
2016Publication Year

2020-05-26T13:44:14ZAcceptance in OA@INAF

Hydrodynamical simulations of the tidal stripping of binary stars by massive black 
holes

Title

Mainetti, Deborah; LUPI, ALESSANDRO; CAMPANA, Sergio; Colpi, MonicaAuthors

10.1093/mnras/stw197DOI

http://hdl.handle.net/20.500.12386/25185Handle

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETYJournal

457Number



MNRAS 457, 2516–2529 (2016) doi:10.1093/mnras/stw197

Hydrodynamical simulations of the tidal stripping of binary stars by
massive black holes

Deborah Mainetti,1,2,3‹ Alessandro Lupi,3,4 Sergio Campana2 and Monica Colpi1,3
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ABSTRACT
In a galactic nucleus, a star on a low angular momentum orbit around the central massive black
hole can be fully or partially disrupted by the black hole tidal field, lighting up the compact
object via gas accretion. This phenomenon can repeat if the star, not fully disrupted, is on
a closed orbit. Because of the multiplicity of stars in binary systems, also binary stars may
experience in pairs such a fate, immediately after being tidally separated. The consumption of
both the binary components by the black hole is expected to power a double-peaked flare. In this
paper, we perform for the first time, with GADGET2, a suite of smoothed particle hydrodynamics
simulations of binary stars around a galactic central black hole in the Newtonian regime.
We show that accretion luminosity light curves from double tidal disruptions reveal a more
prominent knee, rather than a double peak, when decreasing the impact parameter of the
encounter and when elevating the difference between the mass of the star which leaves the
system after binary separation and the mass of the companion. The detection of a knee can
anticipate the onset of periodic accretion luminosity flares if one of the stars, only partially
disrupted, remains bound to the black hole after binary separation. Thus knees could be
precursors of periodic flares, which can then be predicted, followed up and better modelled.
Analytical estimates in the black hole mass range 105–108 M� show that the knee signature
is enhanced in the case of black holes of mass 106–107 M�.

Key words: hydrodynamics – methods: numerical – binaries: close – galaxies: kinematics and
dynamics – galaxies: nuclei.

1 IN T RO D U C T I O N

Supermassive black holes (BHs) are ubiquitous in the centre of
massive galaxies. For most of the time they are in a quiescent state,
but sometimes they can accrete matter from the surroundings and
power an active galactic nucleus (AGN; Ho 2008). Stars orbiting
around the central BH of a galaxy interact with each other, increas-
ing the probability for one of them to be scattered on a low an-
gular momentum orbit (Alexander 2012). A tidal disruption event
(TDE) could thus occur contributing to the BH flaring on time-
scales of months or years (e.g. Rees 1988; Phinney 1989). For solar
mass stars, this occurs when the (non-spinning) BH mass is less
than about 108 M�. For heavier BHs, these stars cross the horizon
and are fully swallowed before being tidally disrupted (MacLeod,
Ramirez-Ruiz & Guillochon 2012). As a consequence, TDEs con-
tribute to the detection of otherwise quiescent BHs in inactive (or
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weakly active) galaxies in a mass interval somewhat complementary
to that probed in surveys of bright AGNs and QSOs (Vestergaard &
Osmer 2009).

The total tidal disruption of a single star of mass M∗ and radius
R∗ moving on a parabolic orbit around the central BH of a galaxy
of mass MBH occurs when its pericentre radius rp is less than about
the so-called BH tidal radius

rt = R∗

(
MBH

M∗

)1/3

∼ 102 R�
(

R∗
1 R�

)(
MBH

106 M�
1 M�

M∗

)1/3

,

(1)

corresponding to the distance where the BH tidal force overcomes
the star self-gravity at its surface (Hills 1975; Frank & Rees 1976).
On the contrary, if rp � rt, the star undergoes less distortion and
suffers only partial disruption. The value of the impact parame-
ter β = rt/rp defines how deep the disruption is (Guillochon &
Ramirez-Ruiz 2013, 2015a). Roughly, only about half of the pro-
duced stellar debris remains bound to the BH and accretes on to
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it, powering the emission of a characteristic flare (e.g. Rees 1988;
Phinney 1989). In the regime of partial TDEs, the star, if on a bound
orbit, could transfer a fraction of its mass to the BH every time it
passes through the pericentre of its orbit, thus powering one flare
for every orbital period and maybe ‘spoon-feeding’ the quiescent
luminosity of weakly active galaxies (MacLeod et al. 2013).

TDEs are quite rare events, with estimated rates of
∼10−5galaxy−1 yr−1 (e.g. Donley et al. 2002). Despite this and
sparse observations, a few TDEs have been observed mainly in the
optical–UV (Renzini et al. 1995; Gezari et al. 2006, 2008, 2009,
2012; Komossa et al. 2008; van Velzen et al. 2011; Wang et al.
2011, 2012; Cenko et al. 2012a; Gezari 2012; Arcavi et al. 2014;
Chornock et al. 2014; Holoien et al. 2014; Vinko et al. 2015) and soft
X-ray bands (Bade, Komossa & Dahlem 1996; Komossa & Bade
1999; Komossa & Greiner 1999; Grupe, Thomas & Leighly 1999;
Greiner et al. 2000; Li, Ramesh & Kristen 2002; Halpern, Gezari &
Komossa 2004; Komossa 2004, 2012, 2015; Komossa et al. 2004;
Esquej et al. 2007, 2008; Cappelluti et al. 2009; Maksym, Ulmer &
Eracleous 2010; Lin et al. 2011, 2015; Saxton et al. 2012, Saxton
et al. 2015; Maksym et al. 2013; Donato et al. 2014; Khabibullin
& Sazonov 2014; Maksym, Lin & Irwin 2014), but also in the
radio and hard X-ray bands (Bloom et al. 2011; Burrows et al.
2011; Levan et al. 2011; Zauderer et al. 2011; Cenko et al. 2012b;
Hryniewicz & Walter 2016; Lei et al. 2016). Many theoretical stud-
ies have been carried out to understand the physics of TDEs and
model their accretion luminosity light curves (hereafter just light
curves or flares), considering stars approaching the BH on a variety
of orbits, from parabolic to bound (Nolthenius & Katz 1982; Bick-
nell & Gingold 1983; Carter & Luminet 1985; Luminet & Marck
1985; Luminet & Carter 1986; Rees 1988; Evans & Kochanek 1989;
Phinney 1989; Khokhlov, Novikov & Pethick 1993a, Khokhlov,
Novikov & Pethick1993b; Laguna et al. 1993; Diener et al. 1995,
1997; Ivanov & Novikov 2001; Kobayashi et al. 2004; Rosswog,
Ramirez-Ruiz & Hix 2008, 2009; Guillochon et al. 2009; Lodato,
King & Pringle 2009; Ramirez-Ruiz & Rosswog 2009; Strubbe
& Quataert 2009; Kasen & Ramirez-Ruiz 2010; Lodato & Rossi
2010; Amaro-Seoane, Miller & Kennedy 2012; MacLeod et al.
2012, 2013; Guillochon & Ramirez-Ruiz 2013, 2015a; Hayasaki,
Stone & Loeb 2013).

So far, only single-star TDEs have been taken into account. How-
ever, most of the stars in the field are in binaries (Duquennoy &
Mayor 1991b; Fischer & Marcy 1992); hence, it is worth also
studying close encounters between binaries and galactic central
BHs which can lead to the disruption of both the binary members.
The topic was first discussed by Mandel & Levin (2015), suggesting
that in a binary–BH encounter under certain conditions both binary
components may undergo tidal disruption in sequence immediately
after the tidal binary break-up. A double-peaked flare is expected
to occur, signature of such a peculiar event.

In this paper, we present for the first time the results of a series
of smoothed particle hydrodynamics (SPH) simulations performed
using the GADGET2 code (Springel 2005; the code can be freely down-
loaded from http://wwwmpa.mpa-garching.mpg.de/gadget/) in the
aim at studying the physics of double tidal disruptions and at char-
acterizing the expected light curves. As a first exploratory study, we
consider parabolic encounters of binaries with galactic central BHs
in the Newtonian regime, in order to explore which are the most
favourable conditions for the occurrence of double-peaked flares.
In particular, we address the following questions. Are all simulated
encounters leading to double-peaked light curves or are there cases
of single-peaked light curves? How can we disentangle the different
outcomes? How prominent are the double peaks?

The paper is organized as follows. In Section 2, we resume the
conditions required for double TDEs and the associated space of
binary parameters (Mandel & Levin 2015). In Section 3, we ini-
tialize low-resolution SPH simulations of binary–BH encounters
with different rp values of the centre of mass (CM) of the binaries
around the BH. Not all encounters can lead to double TDEs, and in
Section 4 we introduce a classification of the obtained outcomes.
In Section 5, we show the results of a selected sample of high-
resolution simulations and the light curves directly inferred from
them. Section 6 sums up results and conclusions.

2 BA S I C S FO R D O U B L E T I DA L D I S RU P T I O N S

We are here interested in identifying the set conditions for the
sequential tidal disruption of binary stars around galactic central
BHs, following Mandel & Levin (2015).

Tidal break-up of a binary on a parabolic orbit around a BH
occurs if the binary CM around the BH enters a sphere of radius

rtb = abin

(
MBH

Mbin

)1/3

∼ 103 R�
(

abin

10 R�

)(
MBH

106 M�
1 M�

M∗

)1/3

,

(2)

where abin and Mbin are the binary semimajor axis and total mass
(Miller et al. 2005; Sesana, Madau & Haardt 2009). We notice that
binary break-up comes before single-star tidal disruptions, given
that rtb � rt (see equations 1 and 2). Tidal break-up occurs when
the specific angular momentum (in modulus) of the binary CM at
pericentre becomes less than

lCM(rtb) ∼
√

GMBHabin

(
MBH

Mbin

)1/3

. (3)

Orbits which allow tidal binary break-up are called loss cone orbits
(Merritt 2013). A binary on a loss cone orbit is broken up after one
pericentre passage, over a time-scale T ∼ 2π

√
r3/GMBH, corre-

sponding to the orbital period of a binary on a circular orbit at the
same distance from the BH.

Both stars of a binary can undergo a sequential tidal disruption
immediately after the tidal binary break-up only if the specific an-
gular momentum of the binary CM around the BH at the closest
approach, defined as lCM(rp) ∼ √

GMBHrp, instantly changes from
being greater than lCM(rtb) to becoming less than lCM(rt), where

lCM(rt) ∼
√

GMBHR∗

(
MBH

M∗

)1/3

. (4)

In this way, the binary enters intact the region of single-star TDEs.
This occurs if the binary experiences a large enough change �L,
at least of the order of lCM(rtb), in the specific circular angular
momentum lcirc(r) ∼ √

GMBHr , over a time-scale T. Interactions
with surrounding stars and/or massive perturbers can promote such
a change (Perets, Hopman & Alexander 2007; Alexander 2012).
We consider empty the portion of the loss cone, in phase space,
corresponding to binaries that break up before entering the region of
single-star TDEs, and full the portion of the loss cone corresponding
to binaries which can enter intact the region of single-star TDEs
(Merritt 2013).

In order to evaluate the distribution of the binary param-
eters associated with double disruptions, it is useful to de-
termine rmin, defined as the distance of the binary from the
BH before experiencing the change �L in lcirc, separating the
two regimes. Considering two-body relaxation over a time-scale
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tr = 0.065(GMBH/r)3/2/[G2M2
∗n(r) ln �] (Spitzer & Hart 1971) as

the main mechanism which drives changes in angular momentum,
it is known that the change in specific circular angular momentum
lcirc(r) over a period T is of the order of

�L ∼ (T /tr)
1/2lcirc (5)

(Merritt 2013). Thus, the critical condition �L ∼ lCM(rtb) enables us
to infer rmin. If the binary is orbiting inside a Bahcall–Wolf density
profile n(r) = n0(r/r0)−7/4 (Bahcall & Wolf 1976), rmin reads

rmin ∼
⎡
⎣ 0.065

2πn0r
7/4
0 ln �

⎤
⎦

4/9(
MBH

M∗

)28/27

a
4/9
bin

∼ 107 R�
(

1.3 × 106 pc−3

n0

)4/9( 0.3 pc

r0

)7/9( 10

ln �

)4/9

×
(

MBH

106 M�
1 M�

M∗

)28/27( abin

10 R�

)4/9

, (6)

taking n0 and r0 as for the Milky Way (Merritt 2010). We note that
rmin is comparable to the radius of gravitational influence of a BH

rh = GMBH

σ 2
∼ 5 × 107 R�

(
MBH

106 M�

) (
65 km s−1

σ

)2

(7)

(Peebles 1972; Merritt 2000).
A binary carries internal degrees of freedom, and in particular

the relative velocity of the two binary components,
√

GMbin/abin,
is clearly smaller than the orbital velocity of the binary CM relative
to the BH,

√
GMBH/r . The velocity of the two stars relative to

the CM of the stellar binary gives then a small contribution to the
specific angular momentum of each binary star relative to the BH
at rtb that approximately is

δl ∼
√

GMbinabin

(
MBH

Mbin

)1/3

. (8)

Sequential disruptions are expected to be favoured when δl is small.
Indeed, the smaller δl is, the more each binary component has an
orbit around the BH similar to the one of the binary CM, i.e. a
similar pericentre passage. Thus, we require

δl

lCM(rt)
∼

√
abin

R∗

(
M∗
MBH

)1/3

� 1, (9)

where we approximated Mbin ∼ M∗. For M∗ = 1 M�, R∗ = 1 R�,
MBH = 106 M� we need abin � 104 R�. Hence, the second con-
dition for double TDEs, which joins the condition on �L, is the
involvement of close binaries. Furthermore, very close binaries are
required in order to avoid their evaporation due to interactions with
field stars before tidal binary break-up (Merritt 2013).

In the full loss cone regime, the parameter space of binaries that
can undergo double TDEs can be inferred from the rate of binary
entrance in the region of stellar TDEs per unit of r and abin as found
in Mandel & Levin (2015):

d3N (abin, r)

drdabindt
∼

(
lCM(rt)

lCM(rtb)

)2 4πr2n(r)ξ (abin)

T
, (10)

where (lCM(rt)/lCM(rtb))2 is the probability for a binary to en-
ter directly the single TDE region (Merritt 2013) and ξ (abin) =
[ln(amax/amin)]−1a−1

bin is the distribution function for abin given in
Öpik (1924), with amax and amin being the maximum and the mini-
mum semimajor axes of stellar binaries in a generic galactic field.

Integration of equation (10) over r, between rmin and +∞, enables
us to evaluate the number of binaries that may undergo sequential

tidal disruption of their components per unit of time and unit of abin.
The resulting integral scales as

d2N (abin)

dabindt
∝

[
ln

(
amax

amin

)]−1

R∗a
−19/9
bin . (11)

From Kepler’s law, we can connect abin with the internal orbital
period of the stellar binaries Pbin to infer the number of events per
unit of time and unit of Pbin. The resulting rate is

d2N (Pbin)

dPbindt
∝

[
ln

(
amax

amin

)]−1

R∗P
−47/27
bin . (12)

We use this scaling to extract the initial conditions of our SPH
simulations.

Thus, in the case of solar mass stars (i.e. R∗ = 1 R�), the con-
tribution of double TDEs to all TDEs could be approximately esti-
mated by integrating equation (11) over abin between 1 and 104 R�
and dividing it by the corresponding integral obtained after inte-
gration over r of equation (10), with R∗ in place of abin (also in
equation 6).1 This ratio scales as (19/9)[ln(amax/amin)]−1, which
gives a maximum of ∼20 per cent assuming amax = 104 R� and
amin = 1 R� and considering that the multiplicity of stars is sin-
gle:double ∼50:50 for 100 solar-type stars (Duquennoy & Mayor
1991b), disregarding uncertainties in the number of very close
binaries.

The definition of the parameter space of binaries that may be
double tidally disrupted is fundamental to guide us to sensibly
define the initial conditions of a small number of representative
low-resolution simulations aimed at checking different outcomes
from different initial parameters, and particularly from different
pericentre radii of the binary CM.

3 G E N E R A L PA R A M E T E R D E F I N I T I O N F O R
L OW-R E S O L U T I O N S P H SI M U L AT I O N S

The simulations in this paper are performed using the TreeSPH
code GADGET2 (Springel 2005). In SPH codes, a star is represented
by a set of gas particles. Each particle is characterized by a spa-
tial distance, the smoothing length, over which its properties are
‘smoothed’ by its kernel function, i.e. evaluated by summing the
properties of particles in the range of the kernel according to the
kernel itself (Price 2005). In particular, in GADGET2 the smoothing
length of each particle is defined so that its kernel volume contains
a constant mass, and is allowed to vary with time, thus adapting
to the local conditions. The kernel adopted here is the one used
most commonly and is based on cubic splines (Monaghan & Lat-
tanzio 1985). On the other hand, gravitational interactions between
particles are computed through a hierarchical oct-tree algorithm,
which significantly reduces the number of pair interactions needed
to be computed. The definition of a gravitational softening length
ε ∼ 0.1R∗/(Npart)1/3, where Npart is the total number of particles,
prevents particle overlapping. GADGET2 enables us to follow the tem-
poral evolution of single particle properties and to infer from them
TDE light curves (see Section 5.2).

We run 14 low-resolution simulations of parabolic encounters
between equal-mass binaries and BHs (LE runs) to test the na-
ture of the outcomes for different initial conditions, varying binary
parameters, MBH and rp. The stellar binaries are first evolved in
isolation for several dynamical times to ensure their stability. The

1 Note that substituting R∗ to abin in equation (10), d3N (R∗, r)/drdR∗dt ∼
4πr2n(r)/T .
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Table 1. Outcomes of our low-resolution SPH simulations of parabolic
binary–BH encounters (M∗ = 1 M�, R∗ = 1 R�) as a function of abin and
rp. Here MBH = 106 M�, rt = 100.0 R�, rtb(abin = 4.9 R�) = 390.0 R�,
rtb(abin = 9.8 R�) = 780.0 R�. TD-TDE stands for total double TDE,
ATD-TDE for almost total double TDE (i.e. more than ∼70 per cent of
stellar mass lost), PD-TDE for partial double TDE, MG for merger, BBK
for binary break-up without stellar disruptions.

abin/rp 50.0 100.0 142.6 200.0 420.0 780.0
(R�)

4.9 LE1: LE2: LE3: LE4: LE5:
TD- ATD- PD- PD- MG
TDE TDE TDE TDE

9.8 LE9: LE10: LE11:
ATD- PD- BBK
TDE TDE

BH force is implemented in the code analytically, as a Newtonian
potential, and particles which fall below the innermost stable cir-
cular orbit radius RISCO are excised from simulations. We consider
equal solar mass stars modelled as polytropes of index 5/3 and
we sample each of them with 103 particles. Some correspondent
high-resolution simulations are presented in Section 5.2. The initial
binary internal orbital periods Pbin and semimajor axes abin are ex-
tracted according to the distributions described in Section 2. Based
on the work of Duquennoy & Mayor (1991a), we consider binaries
with 0.1 d (abin ∼ 1 R�) < Pbin < 10 d (abin ∼ 10 R�) to be cir-
cular, binaries with 10 d ≤ Pbin ≤ 1000 d (abin ∼ 500 R�) to have
internal eccentricities distributed according to a Gaussian of mean
0.3 and standard deviation 0.15 and binaries with 1000 d < Pbin <

1000 yr (abin ∼ 104 R�) to have internal eccentricities which follow
a thermal distribution p(ebin) ∼ 2ebin. In order to avoid immediate
collisions between the binary components, the initial pericentre ra-
dius of the internal binaries (i.e. abin(1 − ebin)) is set greater than
twice the sum of the stellar radii, which are

R∗ =
(

M∗
M�

)k

R�, (13)

with k = 0.8 for M∗ < 1 M� and k = 0.6 for M∗ > 1 M�, accord-
ing to Kippenhahn & Weigert (1994), R∗ = 1 R� for M∗ = 1 M�.
Binaries are then placed on parabolic orbits around the BH at an
initial distance 10 times greater than the tidal binary break-up ra-
dius rtb, thus preventing initial tidal distortions from the BH. BHs
of masses 105 and 106 M� are considered. The nominal pericentre
distances rp are generated between 1 and 300 R� (Mandel & Levin
2015). Stars are placed on Keplerian orbits, and their positions and
velocities relative to their binary CM and to the BH are assigned
accordingly. The initial internal binary plane is set, arbitrarily, per-
pendicular to the orbital plane around the BH. The results of these
simulations are shown in Section 4.

4 O U T C O M E S O F L OW-R E S O L U T I O N S P H
SIMULATIONS

Tables 1 and 2 summarize the results of our low-resolution simu-
lations as a function of MBH, abin and rp. Several outcomes from
binary–BH encounters are possible, including the results of our
simulations:

(i) PD-TDE: partial double TDE,
(ii) ATD-TDE: almost total double TDE, i.e. more than

∼70 per cent of stellar mass is lost,

Table 2. Same as Table 1, with MBH = 105 M�, rt = 50.0 R�,
rtb(abin = 4.9 R�) = 180.0 R�, rtb(abin = 9.8 R�) = 360.0 R�. PD-
TDE stands for partial double TDE, MG for merger, BBK for binary break-
up without stellar disruptions, UN for undisturbed binary.

abin/rp 50.0 100.0 142.6 200.0 420.0 780.0
(R�)

4.9 LE6: LE7: LE8:
PD- MG UN
TDE

9.8 LE12: LE13: LE14:
PD- BBK UN
TDE

(iii) P&T-TDE: single partial plus single total TDE,
(iv) TD-TDE: total double TDE,
(v) MG: merger of the binary components,
(vi) BBK: tidal binary break-up without stellar tidal disruptions,
(vii) UN: undisturbed binary.

The intensity of the disruptions, i.e. the morphology of the re-
sulting objects, is estimated from our simulation results based
on the tidal deformation, the extent of stellar mass loss and
possible orbital changes of the binary stars with pericentre pas-
sage. After closest approach, the orbital evolution of the binary
stars around the BH is computed using an N-body Hermite code
(e.g. Hut & Makino 1995; the code can be freely downloaded
from https://www.ids.ias.edu/∼piet/act/comp/algorithms/starter/),
knowing the current position and velocity of the CM of each bi-
nary component from SPH simulations (see Section 5.2 for the
recipe used to infer the position and velocity of the CM). The
use of the Hermite code enables us to overcome the high com-
putational time required by SPH simulations to track the dynam-
ics of stars when the bulk of the hydrodynamical processes have
subsided.

Appendix A contains an inventory of representative orbits ac-
cording to the classification highlighted above. Tables A1 and A2,
respectively, refer to the simulations described in Tables 1 and 2.
There, we show the orbital evolution of the binary components
around the BH, for each simulation, in the (x, y) and (y, z) planes,
starting from (0,0), (0,0). Units are in R�. Blue curves represent
the initial parabolic orbits of the binary CM around the BH, each
inferred from the position of the BH and the pericentre radius rp.
Red curves trace the orbital evolution of the binary components
as inferred from SPH simulations, while green curves trace the or-
bital evolution of the stars as computed using the Hermite code.
Black dots indicate the position of the BH. Mergers (MGs; LE5,
LE7) are found when the two binary components progressively re-
duce their relative separation starting from just before the pericentre
passage around the BH, without being tidally separated. The MG
product, which is represented by stars at a fixed minimum distance
in simulations performed using the Hermite code, follows an orbit
which overlaps the initial parabolic one of the binary CM. In the
UN case (LE8, LE14), the binary keeps its internal and external or-
bits unchanged, even after pericentre passage. D-TDEs (LE1, LE2,
LE3, LE4, LE6, LE9, LE10, LE12) are preceded by tidal binary
separation, which can also occur without stellar disruptions (BBK;
LE11, LE13). Binary break-up leads one star to get bound to the
BH and the other to remain unbound. In the case of BBKs or par-
tial disruptions, the latter may leave the system at a high velocity,
becoming a hypervelocity star (Hills 1988; Antonini, Lombardi &
Merritt 2011).
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Table 3. Same as Table 1 for our high-resolution simulations involving
equal-mass binaries.

abin/rp 50.0 100.0 142.6
(R�)

4.9 HEp50: HEp100: HEp143:
TD-TDE ATD-TDE PD-TDE

5 H I G H - R E S O L U T I O N S P H SI M U L ATI O N S

5.1 A glimpse to simulated double TDEs

The low-resolution simulations described in Sections 3 and 4 serve
as guide for the selection of three higher resolution SPH simula-
tions, with an increased number of particles per star equal to 105.
A number of particles per star of 106 would require too much com-
putational time. Indeed, the computational cost in GADGET2 scales
as Npartlog (Npart), which is a factor of 12 higher in the case of
Npart = 106 with respect to Npart = 105.

Our goal is to infer directly from simulations the light curves
associated with double TDEs of different intensities. For this reason,
we set the initial conditions for an almost total, a partial and a total
double disruption event, following simulations LE2 and LE3 for the
not fully disruptive events and simulation LE1 in order to obtain
a total double disruption. Table 3 summarizes the outcomes which
come out from these three high-resolution simulations (HE runs)
as a function of abin and rp. These results are the same as expected
from the corresponding low-resolution simulations (see Table 1).
Furthermore, Fig. 1 (upper panels) points out that the orbits of the
binary stars follow the same evolution in corresponding low- (red
curves) and high-resolution (green curves) SPH simulations after
pericentre passage, assuring numerical convergence.

Fig. 2 shows representative snapshots of the SPH particle distri-
bution, projected in the (x, y) plane and in fractions of pericentre
time, depicting the dynamics of simulations HEp50 (left column),
HEp100 (central column) and HEp143 (right column). Panels are
in R�. In each simulation, black particles originally shape the star
which will get bound to the BH after binary separation, whereas red

Figure 1. Orbital evolution of the binary stars, starting from (0,0) in
the (x, y) plane, as inferred from the corresponding low- (red curves)
and high-resolution (green curves) SPH simulations for LE2/HEp100 and
LE3/HEp143 (upper panels) and LU2/HUp70a and LU3/HUp70b (bottom
panels). We do not consider simulations LE1/HEp50 and LU1/HUp42 given
that both the binary stars are totally disrupted when approaching the BH.
Black dots indicate the position of the BH. Units are in R�.

particles initially belong to the one which will unbind. The remnant
of the binary components after disruption is clearly visible in the
almost total (HEp100) and partial double (HEp143) TDE cases.
Forward in time, the distribution of the particles which leave the
stars once tidally disrupted visibly spreads, and particles originally
associated with the two different stars tend to mix, preventing their
by-eye distinction. For this reason, snapshots of the SPH particle
distribution are introduced in place of snapshots of the SPH par-
ticle density, which are shown for the first time in Fig. 3 (in log
scale), projected in the (x, y) plane, only at 0.0004 yr (∼0.15 d)
after pericentre passage for the simulated total double (HEp50) and
partial double (HEp143) TDE. Again, the remnant of the binary
components is clearly visible in the partially disruptive encounter.

The selection of the stellar debris associated with a specific star
is possible thanks to a detailed analysis of the snapshots. This en-
ables us to extract the light curves associated with each single-star
disruption and then to infer the composite light curves associated
with double disruptions. We discuss this in Section 5.2.

5.2 Double TDE light curves: the case of equal-mass binaries

The basic (simplifying) assumption when inferring the light curves
associated with TDEs is that the accretion rate on to the BH has
close correspondence to the rate of stellar debris which returns
to pericentre after disruption. Indeed, if the viscous time (Li et al.
2002) driving the fallback of stellar debris on to the BH is negligible
compared to the returning time at pericentre of the most bound
material since the time of stellar disruption (which is generally
the case in our simulations), then the rate of debris returning at
pericentre

Ṁ(t) =
(

2πGMBH

)2/3

3

dM

dE
t−5/3, (14)

coincides to first approximation to the rate of accretion on to the
BH. Inferring Ṁ(t) is thus equivalent to computing the luminosity
L(t) associated with a TDE

L(t) = ηṀ(t)c2, (15)

assuming an appropriate efficiency η.
In equation (14), dM/dE is the distribution of the stellar debris per

unit energy as a function of E, the specific binding energy relative
to the BH. Generally, such a distribution is neither flat nor constant
in time (e.g. Lodato et al. 2009; Guillochon & Ramirez-Ruiz 2013),
allowing Ṁ(t) to deviate from the classically assumed t−5/3 trend,
inferred from equation (14) when taking a uniform distribution in
E (e.g. Rees 1988; Phinney 1989).

Here we compute dM/dE as a function of time for each binary
component directly from our simulations, following the recipe from
Guillochon & Ramirez-Ruiz (2013). The position and velocity of
the CM of each star around the BH are computed through an iterative
approach. The initial reference point is the particle with the highest
local density. Particles within 2 R� from it (a bit more than R∗) are
considered to be still bound to the star and their total mass is denoted
as MB. The specific binding energy of the ith particle relative to the
star is calculated as

E∗i = 1

2
|vi − vpeak|2 − GMB

|r i − rpeak| , (16)

where vi − vpeak and r i − rpeak are the velocity and position of the
ith particle relative to the reference particle. Velocity and position
of the temporary CM are determined through the standard formulae
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SPH simulations of binary TDEs 2521

Figure 2. Representative high-resolution snapshots of the SPH particle distribution, respectively, in simulations HEp50 (left column), HEp100 (central column)
and HEp143 (right column), projected in the (x, y) plane. Positional units are in R� and times are in fractions of pericentre time. Black particles originally
belong to the star which will get bound to the BH after tidal binary break-up and red particles depict its companion. The BH is at position (x, y) = (−3779.62,
−875.17) (simulation HEp50), (x, y) = (−3679.62, −1229.57) (simulation HEp100), (x, y) = (−3594.48, −1459.84) (simulation HEp143). The survived
binary components are clearly visible in the almost total (HEp100) and partial (HEp143) TDE cases, whereas stars are fully disrupted after pericentre passage
in the total TDE case (HEp50).

by considering only particles with E∗i < 0. Equation (16) is then
re-evaluated with the new velocity and position of the CM in place
of vpeak and rpeak. This process is re-iterated until the velocity of
the CM converges to a constant value, to less than 10−5 R� yr−1.
Particles with E∗i > 0, i.e. unbound from the star, are then selected
in the aim at evaluating their specific binding energy relative to the
BH

Ei = 1

2
|vi |2 − GMBH

|r i − rBH| , (17)

where vi and r i − rBH are the velocity and position of the ith particle
relative to the BH. Particles with Ei > 0 are unbound from the BH,
whereas particles with Ei < 0 form the stream of debris bound to
the BH. Data are then binned in E, i.e. the specific binding energies
Ei < 0 are grouped in bins and the correspondent particles fill this
histogram. dM/dE as a function of E (i.e. time) is obtained dividing
the total mass of particles in each bin by the bin amplitude.

The time t in equation (14) is the time since disruption, which is
coincident with the first pericentre passage for our purposes. Thus,
only material with orbital periods Porb = 2πGMBH/(2E)3/2 around
the BH less than t contributes to the accretion till that time.

To build the composite light curves, we need to compute the
light curve for each star by interpolating the data coming from
different snapshots, and then we sum the results of interpolations,
point to point. Green and blue curves in Fig. 4 are associated with

the disruption of the single binary components, while red curves
represent the point-wise sum of the green and blue curves. Panels
on the top-right corners show logarithmic plots.

The light curves associated with TDEs are described by charac-
teristic parameters, which can be assessed directly from the light
curves and also analytically, in order to check the reliability of the
recipe that we have followed. The first characteristic parameter is
tmost, the returning time at pericentre of the most bound stellar debris
since disruption. For a star on a parabolic orbit around a BH, it can
be evaluated as

t̃most = π√
2

GMBH

E3/2
∼ π√

2

1√
G

M
1/2
BH

M∗
R3/2

∗ , (18)

where E is the specific energy spread caused by the disruption
�E ∼ GMBHR∗/r2

t , given that the orbital energy associated with
a parabolic orbit is zero. In our simulations, the binary CM is set
on a parabolic orbit around the BH but the binary components are a
bit out of it. Moreover, after the tidal binary separation, they follow
new orbits: an ellipse for the bound star and hyperbola for the
unbound star. Thus, the returning time associated with each binary
component is not simply t̃most, as it requires knowledge of the new
orbits of the separated stars. Hereafter, we denote with subscript 1
(2) the bound (unbound) binary component.
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2522 D. Mainetti et al.

Figure 3. Snapshots of the SPH particle density (in log scale) for the
simulated total double (HEp50; upper panel) and partial double (HEp143;
bottom panel) TDE at t = 0.0004 yr (∼0.15 d) after pericentre passage,
projected in the (x, y) plane. The remnant binary components are clearly
visible in the partial double disruption case.

For the bound star, the returning time can be evaluated as

tmost1 = π√
2

GMBH

E3/2
∼ t̃most

(
M∗
MBH

)1/2

× 1

(β1(1 − e1))3/2

(
1

2
+ (M∗/MBH)1/3

β1(1 − e1)

)−3/2

, (19)

where e1 is the eccentricity of its new orbit (computed through
the Hermite code), β1 the impact parameter of its CM and
E ∼ Eorb + �E, with Eorb ∼ GMBHβ1(1 − e1)/(2rt) �= 0. We
infer this time also from our simulations, considering as ‘mostly
bound’ the first returned particles after disruption associated with
the bound star. As minimum of significance we assume 10 particles
out of the set of particles, associated with the bound star, bound to
the BH. If the impact parameters of both the binary components,
β1 and β2, are close to unity, the two estimates of tmost1 are in good
agreement. In this case, we infer the returning time for the unbound
star, tmost2 , directly from our simulations. On the contrary, the more
β1 and β2 depart from unity, the worse the agreement is. In this case,
we introduce a correction factor between the two estimates of tmost1 ,
and we use it to correct tmost2 as inferred from simulations. t̃most,
tmost1 and tmost2 are reported in Table 4 for our three high-resolution
simulations.

Figure 4. Light curves [Ṁ versus time; see equation (15) in Section 5.2 to
convert accretion rates into luminosities] inferred from our high-resolution
simulations of parabolic equal-mass binary–BH encounters, depicting a fully
disruptive encounter (simulation HEp50), an almost total double disruption
(simulation HEp100) and a partial double TDE (simulation HEp143). Green
and blue curves are associated with the disruption of the binary components;
red curves reproduce the point-wise sum of the green and blue curves. On
the top-right corners, we show the same plots in logarithmic scale. A knee
in the red curve is somehow visible in simulation HEp143, especially in the
logarithmic plot, and it decays more steeply than the classically assumed
power law of index −5/3.
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SPH simulations of binary TDEs 2523

Table 4. Characteristic parameters of the light curves inferred from our
high-resolution simulations of equal-mass binary–BH encounters, as an-
alytically estimated (see Section 5.2). Simulations HEp50, HEp100 and
HEp143, respectively, corresponding to the ones in Fig. 4. tmost is the re-
turning time at pericentre of the most bound stellar debris since disruption
and tpeak the rise time from stellar disruption to accretion rate peak, Ṁpeak.
Tilded values are evaluated setting the binary components on parabolic
orbits correspondent to the initial one of the binary CM; untilded values
consider the effective orbits of the binary stars. The 1 (2) subscript denote
the BH bound (unbound) star. �tpeak and �Ṁpeak are the differences in rise
times and accretion rate peaks between the two ‘humps’ expected in the
composite light curves associated with double TDEs, actually visible only
in the partially disruptive encounter (simulation HEp143; see Fig. 4).

HEp50: HEp100: HEp143:
TD-TDE ATD-TDE PD-TDE

t̃most(yr) 0.1126 0.1126 0.1126
tmost1 (yr) 0.0987 0.0963 0.0946
tmost2 (yr) 0.1777 0.1681 0.1873
t̃peak1 (yr) 0.1807 0.1618 0.1738
tpeak1 (yr) 0.1585 0.1384 0.1460
t̃peak2 (yr) 0.1779 0.1617 0.1751
tpeak2 (yr) 0.2809 0.2415 0.2915
˜̇Mpeak1 (M� yr−1) 1.254 1.672 0.595
Ṁpeak1 (M� yr−1) 1.566 2.088 0.743
˜̇Mpeak2 (M� yr−1) 1.266 1.563 0.519
Ṁpeak2 (M� yr−1) 0.792 0.978 0.325
�tpeak(d) – – 50
�Ṁpeak(M� d−1) – – 10−3

Corrections for the new orbits of the separated stars also involve
the second characteristic parameter of TDE light curves, tpeak, that
is the rise time between the time of stellar disruption and the time at
which the accretion rate peaks. If the two binary components were
on parabolic orbits corresponding to the initial one of their binary
CM, the rise time for each star would be denoted as t̃peak (1,2) and
could be evaluated following Guillochon & Ramirez-Ruiz (2013,
2015a). Corrected values come out to be

tpeak ∼ t̃peak
tmost

t̃most
, (20)

assuming that tmost and tpeak change proportionally. Table 4 collects
t̃peak (1,2) and tpeak (1,2) for our three high-resolution simulations.

The last characteristic parameter of TDE light curves is the peak
of accretion rate, Ṁpeak. According to MacLeod et al. (2013), this
parameter is linked to the mass of the debris which binds to the BH
MboundBH and to the rise time tpeak through the relation

Ṁpeak ∼ 2

3

MboundBH

tpeak
. (21)

Values for stars on parabolic orbits, ˜̇Mpeak (1,2), can be evaluated
considering MboundBH to be half the mass lost from each star (e.g.
Rees 1988) and tpeak ≡ t̃peak. Corrected values require MboundBH as
inferred from our simulations and tpeak from equation (20). Given

that standard assumptions work for β ∼ 1, we estimate ˜̇Mpeak (1,2)
and Ṁpeak (1,2) as just mentioned for simulation HEp100 (see Sec-
tion 5.1), and then we convert them in the corresponding values for
the other two simulations, based on the dependence of Ṁpeak from
the impact parameter β reported in Guillochon & Ramirez-Ruiz
(2013, 2015a). Indeed, the only difference among our simulations

Table 5. Same as Table 1 for our high-resolution simulations
involving unequal-mass binaries.

abin/rp 42.0 70.0
(R�)

HUp70a:
4.9 HUp42: P&T-TDE

TD-TDE HUp70b:
P&T-TDE

is the value of the pericentre radius, i.e. β.2 However, recall that
the relation between Ṁpeak and β works for parabolic orbits. Con-
sequently, some differences between the values assessed from the
inferred light curves (Fig. 4) and our analytical estimates are to be
expected. Values of ˜̇Mpeak (1,2) and Ṁpeak for our three simulations
are reported in Table 4. Good agreement is found between light-
curve parameters inferred from Fig. 4 and analytical evaluations,
motivating the recipe we have followed in the aim to derive TDE
light curves.

As previously said in this section, the composite light curves
associated with double TDEs are obtained by summing the light
curves associated with the disruption of the single binary compo-
nents. Given that the binary components have different returning
and rising times, one should expect to observe a double peak in
their composite light curve. In Table 4, we collect, where possible,
the values of �tpeak and �Ṁpeak as inferred from Fig. 4, which
are the differences in rise times and accretion rate peaks between
the two ‘humps’ in the composite light curves. From Table 4 and
Fig. 4, we see that only in simulation HEp143, which corresponds
to a grazing encounter, the composite light curve shows not ex-
actly a double peak, as predicted, but anyway a knee. In this case,
the single-star light curves are distinguishable enough to be both
glimpsed in the composite light curve. As shown in hydrodynamical
simulations of single TDEs of Guillochon & Ramirez-Ruiz (2013),
grazing encounters give rise to steep light curves (i.e. steeper than
−5/3) immediately after the peak and, in the context of double dis-
ruptions, this favours the visibility of the knee in the composite light
curves. Therefore, in the case of double TDEs of equal-mass bina-
ries, only grazing encounters can produce a knee in the composite
light curve.

5.3 Double TDE light curves: the case of unequal-mass
binaries

What happens in the case of deeper encounters if the binary com-
ponents have unequal masses? Using the same procedure described
in Section 5.2, we carry on and analyse three high-resolution SPH
simulations of unequal-mass binaries on parabolic orbits around a
BH (MBH = 106 M�) (HU runs). Table 5 collects the outcomes
of these simulations as a function of abin and rp. We also perform
the correspondent low-resolution SPH simulations (LU runs), re-
spectively, denoted as LU1, LU2 and LU3, finding out the same
outcomes and the same orbital evolution of the binary components
(Fig. 1, bottom panels).

In particular, simulations LU1/HUp42 consider M1 =
0.4 M�, rt1 ∼ 65.2 R�, M2 = 0.27 M�, rt2 = 54.3 R�, sim-
ulations LU2/HUp70a: M1 = 0.5 M�, rt1 ∼ 72.4 R�, M2 =
1 M�, rt2 = 100.0 R�, simulations LU3/HUp70b: M1 = 1. M�,

2 In the case of unequal-mass binaries, we need to consider also the depen-
dence of Ṁpeak from M∗ and R∗.
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2524 D. Mainetti et al.

Figure 5. Zoom in the SPH particle density (in log scale) for simulations
HUp70a (upper panel) and HUp70b (bottom panel) in Section 5.3, projected
in the (x, y) plane, at t = 0.0034 yr (∼1.2 d) after pericentre passage. The
remnant less massive star is clearly visible in both the simulations.

rt1 ∼ 100.0 R�, M2 = 0.5 M�, rt2 = 72.4 R�. The initial condi-
tions of simulations LU1/HUp42 are those considered in Mandel
& Levin (2015). With simulations HUp70a and HUp70b, we ex-
plore the dependence of the visibility of a double peak on the mass
difference between the binary components and on the mass of the
captured star, whether it is the less or the more massive of the two.
Indeed, simulations HUp70a and HUp70b only differ in that they
are out of phase by 180◦. In the high-resolution regime, stars de-
noted as 1, which remain bound to the BH after binary separation,
are modelled respectively with 4 × 104, 105 and 2 × 105 particles,
and stars 2, which unbind from the BH, with 2.7 × 104, 2 × 105

and 105 particles. Fig. 5 shows a zoom in the SPH particle density
(in log scale), projected in the (x, y) plane, at t = 0.0034 yr (∼1.2d)
after pericentre passage for simulations HUp70a and HUp70b. The
remnant less massive star is clearly visible in both the simulations.

Table 6 collects the characteristic parameters of the light curves
inferred from simulations HUp42, HUp70a and HUp70b, respec-
tively, as analytically estimated following Section 5.2. Fig. 6 shows
single-star and composite light curves inferred from simulations
HUp42, HUp70a and HUp70b following the recipe described in
Section 5.2. Not exactly a double peak, but a knee in the compos-
ite light curve is observed when the mass difference between the
two stars is increased and when the star which gets bound to the

Table 6. Same as Table 4 for simulations HUp42, HUp70a and HUp70b in
Section 5.3.

HUp42: HUp70a: HUp70b:
TD-TDE P&T-TDE P&T-TDE

t̃most1 (yr) 0.0937 0.0980 0.1126
tmost1 (yr) 0.0845 0.0760 0.1019
t̃most2 (yr) 0.0866 0.1126 0.0980
tmost2 (yr) 0.1224 0.1355 0.1802
t̃peak1 (yr) 0.1433 0.1417 0.1696
tpeak1 (yr) 0.1293 0.1099 0.1536
t̃peak2 (yr) 0.1272 0.1682 0.1408
tpeak2 (yr) 0.1797 0.2025 0.2589
˜̇Mpeak1 (M� yr−1) 0.738 0.987 1.622
Ṁpeak1 (M� yr−1) 0.922 1.431 2.025
˜̇Mpeak2 (M� yr−1) 0.574 1.579 0.952
Ṁpeak2 (M� yr−1) 0.360 0.988 0.442
�tpeak(d) – 25 –
�Ṁpeak(M� d−1) – 1.5 × 10−3 –

BH is the less massive of the two (simulation HUp70a). This is
because a low-mass star is less compact than a higher-mass star (the
compactness parameter is ∝M∗/R∗), and this leads to an increased
difference between the narrow peak of the low-mass star light curve
and the broader peak of the higher-mass star light curve.

6 SU M M A RY A N D C O N C L U S I O N S

A stellar tidal disruption occurs when a star passes close enough
to the central BH of a galaxy to experience the BH tidal field. The
star can be fully or partially torn apart, according to the distance of
closest approach (Guillochon & Ramirez-Ruiz 2013, 2015a). The
stellar debris which accretes on to the BH powers a long-lasting
single flare (e.g. Rees 1988; Phinney 1989) or even periodic flares,
if the star, partially disrupted, keeps on orbiting around the BH
(MacLeod et al. 2013). Such events contribute to detect otherwise
quiescent BHs of masses complementary to that probed in bright
AGN and QSO surveys (Vestergaard & Osmer 2009).

Given the high number of field stars in binary systems (Duquen-
noy & Mayor 1991b; Fischer & Marcy 1992), encounters with a
galactic central BH can involve stellar binaries instead of single
stars. The high central densities and velocity dispersions present in
galactic nuclei reduce the number of binaries. Indeed, most bina-
ries are ‘soft’, i.e. the relative velocity of their components is much
smaller than the velocities of the field stars. Thus, soft binaries can
be separated via close encounters with other stars over the galaxy
lifetime (Merritt 2013). However, some binaries are ‘hard’ enough,
which also means close enough, to survive encounters with field
stars for a longer time. The members of these binaries, under cer-
tain conditions, when approaching the central BH can experience
total or partial tidal disruption immediately after the tidal binary
break-up. From an encounter of this kind, a double-peaked flare
is expected to blaze up (Mandel & Levin 2015). Generally, after
binary break-up one star leaves the system while the other binds to
the BH (e.g. Antonini et al. 2011). In the case of partial double dis-
ruptions, the bound star can be thus repeatedly disrupted, lighting
up periodic (∼1–10 yr) single-peaked flares. Hence, we argue that
this channel could be one of the most likely mechanisms that allow
stars to become bound to central galactic BHs and undergo periodic
TDEs, as suggested for IC3599 (Campana et al. 2015). Periodicity
increases the chance of observing and modelling TDE flares, and
it could be predicted if a double peak were detected. This is rare
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Figure 6. Light curves [Ṁ versus time; see equation (15) in Section 5.2]
inferred from the high-resolution simulations HUp42, HUp70a and HUp70b
in Section 5.3. Green and blue curves are associated with single-star disrup-
tions; the composite light curves are the red ones. On the top-right corners,
we show the same plots in logarithmic scale. A knee in the composite light
curve is visible in simulation HUp70a.

but not impossible, given that double TDEs should contribute up to
about the 20 per cent of all TDEs.

This is the first paper that explores the process of double tidal
disruption through hydrodynamical simulations, in the aim at de-
tailing the dynamics of the binary–BH interaction (see Figs 2, 3
and 5) and the shape of the outcoming light curve. Based on the
results of a set of 14 low-resolution SPH simulations of parabolic
equal-mass binary–BH encounters, we set the initial conditions of
three high-resolution SPH simulations in order to explore double
TDEs of different intensities. For twin stars of equal masses, we
found that a knee, rather than a double peak, in the composite light
curve is observed only in the case of grazing double TDEs. Other-
wise, flares without knees can be observed, indistinguishably from
single-star tidal disruptions (see Fig. 4).

We also explored the case of unequal-mass binaries experiencing
double TDEs, running three additional high-resolution simulations.
We found that the most favourable conditions for the visibility of
a knee in the composite light curves occur when the difference in
mass between the binary components is increased and the star fated
to bind to the BH is lighter than the star fated to leave the system
(see Fig. 6). Indeed, the knee becomes more and more defined
when the difference in the peak width between the two single-star
light curves increases. The less massive star, which is less compact,
generates a light curve that is rising and declining on a shorter
time-scale. Varying the binary semimajor axis, internal eccentricity
and internal orbital plane inclination with respect to the binary CM
orbital plane around the BH affects less the shape of the double
TDE light curves. These parameters mainly act on the single-star
impact parameters, but even if these are different to the maximum
degree, they cannot be so much different, otherwise double TDEs
are inhibited.

Starting from the light curve which shows a knee in the case of
unequal-mass binaries (Fig. 6, middle panel), we estimated analyti-
cally how much the light curve would change when changing the BH
mass, MBH. We considered the interval between 105 and 108 M�
and follow the dependence on MBH of single times and peak accre-
tion rates as reported by Guillochon & Ramirez-Ruiz (2013, 2015a).
We found that �tpeak tends to increase whereas �Ṁpeak tends to de-
crease increasing MBH to the point that intermediate values of MBH

(i.e. 106–107 M�) are more favourable to the observation of the
knee in the composite light curve.

It is worth noting that relativistic effects should also be taken into
account in future studies on double TDEs, especially in the case
of deep encounters, given that they could cause deviations of the
debris evolution from the one assumed here. Lense–Thirring effects
can warp the accretion disc which forms around a spinning BH,
powering quasi-periodic oscillations (Franchini, Lodato & Facchini
2016). In-plane relativistic precession leads the stream of debris to
self-cross (Shiokawa et al. 2015), speeding up the circularization
process (Bonnerot et al. 2016), but nodal precession which arises
from the BH spin can deflect debris out of its original orbital plane,
delaying self-intersection and then circularization, which however
depends on the efficiency of radiative cooling (Hayasaki, Stone &
Loeb 2015), and flaring (Guillochon & Ramirez-Ruiz 2015b).

Up to now, candidate TDE observations have been too widely
spaced in time to allow the notice of a possible knee. The challenge
for the future will be to find a way to get more detailed light curves
from observations (e.g. Holoien et al. 2016), particularly in the
region of peak emission, as well as in the late-time decay. In this
way, it will be possible to distinguish between light curves which
show or not a knee, opening the opportunity to predict and follow up
periodic flares, and to separate TDEs from other phenomena which
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nowadays could be misinterpreted due to the scarcity of data. The
advent of new telescopes, such as LSST (http://www.lsst.org/lsst),
may contribute to such a purpose.
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Öpik E., 1924, Publ. Tartu Astrofizica Obs., 25, 1
Peebles P. J. E., 1972, ApJ, 178, 371
Perets H. B., Hopman C., Alexander T., 2007, ApJ, 656, 709
Phinney E. S., 1989, in Morris M., ed., Proc. IAU Symp. 136, The Center

of the Galaxy. Kluwer, Dordrecht, p. 543
Price D. J., 2005, preprint (astro-ph/0507472)
Ramirez-Ruiz E., Rosswog S., 2009, ApJ, 697, L77
Rees M. J., 1988, Nature, 333, 523
Renzini A., Greggio L., di Serego Alighieri S., Cappellari M., Burstein D.,

Bertola F., 1995, Nature, 378, 39
Rosswog S., Ramirez-Ruiz E., Hix W. R., 2008, ApJ, 679, 1385
Rosswog S., Ramirez-Ruiz E., Hix W. R., 2009, ApJ, 695, 404
Saxton R. D., Read A. M., Esquej P., Komossa S., Dougherty S., Rodriguez-

Pascual P., Barrado D., 2012, A&A, 541, A106
Saxton R. D., Motta S. E., Komossa S., Read A. M., 2015, MNRAS 454,

2798
Sesana A., Madau P., Haardt F., 2009, MNRAS, 392, 31

MNRAS 457, 2516–2529 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/457/3/2516/2588981 by guest on 08 M
ay 2020

http://www.lsst.org/lsst
http://arxiv.org/abs/1501.05207
http://arxiv.org/abs/astro-ph/0507472


SPH simulations of binary TDEs 2527

Shiokawa H., Krolik J. H., Cheng R. M., Piran T., Noble S. C., 2015, ApJ,
804, 85

Spitzer L., Jr, Hart M. H., 1971, ApJ, 164, 399
Springel V., 2005, MNRAS, 364, 1105
Strubbe L. E., Quataert E., 2009, MNRAS, 400, 2070
van Velzen S. et al., 2011, ApJ, 741, 73
Vestergaard M., Osmer P. S., 2009, ApJ, 699, 800
Vinko J. et al., 2015, ApJ, 798, 12
Wang T., Zhou H., Wang L.-F., Lu H.-L., Xu D., 2011, ApJ, 740, 85
Wang T., Zhou H., Komossa S., Wang H.-Y., Yuan W., Yang C., 2012, ApJ,

749, 115
Zauderer B. A. et al., 2011, Nature, 476, 425

APPENDIX A : BINARY STA R O RBITS FRO M
L OW-R E S O L U T I O N S P H SI M U L ATI O N S
A N D N- B O DY IN T E G R ATO R

This appendix shows the collection of orbits associated with our
low-resolution simulations of binary–BH encounters. Tables A1
and A2, respectively, refer to the simulations presented in Tables 1
and 2 in Section 4 and include figures which represent the orbital
evolution of the binary components around the BH projected in the
(x, y) and (y, z) planes. Evolutions start at (0,0), (0,0). Units are in

R�. Blue curves reproduce the initial parabolic orbits of the binary
CM around the BH, each inferred from the position of the BH,
marked in figures with a black dot, and the pericentre radius rp. Red
and green curves represent the early and late orbital evolution around
the BH of each binary component, respectively, inferred from SPH
simulations (see also Section 5.2) and computed through an N-body
Hermite code (e.g. Hut & Makino 1995; see Section 4). The usage of
an N-body code in drawing advanced orbits enables us to overcome
the high computational time required by SPH simulations to track
them.

MGs occur when the binary components progressively reduce
their relative separation without being tidally separated, till merg-
ing in a single product. This MG product, which corresponds
to having the binary components at a fixed minimum distance
in our N-body simulations, follows the initial parabolic orbit of
the binary CM around the BH. Undisturbed binaries (UNs) keep
their internal and external orbits unchanged. Double disruptions
(D-TDEs) are immediately preceded by binary separation, which
can still also occur without stellar disruptions (BBKs). Binary
break-up gets one star bound to the BH and leaves the other
unbound. The unbound component, if not totally disrupted, may
exit the system as hypervelocity star (Hills 1988; Antonini et al.
2011).
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