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ABSTRACT
Supernova remnants are believed to be the main sources of galactic cosmic rays (CR). Within
this framework, particles are accelerated at supernova remnant shocks and then released in the
interstellar medium. The mechanism through which CRs are released and the way in which
they propagate still remain open issues. The main difficulty is the high non-linearity of the
problem: CRs themselves excite the magnetic turbulence that confines them close to their
sources. We solve numerically the coupled differential equations describing the evolution
in space and time of the escaping particles and of the waves generated through the CR
streaming instability. The warm ionized and warm neutral phases of the interstellar medium
are considered. These phases occupy the largest fraction of the disc volume, where most
supernovae explode, and are characterized by the significant presence of neutral particles. The
friction between those neutrals and ions results in a very effective wave damping mechanism.
It is found that streaming instability affects the propagation of CRs even in the presence of
ion-neutral friction. The diffusion coefficient can be suppressed by more than a factor of ∼2
over a region of few tens of pc around the remnant. The suppression increases for smaller
distances. The propagation of ≈10 GeV particles is affected for several tens of kiloyears after
escape, while ≈1 TeV particles are affected for few kiloyears. This might have a great impact
on the interpretation of gamma-ray observations of molecular clouds located in the vicinity of
supernova remnants.

Key words: cosmic rays.

1 IN T RO D U C T I O N

Cosmic rays (CRs), discovered more than one century ago, are
known to propagate in our Galaxy by successive random walks
with mean free paths which can exceed a parsec at energies above
a few GeV. The origin of CRs is still a subject of debate. Though
supernova remnants (SNRs) are the favourite sources (Drury et al.
2001), a contribution from other types of sources like, for instance,
superbubbles (Bykov 2001; Parizot et al 2004) cannot be excluded
at this stage. In SNRs, diffusive shock acceleration appears to be
an efficient mechanism to accelerate particles up to PeV energies
or possibly beyond (Bell et al. 2013 and references therein). Unfor-
tunately, a fully self-consistent theory describing both acceleration
of particles at SNR shocks and CR propagation in the interstellar

� E-mail: lara.nava@mail.huji.ac.il

medium (ISM) is still missing. In particular, several important issues
still remain opened: how do CRs escape from their sources? What
is the impact of the properties of the ISM over CR propagation?
This latter question is addressed in this article.

Modelling the propagation of CRs just after their escape allows
us to predict how their intensity varies as a function of time and
space in the immediate vicinity of their accelerators. The intensity
of CRs close to an accelerator is expected to be larger than that of the
CR background for a certain time-scale, which is determined by the
diffusion coefficient of CRs in the local environment of the accelera-
tor. Such scenario can be constrained observationally if CRs, during
their propagation, interact with a dense medium (e.g. a molecular
cloud) and generate gamma-rays in inelastic proton–proton inter-
actions (Gabici & Aharonian 2007; Gabici, Aharonian & Casanova
2009; Casanova et al. 2010; Ohira, Murase & Yamazaki 2011). The
recent detection of gamma-ray emission around some SNRs (e.g.
Aharonian et al. 2008; Abdo et al. 2010; Uchiyama et al. 2012), and
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Non-linear CR diffusion 3553

the advent of future facilities such as the Cherenkov Telescope Ar-
ray (https://www.cta-observatory.org/) motivates the development
of accurate models capable to describe the CR intensity nearby
SNRs at different ages and propagating in different type of ISM.

The difficulty of the escape process resides in its non-linearity,
since CRs themselves are believed to generate the magnetic turbu-
lence needed to confine them. The role of CR self-confinement in
and around CR sources is a long-standing issue already addressed
in several articles (Skilling 1975; Bell 1978; Schwartz & Skilling
1978; Ptuskin & Zirakashvili 2005; Ptuskin, Zirakashvili & Plesser
2008; Yan, Lazarian & Schlickeiser 2012; Malkov et al. 2013).
The process, in principle 3D, can be treated using the so-called flux
tube approximation where escaping CRs start to stream freely along
the magnetic field lines of a flux tube containing the SNR shock
(Ptuskin et al. 2008). While streaming at velocities faster than the
local Alfvén velocity, CR trigger magnetohydrodynamic (MHD)
waves (Skilling 1975). Among them, the slab waves which propa-
gate along the magnetic field lines grow the fastest. The problem can
be considered as 1D because magnetic field lines are only weakly
perturbed up to a scale of the order of the coherence length of the
background interstellar turbulence (Nava & Gabici 2013). Beyond
this distance, a 3D transport process starts to control the magnetic
field line transport. The turbulent coherence length is believed to be
in the range ≈50–100 parsecs (see the recent results in Beck et al.
2016 and references therein). If 1D transport along the magnetic
field lines prevails, then the CR transport and the wave growth (and
possible damping) can be described by a system of two coupled
non-linear equations. Waves and particles interact resonantly, i.e.
the slab mode wavelength k and the particle Larmor radius rL verify
krL ∼ 1 (see Section 2). In this model, the intensity of the perturba-
tions at a given k fixes the efficiency of the particle scattering and
hence the normalization of the spatial diffusion coefficient at the
resonant CR energy. In order to derive analytical solutions of this
non-linear system, Ptuskin et al. (2008) and Malkov et al. (2013)
have considered self-similar solutions. They predict a space- and
time-dependent CR distribution which can eventually be probed by
gamma-ray experiments if a molecular cloud is standing at suffi-
ciently small distances from the source. One of the major caveat
of self-similar solutions is that if CRs produce strong wave gener-
ation, they produce a strong particle confinement that should lead
to unrealistically high gamma-ray fluxes. This aspect motivated the
numerical approach exposed in this article.

The aim of our work is many folds. At first, we proceed with a
parametric survey of both SNR and local ISM properties and in-
vestigate under which particular conditions the growth of waves is
effective. Secondly, we consider the role of wave damping depend-
ing on the type of ISM in which CRs propagate. In particular, we
investigate the damping induced by the presence of neutral parti-
cles. For this reason, we limit our investigation to two phases of the
ISM: the warm neutral medium (WNM) and to the warm ionized
medium (WIM).

The layout of this article is as follows: Section 2 introduces
the mathematical and physical formalisms adopted in the flux tube
approximation. In Section 3, we present the numerical solutions of
the CR escape problem including the effect of a linear damping
term. In this section, we detail the impact of the initial CR pressure,
damping rate and background turbulence level on the solutions. In
Section 4, we specify the dominant damping process depending
on the ISM phase and we propose an estimation of the typical
escaping time-scale of CRs from their parent source. In Section
5, we discuss the astrophysical consequences of our model. We
conclude in Section 6.

2 T H E P RO B L E M

The aim of this paper is to study the non-linear diffusion of a pop-
ulation of CRs after their escape from the acceleration site (for
example, an SNR shock). As a zero-order approximation, the prob-
lem can be described by an impulsive injection of a given amount of
CRs at a given location in the Galaxy. For simplicity, we consider
here only relativistic CRs, with particle energies above ≈1 GeV and
thus velocities roughly equal to the speed of light c.

The transport of CRs is assumed to be regulated by the resonant
scattering off Alfvén waves, i.e. a CR of energy E resonates with
waves of wavenumber k = 1/rL (see e.g. Wentzel 1974), where the
Larmor radius rL of a particle with Lorentz factor γ , mass m, and
charge Ze gyrating with velocity v in a magnetic field of strength B is
rL = γmvc

ZeB
. For relativistic protons, rL � E/(eB). The (normalized)

energy density I(k) of Alfvén waves is defined as

δB2

8π
= B2

0

8π

∫
I (k) d ln k, (1)

where B0 is the ambient magnetic field and δB the amplitude of the
magnetic field fluctuations.

According to quasi-linear theory, CRs diffuse along the magnetic
field lines with a diffusion coefficient equal to (Bell 1978):

D(E) = 4 c rL(E)

3π I (k)
= DB(E)

I (k)
, (2)

which can be expressed as the ratio between the Bohm diffusion
coefficient DB(E) and the energy density of resonant waves I(k).
Formally, quasi-linear theory is valid for δB/B0 � 1, and for a
well-developed (i.e. broad) turbulent spectrum, which is the case
considered here. In this limit, the diffusion perpendicular to the field
lines can be neglected, being suppressed by a factor of (δBk/B0)4 ≡
I(k)2 with respect to the one parallel to B0 (see e.g. Drury 1983;
Casse, Lemoine & Pelletier 2002). This implies that under the con-
dition that δB/B0 remains small, the problem is 1D. We verified
a posteriori that this assumption is always satisfied in our calcula-
tions, and the choice to work in the limit of quasi-linear theory is
hence well-justified.

Finally, the additional assumption is made that the main source
of Alfvénic turbulence is the streaming of CRs. Let us say that CRs
stream along the direction of B0, which is aligned along the coor-
dinate z. Then the growth rate of Alfvén waves �CR is proportional
to the product between the Alfvén speed and the gradient of the
pressure of resonant CRs, and can be defined as (see e.g. Skilling
1975; Drury 1983):

2�CRI = −VA
∂PCR

∂z
. (3)

For dimensional consistency, the pressure of the resonant CRs with
energy E (PCR in equation 3) has been normalized to the magnetic
energy density B2

0 /8π. The right-hand side of the equation above
can be interpreted as the rate of work done by the CRs in scattering
off the waves, which is equal to the energy generation rate of waves
(left-hand side of the equation). Thus, equation (3) implies a max-
imal efficiency for the growth of waves (e.g. Drury 1983; Malkov
et al. 2013) and its sign indicates that only waves travelling in the
direction of the streaming are excited.

It is now possible to write the equations that govern the transport
of CRs and waves along the magnetic field lines. On scales smaller
than the magnetic field coherence length, a flux tube characterized
by a constant magnetic field strength B0 and directed along the z-
axis is considered. The equations that describe the evolution of CRs
and waves along the flux tube are coupled because the diffusion
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coefficient of CRs of energy E (equation 2) depends on the energy
density of resonant waves I(k), while the growth rate of waves
(equation 3) depends on the gradient of the pressure of resonant
CRs ∂PCR/∂z. The two equations then read:

∂PCR

∂t
+ VA

∂PCR

∂z
= ∂

∂z

(
DB

I

∂PCR

∂z

)
, (4)

∂I

∂t
+ VA

∂I

∂z
= −VA

∂PCR

∂z
− 2�dI + Q , (5)

where the left-hand side of both expressions is the time derivative
computed along the characteristic of excited waves:

d

dt
= ∂

∂t
+ VA

∂

∂z
. (6)

The advective terms VA∂PCR/∂z and VA∂I/∂z are neglected in the
following since they play little role in the situation under examina-
tion. This assumption can be easily checked a posteriori. The last
two terms in equation (5) account for possible mechanisms of wave
damping, operating at a rate �d, and for the injection Q of turbu-
lence from an external source (i.e. other than CR streaming). The
term representing the external source of turbulence can be set to Q
= 2�dI0, so that when streaming instability is not relevant, the level
of the background turbulence is at a constant level I = I0. In general,
the damping coefficient could be a function of I (see e.g. Ptuskin
et al. 2008), but for reasons that will be clear in the following, here
we limit our analysis to linear damping terms, i.e. �d is a constant
in both space and time.

As pointed out by Malkov et al. (2013), the approach described
above decouples the process of acceleration of particles (which
operates, for example, at an SNR shock) from the particle escape
from the acceleration site. In other words, equations (4) and (5)
apply in the transition region between the acceleration site (where
a high level of magnetic turbulence, typically at the Bohm level,
may be expected) and the average conditions of the ISM, where
the level of turbulence is much smaller. Though such a separation
might seem artificial, the problem defined above can still be useful
to describe the escape of particles from a dead accelerator, in which
the acceleration mechanism does not operate anymore, or operates
at a much reduced efficiency (Malkov et al. 2013). This situation
would probably apply to the case of old SNRs.

On the other hand, Ptuskin et al. (2008) suggested that
equations (4) and (5) could be also used to describe an intermediate
phase of CR propagation in which the CRs have left the source but
are not yet completely mixed with the CR background. For the case
of an SNR shock, the equations above could thus be applied to those
CRs characterized by a diffusion length large enough to decouple
them from the shock region. Typically, this happens during the Se-
dov phase to the highest energy particles confined at the SNR shock
when the diffusion length DB/us gradually increases with time up
to a value larger than some fraction χ of the SNR shock radius Rs,
where us is the shock speed and χ ≈ 0.05, . . . , 0.1 (e.g. Ptuskin
& Zirakashvili 2005; Gabici 2011). In both the scenarios described
above, CRs are decoupled from the SNR shock and we will refer to
them as a CR cloud.

The initial conditions for equations (4) and (5) can be set as
follows

PCR = P 0
CR z < a (7)

= 0 z > a, (8)

where a represents the spatial scale of the region filled by CRs at the
time of their escape from the source, and I = I0 everywhere. In fact,

a larger value of I � I0 could be chosen as an initial condition for
z < a (to mimic Bohm diffusion inside the accelerator). However,
we found the exact initial value of I inside the source to have very
little effect on to the solution of the problem, and thus we kept a
spatially uniform I0.

Following Malkov et al. (2013), we introduce the quantity �,
defined as:

� = VA

DB
�CR , (9)

where

�CR ≡
∫ ∞

0
PCR dz = a P 0

CR. (10)

It follows that � is a conserved quantity that can be considered as
a control parameter. To understand its meaning, consider the initial
setup of the problem, in which CRs are localized in a region of size
a. The CR pressure within a is P 0

CR, and then �CR = a P 0
CR. The

initial diffusion coefficient outside the region of size a is equal to
D0 = DB/I0. In such setup, three relevant time-scales exist: (i) the
growth time of waves τg ≈ I0/(VA∂PCR/∂z) ≈ aI0/VAP 0

CR, (ii) the
time it takes the CR cloud to spread significantly due to diffusion
τ diff ≈ a2/D ≈ a2I0/DB, and (iii) the damping time τ damp = 1/2�d.
In order to have a significant growth of waves due to CR streaming,
the time-scale for growth must be shorter than the two other time-
scales: τ g < min (τ diff, τ damp). In terms of the parameter �, this
conditions reads: � > max (1, τ diff/τ damp). It is evident then that
the parameter � regulates the effectiveness of CR–induced growth
of waves. In the absence of a damping term for waves, � > 1 is a
sufficient condition for streaming instability to be relevant, while in
the presence of efficient wave damping, a more stringent condition
on � applies.

For � � max (1, τ diff/τ damp), CRs play no role in the generation
of Alfvén waves, and equation (4) can be solved analytically:

PCR =
√

I0

πDBt
�CR e

− I0z2

4DB t . (11)

Equation (11) is referred to as test-particle (TP) solution. When
wave growth cannot be neglected, the solution deviates from the
TP one. It is worth noticing that, independently on the value of �,
equation (11) is also the formal asymptotic solution of the non-
linear equations (4) and (5) at late times, when CRs are spread over
a large region along the magnetic flux tube, and consequently their
ability to amplify Alfvén waves is strongly reduced (in other words,
∂PCR/∂z is small).

For completeness, we mention that in the extreme scenario (not
considered in this paper) where � � max (1, τ diff/τ damp) waves
grow so quickly that the diffusive term in equation (4) becomes
negligible when compared to advection term VA∂PCR/∂z. In this
case the advection term can no longer be neglected. This describes
a situation in which CRs are ‘locked’ to waves and move with them
at a velocity equal to VA (Skilling 1971). An identical result was
found by Cesarsky (1975) in a study of the escape of ≈ MeV CRs
from sources, and also suggested by Hartquist & Morfill (1994).

To conclude this section, let us estimate the numerical values of
�, the main parameter that regulates the problem under examina-
tion. The value of � for the case of an SNR of radius Rs = 10 R1 pc
which releases 1050WCR, 50 erg of CRs with a differential energy
spectrum ∝ E−2.2 is

� ≈ 3 × 104 WCR,50 R−2
1 n

−1/2
i,−1 E−1.2

1 , (12)
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where ni, −1 is the density of the ionized gas in the ISM in units
of 0.1 cm−3 and E1 the CR particle energy in units of 10 GeV.
This demonstrates that extremely large values of � (and thus of
the initial growth rate) are very easily obtained, and explains why
very small diffusion coefficients are obtained if the growth of waves
is not balanced by a quite effective damping mechanism (see e.g.
Malkov et al. 2013). On the other hand, in the presence of significant
damping (i.e. when τ diff/τ damp > 1), the condition to be satisfied
to have a growth of Alfvén waves is more stringent and reads � >

τ diff/τ damp. While in absence of significant damping, large values
of � lead to significant growth of waves and it is then easy to
obtain values of I � 1 (inconsistent with the initial assumption of
quasi-linear regime), we will show that, in presence of damping,
the derived values of I always satisfy the condition I � 1.

3 N U M E R I C A L S O L U T I O N : N O R M A L I Z E D
E QUAT I O N S

As shown above, the solution of equations (4) and (5) depends on
the value of many physical parameters, including the CR energy and
spectrum, the value of the interstellar magnetic field, the density of
the ISM, the initial value of the background turbulence I0, and the
size of the region a over which CRs are released. However, we show
here that the main physical quantities in equations (4) and (5) can
be conveniently re-normalized, so that the solution depends only on
three variables. This study allows us to understand how different
initial conditions affect the final results, how the solution evolves
with time and how the particle distribution in space is modified, as
compared to the TP solution, in the cases where the growth rate is
relevant.

First, we perform the following change of coordinates (Malkov
et al. 2013):

s ≡ z

a
τ ≡

(
VA

a

)
t, (13)

where the space and time coordinates are normalized to the values
a = (2/3)Rs ≈ 7 R1 pc1 and a/Va ≈ 105 R1n

1/2
i,−1B

−1
1 yr, where B1

is the interstellar magnetic field strength in units of 10 μG. Since
the flux tube can be considered as a 1D structure of length L =
smaxa equal to (at most) few hundred parsecs (see e.g. Ptuskin et al.
2008), the solutions presented in the following will be accurate
up to a normalized spatial coordinate s = smax of the order of
few tens to few hundreds. Then, after performing the following
normalizations:

PCR ≡
(

VAa

DB

)
PCR, (14)

W ≡
(

VAa

DB

)
I , (15)

�′ ≡
(

a

VA

)
�d, (16)

Equations (4) and (5) become

∂PCR

∂τ
= ∂

∂s

(
1

W

∂PCR

∂s

)
, (17)

1 In our 1D model, the region initially filled with CRs has a volume equal
to the transverse section of the flux tube enclosed by the SNR, πR2

s , times
the thickness of the CR cloud along the flux tube, 2a. The effective size for
a is then obtained by equating this volume to (4π/3)R3

s .

∂W

∂τ
= −∂PCR

∂s
− 2�′ (W − W0) . (18)

Their solution (i.e. PCR and W as a function of the variables τ and
s) depends only on three parameters: the initial values P0

CR, W0,
and �′

0. Note that: P0
CR = �, W0 = VAa/D0, and �′ = �′

0 (since we
consider here only a linear damping term which is constant in both
time and space). In this notation, the condition for effective growth
of waves is � > max (1, �′W0) and similarly, the condition to have
simultaneously growth of waves and still significant damping is
1 < W0�

′
d � �.

In order to identify the relevant range of values for the param-
eters, we notice that the (normalized) initial level of Alfvénic tur-
bulence W0 is generally expected to be much smaller than unity,
otherwise the confinement time of CR close to the source would
be unrealistically large. In fact, W0 can be written as the ratio of
the characteristic diffusive time-scale and the Alfvénic crossing
time, which is clearly much smaller than unity: W0 = Vaa/D0 =
(a2/D0)(a/Va)−1 � 1. On the other hand, by recalling that D0

∼ λc, where λ is the particle mean free path, we can write:
W0 ∼ (Va/c)(a/λ) ∼ s−1

max(Va/c)(L/λ). The condition for having a
diffusive behaviour of CRs over a distance L is L/λ � 1, which
translates in a lower limit for W0 which, for typical parameters,
equals ≈10−6–10−5. We note that λ < L is expected if the particles
are able to generate slab modes, i.e. in the regime of efficient wave
production. Finally, the range of relevant values for �′

d can be de-
rived from the condition 1 < W0�

′
d � � and from the fact that �

generally assumes very large values (see equation 12).

3.1 Results

We solved numerically equations (17) and (18) and show the results
for PCR(s, τ ) as a function of the normalized coordinate s (solid
lines in Fig. 1) at three different normalized times τ = 10−2, 10−1,
1 (corresponding to different colours). The TP solution for the same
values of � and W0 is also shown for comparison (dotted lines).
Each row in the figure corresponds to results obtained by varying
only one parameter at the time.

The upper row shows the impact of the parameter � for fixed
values of �′ = 10 and W0 = 10−4. Since for � < 1, the numerical
solution coincides with the TP solution, we show our results for
values of � > 1. When � = 2, the solution starts to deviate from
the TP case: due to the growth of wave by streaming instability, the
diffusion is slower, the CR pressure in the vicinity of the accelerator
is larger and the diffusion length is smaller. The effect is more and
more evident for larger values of � (upper row, middle and right-
hand panels).

The middle row shows the effect of changing the wave damping
coefficient �′, for fixed � = 10 and W0 = 10−4. Since � � 1, when
wave damping is negligible (�′ = 0, left-hand panel), the diffusion
is suppressed as compared to the TP case. Larger values of �′ limit
the growth of the Alfvénic turbulence and the solution approaches
the TP solution. Note that �′ = 10 (middle row, central panel)
corresponds to a damping mechanism that becomes important at
τ > 0.1. For this reason, the solution at τ = 0.01 and 0.1 are
unaffected by the increased damping rate, when compared to the
case �′ = 0, and only the solution at late time τ = 1 is modified,
and approaches the TP solution. The right-hand panel shows the
case of an even faster damping mechanism, �′ = 100, whose effect
starts to be relevant at times corresponding to τ > 0.01, explaining
why the solution at intermediate and late times approaches the
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3556 L. Nava et al.

Figure 1. Normalized CR pressure as a function of the variable s, which represents the distance from the source z normalized to the size of the source a.
In each row, the results are shown by varying only one of the three key parameters (whose value is reported above each panel) and keeping the other two
fixed to the values reported in the shaded area. The solid curves show the results from the numerical computation, while dotted curves represent the test-
particle solution where the role of streaming instabilities in enhancing the turbulence is neglected. Different colours refer to different normalized times
τ = 10−2, 10−1, 1.

MNRAS 461, 3552–3562 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/461/4/3552/2608723 by guest on 11 M
ay 2020



Non-linear CR diffusion 3557

Table 1. Reference physical quantities for the WIM and
the WNM. T is the gas temperature, B0 the magnetic field
strength, ntot the total (ion plus neutral) density and fion the
ion fraction.

WIM WNM

T (K) 8 × 103 8 × 103

B0 (μG) 5 5
ntot (cm−3) 0.35 0.35
fion 0.9 0.02

TP solution, while the solution at early time is unaffected by the
increased damping rate.

The bottom row shows calculations performed at � = 5 and
�′ = 10, with W0 varying from 10−2 to 10−5. A large W0 (left-hand
panel) corresponds to slow diffusion and small diffusion length,
both in the TP case and in the numerical solution. The two solutions
differ at early and intermediate times because the growth rate is
faster than the diffusion rate, and the diffusion is suppressed. At
later times, instead, the growth rate decreases and the numerical
solution does not appreciably differ from the TP case. A change in
the initial value of the background turbulence has the same effect
on both the analytical and numerical solution: the diffusion is faster
for decreasing values of W0 (see bottom row, from left to right),
and the CRs can reach larger distances. The deviation from a TP
solution, however, remains unchanged, since both the initial growth
rate and the diffusion rate scale as W0.

4 A PPLICATIONS TO DIFFERENT PHASE S
O F T H E IS M

We now apply the results obtained in the previous section to specific
conditions of the ISM. In particular, we focus on two different
phases of the ISM: the WNM and the WIM. The reason is that these
two phases occupy the largest fraction of the volume of the disc,
where most of the supernovae are expected to explode. The cases of
other interstellar phases will deserve a future work. Especially the
case of the hot ionized medium is more complex as the dominant
damping process might be non-linear (see Ptuskin et al. 2008), i.e.
the damping coefficient might be a function of I. Our choice for the
reference values of the physical quantities defining the properties
of the WIM and WNM is reported in Table 1. All the values have
been chosen within the ranges quoted by Jean et al. (2009) (see their
table 1).

4.1 Damping of Alfvén waves

Damping of the Alfvén waves can reduce the turbulence induced by
streaming instability and hence reduce the self-confinement of CRs
around their sources. Alfvén waves are subject to various damping
processes in the ISM. Which process is the dominant one depends
dramatically on the properties of the medium. In the two phases of
the ISM considered here, the WIM and the WNM, the two most
relevant damping mechanisms are the ion-neutral friction (Kulsrud
& Cesarsky 1971) and the damping by background MHD turbulence
suggested by Farmer & Goldreich (2004), operating at a rate �IN

d

and �FG
d , respectively.

4.1.1 Ion-neutral damping

The frequency of ion-neutral collisions νc, which deter-
mines the rate of momentum transfer from ions to neutrals,

Figure 2. Ion-neutral damping rate (�IN
d , solid curves) and Farmer &

Goldreich damping rate (�FG
d , dashed curves) as a function of the energy

of resonating CRs. Different colours refer to two different phases of the
interstellar medium: warm ionized medium (WIM, red), and warm neutral
medium (WNM, blue). The shaded region refers to the WNM and indicates
the range where Alfvén waves do not propagate.

is given by (Kulsrud & Cesarsky 1971; Drury, Duffy &
Kirk 1996)

νc = nn〈σvth〉 = 2 nn 8.4 × 10−9

(
T

104 K

)0.4

s−1, (19)

where 〈σvth〉 is the fractional rate of change of the proton velocity
vth averaged over the velocity distribution, T is the temperature, and
nn is the density of neutrals.

The damping rate depends on how this frequency compares with
the wave frequency ωk that an Alfvén wave with wavenumber k
would have if there were no interactions between ions and neutrals:
ωk ≡ kB0/

√
4πmpni (valid in the case of slab modes), and on

the ratio ε between the ion density ni and the neutral density nn:
ε = ni/nn. We estimate the ion-neutral damping rate by numerically
solving equation A4 in Zweibel & Shull (1982). The results are
shown in Fig. 2 (solid lines), as a function of the energy of the
resonating particles, for both of the ISM phases considered.

Two asymptotic behaviours can be identified at small and large
k, and they can be understood as follows:

(i) ωk � νc: at low wave frequencies ions and neutrals are well
coupled and the Alfvén velocity should be estimated using the
total ISM density: VA = kB0/

√
4πmpntot. The damping rate is then

�IN
d � − ω2

k

2νcε2 ∝ E−2
k ,where Ek is the energy of particles resonating

with waves of wavelength ωk.
(ii) ωk � νc: the damping is more effective in this case, be-

cause ions and neutrals are not coupled and their collisions strongly
damp the waves. Since neutrals do not participate to the coher-
ent oscillations of the ions on the Alfvén waves, the Alfvén ve-
locity is VA = kB0/

√
4πmpni . The damping rate is given by

�IN
d = − νc

2
ω2

k

ω2
k+ν2

c ε2 , which, for large ωk, is independent on the wave

frequency: �IN
d = −νc/2.

Note that if ε < 1/8 (i.e. for a mostly neutral medium), there is a
range of k for which the waves do not propagate (Zweibel & Shull
1982). This corresponds to a range of CR energies which is around
104 GeV for the parameters we chose to describe the WNM, and
is indicated by a shaded region in Fig. 2. In the mostly neutral,
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weakly ionized atomic phases of the ISM, wave dissipation due
to collisions of ions with neutrals can play an important role and
quickly damp the Alfvénic turbulence (Kulsrud & Pearce 1969;
Kulsrud & Cesarsky 1971). The time-scale over which the damping
operates is shown on the y-axis on the right of Fig. 2.

4.1.2 Farmer–Goldreich damping

Large-scale MHD turbulence can be injected by SNRs, stellar winds
or galactic arms (Mac Low & Klessen 2004). Phenomenological
models of Alfvénic MHD turbulence have found that the cascade
from large to small scales is anisotropic; the energy cascades pref-
erentially perpendicular to the magnetic field (Goldreich & Sridhar
1995). The cascade process is due to the interaction of counter-
propagating Alfvén wave packets. However, this process is not re-
stricted to waves that are part of the cascade but also to any Alfvén
wave that can interact with cascading waves. Especially, this is true
for the waves generated by CRs escaping an SNR.

As we consider only parallel propagating waves in resonance
with CRs of Larmor radius rL here, the damping rate is given by
(Farmer & Goldreich 2004, see their equation 9):

�FG
d =

(
ε

rLVA

)1/2

. (20)

where ε = V 3
A/Linj represents the energy cascade rate per unit mass.

Linj is the turbulence injection scale; fixed at 50 pc for both WIM and
WNM phases (Yan & Lazarian 2004). We obtain the expression

�FG
d = VA

(rLLinj)1/2
. (21)

which is plotted in Fig. 2 as a dashed line for both the WNM and
WIM of the ISM.

Fig. 2 shows that in the WIM, the ion-neutral damping dominates
up to particle energies of several TeV. At larger energies, the ion-
neutral damping becomes less effective, and as a consequence, the
Farmer and Goldreich damping becomes the most relevant mech-
anism. However, at such large energies, the number of CRs is

quite small and thus the effectiveness of streaming instability is re-
duced accordingly. On the other hand, in the WNM, the ion-neutral
damping is always the dominant damping mechanism for all the
energies relevant for this study.

For completeness, we recall that ion-neutral friction also con-
tributes to damp the background turbulence W0, and thus can indi-
rectly affect the estimate of the damping term in equation (21). A
lower limit in the resonant energy of interacting particles should be
considered, at an energy obtained after balancing the cascade rate
of background turbulence Va/rL with the damping time �IN

d . This
effect has been neglected here, since we treated the background
turbulence essentially as a free parameter of the problem. For a
detailed discussion of this issue, the reader is referred to Xu et al.
(2015).

4.2 Conditions for wave growth

As seen in Section 2, the condition for the growth of Alfvén waves
is � > 1 in the absence of wave damping, or � > τ diff/τ damp, when
damping is effective. It is convenient to rewrite these two conditions
as constraints on the SNR radius at the time of particles escape. This
gives

R1 < 2 W
1/2
CR,50 n

−1/4
i,−1 E−0.6

1 (22)

and

R1 < 6 W
1/4
CR,50 n

−1/8
i,−1 �

−1/4
d,−2 D̂

1/4
28 E−0.35

1 , (23)

respectively, where the damping coefficient, which might well be a
function of energy, has been normalized as �d = 0.01 �d, −2 yr−1.
Alfvén waves grow when the most stringent among equations (22)
and (23) is satisfied. In deriving equation (23), we assumed that
the CR diffusion coefficient in the pre-existing turbulence is equal
to D0 = DB/I0 = D̂E0.5

1 with D̂ = 1028D̂28 cm2 s−1. Note that its
value is very uncertain. Estimates of the energy index for the av-
erage Galactic value vary over the range [0.3–0.7] (e.g. Strong,
Moskalenko & Ptuskin 2007). Also, we are interested in the diffu-
sion coefficient in the local environment of the SNR, which might
be very different from the average Galactic one.

Figure 3. Condition for the growth of Alfvén waves as given by the most stringent among equations (22) and (23). Resonant Alfvén waves grow if protons of
energy E are released in the interstellar medium by an SNR of radius smaller than Rmax. Rmax is represented by the red lines for three different values of the
ambient (pre-existing) diffusion coefficient D̂28 = 0.1, 1, and 10 and for WCR, 50 = 1. It is given by the right-hand side parts of the inequalities in equations
(22) and (23) (see the text for more details). The left-hand (right-hand) panel refers to the WIM (WNM) phase of the interstellar medium. The values of the
parameter � (equation 12) are also indicated with cyan lines.
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Figure 4. Half-time of the CR cloud (see the text) as a function of its initial
radius R. Red, green, and purple lines refer to particle energies of 10, 100,
and 1000 GeV. Solid and dashed lines refer to the WIM and WNM phases
of the interstellar medium. The total energy of CRs is set to WCR, 50 = 1.
The black solid line represents the relationship between SNR radius and age
according to Truelove & McKee (1999).

The maximum radius allowed by equations (22) and (23) is plot-
ted as red lines in Fig. 3 for the WIM (left-hand panel) and WNM
(right-hand panel) phases of the ISM. In each panel, the three red
curves refer to the fiducial value of the pre-existing diffusion co-
efficient, D̂28 = 1 (thick red curve) and to values of D̂28 10 times
smaller and larger (two thin red curves). The total energy of CRs has
been fixed to WCR, 50 = 1 and their differential energy spectrum is
a power law of slope 2.2. It is clear from this figure that the growth
of waves is expected in a quite significant fraction of parameter
space. For particle energies smaller than ≈104 GeV, the condition
expressed by equation (23), or � > τ diff/τ damp, is more stringent,
while for larger energies, equation (22), or � > 1, dominates. Note
that the latter does not depend on the value of the pre-existing dif-
fusion coefficient. The value of the parameter � as a function of
SNR radius and particle energy is also indicated with cyan curves.

Finally, following Malkov et al. (2013), we introduce the half-
time of the CR cloud t1/2. Let us assume that CRs of a given energy
E are initially uniformly distributed in a region (a cloud) of radius
R, and let us follow the evolution in time of the CR cloud. The
half-time of the CR cloud is defined as the time at which half of the
CRs which were initially into the cloud have diffusively escaped.
The half-time is plotted in Fig. 4 as a function of the initial radius R
for particle energies of 10 GeV (red lines), 100 GeV (green lines),
and 1 TeV (purple lines). Solid and dashed lines refer to the WIM
and WNM phases of the ISM, respectively. Also in this case, it has
been assumed that the total energy of CRs is set to WCR, 50 = 1 and
that their differential energy spectrum is a power law of slope 2.2.

A characteristic trend is observed in Fig. 4. At small radii, the
half-time of the CR cloud decreases with the cloud’s radius. In
this regime, � is large, the waves growth quickly, and t1/2 does
not sensitively depend on the background turbulence D0. Larger
radii correspond to smaller values of the parameter � (see equation
12), resulting in a reduced efficiency in the amplification of Alfvèn
waves. This in turn translates in a less effective confinement of
CRs, explaining why in this regime the half-time of the CR cloud
decreases with the cloud’s radius. At even larger radii (>25 pc),
an opposite trend is observed, namely, the half-time increases with

radius. This is due to the fact that above a critical value of the initial
cloud radius, the parameter � ∝ R−2 drops below unity, and the TP
regime is recovered. In such a regime, t1/2 depends also on the value
on the background turbulence throughout the well-known scaling
t1/2 ≈ (R/D0)1/2.

Here we propose to consider the half-time of the CR cloud as
a rough estimate of the escape time of CRs from the region of
initial size R. Though we are aware of the fact that the process of
particle escape from SNRs is still poorly understood (see Ptuskin &
Zirakashvili 2005; Bell et al. 2013, for seminal discussions on this
issue), we propose to extend this operational definition of escape
time to SNRs also. For this reason, we plot as a black line in Fig. 4
the relationship between age t = 103tkyr yr and radius Rs of an SNR
expanding in a homogeneous medium, which reads (Truelove &
McKee 1999; Ptuskin & Zirakashvili 2005):

Rs = 5.0

(
ESNR,51

n

)1/5
[

1 −
0.09M

5/6
ej,�

E
1/2
SNR,51n

1/3tkyr

]2/5

t
2/5
kyr pc, (24)

where ESNR, 51 is the supernova explosion energy in units of 1051 erg,
n the total density of the ambient ISM in cm−3 and Mej, � the mass
of the supernova ejecta in solar masses. The equation above is
valid for times longer than ≈0.3 E

−1/2
SNR,51M

5/6
ej,�n−1/3 kyr, while

for earlier times, an appropriate expression for the free expan-
sion phase of the SNR evolution must be used (Chevalier 1982).
Also, the validity of equation (24) is limited to times shorter than
≈3.6 × 104E

3/14
SNR,51/n

4/7 yr, which marks the formation of a thin
and dense radiative shell (Cioffi, McKee & Bertschinger 1988).
Equation (24) is plotted in Fig. 4 as a black line labelled TM99
for ESNR, 51 = Mej, � = 1 and n = 0.35. Within this framework,
we can reproduce the qualitative result that higher energy particles
escape SNRs earlier than lower energy ones (see e.g. Gabici 2011,
and references therein). In particular, we find that for a supernova
exploding in the WIM, CRs of energy 1 TeV, 100 GeV, and 10 GeV
leave the SNR when its radius is ≈11, 16, and 30 pc, respectively.
This corresponds to SNR ages of ≈4.7, 12, and 51 kyr. For the
WNM and for the same particle energies, the escape radii are ≈ 8,
15, and 28 pc, corresponding to SNR ages of ≈2.1, 9.5, and 44 kyr,
respectively. The estimated escape times and radii are not affected
by the choice of D0, since they fall into the regime where the cloud
half-time t1/2 is dominated by the self-excited turbulence, and not by
the background one (see 4). However, for decreasing values of D0

(i.e. large background turbulence), the transition to the TP regime
(where t1/2 ∝ (R/D0)1/2) occurs at smaller radii. An effect of D0

on the estimated escape radii would, however, require very small
values of D0, from 10 to 100 times smaller than the one considered
here (depending on the considered CR energy).

5 TI M E EVO L U T I O N O F A C L O U D
O F C R S R E L E A S E D B Y A N SN R

Fig. 5 shows the evolution in time of a CR cloud. We assume that
the CRs are released in the ISM by an SNR once the streaming
instability is not effective enough to confine particles at the shock.
According to the heuristic assumption described in the previous
section, the intersections of the curves in Fig. 4 give an estimate
of the escape time of CRs of a given energy (the half-life of the
cloud t1/2), and the corresponding radius of the SNR. In Fig. 5,
we considered the WIM phase of the ISM and the three panels
refer to particles of energy of 10 GeV, 100 GeV, and 1 TeV (top
to bottom). The half-life of the cloud and the escape radius are
also indicated on the top of each panel. The upper section of each
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Figure 5. Time evolution of a CR cloud of initial radius R in the WIM
phase of the interstellar medium. CR energies of 10 GeV, 100 GeV, and
1 TeV are considered (top to bottom). The top (bottom) section of each
panel shows the CR partial pressure (diffusion coefficient). See the text for
more details.

Figure 6. Time evolution of the diffusion coefficient D (normalized to the
background galactic value D0) for CR energies of 1 TeV. The initial radius
and the half-time of the CR cloud are indicated on the top of the panel.

panel shows the CR pressure (in both normalized and physical
units) as a function of the distance from the SNR centre, while
the lower section shows the CR diffusion coefficient D, also in
terms of ratio I = DB/D (right y-axis). In all cases, I � 1, and
the assumption of quasi-linear theory is justified. Purple, green, and
red solid lines show the solution of equations (4) and (5) at times
equal to t1/2/4, t1/2, and 4t1/2, respectively, while dotted lines refer
to the TP solution of the problem (i.e. streaming instability is not
taken into account). The dashed black lines represent the level of the
CR background in the Galaxy and the average turbulence level in
the ISM (δB/B)2

k = I0(k) (upper and lower section of each panel,
respectively).

Several considerations are in order:

(i) at early times, the solution of equations (4) and (5) clearly
differs from the TP solution, while for time-scales significantly
longer than the half-time of the cloud t1/2, the solution approaches
the TP one (see the red curves referring to a time equal to 4t1/2). This
implies that t1/2 represents an order of magnitude estimate of the
time interval during which waves can grow significantly above the
background level in a region surrounding the initial CR cloud. This
is an energy dependent effect, since t1/2 is a decreasing function
of energy. Thus, for CR energies of the order of 1 TeV or above,
relevant for ground-based gamma-ray observations, the growth of
waves operates for a quite short time interval (few thousands years
or less);

(ii) large excesses of CRs above the galactic background can be
maintained for times much longer than t1/2. This is a well-known
result from the TP theory (e.g. Aharonian & Atoyan 1996; Gabici
et al. 2009) which can be easily verified after comparing the values
of the CR partial pressure (see scale on the right y-axis in Fig. 5)
with the total energy density of CRs in the galactic disc, which is
of the order of ≈1 eV cm−3;

(iii) the CR diffusion coefficient is strongly suppressed with re-
spect to its typical galactic value at the cloud border due to the
strong gradient of CRs there, which translates in a fast growth rate
of waves. The suppression of the diffusion coefficient remains sig-
nificant in a region of tens of parsecs surrounding the SNR, as
illustrated in Fig. 6, where the diffusion coefficient of 1 TeV par-
ticles is plotted in units of the typical galactic value D0. The ratio
D/D0 reaches a value equal to 0.5 at distances from the SNR centre
equal to ∼25 pc (∼35 pc) at times t = t1/2/4 = 1.2 kyr (t = t1/2 =
4.7 kyr), while at later time (t = 4 × t1/2 = 19 kyr), the ratio is
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Figure 7. Time evolution of the CR overdensity (defined as the ration
between the energy density of CRs released by the source and the energy
density of the CR background) at 1 TeV. Two different distances from
the centre of the source are considered. Solid lines refer to the numerical
solution, while dotted lines refer to the test-particle approximation.

larger than 0.75 everywhere, reaching its minimum at a distance of
∼65 pc;

(iv) A different assumption on the level of background turbulence
would modify the solutions in the following way. Larger D0 do not
influence the region (typically at small distances/early times) where
the turbulence is efficiently amplified, since for large amplifications,
the evolution of I becomes insensitive to the background level I0.
However, at larger distances, the self-excited turbulence decays
quickly and the background turbulence dominates the diffusion. D0

larger than those considered in Fig. 5, would in this case produce a
faster transport, resulting in a higher CR pressure at larger distances.
At late times, the numerical solution approaches the TP solution,
and its dependence on D0 is well known. Conversely, when a smaller
D0 is considered, the wave amplification is less relevant (because the
background turbulence is already large) and the numerical solution
tend to approach at all times the analytic solution. This can be seen
from Fig. 3: for small values of D̂, the maximum radius above which
the growth of Alfvén waves is not relevant is smaller.

It is worth reminding that gamma-ray observations of molecular
clouds located in the vicinity of SNRs have been used in order
to constrain observationally the CR diffusion coefficient around
SNRs (e.g. Gabici et al. 2010; Nava & Gabici 2013). From an
observational point of view, the main limitation of these studies,
to date, is linked to the quite scarce number of SNR/molecular
clouds associations currently detected in gamma-rays. However, it
is beyond any doubt that observations performed by next gener-
ation instruments (such as the Cherenkov Telescope Array) will
increase significantly the statistics of detections and provide mean-
ingful constraints to our model. The gamma-ray emission from a
molecular cloud is proportional to the mass of the molecular cloud
and to the intensity of CRs at the cloud’s location. In Fig. 7, the
overdensity of 1 TeV CRs above the galactic CR background is
plotted as a function of time for a given distance from the SNR cen-
tre. This quantity is proportional to the gamma-ray emission above
∼100 GeV from a molecular cloud of a given mass located at a
distance d from the SNR. The solid lines in Fig. 7 refer to the re-
sults of our numerical study, while dotted lines represent the TP
results. Cyan and orange lines refer to a distance from the centre of
the SNR of d = 15 and 50 pc, respectively. It can be seen from the

figure that at earlier times, the intensity of CRs, and thus the cor-
responding gamma-ray emission, is suppressed with respect to the
TP case. This is because, in the presence of self-generated waves,
CRs remain confined closer to the SNR than in the TP scenario,
and reach the distance d at later times only. For the parameters con-
sidered here, the CR intensity becomes somewhat larger than that
predicted by the TP case at a time of the order of ≈104 (which is ap-
proximately twice the half-time of the cloud), while at much larger
times, our results coincide with the TP expectations, as expected.
This indicates that the interpretation of gamma-ray observations
of molecular clouds located in the proximity of SNRs should be
reconsidered in the light of our results. A detailed analysis of this
issue goes beyond the scope of this study, and will be presented in
a companion paper.

Finally, results very similar to those reported in Fig. 5 are obtained
for the WNM. This might seem at a first sight counter intuitive, given
that the ion-neutral damping is much faster in the WNM than in the
WIM (see Fig. 2). However, this is balanced by the fact that the
Alfvén speed, and thus the parameter � which regulates the initial
growth of waves, is larger in the WNM (due to a smaller density
of ions). We decided not to show the results for the WNM because
they would look very similar to those reported in Fig. 5.

6 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we presented a study of the propagation of CRs in the
vicinity of SNRs. Following Malkov et al. (2013), we modelled this
situation by considering a cloud of CRs subject to self-confinement.
In this scenario, Alfvénic turbulence is amplified by the streaming
of CRs escaping the cloud. This in turn increases the confinement
of CRs themselves around the cloud, making the problem highly
non-linear. The amplification of Alfvénic turbulence is balanced by
various damping processes. In this paper, we focused mainly on the
damping induced by the presence of neutral particles in the ambient
medium, and for this reason, we limited out attention to SNRs
expanding in the WIM and WNM phases of the ISM. A discussion
of the case of SNRs expanding in the fully ionized regions of the
galactic disc will be presented elsewhere (see also Ptuskin et al.
2008; D’Angelo, Blasi & Amato 2015).

The main outcome of our study is the fact that, in the WIM
and WNM, streaming instability affects the propagation of CRs
after their escape from a SNR. The CR diffusion coefficient is
significantly affected over a region of few tens of pc around the
SNR, where its value can be suppressed by more than a factor
of ∼2 with respect to the average galactic value. The suppression
increases if smaller distances from the SNR are considered. This
implies that, when streaming instability is taken into account, the
typical diffusion time of CRs up to a given distance is more than
doubled with respect to the estimates from TP theory. As pointed out
in Section 5, this fact might have a great impact on the interpretation
of the gamma-ray observations of molecular clouds located in the
vicinity of SNRs, which have been often used to constrain the CR
diffusion properties in the SNR environment (see Gabici 2013, and
references therein).

The half-time of the cloud, first introduced by Malkov et al.
(2013), was found to be a crucial parameter of the problem. It
represents the time it takes to have half of the CRs outside of
the initial boundaries of the CR cloud, and it also gives a rough
estimate of the time interval during which CR streaming instability
amplifies the Alfvénic turbulence in the surrounding of the SNR.
We estimated the half-time of the cloud for typical SNR parameters
and we found it to be a decreasing function of particle energy. As
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a consequence, the propagation of ≈10 GeV CRs is affected for
several tens of kiloyears, while for ≈1 TeV CRs, such time-scale
reduces to few kiloyears.

Possible constraints on the scenario described in this paper might
come from the detection of the gamma-ray emission generated by
CR proton interactions with the ambient gas in the vicinity of SNRs.
Such proton–proton interactions will also generate secondary elec-
trons that will radiate through synchrotron and inverse Compton
scattering from the radio to the hard-X-ray domain, providing a
multiwavelength signature of particle escape from SNRs.
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