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ABSTRACT

Recent spectro-polarimetric observations of solar-type stars have shown the presence of photospheric magnetic
fields with a predominant toroidal component. If the external field is assumed to be current-free it is impossible to
explain these observations within the framework of standard mean-field dynamo theory. In this work, it will be
shown that if the coronal field of these stars is assumed to be harmonic, the underlying stellar dynamo mechanism
can support photospheric magnetic fields with a prominent toroidal component even in the presence of
axisymmetric magnetic topologies. In particular, it is argued that the observed increase in the toroidal energy in
low-mass fast-rotating stars can be naturally explained with an underlying αΩ mechanism.
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1. INTRODUCTION

One of the most compelling problems in modern dynamo
theory is the formulation of a realistic coupling between the
internal magnetic field and the external field in the atmosphere.
In fact, the boundary conditions for the electric and the
magnetic field at the stellar surface put severe constraints on the
allowed coronal field configurations, and it is often necessary to
resort to very crude approximations for the latter.

The standard textbook boundary condition employed in
mean-field dynamo theory considers a current-free field in the
region r�R, where R is the stellar radius, so that ∇×B=0
in this domain. Although in the solar case this assumption is
motivated by the possibility of describing the almost rigid
rotation of the coronal holes in the lower corona (Nash
et al. 1988), it be might incorrect to extend its validity in more
active stars.

In fact, as current-free fields represent the states of minimum
energy under the constraint that the normal component of the
field at the photosphere is fixed, they cannot provide the
additional energy required to sustain a significant activity level.
Recent measurements of Faraday rotation in the solar corona
support the evidence for large-scale coronal currents (Span-
gler 2007), an essential ingredient to explain coronal heating in
terms of Joule dissipation. On the other hand, on much smaller
scales, the presence of currents is unavoidable in order to explain
the twisted field structure of filaments and prominences.

Force-free magnetic fields, defined by ∇×B=αff(x)B,
where αff(x) is a scalar function, can be more appealing from the
physical point of view, at least for very low plasma-β values.
However, recent investigations based on direct numerical
simulations have shown that the free magnetic energy and the
efficiency of coronal heating via current dissipation are still very
limited in these models (Peter et al. 2015).

An important consequence of current-free boundary condi-
tions is that the toroidal field must identically vanish in the all
domain r�R. In order to illustrate this point in detail, it is
convenient to introduce the scalar potential J jF r, ,( ) so that
the toroidal field can be written as

q j J
= -

¶F
¶

+
¶F
¶

J jB e e
1

sin
. 1T ( )

It is not difficult to show that if Φ is a single valued function,
 ´ =B 0T in a volume always necessarily implies ºB 0T

everywhere (Krause & Raedler 1980). In particular, if the
field configuration is spherically symmetric, the azimuthal
component of the magnetic field must vanish at the surface, so
that =

J
¶F
¶ = 0r R∣ , as imposed in most of the dynamo models

(see Moss & Sokoloff 2009 for an interesting discussion on this
issue).
Spectropolarimetric observations of photospheric magnetic

fields in solar-like stars have revealed surface toroidal field
which are mostly axisymmetric and have a predominant toroidal
component (Petit et al. 2005, 2008; Fares et al. 2010, 2013; See
et al. 2015) implying that most of the magnetic energy resides in
the toroidal field. This is the case of the solar-like stars like
HD72905, with 82% of the magnetic energy stored in the
toroidal field which is nearly completely axisymmetric (97%),
or of the G8 dwarf ξ Boo A with 81% of toroidal energy of
which 97% is due to the axisymmetric component, or the case of
HD56124 with 90% of the energy in axisymmetric field
configurations, and roughly the same strength of poloidal and
toroidal component. The situation is even more dramatic if one
considers M dwarfs like WX UMa or AD Leo where nearly all
the energy is stored in an axisymmetric field with prominent
photospheric non-zero toroidal component (see See et al. 2015
for a detailed discussion).
While in the case of the Sun a similar observational strategy

has confirmed that the magnetic energy is mostly (>90%)
poloidal (Vidotto 2016), it is clear that the boundary conditions
based on current-free coronal field might not be correct for
other, more active stars. In fact, it has been further noticed that
fast-rotating, low-mass stars have on average stronger surface
toroidal fields than solar-mass slow rotators (See et al. 2016).
Can this fact be explained as an enhanced dynamo action due a
αΩ mechanism? Indeed, as strong toroidal fields can alter the
average atmospheric structure, there is no reason to assume
that a current-free field is still a reasonable approximation for
discussing the magnetic energy budget in these objects.
The idea proposed in this Letter is that on large scales and on

timescales of the order of the stellar cycle, the external field can
be considered harmonic so that

 + =B Bk 0, 22 2 ( )
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where the wavenumber k, assumed to be real, determines the
characteristic spatial length of the field.

As is well known, in the Sun, various MHD instabilities
trigger multiple modes harmonics on different length scales
(Nakariakov & Verwichte 2005; Arregui et al. 2013). In more
active stars, one can thus argue that the dynamo waves from the
interior trigger global oscillations of the coronal field that then
propagate according to (2).

It is important to note that linear force-free fields with
a = kff

2 2 are solutions of (2) (note that strictly speaking αff is a
pseudoscalar, while k is a scalar), although the converse is not
true in general (Chandrasekhar & Kendall 1957). In this
investigation, it turns out that the coronal fields obtained by
coupling (2) with dynamo solutions in the interior are
approximately force-free in the sense of Warnecke & Branden-
burg (2010) as á ´ ñ á ñá ñJ B B J2 2 2( ) .1

It will then be shown that standard MHD continuity
conditions at the surface naturally allow for non-zero surface
toroidal fields that are directly extrapolated from the interior
field produced by the dynamo. In this Letter, several solutions
obtained for solar-like stars will therefore be discussed and
analyzed. It turns out that depending on the strength of the
differential rotation and the surface meridional circulation, it is
possible to obtain surface fields whose energies distribution
between toroidal and poloidal components is consistent with
the observations.

2. BASIC EQUATIONS

Let us assume that the field periodically evolves with a
characteristic cycle frequency ω so that = w-B e i t .
Equation (2) thus reads

 + =k 0, 32 2( ) ( )

where the wavenumber k is considered to be real. Clearly we
must assume that Rk=1, otherwise the typical spatial
structure of the field would be too short to be consistent with
our quasi-homogeneous approximation. As we shall see, as
long as Rk=1, our results are not quantitatively dependent on
the value of k.

As usual, the boundary conditions are the continuity of the
normal component of the magnetic field and the tangential
component of the electric field across the stellar surface:

= ´ =n B n E0, 0, 4[[ · ]] [[ ]] ( )

where n is the normal to the surface. In spherical symmetry, the
following decomposition for the magnetic field  can be used

  = - ´ Y -  ´ ´ F º +r r , 5T P( ) ( )

where J jY = Y r, ,( ) and J jF = F r, ,( ) are scalar func-
tions, T is the toroidal component, and P is the poloidal one
(see Krause & Raedler 1980 for details). The vector Helmholtz
(Equation (3)) decouples in the two scalar equations

 F + F =k 0 6a2 2 ( )

 Y + Y =k 0 6b2 2 ( )

and variable separation in (6) gives

å x x qF = +
¥

R A j x B y x P cos 7a
n

n n n n n[ ( ) ( )] ( ) ( )

å x x qY = +
¥

C j x D y x P cos , 7b
n

n n n n n[ ( ) ( )] ( ) ( )

where x is the normalized stellar radius x = r/R, ξ=kR,
qP cosm ( ) are the Legendre polynomials, and jn(x) and yn(x) are

the spherical Bessel functions. It should be noted that k=0 in
(6) does not necessarily imply Ψ≡0 in the all r�R domain,
as it must instead hold in the case of a current-free field
(vacuum boundary condition).
The An–Dn constants are complex numbers whose value

must be determined by the boundary conditions (4) imposed at
the stellar surface and at some finite outer radius =r Rout
where a transition to a wind-dominated field topology occurs
(Parker 1958). For our purposes it will be sufficient to assume
that at =r Rout the solution is radially dominated so that2

= = = =q fB r R B r R 0. 8out out( ) ( ) ( )

In the stellar interior, the field is described by the mean-field
dynamo equation

a h
¶
¶

=  ´ ´ + -  ´  ´
B

U B B B
t

, 9( ) ( ) ( )

where, as usual, α is a pseudoscalar function representing the
turbulent α-effect, U is the mean flow, and η is the turbulent
(eddy) diffusivity. As before = w-B e i t , and we apply the
fundamental decomposition (5) for . Finally, we write

åf qF =
¥

R x P cos 10a
n

n n( ) ( ) ( )

åy qY =
¥

x P cos , 10b
n

n n( ) ( ) ( )

Table 1
Summary of the Numerical Simulations

 WC Cu W Wd eq kR aC wC E ET tot

A 1000 0 0.1 0.1 7.87 ¥ 0.67
B 1000 0 0.1 0.4 7.88 ¥ 0.67
C 1000 0 0.3 0.1 11.24 ¥ 0.67
D 1000 100 0.3 0.1 7.78 ¥ 0.37
E 2000 0 0.1 0.1 9.49 ¥ 0.63
F 2000 0 0.3 0.1 10.97 79.02 0.91
G 2000 0 0.3 vac 11.94 69.98 0
J 4000 0 0.1 0.1 10.11 62.93 0.85
K 4000 0 0.1 0.5 10.04 63.03 0.86
L 4000 100 0.1 0.1 5.57 ¥ 0.68
M 4000 200 0.1 0.1 5.13 ¥ 0.37

Note.In particular, it shows how E ET tot depends on WC and various other
input parameters (“vac” stands for current-free boundary condition). is the
model name, and in particular for model J the toroidal and poloidal field are
displayed in Figure 1 at various values of the cycle phase.

1 Note that imposing the external field to be force-free requires a vanishing
toroidal field at the surface for mathematical compatibility with the interior
solution, as discussed in Reyes-Ruiz & Stepinski (1999) for an αΩ dynamo.

2 Note that, in principle, it would be possible to explicitly extend our solution
beyond =r Rout by matching it with Parker’s wind solution, so that the field
has the expected 1/r2 decay at large distances.
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where ψn and fn are the complex eigenfunctions of antisym-
metric parity of the linear operator (9) (see Rädler 1973 for
details).

The field at the inner boundary is assumed to be a perfect
conductor, but the boundary conditions (4) at the surface imply
the continuity of fn, ψn, and their derivatives across the
boundary. It is not difficult to show that in order for the interior
solution to be consistent with the external field in (7) the
following relation must hold at x=1:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

f g x x

g x x
f+

+

+
- =+ +

+ +

d

dx

y j

y j
n 0, 11n n n n

n n n
n

3 2 3 2

1 2 1 2

( ) ( )
( ) ( )

( )

where γn=An/Bn are determined by imposing the outer
boundary condition (8) on =r Rout. A similar equation can be
obtained for the ψn components.

Figure 1. Temporal evolution of the global (interior+corona) solution for model J of Table 1. The left hemisphere represents the isocontour lines of the toroidal field
with blue levels for negative Bj and red for positive values of the field. The right hemisphere represents the streamlines of the poloidal field. Blue levels are for
counterclockwise field lines; red levels for clockwise field lines. Notice the opening of the field lines at 2R.

Figure 2. Same as model J, but with a convection zone that extends from x =
0.5. In this case, =aC 7.86, =wC 49.5, and =E E 0.90T tot .

Figure 3. Upper panel: evolution of m á ñJ B BR0
2· computed at +30° latitude

for an α2Ω advection-dominated solar dynamo model with kR=0.1,
=aC 3.03, =WC 3 104· , =C 400u , and the cycle period is 32 years. Lower

panel: same model as in the upper panel, but the opposite hemisphere. Note that
the helicity changes sign from the turbulent zone in the interior to the exterior.
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3. DYNAMO MODELS

Let us specialize our formalism to the case of a solar-like
star. We assume the following form for the velocity field

q q q= + W fU u er r r, sin ,( ) ( ) , and we model the solar-like
differential rotation in the following way:

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥q qW = W + +

-
W - Wr

x x

d
,

1

2
1 erf , 12c

c
s c( ) ( ( ) ) ( )

where xc is the location of the convection zone in units of the
stellar radius, d = 0.02, Ωc is the uniform angular velocity of the
radiative core, q qW = W - Wd coss 0

2( ) . Here, W = W - Wd eq c

is the surface differential rotation (in principle, obtained from
observations). For actual calculations, we fixed xc = 0.7 and Ωc/
Ωeq=0.9, but W Wd eq is allowed to vary. The radial profile of
the turbulent diffusivity is assumed to be the following:

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥h h h h= + - +

-x x

d

1

2
1 erf , 13c t c

x( ) ( )

with ηc/ηt=10−1. The α effect is proportional to Jcos , and its
radial profile is assumed to be uniformly distributed in all the
convection zone (see Bonanno et al. 2002 for details). The
meridional circulation u is obtained from the stream function S
(r), which as explained in Bonanno (2013), S(r) can be
obtained from an underlying stellar model. The flow as usual is
equatorward at the equator and poleward at the surface.

As usual, let us introduce the following dynamo numbers,
h= WWC R t

2
0 , a h=aC R t0 , h=C RUu t0 , w h=wC R t

2 ,
where Ω0 is the rotation rate at the equator and U0 is the
maximum strength of uθ at the bottom of the convection zone.
The resulting eigenvalue problem can be conveniently solved
by inverting a block-diagonal complex matrix (Rädler 1973;
Bonanno 2013) that must be truncated to the desired numerical
accuracy. For calculations we used the kinematic dynamo code
CTDYN, developed by the author, and extensively tested in
Jouve et al. (2010). Our results are summarized in Table 1.

Let us first stress that the E ET tot at the surface is non-zero,
and it is now an increasing function of WC , an effect clearly
expected for an αΩ dynamo. The surface differential rotation
also plays an important role because it strongly influences the
value of E ET tot, as it can be deduced by looking at models E
and F, for instance. On the contrary, it should also be noted that
E ET tot decreased as the flow is increased (see models J, L, and
M, for instance). This fact has a clear physical interpretation: as
the flow is poleward below the surface, the toroidal belts
become more and more confined below the surface at high Cu.
It is also reassuring to notice that as long as kR=1, our results
are not sensitive to the choice of ξ. On the other hand, with the
new boundary conditions, the value of the critical aC is in
general smaller than with the standard current-free boundary
conditions, as can be observed by looking at models F and G.
We also verified that our results are not qualitatively dependent
on the location of the external boundary Rout. Moreover, low-
mass stars with a more extended convection zone have in
general higher values of E ET tot, if WC is large enough, as
discussed in the model of Figure 2.

If the dynamo action is instead driven by the meridional
circulation (as in mean-field models of the solar dynamo), the

new boundary condition does not alter the internal dynamo
action because the toroidal field is localized at the bottom of the
convection zone.
In the case of a generic αΩ advection-dominated dynamo

action, we observe a change of sign of the dimensionless ratio
á ñJ B B2· from positive (in the northern hemisphere) in the

turbulent zone in the interior to negative in the exterior. The
opposite happens in the southern hemisphere as one can see
in Figure 3. A similar change of sign between the turbulent
zone and the exterior has also been observed in Warnecke
et al. (2011), although in our mean-field models the current
helicity is mostly negative in the outer layers in the northern
hemisphere.

4. CONCLUSIONS

The description of the external field in terms of solution of
the Helmholtz equation allowed us to extrapolate the internal
toroidal field generated by the dynamo on the photosphere, and
finally to make contact with the observations. The assumption
beyond this idea is the possibility of treating the corona as an
external passive medium with effective macroscopic dielectric
properties, if averaged over long enough timescales. Although
this approach oversimplifies the complex physics of the corona,
in our opinion, it represents a significant improvement of the
current-free boundary conditions for which ºB 0T on the
surface, at least in some classes of very active stars. The
resulting dynamo numbers are in general smaller than the
standard critical dynamo numbers; the ratio E ET tot increases
with WC and with a more extended convection zone and
decreases with Cu. Indeed, fast-rotating stars with a larger
convection zone should approach a cylindrical rotation law in
the interior with a smaller surface meridional circulation.
One can therefore argue that the general increase of the

surface toroidal energy in low-mass fast-rotating stars finds its
natural explanation in an underlying αΩ dynamo mechanism.
A detailed study of all the parameter space and a comparison

with the global topologies inferred from observations will be
discussed in a longer paper. We also plan to extend this
investigation including non-axisymmetric solutions of higher
azimuthal modes.

I would like to thank the colleagues of the MHD group of the
Leibniz Institute for Astrophysics in Potsdam for important
comments and hospitality. I am also indebted to Rim Fares for
clarifications on Zeeman–Doppler imaging and on magnetic
field topology reconstruction and to the anonymous referee for
the constructive criticism.
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