in the DM variation on short time-scales
(Keith et al. 2013; Coles et al. 2015).

Simultaneous analysis of DM variations with the spin noise is
essential for robust estimation of the characteristics of the intrin-
sic noise processes. However, in the IPTA data set, early data are
often available at only a single frequency. If those data were con-
sidered in isolation, we would be unable to distinguish between
the two sources of noise. Different approaches to DM correction
have been applied by different PTAs in the past. For example, in
Demorest et al. (2013) a set of independent parameters are applied
that represent the amplitude of the DM variations at each measure-
ment epoch, while in Keith et al. (2013) a linear interpolation is
performed using some sampling interval. Neither method is able
to perform a statistically robust extrapolation into epochs where
there is no multifrequency coverage, and the former in addition
requires near-simultaneous measurement of ToAs at different fre-
quencies across the entire data set, which is not the case in the
IPTA data set. We therefore apply the DM correction method pre-
sented in Lentati et al. (2014a), which makes the assumption that
the dominant part of the DM signal is described by a time-stationary
process. Thus, in our Bayesian analysis, constraints placed on the
signal from epochs where there is multifrequency coverage are
automatically and robustly applied to epochs where there is only
single-frequency data, without any need for bootstrapping of mod-
els (see e.g. Lee et al. 2014 for descriptions of extrapolating and
interpolating time domain stochastic signals). Given the observa-
tion of discrete changes in the DM variations, however, we also
compare models that include non-stationary DM ‘events’. We de-
scribe our model for these in Section 2.4.2 and show the impact

that ignoring these events can have on parameter estimation in
Section 8.

Finally, in addition to DM variations, we also show in Sec-
tions 6 and 7 the importance of including ‘system’, and ‘band’
noise. Henceforth, as defined in Verbiest et al. (2016), a system
refers to a unique combination of observing telescope, recording
system and receiver (or centre frequency). System noise represents
possible calibration errors or instrumental effects that might exist
in a single observing system or telescope. Band noise then models
signals that exist in a particular frequency band. This might have
its origins in the IISM as a result of processes that are not coherent
between different bands, or that do not scale in amplitude with the
inverse square of the observing frequency. Alternatively, it might
result from sources of radio frequency interference (RFI) that are
present in the same frequency band independent of the observing
site (e.g. due to satellites, or digital broadcasts).

In Fig. 1, we show examples of timing residuals for subsections
of the IPTA data set for two pulsars: PSR J1909−3744 (left) and
PSR J1713+0747 (right). In particular, we show the residuals for
observations between 1200 and 1700 MHz, where all three PTAs
have overlapping data. The goal of this paper is to determine an
optimal description of such data, exploiting not just the significant
overlap in time between PTAs that have observed with different
telescopes, and calibrated using different techniques, but also the
broad frequency coverage present in the IPTA data set. We will
show explicitly that not only does the IPTA data set enable us
to separate out these extra effects with much greater efficacy, but
that failing to do so can dramatically alter the interpretation of
the signals observed in the residuals, in the most extreme cases
revealing an apparent detection of spin noise to be a purely systemic
effect.

In Section 2, we provide a description of the models we employ
for the different components of the deterministic and stochastic
signals in each pulsar in the IPTA data set, and in Section 3 we give
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a brief overview of Bayesian analysis techniques. In Section 4, we
give a brief description of the IPTA data set. Sections 5–9 contain
the results of our analysis, and finally in Section 10 we offer some
concluding remarks.

2 D ETERMINISTIC AND STOCHASTIC
M O D E L S

The key goal of this paper is to estimate the properties of stochastic
signals that affect the pulse ToAs for each pulsar in the IPTA data set.
The key difficulty in this process is that each ToA will be affected by
contributions from all intrinsic and extrinsic astrophysical processes
– both deterministic and stochastic – in addition to potential system
noise that might affect only those ToAs that come from a particular
telescope or observing system. As a consequence, all contributions
to the total signal must be simultaneously estimated in the analysis
in order to be able to draw meaningful conclusions from the results.

For each pulsar, our measured data will consist of a set of Nd

observed pulse ToAs. Adopting the same notation for our signal
model as in Lentati et al. (2015b), we write the vector that contains
the ToAs d, as the sum of a number of components:

d = τTM + τWN + τ SN + τDM + τ Sys + τBN . (1)

In equation (1), we have

(i) τTM, the deterministic pulse timing model.
(ii) τWN, the stochastic uncorrelated contribution to the noise due

to both instrumental thermal noise, and white noise intrinsic to the
pulsar.

(iii) τ SN, the stochastic time-correlated contribution due to achro-
matic red spin noise.

(iv) τDM, the stochastic time-correlated contribution due to the
dispersion of radio pulses travelling through the interstellar medium
(consisting of time-stationary behaviour and/or discrete events) and
through the solar wind.

(v) τ Sys, the stochastic contribution due to time-correlated instru-
mental effects unique to a single observing system.

(vi) τBN, the stochastic contribution due to time-correlated ‘band
noise’ unique to a particular observing frequency.

As in Lentati et al. (2015b), we first note that an additional term,
τGW, could be added to account for the influence of GWs; in this
work, we take this term to be zero except for the specific case of
J0437−4715 in Section 7.1, in which we obtain upper limits for
this term for a set of different models. Secondly, as before we note
that, with the exception of our model for DM events, all stochastic
contributions are assumed to be zero-mean Gaussian processes.

Each of these terms then enters into our Bayesian analysis which
we describe in Section 3, in which we will use the evidence to
determine the optimal set of model components required to describe
the data.

2.1 The timing model

We begin by incorporating the deterministic evolution in the pulse
ToAs due to the pulsar timing model into our analysis. To do this, we
first construct a linear approximation to timing model which allows
us to marginalize over the timing model parameters analytically.
This linear approximation is obtained as in the TEMPO2 timing pack-
age, which we describe in brief below. We first define the length m
vector that contains the particular set of deterministic timing model
parameters for a given pulsar as ε. We then write the arrival times
predicted by that set of parameter values as τ (ε).

Given these arrival times, we can define the vector of ‘timing
residuals’ that result from subtracting the theoretical ToA for each
pulse from our observed ToA at the Solar system Barycentre:

dTR = d − τ (ε). (2)

The linear approximation is obtained using an initial estimate of
the m timing model parameters ε0. Any variation from those initial
estimates can then be described using the m parameters δε such
that

δεi = εi − ε0i . (3)

Therefore, any changes in the timing residuals that result from
deviations in the linear timing model parameters δε can be written
as

δ t = dTR − Mδε, (4)

where M is the Nd × m ‘design matrix’ which describes how the
timing residuals depend on the parameters δε.

As stated previously, the use of the linear timing model allows
us to marginalize analytically over the parameters δε. When per-
forming this marginalization the matrix M is numerically unstable.
Using the approach advocated in van Haasteren & Vallisneri (2014),
we take the singular value decomposition of M, to form the set of
matrices USVT . The matrices U and VT contain the left-singular
and right-singular vectors of our original matrix M, while S is a di-
agonal matrix containing the singular values of M themselves. Here
U is an Nd × Nd matrix, which we divide into two components:

U = (Gc,G), (5)

where G is a Nd × (Nd − m) matrix, and Gc is the Nd × m com-
plement. The matrix Gc contains a set of orthonormal basis vectors
that includes the same information as M but is numerically stable.
As such, we use Gc instead of M in the linear model.

2.2 White noise

Next, we consider the stochastic white-noise component, τWN
i . This

model is divided into three components. The first two components,
referred to as EFAC and EQUAD, are common parameterizations of
the white noise in pulsar timing analyses. The third component, re-
ferred to as ECORR, has been applied more recently in NANOGrav
data analysis (see e.g. Arzoumanian et al. 2014, 2015a). We now
describe each of these components briefly below.

(i) When the ToAs are formed through the cross-correlation of a
profile template with the integrated pulse profile from that observa-
tion an estimate of the uncertainty on that ToA is also obtained. The
EFAC parameter, defined separately for each observing system, ac-
counts for possible errors that arise in the cross-correlation process
due to, e.g. profile variations. The EFAC parameter multiplies all
the ToA uncertainties for a given pulsar, associated with a particular
system.

(ii) The second model component, EQUAD, represents an addi-
tional source of time-independent noise. This could have its origins
in some physical process, for example, as a result of stochastic
shape variations in the integrated pulse profile due to averaging
over a finite number of single pulses when forming each ToA (see
e.g. Shannon et al. 2014). If this were the case then the value of
EQUAD should not be dependent on the observing system that
recorded it. However, as the integration times for ToAs from differ-
ent observing epochs can vary, and because these integration times
are not available for all early observations in the IPTA data set, such
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an interpretation is not always possible. As for the EFAC parameter,
we therefore include an EQUAD parameter per observing system in
our analysis. In principle, one might wish to add multiple terms in
quadrature, such as a non-Gaussian term that could describe the im-
pact of non-stationary RFI such as in Lentati, Hobson & Alexander
(2014b), however due to the increase in dimensionality that results
we do not take that approach here.

(iii) The final white-noise component we consider, ECORR, is
only applicable to the NANOGrav data, for which many ToAs are
present for a single observing epoch. ECORR then represents a
jitter-like effect that is fully correlated between all the ToAs in a
given epoch, and uncorrelated between different epochs.

The first two components, EFAC and EQUAD, are typically defined
by modifying the uncertainty σ i, defining σ̂i such that

σ̂ 2
i = α2

i σ
2
i + β2

i , (6)

where αi and β i represent the EFAC and EQUAD parameters ap-
plied to ToA i, respectively. While in principle, we could incor-
porate the effect of non-Gaussianity in the uncorrelated noise in
our analysis, as in Lentati et al. (2014b), this is not an approach
we consider here. However, even when significant non-Gaussianity
was observed in PSR J0437−4715, the effect on the timing and
stochastic results was found to be minimal, so we do not anticipate
it will affect our results significantly.

Our model for ECORR is incorporated into our analysis by first
defining the Nd × Ne matrix Ue, where as before Nd is the total
number of ToAs in the data set, and Ne is the number of unique
observing epoch/observing system combinations in our ECORR
model. For the purposes of this work, we consider an epoch to be
an interval of 10 s, however given the average observing cadence
for NANOGrav data is 4–6 weeks, the exact value is not important,
as long as it is less than this value.

The matrix Ue takes either a value of 1 or 0, depending on
whether a particular ToA i falls within a particular epoch/system
combination j, i.e.

Ue,ij

{
1, if ToA i falls in epoch/system combination j

0, otherwise.
(7)

Note that by construction, Ue, ij will always be zero for all ToAs not
from NANOGrav.

We then define the Ne length vector of free parameters a that
represent the time shift at each epoch, such that we can write the
signal due to the ECORR model parameters as

τECORR = Uea. (8)

We then define the Ne × Ne matrix 
 (ECORR), which describes
the variance, J , in the signal parameters a, such that

〈aiaj 〉 = 

(ECORR)
ij = Ji δij , (9)

where we include in our model one J per NANOGrav observing
system as a free parameter to be fitted for.

2.3 Spin noise

In order to define our model for spin noise, we will use the ‘time-
frequency’ method described in (Lentati et al. 2014a, hereafter L14)
which we describe in brief below. Here, the timing noise is decom-
posed into a set of Fourier basis vectors where for each pulsar the
model includes the set of frequencies n/T, with T the total observa-
tion time for the pulsar, and where n runs from 1 to some maximum
nc. The model thus includes 2nc basis vectors, representing the sine

and cosine at each frequency in the model. In our analysis, we
take nc to be the integer such that T/n is closest to a period of
60 d, which was found to be sufficient in an analysis of the EPTA
2015 data release (Caballero et al. 2015). In principle, we note that
one might wish to marginalize over the value of this cut off nu-
merically as part of the analysis, however that is not an approach
that we have taken here. We list the value used for each pulsar in
Table 1.

As in L14, we take the lowest frequency in our spin-noise model
to be 1/T. This approximation is possible because the quadratic term
present in the timing model that describes the pulse spin frequency
and spin-down significantly diminishes our sensitivity to longer pe-
riods. The efficacy of this quadratic as a proxy to low-frequency spin
noise does, however, begin to decrease for extremely steep spectrum
spin noise (γ > 6). We will show in the case of PSR J1939+2134
that our parameter estimates for the power-law properties of the
spin noise are completely consistent between models that use the
quadratic in the pulsar timing model as a proxy to the low-frequency
variations in the data, and a model that explicitly parameterizes
those low frequencies using the methods in van Haasteren & Valis-
neri (2015).

In our analysis of the IPTA data set, as in L14, we consider a
two-parameter power-law model in frequency, such that the power
ϕ at a Fourier frequency f is given by

ϕ(f , ASN, γSN) = A2
SN

12π2

(
1

1 yr

)−3
f −γSN

T
, (10)

where ASN and γ SN are the amplitude and spectral exponent of the
power law. In L14, a more general analysis was also performed,
where the power at each frequency in the model is a free parameter.
Because of the large increase in dimensionality, however, this is not
an approach we pursue in this work. The Fourier coefficients are
then marginalized over analytically using the model power spectrum
as a prior, a process that is described in detail in L14.

2.4 DM variations

For a detailed description of the effects of the IISM on pulsar timing
data see, e.g. Lyne & Graham-Smith (1990). In brief, the plasma in
the IISM, as well as in the solar wind and the ionosphere, results in
time-variable delays in the propagation of the pulse signal between
the pulsar and the observatory. This manifests in the timing residuals
as an additional time-correlated signal.

Unlike spin noise, however, the magnitude of the DM variations
are dependent upon the observing frequency. Given a set of obser-
vations over a wide enough band width, we can therefore use this
additional information to decouple DM variations from spin noise.

We will consider our model for DM variations as the sum of
several different components. First, we consider the time-stationary
stochastic component of the signal, which we henceforth refer to
as ‘DM noise’ and is incorporated into our analysis as in L14. We
describe this method in brief below.

2.4.1 DM noise

To include DM noise in our model, we define the vector D, of length
Nd for a given pulsar, as

Di = 1/(Kν2
(o,i)) (11)
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Table 1. Details of the individual pulsar data sets. We define σw as the weighted rms of the residuals, after subtracting out the maximum likelihood time-
correlated signals for the optimal model determined by our analysis. Nsys is the number of observing systems associated with each PTA, and finally nc is
the number of Fourier frequencies included in the time-correlated noise processes (see Section 2.3 for details). Note that PSRs J18242452A, J1857+0943,
J1939+2134 and J1955+2908 also have B1950 names, which are, respectively, PSRs B1821−24A, B1855+09, B1937+21 and B1953+29.

PSR J-name Timespan Frequency σw Nsys nc

(J2000) (yr) (MHz) (µs) EPTA PPTA NANOGrav

J0030+0451 12.7 420–2628 1.5 6 – 2 78
J0034−0534 11.1 324–1410 4.4 5 – – 68
J0218+4232 15.2 324–2048 6.7 13 – – 93
J0437−4715 14.9 690–3117 0.1 – 14 – 91
J0610−2100 4.5 1366–1630 5.2 3 – – 28
J0613−0200 13.7 324–3101 1.1 14 14 2 84
J0621+1002 14.3 324–2636 7.2 10 – – 88
J0711−6830 17.1 689–3102 2.0 – 13 – 105
J0751+1807 15.3 1353–2695 3.3 9 – – 94
J0900−3144 4.5 1366–2206 2.8 5 – – 28
J1012+5307 14.4 324–2636 1.6 15 – 2 88
J1022+1001 15.2 324–3102 2.1 10 11 – 93
J1024−0719 15.9 689–3102 1.5 9 13 – 97
J1045−4509 17.0 689–3102 3.7 – 13 – 104
J1455−3330 7.4 760–1699 3.8 4 – 2 46
J1600−3053 9.9 689–3104 0.7 4 12 2 61
J1603−7202 15.3 689–3102 1.8 – 26 – 94
J1640+2224 15.0 420–2636 2.0 8 – 2 92
J1643−1224 17.8 689–3102 1.8 9 13 2 109
J1713+0747 21.2 689–3102 0.2 14 15 14 130
J1721−2457 10.3 1335–1412 25.7 3 – – 63
J1730−2304 17.8 689–3102 1.6 7 13 – 109
J1732−5049 8.0 689–3101 2.5 – 10 – 49
J1738+0333 4.9 1366–1628 2.6 2 – – 30
J1744−1134 17.0 324–3102 0.8 9 13 2 104
J1751−2857 5.7 1398–1411 2.4 1 – – 35
J1801−1417 4.8 1396–1698 2.0 3 – – 30
J1802−2124 4.7 1366–2048 2.9 4 – – 29
J1804−2717 5.9 1395–1520 4.4 2 – – 36
J1824−2452A 5.8 689–3101 0.6 – 10 – 36
J1843−1113 8.7 1335–1630 1.0 5 – – 53
J1853+1303 7.0 1370–2378 1.1 2 – 2 43
J1857+0943 26.0 420–3102 1.3 10 11 2 159
J1909−3744 9.0 565–3106 0.2 3 16 2 55
J1910+1256 6.9 1366–2378 1.4 2 – 2 43
J1911+1347 4.9 1366–1408 5.2 1 – – 30
J1911−1114 5.7 1398–1520 0.7 3 – – 35
J1918−0642 10.5 792–1520 1.5 5 – 2 64
J1939+2134 27.1 689–3101 0.3 12 14 – 165
J1955+2908 5.8 1386–2378 5.0 3 – 2 36
J2010−1323 5.0 1366–2048 2.0 5 – – 31
J2019+2425 6.8 1366–1520 8.8 3 – – 42
J2033+1734 5.5 1368–1520 13.3 3 – – 34
J2124−3358 17.6 689–3102 3.0 5 13 – 108
J2129−5721 15.4 689–3102 1.2 – 12 – 94
J2145−0750 17.5 324–3142 1.0 12 14 2 107
J2229+2643 5.8 1355–2638 3.8 6 – – 36
J2317+1439 14.9 317–2638 1.0 8 – 2 91
J2322+2057 5.5 1395–1698 7.0 4 – – 34

for observation i with observing frequency ν(o, i), where the disper-
sion constant K is given by

K ≡ 2.41 × 10−16 Hz−2 cm−3 pc s−1. (12)

As in L14, we decompose our DM signal into a series of Fourier
modes, and determine the set of frequencies to be included as for
the red spin noise. Now, however, our basis vectors are scaled using

equation (11) in order to incorporate the frequency dependence of
the signal.

As before we consider a two-parameter power-law model, with
an equivalent form to equation (10), however without the factor
12π2 for the DM noise, i.e. we have

ϕ(f , ADM, γDM) = A2
DM

(
1

1 yr

)−3
f −γDM

T
. (13)
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In contrast to spin noise, where the spin-down quadratic in the
timing model acts as a proxy for the low-frequency (f < 1/T) fluc-
tuations in our data, the dependence of DM on observing frequency
leaves us sensitive to low-frequency power in the DM noise. This
power must be accounted for in the model, either by including low-
frequency Fourier modes in the model, or by including a quadratic in
DM as an approximation. In L14 the quadratic approach was used,
and we follow this method in our analysis here. This quadratic
model is defined as

QDM(ti) = q0tiDi + q1(tiDi)
2 (14)

with q0, 1 free parameters to be fitted for, and ti the barycentric
arrival time for ToA i. This can be achieved by adding the first and
second time-derivatives of the DM, DM1 and DM2, into the timing
model for the pulsar. These parameters are equivalent to q0 and q1

in equation (14), and this is the approach we also take.

2.4.2 Additional DM terms

We also consider two possible extensions to our model for the DM
variations in each pulsar timing data set. First, yearly DM variations
as observed by Keith et al. (2013) are described by a two-parameter
model with amplitude AyrDM and phase φyrDM given by

τ
yrDM
i = AyrDM sin

(
2πyr−1ti + φyrDM

)
Di. (15)

Secondly, we include a DM ‘event’ model that accounts for sudden
changes in the DM that are not well described by the time-stationary
processes described thus far.

To model the DM events, we use shapelet basis functions. A
complete description of shapelets can be found in Refregier (2003),
with astronomical uses in e.g. Kelly & McKay (2004), Lentati,
Alexander & Hobson (2015a) and Refregier & Bacon (2003). Here,
we only describe what is needed for our DM-event model.

In one dimension, shapelets are described by the set of basis
functions:

Bn(t, �) ≡ [
�2nn!

√
π

]−1/2
Hn

(
t − t0

�

)
exp

(
− (t − t0)2

2�2

)
,

(16)

where t0 is the reference point of the event, � is the scale factor
which is a free parameter in our analysis, n is a non-negative integer,
and Hn is the nth Hermite polynomial. The zeroth-order shapelet is
therefore simply given by a Gaussian (H0(x) = 1), while higher order
shapelets are described by a Gaussian multiplied by the relevant
Hermite polynomial.

We can then represent a function f(t) as the sum:

f (t, ζ, �) =
nmax∑
i=0

ζiBi(t ; �), (17)

where ζ i are shapelet amplitudes, and nmax is the number of shapelet
terms included in the model.

We can modify equation (17) to form our DM-event model by
multiplying for each ToA i at time ti, the corresponding element
from the vector in equation (11), resulting in

τDMEvent(ti) = f (ti , ζ, �)Di. (18)

Finally, while we do not consider it a free parameter in our
analysis, we also incorporate a simple spherically symmetric,

time-stationary model for the solar-wind density. This assumes a
quadratic decrease with solar distance given by

DM� = 4.85 × 10−6n0
θ

sin θ
cm−3 pc, (19)

with θ the pulsar-Sun-observatory angle, and n0 the electron density
at 1 au from the Sun in units of cm−3. We use the default value for
n0 in TEMPO2, which is 4 cm−3. In principle one would want to fit
for n0 as a part of the analysis, however in this work we assume any
deviation from this value can be described using our DM model.

2.5 System and band noise

The final two noise components that we will consider in our model
we refer to as ‘system’ and ‘band’ noise. These are additional timing
noise processes that are applied to, respectively, a specific observing
system, or to all ToAs within a particular frequency band.

In the case of system noise, in principle one might consider
defining a separate stochastic noise process in the same vein as
the spin noise described in Section 2.3 for every observing system
used in a particular data set, much as we already have done for
the white-noise parameters EFAC and EQUAD. In practice this
is not computationally tractable, as every time-correlated signal
added increases the size of the matrix operations required as part of
the analysis. We instead define a system search parameter, which
can take a value between 1 and the number of systems present in a
particular data set. We then sample the three-dimensional parameter
space of this system index, along with the power-law amplitude and
spectral exponent of the noise process applied to the system. We
can then use the evidence (see Section 3) to determine how many
such terms are required to model the data, with the assumption that
all systems are a priori equally likely to have such excess noise.

For the band noise, the number of wide (∼1 GHz) frequency
bands is significantly less than the number of observing systems,
and so we do not incorporate a ‘band search’ parameter, but instead
simply define three bands, (ν < 1 GHz, 1 < ν < 2 GHz, ν > 2 GHz)
and include an additional power-law noise process in each. For some
pulsars, we then subdivide these values into smaller bands, however
this is discussed on a case-by-case basis in Section 7.

We note here that, if only a single observing system exists for
each frequency band, the system-noise, and band-noise terms will
be completely covariant. In this case, when we perform model
selection between these two cases, we will naturally be unable to
distinguish one from the other. For many pulsars in the IPTA data
set, multiple observing systems operate within the same frequency
band. This breaks the degeneracy between these two competing
models, and so enables us to distinguish between band and system
noise with much greater efficacy.

3 BAY E S I A N M E T H O D S

In our analysis we will we make use of Bayesian methods, which
provide a means of estimating a set of parameters � in a model or
hypothesis H given the data, D (see e.g. Hobson et al. 2014 for a
description of Bayesian inference, and its application to a range of
problems in different astrophysical fields). Central to all Bayesian
analysis is Bayes’ theorem, which states that

Pr(� | D, H ) = Pr(D | �, H )Pr(� | H )

Pr(D | H )
, (20)

where Pr(�|D, H) ≡ Pr(�) is the posterior probability distribu-
tion of the parameters, Pr(D|�, H) ≡ L(�) is the likelihood,
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Pr(�|H) ≡ π (�) is the prior probability distribution, and Pr(D |
H ) ≡ Z is known as the evidence.

In order to discriminate between different models, H0 and H1, in
a Bayesian analysis we must consider the odds ratio, R:

R = Z1

Z0

Pr(H1)

Pr(H0)
, (21)

where Pr(H1)/Pr(H0) is the a priori probability ratio for the two
models. In the work that follows, we will take the prior probability
ratio of different models to be one, in which case R reduces to the
‘Bayes factor’.

The Bayes factor relates to the probability of one model compared
the other as

P = R

1 + R
. (22)

In our analysis, we deal with the log Bayes factor, which is just the
difference in the log evidence for two competing models. While dif-
ferent interpretations of the Bayes factor exist (e.g. Kass & Raftery
1995) in our analysis, we will require an increase in the log evidence
of three to prefer one model to another, corresponding to a threshold
probability of approximately 95 per cent.

We perform our analysis using either the MULTINEST algorithm
(Feroz & Hobson 2008; Feroz, Hobson & Bridges 2009), or the re-
cently introduced POLYCHORD (Handley, Hobson & Lasenby 2015).
Both these algorithms make use of nested sampling (Skilling
2004) which allows for efficient calculation of the evidence and
also produces posterior distributions for the parameters being
sampled.

Which algorithm we make use of depends upon the dimension-
ality of the pulsar data set being analysed, as in high dimensions
(� 50), the number of samples required by MULTINEST increases
exponentially (see fig. 4 in Handley et al. 2015).

In the IPTA data set, some pulsars have significantly more than
50 dimensions in their model. For example, the PSR J1713+0747
data set is comprised of observations taken from a total of 43 ob-
serving systems, of which 14 are from NANOGrav telescopes. Sim-
ply considering the white-noise parameters alone (EFAC, EQUAD,
ECORR) this results in a dimensionality of 100 before any ad-
ditional terms describing spin-noise or DM variations have been
added to the model. It is therefore not computationally feasible to
use the MULTINEST algorithm to compute the evidence for these larger
data sets.

The POLYCHORD algorithm, however, scales with dimensionality d
as d3 at worst, making it the ideal choice for the more complex data
sets. We have updated TEMPONEST to use the POLYCHORD algorithm,
and this was used in all analyses where the dimensionality is greater
than 50. For smaller-dimensional problems, we find MULTINEST is
more efficient. The evidence values and parameter estimates from
both samplers are consistent. The updated version of TEMPONEST is
publicly available as part of TEMPO2.

Regardless of the sampler used, unless otherwise stated we use
priors that are uniform in the log of the parameter for all noise
amplitudes with the exception of the EFAC parameter, and the
shapelet amplitudes that describe our DM-event model for which
we use a prior that is uniform in the amplitude. Finally, we use
priors that are uniform in spectral exponent for all power-law
noise models and in the phase of the yearly DM model. These
priors are chosen to be uninformative in all cases, so as to result in
conservative detections of the noise processes under investigation.
Finally, when marginalizing over the timing model analytically we
use a uniform prior on the amplitude of these parameters. In princi-

ple one could include further prior information, such as constraints
on system jumps obtained from additional information not present
in the IPTA data set, however, as stated, incorporating less prior in-
formation will only result in our analysis being more conservative.

4 TH E DATA SET

The first IPTA data release includes a total of 49 pulsars, of which
14 are solitary and 35 are in binary orbits. For full details, refer to
Verbiest et al. (2016). Here, we will give only a brief overview and
provide details relevant to the analysis that follows.

The IPTA data release combines observations previously released
by the three PTAs independently in Demorest et al. (2013), Manch-
ester et al. (2013) and Desvignes et al. (submitted). The EPTA data
set contains observations from the four largest radio telescopes in
Europe: the Effelsberg Radio Telescope in Germany, the Lovell
Radio Telescope at the Jodrell Bank Observatory in the UK, the
Nançay Radio Telescope in France, and the Westerbork Synthesis
Radio Telescope (WSRT) in The Netherlands. The PPTA data re-
lease contains data from the 64-m Parkes radio telescope, and the
NANOGrav observations make use of the 100-m Robert C. Byrd
Green Bank Telescope, and the 305-m William E. Gordon Telescope
of the Arecibo Observatory. In addition, for PSRs J1857+0943 and
J1939+2134, publicly available data taken with the Arecibo radio
telescope from Kaspi et al. (1994) have been included, extend-
ing the timing baseline for these two pulsars backwards to 1986
and 1982, respectively. Finally for PSR J1713+0747, archival data
previously used in Zhu et al. (2015) is also included in the IPTA
data set.

In Table 1, we list some properties of the pulsars in the first
IPTA data release relevant to the stochastic analysis performed here.
Namely, we list the timespan for each pulsar, the frequency range
covered by all observations, the weighted rms scatter of the resid-
uals, σ w, obtained after subtracting the maximum-likelihood time-
correlated stochastic signals from the optimal model determined by
our analysis, the number of observing systems per PTA, and finally
the number of Fourier-frequencies included in our model, nc (see
Section 2.3), such that we sample time-scales as short as 60 d. The
weighted rms is calculated using the ToA error bars, after modi-
fying them with the EFAC and EQUAD parameters obtained from
our analysis.

The large number of telescopes and observing systems in the
IPTA data release presents numerous challenges when attempt-
ing to perform a robust statistical analysis on the data, many of
which are discussed in Verbiest et al. (2016). In Table 1, we draw
attention to one particular aspect of this challenge, namely the
number of unique observing systems (Nsys) present for the dif-
ferent pulsars. These are listed separately for the EPTA, PPTA and
NANOGrav contributions to the data set. For each system, we in-
clude the two white-noise parameters, EFAC and EQUAD, and in
addition for each NANOGrav system we include a separate ECORR
parameter.

As we will discuss in Section 6, the existence of a wealth of
overlapping data from different telescopes analysed using differ-
ent data reduction pipelines, allows us to separate system noise
with much greater efficacy compared to the individual data sets.
Similarly, the much greater multifrequency coverage afforded by
the IPTA data set, spanning in some instances from 300 MHz to
3 GHz, allows us to better separate DM variations from other ef-
fects, and to explore deviations from the standard ν2

obs paradigm for
band-dependent noise, which we discuss further in Section 7.
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Table 2. Relative log evidence values for different models. Crosses indicate which components have been included in the model. Values in bold reflect the
‘optimal’ models as supported by the evidence (see Section 5 for details). As stated in Section 2.4.1, we do not perform evidence comparisons for the quadratic
in DM used to model the low-frequency fluctuations. ‘1’ Indicates the data set has low-frequency DM variations with greater than 2σ significance using the
model shown in bold.

Spin noise – x – – x x – – x x – x
DM noise – – x – x – x x x x x x

System noise – – – x – x x – x – x x
Band noise – – – – – – – x – x x x

Pulsar name
J0030+0451 0.0 6.0 5.6 2.8 7.3 5.9 5.3 – – – – –
J0034−05341 0.0 0.3 1.5 0.3 – – – – – – – –
J0218+4232 0.0 26.0 124.1 35.4 124.2 48.7 123.7 – – - – –
J0437−4715 – - 0.0 – 85.9 - – – 240.0 - 270.1 270.6
J0610−2100 0.0 −0.1 0.1 0.1 – – – – – – – –
J0613−0200 – 0.0 3.4 – 8.0 – – – 21.9 – – 19.3
J0621+1002 0.0 117.9 110.9 67.5 117.7 117.3 111.6 – – – – –
J0711−6830 0.0 1.0 5.2 −0.8 5.0 1.5 4.3 1.3 – – – –
J0751+1807 0.0 7.3 7.4 1.8 7.5 7.1 7.2 – – – – –
J0900−3144 0.0 9.1 9.9 7.2 9.3 8.5 9.1 – – – – –
J1012+5307 0.0 8.3 4.0 1.1 9.4 8.5 – – – – – –
J1022+1001 0.0 10.2 17.4 16.2 17.5 – 32.3 26.5 – – 31.6 –
J1024−07191 – 0.0 -59.7 −148.5 −1.5 −1.7 – – – – – –
J1045−4509 0.0 190.5 339.2 94.5 340.6 – 339.0 – – – – –
J1455−33301 0.0 0.6 0.1 3.8 – 2.4 2.1 – – – – –
J1600−3053 0.0 89.8 116.8 61.3 119.9 – 143.9 138.0 142.7 137.5 161.5 160.5
J1603−7202 0.0 19.3 43.6 28.8 44.1 – 50.3 50.3 – – – –
J1640+22241 0.0 0.6 2.3 0.4 2.0 0.6 2.0 – – – – –
J1643−1224 0.0 – – – 0.0 22.8 21.2 – 43.9 – 80.4 80.8
J1713+0747 – – 0.0 – 37.0 – – – 160.2 50.1 – 160.3
J1721−2457 0.0 0.0 0.2 0.0 – – – – – – – –
J1730−23041 0.0 -0.9 -1.3 5.1 − 4.1 4.3 – – – – –
J1732−5049 0.0 6.7 9.9 3.6 9.4 6.4 9.6 9.8 – – – –
J1738+0333 0.0 −0.5 −0.3 −0.2 – – – – – – – –
J1744−1134 0.0 9.0 10.0 19.0 10.4 35.6 33.5 – – – – –
J1751−2857 0.0 −0.2 0.0 0.0 – – – – – – – –
J1801−1417 0.0 12.8 13.1 12.0 13.3 12.9 13.3 – – – – –
J1802−2124 0.0 61.7 61.7 60.1 62.1 61.6 61.7 – – – – –
J1804−2717 0.0 −0.3 −0.1 0.0 – – – – – – – –

J1824−2452A – 0.0 5.5 −76.7 27.5 6.2 9.0 27.4 29.5 – – –
J1843−1113 0.0 17.7 16.7 9.6 17.8 17.4 16.3 – – – – –
J1853+1303 0.0 −0.6 −0.4 0.4 – – – – – – – –
J1857+0943 – 0.0 34.0 – 32.6 – 32.81 34.1 – – – –
J1909−3744 – – 0.0 – −2.0 – −3.6 −2.4 −4.5 – – –
J1910+1256 0.0 8.6 8.2 4.6 8.0 6.7 8.8 – – – – –
J1911−1114 0.0 −0.3 −0.2 0.0 – – – – – – – –
J1911+1347 0.0 −0.6 −0.4 −0.5 – – – – – – – –
J1918−06421 0.0 −4.0 −0.3 −8.6 – – – – – – – –
J1939+2134 – – – – 0.0 – – – 89.7 11.7 – 105.7
J1955+2908 0.0 −0.3 −0.1 0.7 – – – – – – – –
J2010−13231 0.0 −0.2 0.0 −0.1 – – – – – – – –
J2019+2425 0.0 −0.5 −0.3 −0.2 – – – – – – – –
J2033+1734 0.0 −0.4 −0.1 −0.1 – – – – – – – –
J2124−33581 0.0 0.8 -0.2 0.4 – – – – – – – –
J2129−57211 0.0 0.0 0.0 −0.5 – – – – – – – –
J2145-0750 – 0.0 −20.8 −87.0 3.2 53.5 29.7 – 56.9 – – 56.0

J2229+26431 0.0 −0.5 0.0 0.2 – – – – – – – –
J2317+1439 0.0 48.2 125.1 40.0 124.2 71.5 124.9 – – – – –
J2322+2057 0.0 −0.4 −0.1 0.0 – – – – – – – –

5 R ESULTS

Table 2 lists the relative evidence values for different models applied
to the 49 pulsars in the IPTA data set. In each case, we indicate the
combination of spin-noise, DM noise, system noise and band noise

that is included in the model by marking the included components
with a cross.

For each pulsar, we indicate the model most favoured by the
evidence by giving the evidence value corresponding to that model
in bold. We note again here that we only perform model selection
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Table 3. Relative log evidence values for additional DM model compo-
nents. Bold font in column 3 identifies the two pulsars for which significant
DM events were identified. For both pulsars, the remaining model parame-
ters are given by the emboldened column in Table 2.

Pulsar name Yearly DM DM event

J0437−4715 269.1 268.3
J0218+4232 123.7 123.5
J0613−0200 22.5 18.3
J1022+1001 30.1 30.3
J1045−4509 339.8 339.3
J1600−3053 159.1 161.2
J1603−7202 47.9 53.3
J1643−1224 80.1 79.1
J1713+0747 158.7 195.1
J1732−5049 9.8 11.7

J1824−2452A 28.7 26.5
J1857+0943 33.7 32.9
J1909−3744 −1.4 −2.6
J1939+2134 104.9 103.6
J2145−0750 55.8 54.4
J2317+1439 124.5 125.2

between different time-correlated signals, and so all models include
as a minimum an EFAC and an EQUAD per system, and an ECORR
for each NANOGrav system. The timing model parameters included
in the analysis are the same as those in Verbiest et al. (2016), and
the relevant white noise parameters are included for all systems. As
discussed in Section 3, we require a change in the log evidence of
3 to warrant the inclusion of extra parameters. As such, in many
cases the model that has the highest evidence is not considered the
favoured model, as the increase in the log evidence is less than
3. Similarly, in some cases multiple models will have their log
evidence values in bold, as different models of similar ‘complexity’
(i.e. models including the same number of components) will have
log evidence values such that the difference does not exceed 3.

For example, the PSR J0030+0451 data set has a maximum value
for the log evidence of 7.3 for a model that includes both DM noise
and spin noise. This, however, is only 1.3 greater than a model that
includes spin noise alone, and only 1.7 greater than a model that
includes DM noise alone. Thus, we conclude that the timing model
must include either spin-noise or DM noise, but likely due to a lack
of quality overlapping multifrequency data, we cannot distinguish
between these two models from this data set, and so both are bold
in the table.

Table 3 then lists the evidence values when including either addi-
tional non-stationary DM events, or yearly DM variations. We only
consider these additional DM components for those pulsars with
data sets that support DM noise in their optimal model, and where
the DM noise can be clearly distinguished from spin noise, and other
system- or band-dependent effects. Only two data sets support the
inclusion of non-stationary DM events, those for PSRs J1713+0747
and J1603−7202. For these two, the emboldened model in Table 2
reflects the set of model components that optimally describes the
data when also including the DM-event model, and as such might
not be the highest number in that row. In both cases however in Ta-
ble 3 the optimal model is greater than any non-event model listed
in Table 2.

In total we find that:

(i) for 19 pulsars, the data support no time-correlated timing
noise components. Typically these are shorter data sets, with all but
six of these pulsars having less than 7 yr of observations. Notably,

however, PSRs J1640+2224, J2124−3358, and J2129−5721 all
have time spans of greater than 15 yr and σ w of less than 3 μs.
These three data sets do, however, have significant low-frequency
DM variations.

(ii) For a further 20 pulsars, the data support a single time-
correlated noise component, of which for seven we are unable to
distinguish between spin noise and DM noise. With the exception
of PSR J0030+0451, however, these are all data sets for which
there is no data at less than 1400 MHz, or no high-precision high-
frequency (≥ 3 GHz) data, stressing the importance of including
broad frequency coverage if we wish to disentangle timing noise
that is intrinsic to the pulsar (or GWs) from that induced by variable
propagation effects in the IISM.

(iii) Of the remaining 10 pulsar data sets, four support a com-
bination of two noise components, five support three components
and only the PSR J1939+2134 data set supports all four types of
time-correlated signal in the model.

For clarity, we note that there are 10 pulsars that do not show
evidence for the DM noise model (i.e. higher order DM variations,
see Section 2.4.1) which do still have significant low-frequency
DM variations which are modelled by the DM quadratic we include
in the timing model (see Verbiest et al. 2016). These pulsars are
indicated by a superscript 1 on pulsar name in Table 2.

Of particular note are those pulsars whose data support system
noise or band noise in their model. For example, when considering
only spin noise and DM noise for PSR J1600−3053, we find that
a model that includes both has an increase of more than three in
the log evidence compared to a model that includes only DM noise,
which would lead us to conclude that this pulsar suffered from
spin noise. When including the possibility of both system and band
noise, however, we find no evidence for spin noise in the data set.

In previous analyses of the NANOGrav 5-yr data set, included
as a subset of the IPTA data set, Perrodin et al. (2013) found that
PSR J1643−1224 suffered from red timing noise. In our analysis
described in Section 7, we show that this data set has significant
additional frequency-dependent noise that is coherent between dif-
ferent frequency bands observed by different PTAs, but scales more
steeply than either ν0

o or ν2
o as would be expected from either spin

noise or DM noise, respectively. This allows us to interpret this
timing noise as likely coming from time-variable scattering or re-
fraction in the IISM, as opposed to being due to spin-noise intrinsic
to the pulsar.

As a final example, in Fig. 2 we show one- and two-dimensional
marginalized posterior distributions for the spin-noise amplitude
and spectral exponent for PSR J0437−4715 when including; (a)
only spin noise and DM noise, (b) additional system noise, and (c)
additional system noise, and band noise terms in the 600–800 MHz
and 1200–1600 MHz bands. When performing a standard analysis
including only spin noise and DM noise we find a relatively flat
spectral exponent for the spin-noise model, with γ SN ∼ 1–2. When
including system noise terms the spin-noise model drops signifi-
cantly in amplitude, and becomes steeper, with γ SN ∼ 3–4, more in
line with the steep timing noise observed in young pulsars and the
MSP PSR J1939+2134. Finally, when including band noise in the
model, we find that the spin noise is again consistent with smaller
amplitudes and steeper spectral exponents. That the inferred pa-
rameter estimates change significantly depending upon the chosen
model clearly demonstrates the importance of performing model
comparisons when attempting to draw astrophysical conclusions
from pulsar timing data.
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Figure 2. One- and two-dimensional marginalized posterior distributions
for the spin-noise amplitude and spectral exponent in the PSR J0437−4715
data set when including: only spin noise and DM noise (blue lines), addi-
tional system noise (red lines), and both additional system noise, and band
noise terms in the 600–800 MHz and 1200–1600 MHz bands (black lines).
The inferred parameter estimates change significantly depending upon the
chosen model, demonstrating the importance of determining the optimal
model when attempting to draw astrophysical conclusions from pulsar tim-
ing data. In this plot, and all triangular plots henceforth, the contours rep-
resent 1σ and 2σ confidence intervals. In addition, the axis labels on the
bottom row apply to all plots above it, and similarly, all axis labels on the
left apply to all plots to the right of it.

In the following sections, we discuss in more detail the results for
the different models used in our analysis, including system noise in
Section 6, band noise in Section 7, DM noise, and non-stationary
DM events in Section 8 and finally spin noise in Section 9.

6 SYSTEM NOI SE

We find that for 10 pulsars in the IPTA data release, the data support
system noise in addition to, or in favour of other time-correlated
stochastic signals. The inferred properties of these signals are given
in Table 4 which lists the log amplitude, spectral exponent, and
total integrated power with 1σ confidence intervals in each case.
Note that, while the 1σ confidence interval is mathematically well
defined regardless of the shape of the posterior, for highly non-
Gaussian probability distributions the significance of a parameter
can only be determined using the full posterior, and the relative
evidence for models with and without that parameter. We calculate
the integrated power over only the Fourier frequencies included in
the power-law model, from 1/T to nc/T, with T the time span of
processes.

In Fig. 3, we explicitly demonstrate the advantages of working
with the IPTA data set in terms of isolating system-dependent timing
noise using the PSR J1730−2304 data set. When performing a tim-
ing analysis of the subset of the data set provided by the EPTA, fitting
for white-noise parameters and an additional spin-noise model, we
find a significant detection of the spin-noise process. The differ-
ence in the log evidence for the more complex model that includes
spin noise, compared to the white noise only model is eight, with
log10ASN = −12.66 ± 0.14 and γ SN = 1.6 ± 0.5.

If we fit for a model that includes both spin noise and an additional
system-dependent time-correlated signal applied to only the Nançay
1400 MHz data, we find that the spin-noise amplitude is highly
covariant with the system noise amplitude, as shown in the top-
right panel. This clearly indicates that the EPTA data alone are not

Table 4. System and band-noise model parameters. We denote the integrated power for each model as σ Sys, and σBN

for the system-noise, and band-noise processes, respectively (see Section 6 for details).

System-noise model parameter estimates
Pulsar System log10 ASys γ Sys log10σ Sys

J0613−0200 Nançay 1400 MHz −14.8 ± 0.8 4.9 ± 1.4 −6.08 ± 0.16
J1022+1001 Nançay 1400 MHz −12.68 ± 0.07 1.8 ± 0.3 −5.58 ± 0.14
J1455−3330 Nançay 1400 MHz −13.5 ± 1.0 3.6 ± 1.5 −5.8 ± 0.8
J1600−3053 Nançay 1400 MHz −13.28 ± 0.10 1.9 ± 0.4 −6.23 ± 0.14
J1643−1224 Nançay 1400 MHz −12.60 ± 0.07 1.7 ± 0.3 −5.55 ± 0.17
J1730−2304 Nançay 1400 MHz −12.66 ± 0.14 1.6 ± 0.5 −5.63 ± 0.14
J1744−1134 Nançay 1400 MHz −13.36 ± 0.16 2.3 ± 0.4 −5.99 ± 0.13
J2145−0750 Nançay 1400 MHz −12.71 ± 0.06 1.7 ± 0.2 −5.66 ± 0.11
J0437−4715 Parkes CPSR2 1400 MHz −13.34 ± 0.07 0.9 ± 0.3 −5.49 ± 0.08
J0437−4715 Parkes CPSR2 legacy 1400 MHz −13.51 ± 0.17 2.8 ± 0.7 −4.8 ± 0.3
J1939+2134 Nançay DDS 1400 MHz −12.95 ± 0.05 1.8 ± 0.2 −5.78 ± 0.15
J1939+2134 Parkes CPSR2 1400 MHz −13.7 ± 0.3 1.7 ± 0.7 −6.5 ± 0.2

Band-noise model parameter estimates
Pulsar Band log10 ABN γ BN log10σBN

J0437−4715 0–1000 MHz −13.32 ± 0.16 0.6 ± 0.4 −5.46 ± 0.16
J0437−4715 1000–2000 MHz −13.83 ± 0.14 0.8 ± 0.4 −5.96 ± 0.16
J0437−4715 > 2000 MHz −14.4 ± 0.3 3.3 ± 0.9 −5.5 ± 0.3
J1600−3053 0–730 MHz −12.7 ± 0.15 2.2 ± 0.6 −5.4 ± 0.3
J1643−1224 0–730 MHz −12.02 ± 0.06 2.2 ± 0.3 −4.7 ± 0.2
J1643−1224 750–890 MHz −12.19 ± 0.07 1.5 ± 0.3 −5.2 ± 0.16
J1939+2134 0–800 MHz −12.85 ± 0.10 2.2 ± 0.3 −5.44 ± 0.19
J1939+2134 2000–2500 MHz −13.6 ± 0.3 2.1 ± 0.6 −6.2 ± 0.3
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2172 L. Lentati et al.

Figure 3. Each of the four sets of panels shows one- and two-dimensional marginalized posterior distributions for stochastic parameter estimates from different
models, either for the full PSR J1730−2304 IPTA data set, or for the EPTA data set alone. The top-left panel shows posteriors for the amplitude and spectral
exponent of a red spin-noise process fitted to the EPTA data set, when this is the only time-correlated component included in the model. We find a difference
in the log evidence for this model compared to a white-noise-only model of 8 which, if we were to consider only these two models, would lead us to conclude
that there was strong support for the existence of spin noise in this pulsar. The top-right panel shows the posteriors for the amplitude of the spin-noise process,
and the amplitude of an additional system-noise process simultaneously applied to the Nançay 1400 MHz data. The Nançay 1400 MHz data set contributes
over half the ToAs and, based on the formal ToA uncertainties, over 90 per cent of the weight to the EPTA PSR J1730−2304 data set. Consequently, these two
model components are highly covariant. If we assume a priori that we expect additional noise in the Nançay 1400 MHz data, we cannot distinguish between
‘true’ spin noise and system noise in this data set. The bottom-left panel shows the posteriors for a similar analysis to the top-right panel, however this time
we have also fitted for the system to which we apply the additional noise process. In this case, there is a significant penalty associated with searching over the
system, however we still see a peak in the posterior associated with system noise in the Nançay 1400 MHz data, indicated in this plot as index 5 for the system
parameter, and marked with a vertical line. However, if we assume the same prior probability for system noise in all systems, we cannot claim that there is any
significant system noise in the EPTA data set. Finally, the bottom-right panel shows the same set of parameters for the same model as the bottom-left panel,
this time applied to the full IPTA data set which includes additional data from the PPTA. In this case, even though we have doubled the number of systems that
we have to search over, and thus increased the penalty for performing the search, the Nançay 1400 MHz data are sufficiently inconsistent with the PPTA data
that we can separate the system noise from the spin noise in this pulsar.

sufficient to discriminate between these two models, because the
Nançay 1400 MHz data contributes over 90 per cent of the weight
to the EPTA J1730−2304 data set.

The effect of this imbalance can also be seen if we adopt the
reasonable prior that each of the seven observing systems present
in the EPTA data set is equally likely to suffer from system noise,

rather than assuming a priori that there is system noise present in
the Nançay 1400 MHz data. In this case, we search for the system to
which we apply the system noise term, as described in Section 2.5,
and find that there is a much greater probability that the timing noise
present in the data set should be attributed to spin noise, rather than
system noise. This is shown in the bottom-left panel of Fig. 3. In
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Figure 4. Maximum-likelihood signal realizations for the system noise detected in eight pulsars for the Nançay 1400 MHz system. The bumps and troughs
around MJDs ∼ 54300–54500 correspond to known times where errors in polarization calibration have affected the ToAs.

comparison to the top-left panel, however, we find there is now
some probability that the spin-noise amplitude is consistent with
zero, as we would expect. This tail on the amplitude of the spin
noise corresponds to a peak in the posterior probability distribution
associated with system five, marked with a vertical line in the one-
dimensional figure, which is associated with the Nançay 1400 MHz
data.

The full IPTA data set, however, includes significant additional
PPTA data. Analysis of this data set (bottom-right panel) shows
that the Nançay 1400 MHz data is sufficiently inconsistent with the
PPTA data that we can separate the system noise from the spin noise
in this pulsar. The optimal model then includes no support for spin
noise in this data set, only system noise in the Nançay 1400 MHz
data.

In total, we find that eight pulsars have significant system noise in
the EPTA Nançay 1400 MHz data. In Fig. 4, we show the maximum-
likelihood signal realizations and 1σ confidence intervals given the
maximum-likelihood power spectrum from the full Bayesian analy-
sis. In particular, PSRs J1643−1224, J2145−0750 and J1600−3053
show significant bumps or troughs around MJDs ∼ 54300–54500,
an interval known to be contaminated by polarization calibration
errors.

We note that of these eight pulsars, all but PSRs J1455−3330
and J0613−0200 have also been found previously to be susceptible
to polarization calibration errors at the >100 ns level at 1400 MHz
in (van Straten 2013, hereafter S13). PSR J1455−3330 was not
a part of the sample analysed in S13, and PSR J0613−0200 was

found to be susceptible at a lower level. We find that the amplitude of
the system-noise signal determined by our analysis for these pulsars
tracks the rms of the systematic timing error introduced by polariza-
tion calibration errors found in S13. PSR J0613−0200 (log10 ASys =
−14.8 ± 0.8), and PSR J1744−1134 (log10 ASys = −13.36 ± 0.16)
being less prone to calibration errors than PSR J1643−1224 (log10

ASys = −12.60 ± 0.07), and PSR J1022+1001 (log10 ASys =
−12.68 ± 0.07), for example.

Clearly if the calibration errors are localized to a particular set of
observational epochs, a time-stationary power-law model applied
to the entire Nançay 1400 MHz data set is not going to be the most
optimal model to describe the system noise, as it will down-weight
the entire data set in order to model the excess noise over this small
time period. As a final test, we therefore investigate the stationarity
of the system noise in PSR J1730−2304. In principle, we could
apply the same approach that we use to model DM events, applying
the shapelet basis to model a non-stationary system-noise process.
However, we perform a simpler test, limiting the time period over
which this noise term is applied to only those MJDs greater than
the date that the polarization errors are known to have occurred
(∼ 54200). We find the difference in the evidence between this
model and a model where the system noise is applied to the entire
Nançay 1400 MHz data set is ∼3, in favour of the non-stationary
model. Future IPTA data releases will clearly have to develop these
system-noise models further, utilizing as much prior information
as possible about the observations. In our analysis, however, we
can still say that while it is likely not the most suitable model, the
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stationary description of the system noise included in our analysis
is still preferred to not including system noise, as supported by the
evidence in each case.

7 BA N D N O I S E

Out of the 49 pulsars in the IPTA data set, four show signifi-
cant evidence for the presence of ‘band noise’ (see Section 2.5);
J0437−4715, J1600−3053, J1643−1224, and J1939+2134. The
origin of this band noise is as of yet unclear. In principle, band
noise could have its origins in the IISM, either as an incoherent
component of the DM variations that represents photons at differ-
ent frequencies experiencing different scattering volumes (Cordes,
Shannon & Stinebring 2016), or as terms that have steeper depen-
dences on the observing frequency than ν2, and thus would present
themselves as an excess of noise at longer wavelengths. Alterna-
tively, the excess noise could be the result frequency-dependent
calibration errors, which can show correlations over hundreds of
days (van Straten 2013), or RFI. This last source of band noise,
however, is likely to be uncorrelated between observations and thus
would be modelled by the white-noise parameters in our analysis.
In the following subsections, we look in greater detail at the four
pulsars that have evidence for band noise in order to try and ascer-
tain which of these possibilities could be the origin of the excess
noise in these pulsars.

As for the system noise, in Table 4 we list the mean parameter
estimates and 1σ uncertainties, along with total integrated power,
for the band-noise components of the stochastic model.

7.1 PSR J0437−4715

For PSR J0437−4715, the optimal noise model included (in ad-
dition to DM noise and the system noise discussed in Section
(6) band-noise processes in the 0–1000 MHz, 1000–2000 MHz,
and > 2000 MHz bands, which we refer to in this section as the
50, 20 and 10 cm bands. In Fig. 5 (top-left panel), we show the
one- and two-dimensional posterior probability distributions for
the power-law amplitudes and spectral exponents for the three band-
noise components from the optimal model. The mean values and
1σ uncertainties for the band-noise models, along with the total
integrated power for each term are listed in Table 4. We find the
evidence supports different amplitudes for the band noise in each
band, with log10 values of −13.32 ± 0.16, −13.83 ± 0.14, and
−14.4 ± 0.3 for the 50, 20 and 10 cm bands, respectively. Both
the 50 and 20 cm bands have shallow red-spectrum noise mod-
els with γ BN ∼ 1, while the 10 cm band noise is much steeper
with γ BN ∼ 3.

When including an additional spin-noise component in the model,
we found this to be completely covariant with the 10 cm band-noise
term, and the difference in evidence for including either the spin-
noise model or the 10 cm band-noise term was ∼0.4, indicating
the data have no power to discriminate between these two models.
We find that the parameter estimates for both the spin noise or the
10 cm band noise are consistent with one another, and with the
timing noise observed in the 10 cm data set analysed in Shannon
et al. (2015).

We find significant evidence that the band-noise signals are in-
coherent between the 50 and 20 cm bands (i.e. the time-domain
signals for both processes are inconsistent with one another). We
compare models where we fit for either, (i) a single additional noise
process present in both the 50 and 20 cm bands with the same (i.e.
coherent) signal and (ii) separate incoherent band-noise processes

in the 50 and 20 cm bands. We repeat this process both with a
ν0

o (equivalent to spin noise) and ν2
o (equivalent to DM variations)

scaling of the amplitude of the signals with observing frequency.
We find a difference in the log evidence of � logZ = 30.1 and
� logZ = 24.3 in favour of separate noise processes in the ν0

o and
ν2

o cases, respectively. In Fig. 5, we show DM subtracted residuals
for the full multifrequency data set (bottom-left) and for a 250-
d subsection. We subtract the DM by calculating the maximum
likelihood signal realization using the maximum a posteriori am-
plitude and spectral exponent for the DM noise process obtained
from our Bayesian analysis. In both cases for clarity, we have time
averaged the residuals in 2-d windows, separately for each system.
The 50 cm data show high-frequency structure that is, even by
eye, inconsistent with the 20 cm data, which reflects the magnitude
of the increase in the log evidence when allowing the signals to
be incoherent between the different bands, despite the increase in
dimensionality.

Despite the lack of coherent signals between the 50 and 20 cm
bands, we find that the spectral properties of the noise in these
bands are related. Fig. 5 (top-right panel) shows the one- and two-
dimensional posterior distributions for the 50 and 20 cm power-law
amplitude and spectral exponents from our model where we have
separate, incoherent noise terms in each band, but scale the ampli-
tudes in each band with ν2

o , as for our model for DM variations. We
find the parameter estimates are completely consistent in A–γ space,
and the evidence supports describing both with a single amplitude
and spectral exponent. Given the expected delay at 20 cm due to
scattering in PSR J0437−4715 is less than 1 ns (Coles et al. 2010),
and that the DM is relatively low in this pulsar (∼2.64 cm−3 pc) it is
possible that given the amount of data currently available, this is a
coincidence and that the origin of the excess band noise could simply
be RFI at the telescope site, or the result of polarization calibration
errors. However, given the high precision of the observations, it is
also possible that this could be indicative of small differences in the
sampling of the IISM by the different wavelengths emitted by the
pulsar. Without overlapping observations from multiple telescopes
at the same frequency, however, it will be difficult to disentangle
these different interpretations.

Finally, in Fig. 6 we show the upper limits obtained at a spec-
tral exponent of γ SN = 13/3 (consistent with the expected spectral
exponent for a GWB resulting from inspiraling SMBHBs, cf. ref-
erences in the Introduction) for an additional spin-noise process
using a uniform prior on the amplitude for three different cases.
As we are only calculating upper limits on the GWB term, we do
not perform evidence comparison for models with and without this
additional parameter. We show the 95 per cent upper limits obtained
on the full J0437−4715 data set using a simple model that contains
only coherent power-law DM noise and spin-noise terms (black
line, A95 = 1.3× 10−14), and using the optimal model (blue line,
A95 = 8.2× 10−15), and finally the upper limit obtained using only
the 10 cm data, where we include only a spin-noise term in our noise
model in addition to the GWB power-law term with fixed spectral
exponent (red line, A95 = 1.1× 10−14). We find that compared to
the simple noise model, the 10 cm only data set results in an upper
limit that is ∼30 per cent lower. However, when the system- and
band-dependent noise terms are modelled more appropriately, the
upper limit for the optimal noise model is ∼20 per cent lower than
the 10 cm only limit, and 60 per cent lower than that for the simple
noise model.

We stress that the improvement in the sensitivity of the data
set to GWs as the complexity of the noise model increases is not
simply a generic result of including additional parameters in the
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Figure 5. Top left: one- and two-dimensional marginalized posterior parameter estimates for the band noise power-law amplitudes and spectral exponents
from the optimal noise model for PSR J0437−4715. The amplitude-γ space occupied by the three bands are inconsistent with one another. Both the 50 and
20 cm band-noise terms have flat-spectrum noise models with γ BN ∼ 1, while the 10 cm band noise is much steeper with γ BN ∼ 3. Top right: if we perform
our analysis of the optimal model, but scale the noise in each band as with the DM variations, we find that both the 50 cm (black solid lines) and 20 cm terms
(red dashed lines) are completely consistent in A–γ space, and the evidence supports describing both with a single amplitude and spectral exponent. Bottom
left: DM-subtracted residuals for the whole multifrequency data span, and (bottom right) for a ∼250-d period. For clarity, residuals have been time averaged in
two-d windows, separately for each system group. Colours indicate observing frequency; 50 cm data (red + points), 20 cm (green x points) and 10 cm (blue ∗
points).

model. If further components are added to the model that are not
warranted by the data the upper limit on the amplitude of a GWB
will either remain constant, or potentially increase. We show this
explicitly by constructing a simulation using the observed time
stamps and frequencies from the IPTA PSR J0437−4715 data set,
with white noise consistent with the formal ToA uncertainties and
DM variations with statistical properties consistent with those from
the real data. We then analyse this simulation using four different
models which we list in Table 5. For the band-noise model, we
include three terms for the <1000 MHz, 1000–2000 MHz, and ≥
2000 MHz bands. In each case, we perform the analysis twice, once
without an additional GWB term, and once with the additional term.
We include in Table 5 the relative log evidences for the models
without the GWB term, and the 95 per cent upper limit on the
amplitude of the GWB obtained from that analysis.

We find that the evidence supports the DM-noise only model,
and that as expected the upper limit decreases substantially when
going from a model with no noise components to the DM-noise
model. However, as additional components are added to the model
describing spin noise or band noise, the upper limit decreases no
further. We note that the upper limit is significantly better in the
simulation compared to the real data set as we have used the formal
ToA uncertainties, rather than the uncertainties modified by the
EFAC and EQUAD parameters in constructing our simulation.

7.2 PSR J1600−3053

For PSR J1600−3053, we find that the data support a band-noise
model that includes excess noise in the 690–730 MHz PPTA data
(which here we treat as a separate band from the 780–884 MHz
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Figure 6. One-dimensional marginalized posterior distributions for the am-
plitude of a steep spin-noise process with γ SN = 13/3. We use this model as
a proxy for perturbations that are consistent with those expected from a GW
background generated by a population of supermassive black hole binaries.
A prior that is uniform in the amplitude of the spin noise is used in order to
obtain upper limits. Different models are assumed for the stochastic signals
and different subsets of the PSR J0437−4715 data set are analysed. Black
solid lines correspond to an analysis of the full data set, including only spin
noise and DM noise in the model, red lines correspond to a spin-noise-only
model applied to the 10 cm data only, and finally the blue dashed lines
correspond to the optimal model, including system-noise and band-noise
terms applied to the full data set. Vertical lines correspond to 95 per cent
upper limits for each case, which we find to be 1.3 × 10−14, 1.1 × 10−14,
and 8.2 × 10−15, respectively.

Table 5. Relative log evidence values, and upper limits on a stochastic
GWB for a simulated PSR J0437−0715 data set.

Model log evidence 95 per cent upper limit
10−16

No noise model −4081.2 6162
DM Noise 0.0 5.3
DM noise, Spin noise −0.9 5.3
DM noise, Spin noise, Band noise −3.0 5.3

NANOGrav data), in addition to DM noise, and system noise. We
note here that, the analysis we perform is a weighted fit. Thus, while
the excess noise is detected in a band with low-timing precision
(larger uncertainties), these uncertainties are factored into our anal-
ysis when calculating our parameter estimates, and evidence values.
That the band noise is significant means that it is inconsistent with
the higher frequency data, even given the larger uncertainties. Sim-
ilarly, the evidence would not support a band-noise process in the
690–730 MHz PPTA data if the DM-noise model constrained by
data at other frequencies was able to describe this lower frequency
data fully. In Fig. 7 (top-left panel), we show the timing residuals for
PSR J1600−3053 after subtracting the maximum-likelihood timing
model from our optimal model, and additionally after subtract-
ing the maximum-likelihood DM noise model (centre-left panel).
In the top-right and centre-right panels we show the same thing,
with the residuals scaled by Kν2

o , with K as defined in equation (12).
This rescaling allows us to visualize a DM-like process in the data,
which should be both coherent, and of similar amplitude in all
bands. For clarity, the three data sets have been time-averaged over
10-d intervals.

The excess noise in the lower frequency PPTA data shows more
structure than the 1000–2000 MHz data from all PTAs, even after

scaling by Kν2
o . We test to see if this excess occurs in both observing

systems present in the PPTA 690–730 MHz data. Fig. 8 shows the
one- and two-dimensional posterior distributions for the power-
law amplitude and spectral exponent for system-noise terms fitted
simultaneously to the two Parkes systems that have observed at this
band (the CPSR2 and PDFB3 systems) instead of a single excess
noise term in the whole PPTA band. We perform this analysis using
the full PSR J1600−3053 IPTA data set, including DM noise, and
Nançay 1400 MHz system noise as in the optimal model. Contours
in the two-dimensional plot are at the 1σ and 2σ levels. Both Parkes
systems have significant detections of the excess noise, and we find
that the evidence supports a single power-law model, indicating the
two noise terms are statistically consistent.

In Fig. 7 (bottom), we show one-dimensional posterior distri-
butions for the amplitude of the power-law band-noise processes
obtained for the PPTA 690–730 MHz data using a prior that is uni-
form in the log of the amplitude parameter, and for the NANOGrav
780–884 MHz data, and 1000–2000 MHz data from all PTAs using
a prior that is uniform in the amplitude which we use to obtain
95 per cent upper limits. All band-noise parameters are evaluated
simultaneously with the other noise parameters from the optimal
model. We obtain the upper limit fitting for a single spectral expo-
nent across all three band-noise terms, but allowing the amplitude in
each band to vary, and perform the analysis both in units that scale
as ν0

o (bottom-left panel) and ν2
o (bottom-right panel). We find that

the 1000–2000 MHz data rules out the possibility of a ν0
o process

that has the same characteristics as the lower frequency noise with
a probability of >99 per cent, however it is unable to rule out a ν2

o

scaling to high significance. The upper limits from the NANOGrav
780–884 MHz data are also consistent with the excess noise for
both scalings.

If the observed signal were due to scattering by the IISM, we
would expect a broadening of the pulse profile that varies in time,
leading to a change in the observed arrival times relative to the
standard template used to form the ToA. For each observational
epoch, we have a measurement of the pulse intensity as a function
of observing frequency and time, referred to as a dynamic spec-
trum. This intensity will fluctuate due to scintillation in the IISM,
and the characteristic scale of those fluctuations (referred to as the
scintillation bandwidth, �νd) can be used to directly estimate the
magnitude of the scattering time-scale, τ d, observed in our ToAs,
as �νd and τ d are the Fourier conjugate of one another. As �νd

scales as ν4
o , however, at low frequencies it will rapidly become

unresolved in the dynamic spectra, despite having a large impact
on the arrival times. We therefore use the 3100 MHz PPTA data to
estimate �νd, and from that estimate τ d in the 690–730 MHz band.
We find �νd to be ∼ 10 MHz for the 3100 MHz data, correspond-
ing to a τ d of 30 ns at 3100 MHz, which gives a τ d of 10 μs in the
690–730 MHz band. In Fig. 7, we see the peak-to-peak fluctuations
of the 690–730 MHz band noise are ∼ 5–10 μs, consistent with our
estimate of the amplitude of the scattering from the high-frequency
data.

7.3 PSR J1643−1224

For PSR J1643−1224, we find that the optimal noise model in-
cludes band-dependent terms in both the PPTA 690–730 MHz,
and NANOGrav 780–884 MHz bands in addition to the DM-
noise and system-noise terms discussed previously. In contrast to
PSR J0437−4715, we find that the evidence supports a coher-
ent signal present in both these bands, however with a different
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Figure 7. Top left: timing residuals for PSR J1600−3053 after subtracting the maximum-likelihood timing model from our optimal model. Colours represent:
the 690–730 MHz PPTA (black points), 780–884MHz NANOGrav (red points) and 1000–2000 MHz data from all PTAs (blue points). For clarity, the three
data sets have been time-averaged over windows of 10 d. Top right: as for top-left panel, however the residuals have been scaled by Kν2

o , with K as defined
in equation (12). The lower-frequency PPTA data shows more structure than the 1000–2000 MHz data, even after scaling by Kν2

o . This additional noise is
present in both the Parkes CPSR2 and PDFB3 690–730 MHz data and is statistically consistent between systems. Middle: as for top, however after subtracting
the maximum likelihood DM variations signal. The 1000–2000 MHz data shows no significant residual timing noise, however there is still significant structure
in the lower frequency PPTA data. Bottom: one-dimensional posterior distributions for the amplitude of the power-law band-noise processes obtained for the
PPTA 690–730 MHz data (black line) using a prior uniform in the log of the amplitude parameter, and for the NANOGrav 780–884 MHz data (red line), and
1000–2000 MHz data from all PTAs (blue line) using a prior uniform in the amplitude which we use to obtain 95 per cent upper limits (vertical lines). We
obtain the upper limits by fitting for a single spectral exponent across all three band-noise terms, but allowing the amplitude in each band to vary, and perform
the analysis both in units that scale as ν0

o (bottom-left panel) and ν2
o (bottom-right panel).

amplitude in each, which is highly suggestive of this excess noise
being the result of astrophysical processes, as opposed to RFI or
telescope dependent effects.

In Fig. 9 (top-left panel), we show the timing residuals for
PSR J1643−1224 after subtracting the maximum likelihood timing

model from our optimal model. For clarity, both the NANOGrav
780–884 MHz data and the 1000–2000 MHz data from all PTAs
have been time-averaged over 10-d intervals. In the top-right panel,
we show the same data after scaling the residuals by a factor Kν2

o ,
with K as defined in equation (12). The lower frequency PPTA and
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Figure 8. One- and two-dimensional posterior parameter estimates for
the power-law amplitude and spectral exponent for system-noise terms for
PSR J1600−3053, fitted simultaneously to the 690–730 MHz Parkes CSPR2
(black solid lines) and Parkes PDFB3 (red dashed lines) data, instead of a
single excess-noise term in the 690–730 MHz band as in the optimal model.
Contours in the two-dimensional plot are at the 1σ and 2σ levels. Both
systems have significant detections of the excess noise, which are consistent
within statistics.

NANOGrav data show significantly more structure than the 1000–
2000 MHz data, even after scaling by Kν2

o . However, both the PPTA
and NANOGrav data show coherent structure, indicating this is not
simply an instrumental effect.

In the centre panels of Fig. 9 we show the DM-subtracted residu-
als, unscaled (centre left) and scaled by a factor Kν2

o (centre right).
Both the PPTA and NANOGrav data clearly track each other across
the time period for which both PTAs are present. We stress that at
no stage have we enforced any prior on the coherency of these two
signals in the data. The difference in the amplitude of the signals is
also apparent by eye, with the lower frequency PPTA data showing
larger fluctuations compared to the NANOGrav points.

We compare models that either assume the same amplitude in
both bands, or allow the amplitude to take a different value in each
band. We also compare models that assume the same spectral ex-
ponent in each band, or that allow this parameter to vary between
bands. As for PSR J0437−4715 for models where the amplitude
is described by a single value in both bands, we consider cases
where this amplitude scales as ν0

o as for a spin-noise process, and
as ν2

o for DM variations. We find that the difference in log evidence
for a model with separate power-law amplitudes and exponents in
both the PPTA and NANOGrav low-frequency bands, compared to
a model that fits a single coherent noise process with one amplitude
and spectral exponent with a ν0

o scaling, is 4.6, indicating that the
data support the use of the more complex model in this case. How-
ever, when assuming a ν2

o scaling, the log evidence is 1.6 greater
for the simpler two-parameter coherent-noise model.

That the evidence supports an additional coherent DM term could
suggest that a power-law model for the DM variations is insufficient,
and we are seeing residuals from that fit in our analysis. If this is the
case we would expect to see the same effect in the 1000–2000 MHz
band, provided the data are sensitive enough for the signal to be
observed in that band.

We quantify this possibility in the bottom panels of Fig. 9. Here,
we show the one-dimensional posterior distributions for the ampli-
tude of the power-law band-noise processes obtained for the PPTA
690–730 MHz data, and NANOGrav 780–884 MHz data, both using
priors uniform in the log of the amplitude parameter, and addition-
ally, for the 1000–2000 MHz data from all PTAs using a prior that
is uniform in the amplitude, which we use to obtain a 95 per cent
upper limit. We obtain the upper limit fitting for a single spectral
exponent across all these band-noise terms, but allowing the ampli-
tude in each band to vary, and perform the analysis both in units
that scale as ν0

o (bottom-left panel) and ν2
o (bottom-right panel). We

find that the 1000–2000 MHz data rules out the possibility of a ν0
o

process that has the same characteristics as the excess lower fre-
quency noise with a probability of >99 per cent, while a ν2

o process
is ruled out at >95 per cent. It is therefore unlikely that there are
simply mismodelled ν2

o DM variations. Instead, it is suggestive of a
noise process that originates in the IISM, but with a steeper depen-
dence on observing frequency, such as scattering which is expected
to have ν4

o (Cordes & Shannon 2010).
As for PSR J1600−3053, we use the 3100 MHz PPTA data to

estimate the scintillation bandwidth, and find �νd and τ d to be ∼
2 MHz, and 80ns at 3100 MHz, corresponding to τ d of 25 μs in
the 690–730 MHz band. In Fig 9 (middle-left panel), we see the
peak-to-peak fluctuations of the DM-subtracted 690–730 MHz band
noise are ∼ 25 μs, consistent with our estimate of the amplitude of
the scattering from the high-frequency data.

7.4 PSR J1939+2134

The final pulsar in the IPTA data set for which the data support band
noise is PSR J1939+2134. In this case, we find that the optimal
model supports time-correlated noise in both the 500–1000 MHz,
and 2000–2500 MHz bands, in addition to spin noise, DM noise
and system noise terms. We find that neither the 500–1000 MHz
nor the 3100 MHz PPTA data provide significant constraints on the
frequency dependence of the additional band noise, with 95 per cent
upper limits greater than the amplitude expected for a process that
scales as ν0

o from the 500–1000 MHz band noise.
In order to check whether this additional noise is consistent over

all data in these bands, or is simply present in a single observing
system, we fit two independent power-law noise processes simulta-
neously to separate Parkes systems that observe in the 680–740 MHz
band. In particular, we take (i) the CPSR2 data which extends from
the year 2005 until 2010, and (ii) data from both the APSR and
PDFB3 systems which were in use from the year 2010 onwards. As
in the previous examples, we perform this analysis jointly with the
rest of the IPTA PSR J1939+2134 data set, including the spin noise,
DM noise, system noise, and 2000–2500 MHz band noise from the
optimal model. The one- and two-dimensional marginalized poste-
rior distributions for the amplitude and spectral exponent for these
two noise processes are shown in Fig. 10 (top-left) for the CPSR2
and APSR/PDFB3 groups. We find that there is significant excess
noise detected in both systems, and that the parameter estimates are
consistent with one another, with the evidence supporting a single-
band process compared to separate system-noise processes. We also
check the 820–860 MHz WSRT data for the excess noise, however
we find no evidence for such a process, but obtain an upper limit
that is consistent with the levels observed in the Parkes data.

We perform a similar test for the 2000–2500 MHz band, divid-
ing the band into two and fitting separate power-law processes to
the 2.0–2.3 GHz EPTA data, and the 2.4 GHz data from Kaspi,
Taylor & Ryba (1994). We find that, while there is still significant
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Figure 9. Top left: timing residuals for PSR J1643−1224 after subtracting the maximum-likelihood timing model from our optimal model. Colours represent:
690–730 MHz PPTA (black points), 780–884 MHz NANOGrav (red points) and 1000–2000 MHz data from all PTAs (blue points). For clarity, both the
780–884 MHz NANOGrav and the 1000–2000 MHz data have been time-averaged over 10 d intervals. Top right: as for top-left panel, however the residuals
have been scaling by Kν2

o , with K as defined in equation (12). The lower frequency PPTA and NANOGrav data shows significantly more structure than
the 1000–2000 MHz data, even after scaling by Kν2

o . Middle: as for the top panels, however after subtracting the maximum-likelihood DM-variations
signal. The 1000–2000 MHz data shows no significant residual timing noise, however there is still significant structure in the lower frequency data. Bottom:
one-dimensional posterior distributions for the amplitude of the power-law band-noise processes obtained for the PPTA 690–730 MHz data (black line), and
NANOGrav 780–884 MHz data (red line), both using priors uniform in the log of the amplitude parameter, and for the 1000–2000 MHz data from all PTAs
using a prior uniform in the amplitude (blue line). We use the latter to obtain 95 per cent upper limits (blue vertical lines) both in units that scale as ν0

o

(bottom-left panel) and ν2
o (bottom-right panel).

evidence for excess noise in the 2.0–2.3 GHz EPTA data, there
is only minimal evidence (logZ ∼ 1) for an additional noise pro-
cess in the 2.4 GHz data. The peak in the posterior however is
consistent with the amplitude observed in the EPTA 2.0–2.3 GHz
data.

In Fig. 10 (top-right), we show the Kν2
o scaled residuals for a

subset of the PSR J1939+2134 data set which has overlapping data
from both the 680–740 MHz PPTA and 2.0–2.2 GHz EPTA data,
after subtracting both the maximum-likelihood DM variations and
spin-noise signal realizations. While both show a similar degree of
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2180 L. Lentati et al.

Figure 10. Top Left: one- and two-dimensional marginalized posterior distributions for the amplitude and spectral exponent of the system-noise terms present
in the Parkes 680–740 MHz CPSR2 system (red dashed lines) and PDFB3/APSR combined system group (black solid lines), obtained simultaneously with
the additional model parameters included in the optimal model for PSR J1939+2134. We find the parameter estimates for both terms are consistent, and
that the evidence supports a single noise process across all Parkes 680–740 MHz data. Top right: a subset of the timing residuals, scaled by Kν2

o , with K as
defined in equation (12) for PSR J1939+2134 after subtracting the maximum likelihood timing model, as well as the maximum-likelihood DM variations and
spin-noise signal realizations from our optimal model. Colours represent: 680–740 MHz PPTA (red points) and 2000–2200 MHz data from the EPTA (black
points). While both frequency bands show a similar amount of structure, the two signals are not coherent across the time period where they overlap. Bottom
panels: one-dimensional posterior parameter estimates for the amplitude of the power-law noise processes obtained for the 680–740 MHz band (red lines), and
2.0–2.5 GHz bands (black lines). Posteriors are shown when fitting for a single spectral exponent across all band-noise terms, but allowing the amplitude in
each band to vary. We perform the analysis in units that scale as ν0

o (bottom-left panel) and as ν2
o (bottom-right panel).

structure, they are clearly not coherent across the MJD range where
they overlap, and we find the evidence does not support a coherent
noise process with either ν0

o or ν2
o scaling.

Finally, we test models that enforce a single spectral exponent
or amplitude for the different band-noise terms assuming either a
ν0

o or ν2
o scaling of the amplitude between the different bands. We

find that in both cases, a single spectral exponent is supported by
the data. In Fig. 10 (bottom panels), we show the one-dimensional
posterior parameter estimates for the amplitude of the power-law
noise processes obtained for the 680–740 MHz band (red lines),
and 200–230 MHz band (black lines) when fitting for a single
spectral exponent across both band-noise terms, but allowing the
amplitude in each band to vary. We find that the evidence does not
support a single amplitude in the ν0

o scaling case (bottom-left panel)

with > 99 per cent probability, however we find a single amplitude is
sufficient to describe the data when assuming a ν2

o scaling between
the bands (bottom-right panel).

In summary, we find that the evidence supports incoherent noise
processes in the two bands (i.e. the time-domain signals are not
consistent with one another), in addition to the other noise processes
mentioned previously. The spectral exponents for these two band
terms are however consistent, and further more we find the power-
spectrum amplitudes scale with ν2

o . As for J0437−4715, this could
therefore be indicative of different sampling of the IISM by the
different wavelengths emitted by the pulsar. This is consistent with
the observations made at both 1400 and 2400 MHz presented in
Cordes et al. (1990) and later in Ramachandran et al. (2006). As
before, however, this could also result from telescope-dependent
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Table 6. Properties of the power-law spin noise and DM noise. We denote the integrated power in the each model as σ SN, and σDM for the spin-noise, and
DM-noise processes, respectively.

Pulsar name Spin noise DM noise
log10 ASN γ SN log10σ SN log10 ADM γ DM log10σDM

J0218+4232 – – – −11.15 ± 0.05 2.1 ± 0.3 −2.89 ± 0.15
J0437−4715 – – – −11.90 ± 0.07 2.9 ± 0.3 −3.26 ± 0.13
J0613−0200 −14.4 ± 0.5 5.0 ± 1.0 −5.88 ± 0.17 −11.72 ± 0.04 1.8 ± 0.2 −3.62 ± 0.11
J0621+1002 −11.91 ± 0.08 1.9 ± 0.3 −4.81 ± 0.14 – – –
J0711−6830 – – – −12.3 ± 0.5 3.7 ± 1.2 −3.1 ± 0.3
J1012+5307 −13.18 ± 0.09 1.5 ± 0.3 −6.23 ± 0.09 – – –
J1022+1001 – – – −11.53 ± 0.05 0.9 ± 0.3 −3.67 ± 0.08
J1024−0719 −13.9 ± 0.2 5.4 ± 0.6 −4.82 ± 0.16 – – –
J1045−4509 – – – −10.72 ± 0.05 3.1 ± 0.2 −1.90 ± 0.13
J1600−3053 – – – −11.57 ± 0.05 1.8 ± 0.2 −3.52 ± 0.11
J1603−7202 – – – −12.4 ± 0.5 4.4 ± 1.1 −2.9 ± 0.2
J1643−1224 – – – −11.40 ± 0.16 3.3 ± 0.5 −2.42 ± 0.19
J1713+0747 −14.0 ± 0.2 3.1 ± 0.6 −6.14 ± 0.17 −12.01 ± 0.04 1.7 ± 0.2 −3.90 ± 0.12
J1732−5049 – – – −11.7 ± 0.5 3.9 ± 1.3 −2.9 ± 0.2

J1824−2452A −12.73 ± 0.19 3.0 ± 1.0 −5.6 ± 0.2 −10.80 ± 0.07 2.7 ± 0.4 −2.59 ± 0.16
J1857+0943 – – – −11.78 ± 0.06 2.62 ± 0.16 −3.07 ± 0.08
J1909−3744 – – – −12.14 ± 0.03 1.69 ± 0.17 −4.13 ± 0.07
J1939+2134 −14.2 ± 0.2 6.0 ± 0.5 −4.09 ± 0.16 −11.35 ± 0.03 2.73 ± 0.12 −2.56 ± 0.09
J2145−0750 −12.98 ± 0.05 0.6 ± 0.2 −6.18 ± 0.05 −12.1 ± 0.4 4.4 ± 0.9 −2.52 ± 0.16
J2317+1439 – – – −11.76 ± 0.09 3.0 ± 0.5 −3.1 ± 0.2

Figure 11. Sum of the one-dimensional marginalized posterior distribu-
tions for the spectral exponents of the power-law DM-noise for the 17 pul-
sars for which the data support this term in their optimal model. The vertical
line shows the spectral exponent expected for Kolmogorov turbulence.

effects. Without observations that overlap in time from different
telescopes at the same frequency, it is not possible to differentiate
between these possibilities.

8 D M VA R I ATI O N S

We find that 17 pulsars from the IPTA data set support power-
law DM noise that can be clearly distinguished from spin noise
and other system- or band-dependent effects. We list the mean log
amplitudes, spectral exponents and the total integrated power for
these models in Table 6, along with their 1σ confidence intervals. In
Fig. 11, we show a histogram of the sum of the 17 one-dimensional
marginalized posteriors for the spectral exponent of the power-law
DM noise model. We find that, while there is non-zero probability

for all spectral exponent bins, the peak is consistent with a value of
γ DM = 8/3, as expected from Kolmogorov turbulence.

We find that only for PSR J1603−7202 and PSR J1713+0747 do
the data support the inclusion of non-stationary DM events in their
stochastic model. In Fig. 12, we show the maximum-likelihood
DM signal realizations for these two pulsars when including the
shapelet model for the DM event. In PSR J1603−7202, the event
corresponds to an increase in the electron density along the line of
sight. We find that only the lowest order shapelet model is supported
by the data, corresponding to a simple Gaussian model for the DM
event, with centroid at MJD 53890 ± 60, full width at half-maximum
(FWHM) of 190 ± 50 d, and amplitude 3 ± 0.5 × 10−3 cm−3 pc,
consistent with values previously reported in Keith et al. (2013).
In PSR J1713+0747, we find a more complex model for the DM
event is supported by the data, with five shapelet components. We
show the maximum likelihood model and 1σ confidence intervals
for the PSR J1713+0747 DM event in Fig. 13. In the EPTA data
alone only a single Gaussian component was found to be supported
by the data for the DM event (Desvignes et al., submitted). In the
IPTA data set, the additional NANOGrav and PPTA data improve
both the constraints placed on the stationary component of the DM
variations, and also improve the sampling of the DM event itself,
warranting additional components in the model. We find the event
extends across a period of ∼100 d with a maximum decrease in the
DM over this period of ∼1.3 × 10−3 cm−3 pc at ∼ MJD 54757 (see
e.g. Coles et al. 2015, Desvignes et al., submitted).

In the bottom two panels of Fig. 12, we compare the one- and
two-dimensional posteriors for the amplitude and spectral exponent
of the power-law DM noise model for both PSRs J1603−7202
(bottom left) and J1713+0747 (bottom right) when including, or
not, the non stationary DM-event model. In both cases, we find that
not including the model for the non-stationarity in the DM leads
to a significantly higher estimate of the amplitude, with a flatter
spectrum.

We find that no pulsars support the addition of a yearly variation
in DM in the IPTA data sets we have analysed. This seemingly
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Figure 12. Maximum-likelihood signal realizations for the power-law DM noise model with the inclusion of a non-stationary DM event for PSRs J1603−7202
(top left) and J1713+0747 (top right). Colours represent the ToA observation frequency: >3 GHz (blue), 2–3 GHz (magenta), 1–2 GHz (green) and <1 GHz
(red). The properties of the time-stationary power-law component of the DM variations change significantly when including the DM-event model for both
pulsars. The bottom two plots show the one- and two-dimensional marginalized posteriors for the amplitude and spectral exponent of the power-law DM
variations when including the non-stationary DM event (black solid lines) or not (dashed red lines) for PSRs J1603−7202 (bottom left) and J1713+0747
(bottom right). In both cases when including the DM event the power-law component of the DM variations is consistent with smaller amplitudes and steeper
spectral exponents.

Figure 13. Maximum-likelihood model and 1σ confidence intervals for
the PSR J1713+0747 DM event. We find that the event model supports
a shapelet model with five components and extends across an interval
of ∼100 d with a maximum decrease in DM of ∼1.3 × 10−3 cm−3 pc.

contradicts results presented in Keith et al. (2013) which observed
significant yearly variations in PSR J0613−0200 in particular. In
Fig. 14 (top), we show the one- and two-dimensional posteriors for
the log amplitude and phase of the yearly DM model included in
our analysis simultaneously with the optimal model from Table 2
which includes power-law spin noise and DM noise, and additional
system noise for the Nançay 1400 MHz data. We find the increase in
the evidence when including the yearly DM variations is ∼1, which
is not significant enough to warrant its inclusion in the model.

To better explain this result, we perform an additional analysis
on the PSR J0613−0200 data set where, rather than parameterizing
the DM noise as a power law, we allow the power at each Fourier
frequency included in the model to vary as a free parameter. In
Fig. 14 (bottom), we show the 95 per cent upper limits (arrows), and
significant detections (points with 1σ uncertainties) for the power
spectrum of the DM noise obtained from this analysis. We consider
significant detections in this case to be those frequencies for which
less than 5 per cent of the posterior distribution is consistent with
power of less than 10−18 (cm−3 pc)2, which we take to be effectively
zero. The straight line indicates the maximum likelihood DM noise
power law from the optimal analysis. While there is a clear detection
of power at a frequency of 1 yr−1, a simple power-law model is still
sufficient to describe the data. This can be understood in terms of
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Figure 14. Top: one- and two-dimensional marginalized posterior distri-
butions for the log amplitude and phase of the yearly DM model solved
for simultaneously with the optimal model which includes power-law spin
noise and DM noise, and additional system noise for the Nançay 1400 MHz
data. Bottom: 95 per cent upper limits (arrows), and significant detections
(points with 1σ error bars) for the power spectrum of the DM noise in
PSR J0613−0200. The straight line indicates the maximum-likelihood DM
power law from the optimal model. While there is a clear detection of power
at a frequency of 1 yr−1, a simple power-law model is still sufficient to de-
scribe the data. This is reflected in the evidence, which increased by only ∼1
compared to the optimal model when including the yearly variations.

the differences in the DM models fitted in this work, compared
to Keith et al. (2013). Here our stationary power-law model for
the DM noise already includes power at a period of 1 yr, thus our
model for yearly DM variations represents an excess with respect to
the level already included in the power-law model. In comparison,
in Keith et al. (2013) a piecewise time series model is used for
the DM variations which does not explicitly include power at any
periodicity. We therefore are not claiming here that there is no power
at a period of 1 yr in the DM variations, simply that the power at that
period is consistent with a simple power-law model for all pulsars
in the IPTA data set.

9 SPIN N O ISE

We find that for eight pulsars in the IPTA data set, the data
support spin-noise processes that can be clearly distinguished
from DM noise processes in the stochastic model. We list the
mean log amplitudes, spectral exponents, and the total integrated
power for these models in Table 6, along with their 1σ confi-
dence intervals. In Fig. 15, we show the maximum likelihood
signal realizations for the spin noise in each of the eight pul-
sars: PSRs J0613−0200, J0621+1002, J1012+5307, J1024−0719,
J1713+0747, J1824−2452A, J1939+2134, and J2145−0750.
These cover a broad range of spectral exponents, from 0.6 ± 0.2 for
PSR J2145−0750 up to 6.0 ± 0.5 for PSR J1939+2134.

Given the large amplitude and steep spectral exponent observed in
the timing noise for PSR J1939+2134, we also perform an evidence
comparison for spin-noise models that include frequencies below
1/T, with T the length of the data set. We do this using the ‘log
low frequency’ model advocated in van Haasteren & Vallisneri
(2015). However, we find that the posterior parameter estimates are
consistent with those derived above and that the evidence does not
support the addition of the parameter describing the low-frequency
cut off. This indicates that the spin-down quadratic included in the
timing model is sufficient to model the low-frequency variations in
the spin noise.

In the recent NANOGrav 9-yr data release (Arzoumanian et al.
2015b, hereafter A15), six pulsars were found to have timing noise
with significance such that the evidence factor for models with
timing noise was greater than three compared to a model with-
out timing noise.3 These were PSRs J0030+0451, J0613−0200,
J1012+5307, J1643−1224, J1910+1256, J1939+2134. We find
that for all six pulsars, the IPTA data sets support time-correlated
stochastic signals. For PSRs J0030+0451 and J1910+1256, the
IPTA data set lacks the multifrequency coverage to distinguish be-
tween DM noise and spin noise, however for PSRs J0613−0200
and J1012+5307, we observed significant spin noise, with spectral
exponents of γ SN = 5.0 ± 1.0, and 1.5 ± 0.3, respectively, roughly
consistent with the values quoted in the NANOGrav data release of
γ = 2.9 and 1.7. For PSR J1643−1224 as discussed in Section 7,
we found that there was significant band noise, inconsistent with
either spin-noise or DM variations, which if improperly modelled
will manifest itself as spin noise. This is the likely origin of the
timing noise observed in the NANOGrav analysis.

We find that our analysis of the IPTA PSR J1939+2134 data
set is incompatible with that presented in A15 where a timing-
noise process with a spectral exponent of 2.4 was observed. In
A15, the discrepancy with previously published analysis (e.g. Kaspi
et al. 1994; Shannon & Cordes 2010; L14) was attributed to either
unmodelled IISM effects, or non-stationary timing noise. To test the
long-term stationarity of the timing noise in this pulsar, we construct
a 9-yr data set from 10 and 20 cm PPTA observations that covers
the same MJD range as the data set presented in A15. In Fig. 16, we
compare one- and two-dimensional marginalized posteriors for the
amplitude and spectral exponent of a spin-noise process from the
optimal model for the IPTA data set (black lines), the 8-yr Kaspi
et. al. (1994) subset of the IPTA data set (pink lines), our analysis of
the data set presented in A15 (blue lines), and the 9-yr PPTA data
set (light green lines).

We find that the analyses of the IPTA data set, the 8-yr Kaspi
data set, and the 9-yr PPTA data set are all consistent with each

3 A15 actually list 10 pulsars as having possible spin noise, but four of these
are under our evidence threshold of three and hence are excluded here.
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Figure 15. Maximum-likelihood signal realiations with 1σ uncertainties for the power-law spin-noise models for PSRs J0613−0200, J0621+1002,
J1012+5307, J1024−0719, J1713+0747, J1824−2452A, J1939+2134, and J2145−0750. Colours represent the ToA observation frequency: > 3 GHz
(blue), 2–3 GHz (magenta), 1–2 GHz (green) and < 1 GHz (red).
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Figure 16. One- and two-dimensional marginalized posteriors for the
log amplitude and spectral exponent of the spin-noise component of the
PSR J1939+2134 for the optimal model from the IPTA data set (black
lines), the 8-yr Kaspi et. al. (1994) subset of the IPTA data set (pink lines),
the recent 9-yr NANOGrav data release (Arzoumanian et al. 2015b) (blue
lines), and a 9-yr PPTA data set consisting of 10 cm and 20 cm observations
that extend over the same MJD range as the 9-yr NANOGrav data release
(cyan lines).

other, indicating steep-spectrum spin noise (γ SN = 6.0 ± 0.5) in
the pulsar. Our analysis of the data set presented in A15, where we
include power-law spin-noise, DM variations, and EFAC, EQUAD
and ECORR parameters for each system is consistent with the anal-
ysis presented in A15, with a shallow spin-noise spectrum with
γ SN = 2.0 ± 0.2. However, this is inconsistent with the other
PSR J1939+2134 data sets analysed. We note that the IPTA data set
for PSR J1939+2134 contains no contribution from NANOGrav,
and so can be considered a completely independent data set from
that presented in A15. While these results suggest that the long-
term behaviour of the spin noise in this pulsar is stationary over the
observed time-span, it does not rule out either band noise due to
unmodelled IISM effects, or system noise in the A15 data set, either
of which could result in a flatter spectrum.

While A15 do not observe timing noise in their PSR J1713+0747
data set, we find our analysis is consistent with that presented in Zhu
et al. (2015), in which a timing noise process with a spectral expo-
nent of γ = 3.6 ± 1.4 was observed, compared to our value 3.1 ± 0.6.
A15 also did not observe timing noise for PSR J1024−0719. For
these two pulsars, our results show that the spin-noise processes
present have steep spectra. The IPTA data sets are considerably
longer (21- and 16-yr for PSRs J1713+0747 and J1024−0719, re-
spectively) than the 9-yr data sets analysed in A15, implying that the
shorter A15 data set is simply not yet sensitive to these processes.

Finally, in Caballero et al. (2015) an analysis of timing noise
in an extended EPTA data set compared to that included in the
first IPTA data release is presented. We find that for those pulsars
that have no detectable system noise in the EPTA data we obtain
consistent parameter estimates for the properties of the spin noise. In
addition, several pulsars that we identify as supporting system noise
in the Nançay 1400 MHz data (likely due to polarization calibration
errors, see Section 6), such as PSRs J1022+1001, J1600−3053,
and J1744−1134 are found to have significant timing noise in the
extended EPTA data set.

1 0 C O N C L U S I O N S

In this paper, we have presented an analysis of the stochastic tim-
ing properties of the 49 pulsars included in first IPTA data release.
We performed model selection using the Bayesian evidence to de-
termine the optimal model for the time-correlated signals present
in each pulsar. In addition to power-law spin noise and DM noise,
these models could include system noise, present in a single observ-
ing system, and band noise present in all observing systems within
some frequency band.

In total, we found that for 19 pulsars the data support no
time-correlated timing noise components, of which notably PSRs
J1640+2224, J2124−3358, and J2129−5721 all have time spans
of greater than 15 yr and σ w of less than 3 μs.

We find for 17 pulsars the data support power-law DM noise, for
eight pulsars the data support a model for intrinsic spin noise, for
10 pulsars the data support system noise and finally for four pulsars
the data support a model with additional band noise.

We showed that the improved frequency coverage, and the wealth
of overlapping data from different telescopes analysed using differ-
ent data reduction pipelines in the IPTA data set enables us to
separate out system- and band-dependent effects with much greater
efficacy than just using the individual PTA data sets. Additionally,
we showed that failing to model these effects appropriately can
dramatically alter the interpretation of the signals observed in the
residuals, in the most extreme cases revealing a significant detection
of spin noise, as a purely systemic effect.

For example, for PSR J1643−1224, we showed that the data
set has, in addition to DM variations, further frequency-dependent
noise that is coherent between different frequency bands observed
by different PTAs, but does not scale as either ν0

o or ν2
o as would be

expected for spin-noise or DM variations, respectively. This allows
us to interpret this timing noise as likely being the result of chromatic
IISM effects, such as refraction and scattering, as opposed to being
due to spin-noise intrinsic to the pulsar.

One of the primary goals of the IPTA is to detect GWs. The sig-
nal induced by a GW background will be highly correlated with the
intrinsic timing noise present in each pulsar in the data set. There-
fore, the strength and properties of this spin noise will certainly
affect the timeline for detection of GWs using a PTA. We showed
in the context of the PSR J0437−4715 data set, that by more opti-
mally modelling the different components of the stochastic signals
present in the data set, the sensitivity to a GWB could be improved
by ∼60 per cent compared to a model that includes only DM vari-
ations and spin noise. This clearly demonstrates the importance of
performing a comprehensive analysis of the combined data sets –
such as that presented here – in order to best exploit the potential
of PTAs to detect GWs.

It is clear that it will be critical for future GW-detection ef-
forts to ensure that multiple telescopes continue to observe the
same pulsars, at the same frequencies, in order to robustly identify
system-dependent noise. Thus, even when future telescopes such
as the Square Kilometre Array come online, it will be necessary
to continue observing with as many large telescopes as possible,
in order to characterize systemic effects in the data sets from these
new instruments.

It has also become clear that band-dependent effects can have a
significant impact on the sensitivity attainable by a PTA at the level
required to detect GWs. At low radio frequencies, variable inter-
stellar scattering can result in non-ν−2 delays that induce erroneous
DM corrections (Cordes et al. 2016), but other band-dependent ef-
fects are also possible. As demonstrated by the most recent PPTA
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GWB limit of 1 × 10−15, the most sensitive limit to date, which was
derived using only 10-cm (∼3 GHz) data (Shannon et al. 2015),
such effects can be mitigated by observing at as high a frequency
as possible. However, the problem is complex since different pul-
sars have different amounts of scattering, different flux densities
and different radio spectral indices. For some pulsars with limited
scatter-broadening, low-frequency observations using e.g. LOFAR
(Stappers et al. 2011; Kondratiev et al. 2016), will help to identify
band-dependent effects. Such observations, together with those ob-
tained using the ultrawideband receivers that are currently installed
or under construction at several observatories, will greatly assist in
achieving optimal sensitivity for GW detection by PTAs.
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