
2016Publication Year

2020-05-25T12:46:01ZAcceptance in OA@INAF

DEMNUni: ISW, Rees-Sciama, and weak-lensing in the presence of massive 
neutrinos

Title

CARBONE, Carmelita; Petkova, Margarita; Dolag, KlausAuthors

10.1088/1475-7516/2016/07/034DOI

http://hdl.handle.net/20.500.12386/25134Handle

JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICSJournal

2016Number



ar
X

iv
:1

60
5.

02
02

4v
2 

 [
as

tr
o-

ph
.C

O
] 

 2
 J

ul
 2

01
6

Preprint typeset in JHEP style - HYPER VERSION

DEMNUni: ISW, Rees-Sciama, and weak-lensing in

the presence of massive neutrinos

Carmelita Carbone

INAF–Osservatorio Astronomico di Brera, Via Bianchi 46, 23807, Merate (MI), Italy

INFN–Sezione di Bologna, viale Berti Pichat 6/2, I-40127, Bologna (BO), Italy

E-mail: carmelita.carbone@brera.inaf.it

Margarita Petkova

Excellence Cluster Universe, Boltzmannstr. 2, D-85748 Garching, Germany
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Abstract: We present, for the first time in the literature, a full reconstruction of the

total (linear and non-linear) ISW/Rees-Sciama effect in the presence of massive neutri-

nos, together with its cross-correlations with CMB-lensing and weak-lensing signals. The

present analyses make use of all-sky maps extracted via ray-tracing across the gravita-

tional potential distribution provided by the “Dark Energy and Massive Neutrino Uni-

verse” (DEMNUni) project, a set of large-volume, high-resolution cosmological N-body

simulations, where neutrinos are treated as separate collisionless particles. We correctly

recover, at 1 − 2% accuracy, the linear predictions from CAMB. Concerning the CMB-

lensing and weak-lensing signals, we also recover, with similar accuracy, the signal predicted

by Boltzmann codes, once non-linear neutrino corrections to Halofit are accounted for.

Interestingly, in the ISW/Rees-Sciama signal, and its cross correlation with lensing, we

find an excess of power with respect to the massless case, due to free streaming neutrinos,

roughly at the transition scale between the linear and non-linear regimes. The excess is

∼ 5 − 10% at l ∼ 100 for the ISW/Rees-Sciama auto power spectrum, depending on the

total neutrino mass Mν , and becomes a factor of ∼ 4 for Mν = 0.3 eV, at l ∼ 600, for the

ISW/Rees-Sciama cross power with CMB-lensing. This effect should be taken into account

for the correct estimation of the CMB temperature bispectrum in the presence of massive

neutrinos.
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1. Introduction

The Standard Model of particle physics predicts the existence of three active massless

neutrino species: the electron (νe), muon (νµ) and tau (ντ ) neutrinos. However, the dis-

covery of lepton flavour oscillations has suggested that neutrinos are massive particles,

fixing the lower limit of the sum of neutrino masses to Σmν≡ mνe + mνµ + mντ & 0.06

eV1 [1, 2, 3, 4]. This implies that, after becoming non-relativistic, neutrino free-stream

with large thermal velocities that suppress the growth of neutrino densities perturba-

tions on scales smaller than the so-called “free-streaming length”, λfs(z,mν) ≃ 8.1H0 (1 +

z)/H(z) (1 eV/mν )Mpc/h, where mν is the mass of the single neutrino species, H(z) is the

so-called Hubble parameter, and H0 the Hubble constant, H(z = 0). As a consequence,

due to gravitational backreaction effects, also the evolution of cold dark matter (CDM) and

baryon [5] densities is altered, and the total matter power spectrum is largely suppressed

at scales λ << λfs .

Moreover, given the present mass constraints, neutrinos become non-relativistic after

the epoch of recombination, and, accordingly, modify the radiation density contribution.

The transition from the relativistic to the non-relativistic regimes postpones the matter

radiation equality for a given value of Ωm h2 (where Ωm is the ratio, at z = 0, between the

matter density of the Universe and the critical density, ρc, and h the Hubble constant H0

in units of 100 km s−1Mpc−1), and modifies the background evolution, slightly affecting

the properties of the primary cosmic microwave background (CMB) anisotropies.

1More specifically, Σmν must be greater than approximately 0.06 eV in the normal hierarchy scenario

and 0.1 eV in the degenerate hierarchy.
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In addition, along their travel from the last scattering surface to the observer, CMB

photons undergo also secondary anisotropies, in particular they are red/blue-shifted as

they cross growing/decaying gravitational potential wells. This effect is called the late In-

tegrated Sachs-Wolfe effect (ISW), as it was first described by Sachs and Wolfe in 1967 [6].

During the matter dominated era, the two effects of background expansion and gravita-

tional attraction compensate each other so that the total linear gravitational potential, Φ,

produced by the Large Scale Structure (LSS) distribution in the Universe, is constant in

time, and the ISW effect, which depends on the time derivative Φ̇, vanishes. In contrast,

during e.g. the Dark Energy (DE) dominated era, the background expansion rate of the

Universe increases and these two effects do not compensate anymore, causing the decaying

of the gravitational potential perturbations. In this case, Φ̇ is no longer vanishing: a CMB

photon passing through an overdense region gains more energy falling into the potential

well with respect to the energy lost while climbing out of it; a CMB photon passing through

an underdense region loses more energy climbing the potential hill than the energy gained

during its descent. Therefore, overdense regions correspond to hotter spots in the CMB

sky map, and underdense regions to colder ones.

In the linear regime, the total effect is represented by an increase of the photon tem-

perature power spectrum on very large scales, which has actually been detected via full-sky

CMB probes, e.g. Planck [7, 8], or via the cross-correlation of the CMB temperature with

LSS data [9, 10, 11].

However, besides dark energy, also the cosmological background of massive neutri-

nos produces a non-vanishing ISW effect. In fact, the neutrino free-streaming makes the

gravitational potential to evolve in time, producing a net Φ̇ 6= 0 even in the absence of a

recent accelerated background expansion. As shown in [12], neutrino velocities generate an

excess of ISW effect at high redshifts z, due to their impact on the linear growth factor.

Unfortunately, this effect is not directly observable, since its detection would require very

precise data at large l and high redshifts, where the late ISW effect is masked by primordial

temperature anisotropies.

The non-linear growth of density perturbations modifies the previous picture, produc-

ing additional temperature perturbations which give rise to the so-called “Rees-Sciama”

(RS) effect, directly related to the momentum density in the non-linear regime (e.g.

[13, 14, 15, 16, 17], and references therein). In fact, the accelerated non-linear growth

of structure increases the depth of the potential wells in overdense regions, resulting in a

reduction of the total CMB temperature, with respect to the linear case. This partially

cancels the ISW effect in hotter regions. On the contrary, the RS effect increases the ISW

effect in underdense regions, since the saturation of the density contrast in voids further

suppresses the growth of the gravitational perturbations. Also in this case, massive neutri-

nos have an impact, since they alter the RS effect in a scale- and redshift-dependent way,

owing to the neutrino free-streaming scale, λfs.

Besides the ISW and RS effects, CMB photons undergo also the gravitational lens-

ing [18] and the Sunyaev-Zeldovich (SZ) effects [19] generated by LSS. Massive neutrinos

alter the related auto- [20] and cross-correlation functions, with different impacts at the

linear and non-linear levels, mainly depending on their effect on the total matter power

spectrum and cluster number counts.

In this work, we present for the first time in the literature a full reconstruction of the

total (linear and non-linear) ISW-RS effect in the presence of massive neutrinos, together
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with its cross-correlations with CMB-lensing and weak-lensing signals. Previous works

[21, 22] have provided a similar reconstruction in the standard ΛCDM massless case.

The present analyses make use of all-sky maps extracted via ray-tracing across the

“Dark Energy and Massive Neutrino Universe” (DEMNUni) simulations, which are the

largest N-body simulations to date with a particle neutrino component. At present, as

we explain in more details in § 2 below, these simulations are characterised by a baseline

ΛCDM cosmology to which we add neutrinos with different total masses, Mν ≡Σmν. In

the next future, we plan to extend the DEMNUni set with the inclusion of an evolving dark

energy background, with different equations of state w, in order to study the degeneracy

between Mν and w at the non linear level.

This paper is organised as follows. In § 2 we present the DEMNUni simulations. In

§ 3, we explain the map-making procedure, in § 4 we present the ISW-RS and lensing

signals extracted from the simulations, focusing the discussion on the angular auto power

spectra, and presenting the cross-correlation signals in § 5. Finally, in § 6 we draw our

main conclusions.

2. The DEMNUni simulations

The DEMNUni simulations have been conceived for the analysis of different probes, like

galaxy surveys and CMB data, and their cross-correlations, in the presence of massive

neutrinos. In particular, in order to investigate simultaneously the neutrino impact on

different CMB secondary anisotropies, e.g. the ISW-RS and weak-lensing effects, we have

produced a set of simulations with a volume big enough to include the very large scale

perturbation modes, and, at the same time, with a good mass resolution to investigate

the effects of small-scale non-linearities and neutrino free-streaming. Moreover, for the

accurate reconstruction of the light-cone back to the starting redshift of the simulations,

we have assumed an output time-spacing small enough that possible systematic errors, due

to the interpolation between neighbouring redshifts along the line of sight, result to be

negligible.

The DEMNUni simulations have been performed using the tree particle mesh-smoothed

particle hydrodynamics (TreePM-SPH) code gadget-3 [23], specifically modified by [24] to

account for the presence of massive neutrinos. This modified version of gadget-3 follows

the evolution of CDM and neutrino particles, treating them as two separated collisionless

species. Given the relatively high velocity dispersion, neutrinos have a characteristic clus-

tering scale larger than the CDM one, allowing to save computational time by neglecting

the calculation of the short-range gravitational force. This results in a different spatial

resolution for the two components, which for neutrinos is fixed by the PM grid (that we

have chosen to be eight times larger than the particle number), while for CDM particles is

about one order of magnitude higher.

The DEMNUni set of simulations has a starting redshift zin = 99, and is characterised

by a comoving volume of (2 h−1 Gpc)3 filled with 20483 dark matter particles and, where

present, 20483 neutrino particles. Given the large amount of memory required by the

simulations, baryon physics is not included. The authors in Ref. [25] found baryon effects

to be independent of cosmological parameters, suggesting that they are also independent

of the neutrino mass; therefore, our choice should not affect the results presented in this

work. This is supported also by [26], where the authors show that the neutrino induced
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suppression in the matter power spectrum is very much the same also when neutrinos are

considered in the presence of baryons. Moreover, since we are seeking deviations (due to

massive neutrinos) from a fiducial reference ΛCDMmodel in terms of P (k) ratios, we expect

that baryon feedback will cancel out in this case, and that additional effects produced by

the interplay of neutrinos with baryon physics should be higher order in both (for further

details see [27]).

We have produced a total of four different simulations, choosing the cosmological

parameters according to the Planck results [28], namely a flat ΛCDM model generalised to

a νΛCDM framework by changing only the value of the sum of the three active neutrino

masses Mν =Σmν = (0, 0.17, 0.3, 0.53) eV, respectively, and keeping fixed Ωm and the

amplitude of primordial curvature perturbations As.

The simulations are characterised by a softening length ε = 20h−1 Kpc, and have

been run on the Fermi IBM BG/Q supercomputer at CINECA2, Italy, employing about 1

Million cpu-hrs per simulation (including the production of halo and sub-halo catalogues).

For each simulation we have produced 62 output logarithmically equispaced in the scale

factor a = 1/(1 + z), in the redshift interval z = 0 − 99, 49 of which lay between z = 0

and z = 10. For each of the 62 output times, we have dumped on-the-fly a particle

snapshot composed by both CDM and neutrino particles, a three-dimensional (3D) grid of

the gravitational potential, Φ, with side size Lbox = 2h−1 Gpc and a mesh of 40963 cells,

and a 3D grid of the time derivative Φ̇, with same dimensions and resolution, for a total

of about 90 TB of data per simulation. Finally, in order to build halo catalogues, we have

post-processed each of the 62 particle snapshots with the friends-of-friends (FoF) algorithm,

included in gadget-3 [29, 30], setting to 32 the minimum number of particles, thus fixing

the halo minimum mass to MFoF ≃ 2.5 × 1012 h−1M⊙. Finally, the FoF catalogues have

been processed via the subfind algorithm (also included in gadget-3 ) so that the initial

FoF parent halos are split into multiple sub-halos, with the result of an increase in the

total number of identified objects and of a lower minimum mass limit (for further details

see [27]).

In Fig. 1 the power spectra extracted from the simulations for two total neutrino masses

are shown (upper panel), together with their ratios with respect to the ΛCDM case (lower

panel), for different neutrino masses and at two different redshifts. Worth of note is the

range of scales sampled by the simulations, more than three order of magnitudes, thanks

both to the peculiar large volume and mass resolution characterising the DEMNUni set.

The lower panel of Fig. 1 shows the well-known non-linear damping caused by massive

neutrinos on the total matter power spectrum. Our findings recover previous results in the

literature [31, 32, 33, 34, 35, 36, 37, 38, 39, 40], in particular the excess of power suppression

with respect to the linear theoretical expectations. As we will show in the next Sections,

the non-linear behaviour of the total matter power spectrum proportionally affects the

CMB-lensing and weak-lensing potentials from LSS, and the larger the total neutrino mass

Mν is, the greater its impact on lensing quantities is. On the contrary, we will show that,

for the ISW-RS effect, lighter neutrinos produce, at intermediate scales, a larger effect on

Φ̇, due to their higher thermal velocities, vth(z,mν) ≃ 158 (1 + z) (1eV/mν) km/s, and

smaller free-streaming comoving wave number in Fourier space, kfs ≡ 2π/λfs/(1 + z).

2http://www.cineca.it/
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Figure 1: Top panel: the total matter P (k, z = 0) for Mν = 0.17, 0.53 eV, measured from

the simulations (violet stars) compared to the non-linear (NL) total matter P (k) extracted from

CAMB (solid blue line) combined with the Halofit [41] non-linear corrections, including the

neutrino contribution from [26]. Orange triangles and red dashed lines represent the corresponding

neutrino P (k) from simulations and CAMB, respectively. Bottom panel: ratios of the simulated

total matter P (k) for Mν = 0.17, 0.30, 0.53 eV (stars, triangles, diamonds, respectively) wrt the

simulated P (k,Mν = 0 eV) at z = 0.485, 1.458. The dotted blue, dashed red, and dot-dashed

orange lines represent the linear (L) expectations from CAMB.

3. ISW-RS and weak-lensing potential reconstruction

The temperature anisotropies induced by the total (linear and non-linear) ISW-RS effect,

in a direction n̂ on the sky, can be computed as the integral of the time derivative of the

physical peculiar gravitational potential, Φ̇, along the line of sight from the last scattering

(LS) surface to the present epoch at t0 [6].

∆T (n̂) =
2

c2
T̄0

∫ t0

tLS

Φ̇(t, n̂) dt, (3.1)

where t is the cosmic time, tLS the age of the Universe at the LS surface, T̄0 = 2.7255K

the today CMB temperature, and c the speed of light. Equation (3.1) can be rewritten as

the integral over the radial comoving distance, r,

∆T (n̂) =
2

c3
T̄0

∫ rLS

0

Φ̇(rn̂) a dr, (3.2)

where rLS is the radial comoving distance to the LS surface, and a is the scale factor of the

Universe.
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Analogously, the integral for the projected CMB lensing potential due to scalar per-

turbations with no anisotropic stress reads

φ(n̂) ≡ −2

∫ rLS

0

rLS − r

rLSr

Φ(rn̂; cη0 − r)

c2
dr , (3.3)

where η0 is the present conformal time, and Φ is the physical peculiar gravitational po-

tential generated by density perturbations. For the purposes of this work, the line-of-sight

integration is made in the so-called “Born-approximation” along the undeflected photon

path, which, for a given particle mass resolution, results to be accurate at sub-percent level

for weak-lensing and CMB-lensing calculations up to l . 3000 [42, 43].

The corresponding deflection-angle integral is

α(n̂) ≡ −2

∫ r∗

0

rLS − r

rLSr
∇n̂

Φ(rn̂; cη0 − r)

c2
dr , (3.4)

where [1/r]∇n̂ is the two dimensional (2D) transverse derivative with respect to the line-

of-sight pointing in the direction n̂ ≡ (ϑ,ϕ).

We implement Eqs. (3.2)-(3.3) in our code for CMB ray-tracing across the simulated

Φ and Φ̇ distributions, in order to produce all-sky ISW-RS and weak-lensing maps, as

described in § 3.1 below.

3.1 Map-making procedure

As mentioned in § 2, during the production stage of the DEMNUni simulations, using a

properly modified version of gadget-3, we have dumped on-the-fly 62 cubic grids of Φ

and Φ̇, with a mesh of 40963 cells, each of ≃ 0.5h−1Mpc on a side3. Hence, the field Φ

corresponds to the density field of the simulations smoothed on a scale of about 500h−1kpc.

This resolution is good enough to resolve scales & 10 h−1 Mpc, relevant for the effects

analysed in this work. As explained in § 2, the resolution of the N-body simulation (which

contains structures down to the gravitational softening length of 20h−1kpc) is much greater,

but not necessary for the present study.

In order to build mock all-sky maps of the CMB temperature anisotropies ∆T described

in Eq. (3.1), we employ the map-making procedure developed by [44], adapted to the ISW-

RS effect, i.e. CMB photons are ray-traced along the undeflected line of sight through

the 3D field Φ̇. We apply the same kind of ray-tracing also to the 3D Φ-grids, in order

to produce the same realisation of the Universe and compute the cross-correlation signal

between the ISW-RS temperature maps and the CMB/weak-lensing potential maps.

To this aim, we stack the Φ- and Φ̇-grids around the observer, located at z = 0,

applying the replication and randomisation procedure designed by [44]. This particular 3D

tessellation scheme is required to avoid both the repetition of the same structures along

3The gravitational potential itself has been calculated by first assigning the particles to the mesh with

the clouds-in-cells mass assignment scheme. The resulting density field has then been Fourier transformed,

multiplied with the Green’s function of the Poisson equation in Fourier space, and then transformed back

to obtain the potential. Also, a slight Gaussian smoothing on a scale rs equal to 1.25 times the mesh size

has been applied in Fourier space in order to eliminate residual anisotropies on the scale of the mesh, and

a deconvolution to filter out the clouds-in-cells mass assignment kernel has been applied as well. The time

derivative of the gravitational potential has been computed via two-sided differentiation of two potential

grids dumped at two different step-times immediately subsequent to the output times of each particle

snapshot.
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Figure 2: Top panel: projected mono-dipole-subtracted full-sky maps of the ISW-RS signal for

Mν = 0 eV (left) and Mν = 0.17 eV (right). They do not include primary CMB anisotropies.

Bottom panel: projected mono-dipole-subtracted full-sky maps of the lensing potential for Mν = 0

eV (left) andMν = 0.53 eV (right); bars indicate the modulus and orientation of the deflection-angle

field α.

the line of sight, and the generation of artifacts like ripples in the simulated deflection-

angle field, which can be avoided only if the peculiar gravitational potential is continuous

transversely to each line of sight. With this procedure we produce a simulated volume

around the observer which is large enough to carry out the integration over all the redshifts

relevant to this work. Finally, we select a pixelisation of the sky with a set of directions

n̂ ≡ (ϑ,ϕ), following the standard approach introduced by the HEALPix
4 hierarchical

tessellation of the unit sphere [45].

In order to extract the impact of massive neutrinos on the ISW-RS effect, mainly

dominated by the free-streaming at high redshifts [12], we integrate Φ̇ along the line of sight

up to z ≃ 21 (for further details on the interpolation and integration scheme see [44]). For

the simulated CMB lensing signal, previous studies [46, 47] indicate that an integration up

to z ≃ 99 is sufficient to recover mostly ∼ 99% of the power. In the case of weak-lensing,

we produce all-sky maps of the lensing potential with different source redshifts zs. In

particular, we consider that all the sources are placed on a spherical surface at redshifts

4http://healpix.sourceforge.net
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zs = 2, 5.5, 8, respectively. This is done for illustrative purposes, i.e. to quantify the impact

of neutrino free-streaming at different redshifts on the weak-lensing (WL) signal and its

cross-correlation with the total ISW-RS effect.

In the upper panel of Fig. 2, we show projected mono-dipole-subtracted full-sky maps

of the ISW-RS signal for the massless case (left top panel) and for Mν = 0.17 eV (right top

panel). These maps represent the ISW-RS contribution alone to the CMB temperature,

Eq. (3.2), and do not include primary CMB anisotropies. In the lower panel, projected

mono-dipole-subtracted full-sky maps of the lensing potential in the two cases, Mν = 0

eV and Mν = 0.53 eV, are presented; bars here indicate the modulus and orientation

of the deflection angle field which represents the spatial gradient of the lensing potential

map, as defined in Eq. (3.4). These maps have been obtained via the map-making technique

described above, using a HEALPix pixelisation parameter Nside = 2048, and have an angular

resolution of ≃ 1.72′, with 50331648 pixels in total. In Fig. 2, the correlation between

the maps in the upper and lower panels, i.e. between the ISW-RS and lensing potential

realisations, is clearly visible, and shows how the origin of these two effects is due to the

same LSS distribution crossed by CMB photons.

Figure 3: Modulus of the deflection-angle vector difference between the massless case, Mν = 0

eV, and the massive neutrino case, Mν = 0.53 eV. Left: all the galaxy sources are supposed to be

located at zs = 1. Right: the source is represented by CMB photons at zs = 1100.

4. The impact of massive neutrinos on auto power spectra

Massive neutrinos produce noticeable effects on CMB secondary anisotropies, which in

some cases, e.g. for large neutrino masses, can be even visually inspected. Let us first

notice some visible differences between the massless and massive neutrino cases: in the

lower panels of Fig. 2, the neutrino free-streaming suppresses, as expected, the lensing

potential signal with respect to the ΛCDM scenario (this can be especially observed by an

eye inspection of the filaments in the two maps, and from the bar units of the modulus of

the deflection angle); on the other hand, in the upper panels, the effect is opposite, i.e. in

the ISW-RS case the neutrino free-streaming produces a slight excess of power with respect

to the massless case, and this is caused by the Φ̇ induced by hot neutrinos, mostly at high

redshifts and for lighter neutrino masses (for this reason the temperature range represented

– 8 –



by the colour bar is larger for the Mν = 0.17 eV case). We will explain this effect in more

details in the next section, but let us anticipate that smaller neutrino masses produce a

larger excess in the CMB temperature power spectrum.

In Fig. 3 we show the modulus of the deflection angle difference, between the massless

case, Mν = 0 eV, and the massive neutrino case, Mν = 0.53 eV. Here the plotted quantity

is
√

(∆α1)2 + (∆α2)2, where α1 and α2 are the two components of the deflection angle α,

and ∆αi, with i = 1, 2, stands for the difference between each component in the two cases

Mν = 0 eV and Mν = 0.53 eV. In the left panel all the galaxy sources are supposed to be

located at zs = 1, while in the right panel the source is represented by CMB photons at

zs = 1100. These maps visually show the suppression in structure formation due to the

presence of massive neutrinos, for two different cases of weak-lensing. Given the limited

spatial resolution of the potential grids, smaller angular scales are captured via ray-tracing

as the source redshift increases, such that the right panel in Fig. 3 shows much more

“non-linear” features with respect to the left panel.

Figure 4: Left: simulated angular power spectra of the total ISW-RS induced temperature

anisotropies, for Mν = 0, 0.17, 0.3, 0.53 eV (black solid, blue dashed, red dot-dashed, and orange tri-

dot-dashed lines, respectively). Light-green symbols represent the linear contribution (ISW alone)

from CAMB in the massless case, the vertical line at l ≃ 100 corresponds roughly to the transition

between the linear and non-linear regimes. Right: percent residuals, with respect to the massless

case, of the ISW-RS power spectra obtained via direct ray-tracing across the simulations.

4.1 The total ISW-RS effect

The simulated power spectra of the total ISW-RS induced temperature anisotropies, ob-

tained via ray-tracing from z = 0 to z ≃ 21, are shown in the left panel of Fig. 4 for

four different total neutrino masses, Mν = 0, 0.17, 0.3, 0.53 eV. They are represented by

the black (solid), blue (dashed), red (dot-dashed), and orange (tri-dot-dashed) lines, re-

spectively. The light-green symbols represent the linear contribution (ISW alone) from

CAMB5 in the massless case, while the vertical line at l ≃ 100 corresponds roughly to

the transition between the linear and non-linear regimes [48, 49]. Let us notice the good

agreement between the theoretical expectations from CAMB and the simulation outputs

at multipoles l > 10; at l < 10 the simulated signals show a lack of power with respect

to the predictions, due to the finite size of the simulation box; on the other hand we

5http://camb.info
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Figure 5: Left: simulated power spectra of the ISW-RS induced anisotropies computed by integra-

tion in different redshift bins. Right: corresponding percent residuals with respect to the massless

case.

succeed in reproducing the non-linear contribution for l > 100, scales at which CAMB

predictions fail, given that the RS contribution is not implemented in the code. In the

right panel of Fig. 4 it is possible to appreciate the differences produced in the ISW-RS

induced temperature anisotropies by free-streaming neutrinos with different total masses.

In particular, here we show the percent residuals with respect to the massless case; for

small masses, Mν = 0.17 , 0.3 eV, we observe an excess of power of about 10% and 5%

respectively, at 50 . l . 150, corresponding to the transition from linear to non-linear

regimes. This excess is indeed expected to originate from the Φ̇ term induced by the slow

decay of gravitational and matter perturbations produced by hot neutrinos at intermediate
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cosmological scales, happening both during the matter and dark energy domination eras.

On the other hand, for large neutrino masses, e.g. Mν = 0.53 eV, which correspond to

smaller neutrino thermal velocities, the total effect consists in a power suppression, similar

to what happens for the lensing potential in the presence of massive neutrinos. Finally,

on fully non-linear scales l > 200, where the signal is totally due to the RS effect, massive

neutrinos decrease the total temperature power with respect to the massless scenario, and

this suppression increases with the neutrino mass. This is reasonably due to the non-linear

excess of suppression of the total matter power spectra with respect to linear expectations

in the presence of massive neutrinos (see the left panel of Fig. 1 for k . 10 h/Mpc, cor-

responding to the Φ̇-grid resolution), which for lower thermal velocities may dominate the

total effect.

In order to understand how the effect of free-streaming massive neutrinos evolves with

z, in the left panels of Fig. 5 we show the power spectra of the ISW-RS induced anisotropies

computed in different redshift bins. We observe that for low redshifts, z . 1, neutrinos

produce a larger suppression in CTT
l at l > 100 as their mass increases; in this case the slow

down of structure formation in the presence of massive neutrinos has the dominant role.

On the other hand, for larger redshifts, z & 1, far from the epoch of recent acceleration, we

see an excess of power which peaks at the transition scale, l ≃ 100, and is larger for lighter

neutrinos; as pointed out in [12], this is due to the behaviour of the linear growth rate in

the presence of massive neutrinos, which produces an evolving gravitational potential even

in the absence of dark energy.

More quantitatively, in the right panels of Fig. 5, we show the percent residuals with

respect to the ΛCDM case: in the upper panels, for z . 1, the power suppression in the

CTT
l has a trend similar to the matter P (k), increasing at large multipoles and somewhat

proportional to the neutrino mass ratios. In the lower panel, instead, at higher redshifts,

1 . z . 21, the produced excess of power can even reach 50% for small neutrino masses

at l ≃ 100. The combination of the lack of power at low redshifts and the excess at high

redshifts produces the total effect shown in the left panel of Fig. 4.

Incidentally, let us notice how the impact of the limited simulation volume increases

with redshift, producing a larger lack of power at l < 10 for larger z values.

4.2 CMB and Weak lensing spectra

Let us now focus the discussion on the effect of massive neutrinos on lens-induced CMB sec-

ondary anisotropies. Since lensing traces directly the total matter power spectrum, i.e. the

gravitational potential Φ rather than the time derivative Φ̇, the theoretical linear predic-

tions from CAMB, combined with the Halofit [41] non-linear corrections and including

also the neutrino contribution from [26], succeed in reproducing mostly perfectly (as com-

pared to the simulated signal) the CMB-lensing effects in the presence of massive neutrinos

on all the scales of interest. This result is presented in the top panels of Fig. 6; in particular,

the left panel shows the CMB lensing potential angular power spectrum obtained by photon

ray-tracing, from z = 0 up to z = 99, across the total gravitational field, generated both

by CDM and massive neutrinos, from the DEMNUni simulations. The dashed light-green

curve represents the prediction fromCAMB in the ΛCDM case; the dotted black, blue, red,

and orange lines represent the simulated lensing potential for Mν = 0, 0.17, 0.3, 0.53 eV,

respectively. Comparing the black and light-green lines, i.e. the ΛCDM curves, we observe

less power in the simulated spectrum with respect to CAMB predictions, at multipoles
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Figure 6: Upper left panel: CMB lensing potential angular power spectrum obtained by pho-

ton ray-tracing, from z = 0 up to z = 99, across the total gravitational field of the DEMNUni

simulations. The dashed light-green curve represents the prediction from CAMB in the massless

case; the dotted black, blue, red, and orange lines represent the simulated lensing potential for

Mν = 0, 0.17, 0.3, 0.53 eV, respectively. Top right panel: percent residuals between the massive

and massless neutrino cases. Here, tri-dot-dashed blue, red, and orange lines are the simulated

signals for Mν = 0, 0.17, 0.3, 0.53 eV, respectively. Semi-analytical non-linear CAMB predictions

are represented by symbols, as described in the legend. Middle left panel: percent residuals, wrt

to the massless case, of the simulated TT lensed power spectra for Mν = 0.17, 0.3, 0.53 eV. Middle

right panel: percent residuals, wrt to the massless case, of the simulated EE lensed power spectra

for Mν = 0.17, 0.3, 0.53 eV. Lower left panel: simulated lens-induced BB angular power spectra for

Mν = 0, 0.17, 0.3, 0.53 eV. Lower right panel: percent residuals, wrt to the massless case, of the

simulated lens-induced BB power spectra for Mν = 0.17, 0.3, 0.53 eV.
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l & 1000. This is due to the finite resolution of the DEMNUni potential grids, about ∼ 0.5

Mpc/h, much smaller compared to the resolution of the dark matter simulations from [50]

used for non-linear corrections in Halofit. On the other hand, looking at the top right

panel of Fig. 6, i.e. at the percent residuals between the massive and massless neutrino

cases, we do not observe such lack of power with respect to the semi-analytical CAMB

predictions (compare tri-dot-dashed lines against symbols), implying that resolution effects

cancel out when focusing on the relative differences with respect to the ΛCDM case. In

particular, as expected, the integrated effect of massive neutrinos produces a suppression

of power in the lensing potential which increases with the neutrino mass, decreases with

the angular scale (low l), and at large multipoles tends to become constant, approximately

proportional to the ratios of the total neutrino masses. We find an asymptotic power sup-

pression of about ∆Cφφ
l ≃ 10%, 19%, 31% for Mν = 0.17, 0.30, 0.53 eV, respectively. As

mentioned above, this trend is directly related to the behaviour of the total matter power

spectra shown in Fig. 1, as the lensing potential power spectrum can be written as the

integral along the line of sight of the matter power spectrum weighted by a geometrical

factor.

In the middle and lower panels of Fig. 6 we show the effect of massive neutrinos on

the lensed CMB temperature (TT), lensed E-mode polarisation (EE), and lens-induced

B-mode polarisation (BB) angular power spectra. As in Refs. [46, 43], the lensed power

spectra have been obtained by modifying the LensPix code6[51], in order to use directly

as input the power spectra and phases of the lensing potential maps produced by ray-

tracing across the DEMNUni simulations. As expected, the percent residuals between

the massive and massless neutrino cases, presented in the middle panel of Fig. 6, show

that free-streaming neutrinos alter the lensed TT and EE power spectra. In particular,

as the strength of the gravitational potential decreases for larger neutrino masses, CMB

acoustic oscillations are less lensed, i.e. they are less smoothed and smeared out than

in the massless case. This implies that the larger the neutrino mass is, the larger the

lensed TT and EE power spectra are at large angular scales (small l), and the smaller

the lensing amplification of the so-called “damping-tail” at small scales (high l) is. As a

consequence, the production of the lens-induced B-mode polarisation, via rotation of the

E-mode pattern, is less enhanced in the presence of massive neutrinos, and the amplitude

of the BB power spectrum decreases with increasing neutrino masses on all the scales, as

shown in the left lower panel of Fig. 6. As the right panel shows, the B-mode lack of power

due to the presence of massive neutrinos is mostly scale independent (except at l > 1000

where non-linear effects come into play) [52, 53]. The reason is well known, i.e. B-modes

are due to the transfer of E-mode power from small scales to large scales, and on scales

1000 < l < 2000 the effect of massive neutrinos on E-modes is almost scale-independent, as

the right middle panel of Fig. 6 shows. Again, the B-mode power residuals are somewhat

proportional, for l → 0, to the ratio of the neutrino masses assumed in the simulations.

Finally, in Fig. 7 we present the results for three cases of weak-lensing, with sources

all placed at redshifts z = 2, z = 5.5, and z = 8, respectively. As expected, in all the cases,

we find the lensing potential to behave in a way very similar to the CMB lensing potential.

In fact, its angular power spectrum is suppressed by free-streaming massive neutrinos, and

such suppression is scale dependent, increasing with the multipoles l, as new scales k exceed

the free-streaming scale kfs. We have modified CAMB to account for the computation
6http://cosmologist.info/lenspix/
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Figure 7: Left: lensing potential angular power spectra for sources all placed at redshifts z = 2

(upper panel), z = 5.5 (middle panel), and z = 8 (lower panel), respectively. The dotted black,

blue, red and orange lines represent the simulated signals for Mν = 0, 0.17, 0.3, 0.53 eV, respectively.

The ΛCDM non-linear expectations from CAMB are represented by the dashed green line. Right:

corresponding percent residuals wrt the massless case. Here, tri-dot-dashed blue, red, and orange

lines are the simulated signals forMν = 0, 0.17, 0.3, 0.53 eV, respectively. Semi-analytical non-linear

CAMB predictions are represented by symbols, as described in the legend.

of the weak-lensing signal for sources placed all at the same redshift zs, by substituting

zLS with zs in the CAMB routine “equations.f90” for the calculation of the “sources(3)”

variable; the corresponding analytical expectations are represented by the dashed green

line in the left panels of Fig. 7. As expected, given the finite simulation volume, on large

scales the simulated signal recovers much better CAMB predictions as redshift decreases,
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while on small scales we observe an increase of the lack of power due the limited resolution,

∼ 0.5 Mpc/h, of the gravitational potential grids used for ray-tracing. Nonetheless, when

looking at the relative differences between the massive and massless cases, for different

Mν values, the simulated signal recovers the expectations within the ∼ 1% accuracy level

(see the right panel of Fig. 7). This means that the effect of massive neutrinos on LSS

formation decouples from highly non-linear regime physics, as e.g. baryon effects, since, as

well known, massive neutrinos escape the potential field of small scale structures, causing

such effects to cancel out when considering relative differences.

5. The impact of massive neutrinos on cross power spectra

Let us now consider the effects of massive neutrinos on the cross angular power spectra

between CMB/weak-lensing and the ISW-RS signals. Since the ISW-RS effect is not di-

rectly observable, the ISW-RS cross-correlation with weak-lensing (together with its cross-

correlation with galaxies, which we do not discuss in this work) allows to observe and

measure the impact of time-varying potentials on light travelling to us from the last scat-

tering surface. It is worth noting that here, for the first time in the literature, we present

the non-linear behaviour of such cross-correlation signal, as extracted from N-body sim-

ulations accounting for free-streaming massive neutrinos. The linear counterpart can be

computed using Boltzmann codes as CAMB or CLASS7 [54].

5.1 ISW-RS–CMB-lensing cross-correlations

The absolute values of the simulated cross power spectra between CMB-lensing and the

total ISW-RS induced temperature anisotropies, obtained via ray-tracing from z = 0 to

z ≃ 21, are shown in the left panel of Fig. 8 for four different total neutrino masses,

Mν = 0, 0.17, 0.3, 0.53 eV. They are represented by the black (solid), blue (long-dashed),

red (dashed), and orange (dot-dashed) lines, respectively. The violet tri-dot-dashed line

represents the linear contribution from CAMB8 in the massless case. Above all, let us

observe that, using a finite box of 2 Gpc/h, we manage to recover the predicted linear

signal starting from very low multiples, l ∼ 10. This is a confirmation of the accuracy of

the technique implemented to extract the ISW effect from the DEMNUni simulations. In

addition, at the transition from linear to non-linear scales, we recover also the expected

sign inversion of the cross-correlation spectra due to the negative non-linear correlation

between the RS effect and matter density, which becomes dominant with respect to the

net positive linear correlation between density and CMB temperature, produced by the

decay of the linear gravitational potential, as the Universe expands in the presence of dark

energy [55, 56]. This leads to a sign change of the cross-spectrum, which for a ΛCDM

model with the same cosmological parameters as in the simulations, happens to be about

at l ∼ 700 [57, 58].

As the left top panel of Fig. 8 shows, the major effect of massive neutrinos on the

CMB-lensing/ISW-RS cross spectrum consists of moving the sign inversion position toward

larger multipoles, producing a larger displacement as the neutrino mass increases. This can

be explained considering that the larger the neutrino mass is, the larger the suppression

7http://class-code.net/
8As already mentioned in 4.1, at present Boltzmann codes are not able to compute the non-linear

contribution to Φ̇.
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Figure 8: Left upper panel: absolute values of the simulated cross power spectra between CMB-

lensing and the total ISW-RS induced temperature anisotropies, obtained via ray-tracing from

z = 0 to z ≃ 21, for Mν = 0, 0.17, 0.3, 0.53 eV (solid black, long-dashed blue, dashed red, and dot-

dashed orange lines, respectively). The violet tri-dot-dashed line represents the linear contribution

from CAMB in the massless case. Right upper panel: corresponding percent residuals wrt the

massless case on linear scales l < 400. Here, blue, red, and orange lines are the simulated signals for

Mν = 0, 0.17, 0.3, 0.53 eV, respectively. Semi-analytical linear CAMB predictions are represented

by symbols, as described in the legend. Bottom panels: simulated cross power spectra for l > 400.

The shaded grey area represents the cosmic variance associated to the signal.

of structure formation is, and therefore cosmological perturbations tend to stay in the

linear regime on smaller scales than in the massless case. This implies that free-streaming

massive neutrinos not only produce an excess of ISW-RS power, but also an excess of

cross-correlation between CMB-lensing and the ISW-RS effect, and this time such excess

increases with larger neutrino masses on scales 100 < l < 1000, being a factor of ∼ 4 for

Mν = 0.3 eV, at l ∼ 600. On multipoles 700 < l < 1000, the shift of the sign inversion is

the the dominant feature, and, indeed, a future detection and measurement of its position

could be a further probe of the total neutrino mass. On larger multipoles the asympthotic

suppression of the matter power spectra due to neutrino free-streaming becomes dominant,

and we recover the usual trend, i.e. larger neutrino masses produce a larger decrease of

the non-linear cross power spectrum.

In the right top panel of Fig. 8 we compare our findings with CAMB predictions on

linear scales. On multipoles 10 < l < 400 the accuracy of the reconstructed signal is very

high, about 1− 2%, and the residuals start to increase only when non-linear effects come
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into play, i.e at l > 400. On such scales, the behaviour of the simulated cross power spectra

is shown in the bottom panels of Fig. 8. In particular, the different curves in left panel

represent the sign inversion due to non-linearities, and the shaded grey area the associated

cosmic variance
√

[(CTκ
l )2 + CTT

l Cκκ
l ]/(2l + 1), which unfortunately makes measurements

of this effect quite challenging, since the primary CMB temperature anisotropies act as a

foreground in this case.

5.2 ISW-RS–weak-lensing cross-correlations

Finally, we consider the cross-correlation between the ISW-RS and the weak-lensing signals.

The left panels of Fig. 9 show the cross spectra obtained with lensing sources all placed

at zs = 2, 5.5, 8 and for Mν = 0, 0.17, 0.3, 0.53 eV, represented by the black (solid), blue

(long-dashed), red (dashed), and orange (dot-dashed) lines, respectively. The violet tri-

dot-dashed line represents the corresponding linear contribution from CAMB, while the

light-green dotted line is the linear ISW-RS/CMB-lensing cross spectrum from CAMB,

here shown for comparison. As in §5.1, also in this case we find a mostly perfect agreement

between CAMB linear predictions and the simulated signals, at scales 30 . l . 400. On

smaller multipoles, l . 30 window effects take place producing a lack of power in the

simulated cross signal. As for the ISW-RS/CMB-lensing cross spectrum, also in this case

on larger multipoles, l & 400, non-linear effects produce a sign inversion, whose position

stays however mostly constant with increasing neutrino masses, even if we notice that it is

more shifted toward larger multipoles as zs increases (as expected from the theory of linear

perturbation evolution).

In the right panels of Fig. 9 we show the residuals, with respect to the massless case,

of the simulated ISW-RS/weak-lensing cross spectra (solid lines), together with linear

predictions from CAMB (symbols). For comparison, we also show corresponding residuals

for the simulated weak-lensing auto spectra (tri-dot-dashed lines). For zs = 2 we find an

excellent agreement within 1% accuracy; at larger zs the agreement is still good with an

accuracy of about 2 − 3%. This lower accuracy is probably due to percent differences in

the ISW-RS reconstruction between CAMB and our ray-tracing technique. Overall, at

30 . l . 300 we observe a scale dependent suppression of the cross signal which increases

with the neutrino mass. At l & 300, the trend starts to reverse, and for lighter neutrino

masses the cross spectra exceed their value in the massless case.

It is worth to note that the suppression, due to massive neutrinos, of the ISW-RS/weak-

lensing cross spectra is smaller than for the weak-lensing auto spectra (compare solid lines

against tri-dot-dashed lines). Moreover, while in the latter case this suppression is mostly

constant with zs, in the former case it decreases with the increase of the source redshift,

and finally, for very high values of zs, neutrino free-streaming produces an excess of signal

with respect to the massless case, as we observe also in the CMB case to a greater extent.

This is due to the larger excess of ISW-RS in the presence of massive neutrinos at higher

redshifts, far from dark energy domination at low z (see Fig. 5). This excess somehow

balances the suppression in the weak-lensing signal, and was first pointed out by [12] for

the case of the ISW-galaxy cross-correlation. Similar arguments explained in their § B hold

also in our case. It has been also shown [56] that ideal cosmic variance limited experiments

may detect, via cross-correlation with lensing, the non-linear RS effect with a significance

of ∼ 3σ integrating up to multipoles ℓ = 3× 103. However, this significance is drastically

reduced by the finite resolution and noise of actual CMB experiments, so that the signal to
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Figure 9: Left: absolute values of the WL/ISW-RS angular cross spectra for sources placed at

redshifts z = 2 (upper panel), z = 5.5 (middle panel), and z = 8 (lower panel), respectively. The

solid black, long-dashed blue, dashed red, and dot-dashed orange lines represent the simulated

signals for Mν = 0, 0.17, 0.3, 0.53 eV, respectively. The ΛCDM linear expectations from CAMB are

represented by the tri-dotted violet line. The light-green dotted line is the linear ISW-RS/CMB-

lensing cross spectrum from CAMB, here shown for comparison. Right: percent residuals wrt the

massless case for l < 300. Tri-dot-dashed blue, red, and orange lines correspond to the simulated

signals of the auto WL power spectra for Mν = 0, 0.17, 0.3, 0.53 eV, respectively. Solid blue, red,

and orange lines are the residulars of the simulated ISW-RS/WL cross spectra. The corresponding

semi-analytical linear CAMB predictions are represented by symbols, as described in the legend.

noise ratio of the non-linear RS effect results to be an order of magnitude smaller compared

to that of the linear ISW effect. This implies that it would be quite difficult to measure it

with present and near future CMB-LSS experiments.
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Together with the results presented in § 5.1, these represent the main findings of the

present work. For the first time in the literature, the cross-correlation between CMB/weak-

lensing and ISW-RS effects have been simulated, on a very large range of scales, from the

linear to the fully non-linear regimes, and in the presence of massive neutrinos.

6. Conclusions

In this work we present full-sky maps, auto and cross angular spectra of the ISW-Rees-

Sciama and CMB/weak-lensing signals, from the linear to the fully non-linear regimes, as

extracted via direct ray-tracing across very large N-body simulations including a massive

neutrino component, the so-called DEMNUni simulations. We assume a Planck-like base-

line cosmology, and add neutrinos with total masses Mν = 0, 0.17, 0.3, 0.53 eV, fixing the

normalisation of the matter power spectrum at CMB.

The analysis of these signals shows that

• Free-streaming massive neutrinos induce a time variation, Φ̇, of the gravitational

potential, affecting mostly scales corresponding to the transition from the linear to

the non-linear regimes, l ∼ 100, and producing a non negligible contribution to

the ISW effect (see Fig. 4). The induced ∆T anisotropies are more important for

light neutrino masses and at high redshifts z & 1.5, when dark energy is not the

dominant component. At lower redshifts the ISW effect becomes more suppressed as

the neutrino mass increases (Fig. 5). Considering relative differences with respect to

the massless case, on linear scales we recover, within ∼ 1− 2%, accuracy, analytical

expectations from CAMB, which, however, at the moment does not provide non-

linear estimations of the ISW-RS signal.

• At non-linear scales, l > 200, massive neutrinos decrease the angular power spectrum

corresponding to the Rees-Sciama effect. Such suppression is larger for larger neutrino

masses, and decreases with increasing redshifts, as shown in Fig. 5.

• Since lensing traces directly the matter power spectrum, which can be largely sup-

pressed for large neutrino masses, we recover a similar suppression in the CMB- and

weak-lensing signals (Figs. 6-7). When looking at relative differences with respect

to the massless case, the agreement with CAMB (non-linear neutrino corrections

included) is at ∼ 1% level on the scales covered by the simulations. The suppression

of the lensing auto power spectra decreases with the increase of the source redshift,

zs, with a maximum difference of ∼ 10% between zs = 2 and zs = 1100.

• Lensed TT, EE and BB spectra are consistently affected by massive neutrinos (mid

and lower panels of Fig. 6). As expected, since the strength of the gravitational

potential decreases for larger neutrino masses, CMB acoustic oscillations are less

smoothed and smeared out than in the massless case. This implies that, as the

neutrino mass increases, the lensed TT and EE power spectra are larger at small l,

and the so-called “damping-tail” is lower at high l. Therefore the amplitude of the

lens-induced B-mode power spectrum decreases for larger neutrino masses on all the

scales, as shown in the left lower panel of Fig. 6.
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• Concerning the cross-correlation between ISW-RS and CMB-lensing signals, at l .

400 we correctly recover the linear signal from CAMB, within 1 − 2% accuracy

(Fig. 8). At the transition between the linear and the non-linear regimes, l ∼ 700, the

simulated signal correctly undergoes the sign-inversion expected by non-linear semi-

analytical calculations in the massless case [56, 57, 58]. This feature is interestingly

altered by the presence of massive neutrinos, as it moves toward larger multipoles

with increasing Mν , and the displacement, with respect to the Mν = 0 eV case, can

be larger than a factor of 2 for Mν = 0.53 eV. This is reasonably expected, since

massive neutrinos extend the linear regime to smaller scales than in the massless

case. Therefore, the cross power between ISW-RS and CMB-lensing increases with

larger neutrino masses at 300 . l . 1500, and, e.g., at l ∼ 600, we find an excess

of cross power of a factor of ∼ 4 for Mν = 0.3 eV. At higher multipoles, in the fully

non-linear regime, we find a suppression of the signal as also occurs for the auto

spectra.

• As shown in the left panel of Fig. 9, the cross-correlation between ISW-RS and

weak-lensing presents features similar to the ISW-RS cross CMB-lensing signal, with

the only difference given by a lower total impact of massive neutrinos. Again, when

looking at relative differences with respect to the massless case, at l . 300 we correctly

recover, within 1 − 2% accuracy, the linear signal from CAMB, which does not

provide non-linear estimations at the moment. The non-linear sign-inversion of the

cross power is still present but less enhanced, while the signal seems to increase with

increasing zs. In particular, the excess of ISW-RS due to the presence of massive

neutrinos makes the cross power less suppressed with respect to the weak-lensing

auto power, and finally, for very high source redshifts, we observe a net excess of

power with respect to the massless case (right panel of Fig. 9).

The last two points represent the main findings of this work. The cross-correlation

between the ISW-RS and lensing signals enters the computation of the lensed CMB tem-

perature bispectrum [58]; therefore its correct estimation at the non-linear level from N-

body simulations, and the knowledge of the neutrino impact on its amplitude may result

to be of extreme importance for the full evaluation of the CMB temperature three-point

function [59]. The latter probes the perturbation growth and expansion history of the

Universe, and hence can be used to constrain dark energy and neutrino masses [18]. In

addition, due to non-linear structure evolution, on very small scales the lensing potential

is not a Gaussian field, and consequent additional contributions to the bispectrum may be

evaluated directly from the simulated maps obtained via the DEMNUni simulations. We

reserve this for future work.
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