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ABSTRACT 

CHEOPS (CHaracterizing ExOPlanets Satellite) is the first ESA Small Mission as part of the ESA Cosmic Vision 
program 2015-2025. The mission was formally adopted in early February 2014 with a planned launch readiness end of 
2017.  
The mission lead is performed in a partnership between Switzerland, led by the University of Bern, and the European 
Space Agency with important contributions from Austria, Belgium, France, Germany, Hungary, Italy, Portugal, Spain, 
Sweden, and the United Kingdom. 
The mission is dedicated to searching for exoplanetary transits by performing ultrahigh precision photometry on bright 
starts already known to host planets whose mass has been already estimated through ground based observations. The 
instrument is an optical Ritchey-Chretien telescope of 30 cm clear aperture using a single CCD detector. The optical 
system is designed to image a de-focused PSF onto the focal plane with very stringent stability and straylight rejection 
requirements providing a FoV of 0.32 degrees full cone. 
The system design is adapted to meet the top-level science requirements, which ask for a photometric precision of 
20ppm, in 6 hours integration time, on transit measurements of G5 dwarf stars with V-band magnitudes in the range 
6≤V≤9 mag. Additionally they ask for a photometric precision of 85 ppm in 3 hours integration time of Neptune-size 
planets transiting K-type dwarf stars with V-band magnitudes as faint as V=12 mag. 
Given the demanding schedule and cost constrains, the mission relies mostly on components with flight heritage for the 
platform as well as for the payload components. Nevertheless, several new developments are integrated into the design 
as for example the telescope structure and the very low noise, high stability CCD front end electronics. 
The instrument and mission have gone through critical design review in fall 2015 / spring 2016. This paper describes the 
current instrument and mission design with a focus on the instrument. It outlines the technical challenges and selected 
design implementation. Based on the current status, the instrument noise budget is presented including the current best 
estimate for instrument performance.  
The current instrument design meets the science requirements and mass and power margins are adequate for the current 
development status.  
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1. INTRODUCTION 
 
A large number of exoplanets have been discovered since the discovery if the first planet orbiting a star similar to the 
Sun was found in 1995 by Mayor and Queloz from the Geneva observatory [1]. The field of exoplanet characterization 
has in fact evolved in big steps since then. 
The two most successful methods rely on detecting dynamical (radial velocity) or photometric (transit) perturbations on 
the host star induced by the presence of one or several planets. While the first detection method provides a lower limit on 
the mass of the planet (as performed in [1]), the second one provides an estimate of the radius of the planet. Combining 
the two methods is of particular interest as for these objects both mass and radius are known. From these values, a mean 
density can be estimated which allows conclusions on the nature of the planet.  
After two highly successful space missions performing transit measurements (CoRoT and Kepler) and almost two 
decades of high-precision radial velocity measurements, the number  of exoplanets in the mass range 1-30 M_Earth for 
which both mass and radius are known to a good precision, is still limited. The reason for this is that most of the CoRoT 
and Kepler targets are too faint to be measured accurately enough with current, ground based, Doppler techniques. This 
means that the overlap of the planets with known masses and known radii is very limited. The major objective of the 
CHEOPS mission is in fact to significantly increase the sample of objects for which both quantities are known. 
CHEOPS has been selected in 2012 and adopted in 2014 as the first S-class mission of the ESA Science Programme. 
ESA and the SPC have been setting very tight constraints on the mission. Namely the development time from adoption 
to launch shall not exceed 4 years and the total cost to ESA is restricted to 50 M€. The total cost of the mission is 
estimated to approximately 150 M€ where the mission consortium covers the rest of the cost. This corresponds to about 
10% of the ESA budget of an M-mission and less than half the development time of an M-mission. The continuation of 
an S-mission line in ESA’s Science Programme hinges on the success of CHEOPS. 
This paper describes the CHEOPS scientific objectives, the instrument and its development status roughly two years 
before the envisaged launch.  
 
 

2. SCIENTIFIC OBJECTIVES 
 
A detailed summary of the scientific requirements and their motivation can be found in the CHEOPS Definition Study 
Report [2]. Hereafter, two of the scientific requirements are described, which are considered as most important. Namely, 
they are the photometric accuracy of the measurement and the target observability and sky coverage. 
CHEOPS will target several different type of stars known to host planets ranging from 6 to 12 magnitude stars. It will 
target host starts of super-Earth planets found by ground based radial velocity measurements, Neptune-like planets 
detected from ground based transit surveys and as well, planets found from space based transit observations like TESS. 
The photometric accuracy that is required from the entire system is depending on the stellar magnitude. Two different 
photometric accuracy requirements have been established: 
 

• CHEOPS shall be able to detect Earth-size planets transiting G5 dwarf stars (stellar radius of 0.9 R☉) with V-
band magnitudes in the range 6≤V≤9 mag. Since the depth of such transits is 100 parts-per-million (ppm), this 
requires achieving a photometric precision of 20 ppm (goal: 10 ppm) in 6 hours of integration time. This time 
corresponds to the transit duration of a planet with a revolution period of 50 days.  

• CHEOPS shall be able to detect Neptune-size planets transiting K-type dwarf stars (stellar radius of 0.7 R☉) 
with V-band magnitudes as faint as V=12 mag (goal: V=13 mag) with a signal-to-noise ratio of 30. Such 
transits have depths of 2500 ppm and last for nearly 3 hours, for planets with a revolution period of 13 days. 
Hence, a photometric precision of 85 ppm is to be obtained in 3 hours of integration time. This time 
corresponds to the transit duration of a planet with a revolution period of 13 days. 

 
Additionally to the photometric accuracy, one main scientific requirement is considering the sky coverage of the 
mission. As CHEOPS is a follow up mission, it is essential to its success to be able to observe as much of the sky as 
possible where previous planets have been found. A large fraction of the targets, which will be observed are planets 
discovered using Doppler velocimetry, which are essentially ground based observations. This is in line with the objective 
to evaluate the planet’s mean density. The requirements, which have therefore been derived, are the following: 
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Figure 3: Picture of the baffle and cover assembly before TV testing. 

 
CHEOPS uses a defocussed stellar point spread function (PSF) as well to enhance the performance. This is a trade-off 
between the pointing jitter introduced by the AOCS pointing performance and the flat field performances. 
Figure 4 shows a simulated defocussed point spread function at the detector position. As expected, in the PSF the feature 
due to the telescope central obstruction and to the Poisson spot can be clearly seen. Effects of mirror trefoil and 
secondary mirror spider have also been taken into consideration. The trefoil effect is a consequence of the thermo-
mechanical deformation of the primary mirror due to the operating temperature of -10°C and the three mechanical 
mounting points. 
 

 
Figure 4: Simulated defocussed point spread function. 

 
The CHEOPS camera is built as a distributed computer system, which consists of a Back End Electronics, the BEE, and 
the Sensor Electronics System, the SEM, which is controlling the CCD and the proximity electronics. This is mainly a 
result of the mission constraint on the schedule. Space flight heritage has been used for both units. The camera itself, the 
SEM and the FPM, is to a large part a re-use of the Mertis camera used in the BepiColombo mission [4]. 
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Since the average telemetry is 1.2 Gbit/day, the same memory cell will be used approx. three times per year. Therefore 
the limited life time of the component (~100.000 write cycles) is negligible. 
In order to have an overview of how the units are electrically connected Figure 6 can be consulted. The central part of 
the scheme is showing the spacecraft power, CMD&Data and the analogue interfaces are shown which are connected to 
the BEE, BCA and instrument survival and annealing heaters. The BEE on the other hand interfaces the SEM and the 
OTA operational heaters, which are used to maintain a constant telescope temperature. 
 

 
Figure 6: CHEOPS electrical sub-system overview. 

 
The working principle of the instrument is that of a high precision photometer as already mentioned above. There is 
however one important additional aspect which needed to be considered in the instrument and mission design. Because 
the spacecraft with its star trackers has a limited relative pointing accuracy, two important measures were taken to 
improve the design. First, the star trackers have been accommodated on the instrument itself to limit the thermo-elastic 
distortion between them and the line of sight of the instrument and secondly the spacecraft AOCS operates with the 
payload in the loop. The instrument therefore is computing the centroid of the target star and its deviation from the 
desired target location and feeds this information back to the spacecraft for it to correct thermoelastic drift. This 
improves the pointing accuracy significantly. 
 
 

4. MAJOR CHALLENGES 
 
This chapter gives a brief overview about the major technical challenges of the CHEOPS instrument development. The 
programmatic challenges are not discussed here but are mainly focused on the very tight schedule and low budget 
constraints imposed on the mission. Counter measures to these involve mainly high TRL levels of the sub systems, a 
dedicated industrial implementation approach, stability of requirements and early and clearly defined and stable 
interfaces. 
Most of the technical challenges are indeed a consequence of the stringent requirements of the photometric stability.  
In order to meet the high accuracy photometric requirements mainly the following issues arise to be solved for the 
CHEOPS instrument: 
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This setup has been tested with the instrument Structural and Thermal Model (STM) in the TV chamber in Bern. The 
thermal model, which was correlated using these test results, predicts that the temperature stability in orbit is maintained 
well below one degree Celsius over one orbit. 
Combining the two results of the CTE measurements and the thermal model prediction leads to the conclusion that the 
‘thermal breathing’ of the telescope leads to a negligible contribution of the noise budget. The results show that the 
requirement is maintained with a high margin. 
 
FPM temperature stability 
 
The focal plane module that is hosting the CCD detector as well as the read out electronics requires very strict 
temperature stabilization in order to meet the photometric performance. The absolute temperature requirement is 
anticipated in chapter 3. The detector temperature baseline is currently set to 233K. This minimizes the dark noise output 
of the device as well as the system gain sensitivity. The read out electronics, however, is operated at higher temperature 
with 283K as a baseline. The absolute temperature of the focal plane parts is ensured by the instrument radiators, which 
radiate the excess power into space. The focal plane is connected to the radiators using thermal straps.  
However, more important than the absolute temperature is the temperature stability. For the CCD, the system gain 
sensitivity is measured to be in the range of 1-2 ppm/mK. In order to minimize the error in the photometric noise the 
temperature stability requirement is set to 10 mK. This requirement needs to be fulfilled during one full observation, 
which lasts typically 48 hours. The temperature stability of the read out electronics and the bias voltage references, 
which are located in the FPM body, are slightly less stringent. The current assumptions following a stability error 
analysis lead to the conclusion that a stability of 50 mK needs to be achieved. 
The temperature stability of the focal plane module is achieved using dedicated heaters which are PWM controlled in 
order to heat against the radiators. Additional thermal capacity of the thermal conductor chain to the radiators is lowering 
the temperature variations as well. The stability requirements will be verified by dedicated EQM thermal vacuum tests. 
 
Bias voltage supply stability 
 
In addition to the stability of the CCD bias voltages generation in the focal plane module the supply voltages of the 
SEM/FPM sub-system needed to be addressed. The instrument is supplied from the spacecraft with an unregulated 
voltage that depending on the battery and the solar cells can vary. Prior to the SEM, the unregulated power is 
conditioned in the BEE. The nominal voltage tolerance as well as the voltage accuracy during an observation is key to 
ensure the proper performance of the camera. The nominal voltage to be supplied from the BEE to the SEM needs to be 
provided within less than 1% accuracy while the static accuracy is more stringent with less than 0.1% for most of the 
bias voltages. 
Within the SEM and FPM the bias voltages are being conditioned further using linear regulators. As mostly the gain 
sensitivity of the CCD can introduce noise in the range of tens of ppm/mV the goal is to keep the voltage variations as 
low as possible.  
 
Distributed computer architecture 
 
Mainly as a consequence of the mission constraints the architecture of the instrument can be seen as distributed 
architecture. The camera system consisting of the SEM and FPM are controlled by the main computer and interface to 
the spacecraft, the BEE. This adds additional complexity to the system as another software and hardware interface is 
needed. The camera system is providing the CCD pictures as well as the housekeeping data to the BEE where they are 
processed. Major activities of the instrument main computer are, besides the re-packing of the data, the calculation of the 
stellar image centroid for the feedback loop towards the AOCS and the compressing of the science data. 
Interface tests using the BEE and SEM engineering models have been performed in order to validate the proper 
performance at an earlier stage of the project.  
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The flight model of the Baffle and Cover Assembly has been built, mechanically and thermally qualified. Upon delivery 
a second thermal qualification run is envisaged due to a design flaw which has been found out and fixed in the previous 
TV qualification. The telescope structure without the optics was as well manufactured and underwent qualification 
successfully. To complete the telescope, the optical elements are being manufactured and undergo qualification. The 
integration of the optical elements into the mechanical structure is taking place in the summer 2016. Following the 
integration, the telescope undergoes performance testing and qualification as well. 
For the BEE, SEM and FPM qualification models are built in advance of the flight models. The BEE EQM is currently 
undergoing mechanical and thermal qualification as well as performance testing. The SEM and FPM qualification 
models are being integrated at this stage and to be followed qualification as well. A very important milestone for the 
camera is the performance verification in thermal vacuum. The verification with the EQM gives an important insight into 
the performance of the instrument. These tests are scheduled in summer 2016 as well. 
 
 

6. PERFORMANCE CONSIDERATIONS 
 
The performance estimations of the instrument are mainly verified with a noise budget. Photometric performance is key 
to the mission and is closely monitored. In addition to the photometric noise, the observability map is considered as well 
which depends mainly on the orbit of the mission and the straylight rejection performances. This is however not detailed 
here. 
The noise budget of the CHEOPS instrument depends on various parameters which origin from different noise sources. 
The contributions come from astronomical sources (e.g. shot or photon noise), noise sources from the instrument (e.g. 
CCD gain variability) and from the entire system (e.g. spacecraft jitter). This chapter gives a brief overview of the 
different noise sources considered and the current best estimate of the photometric performance based partly on 
measurements, partly on estimations. The results are given for three different star types respectively star magnitudes.  
As already mentioned the performance of the instrument with respect to the photometric noise is influenced by many 
parameters. Hereafter the dominant parameters, which have been considered are listed with a brief description. 
 

Noise contributor Description 
Shot noise Shot noise is associated with the particle nature of the light. 

Since each photon is an independent event, the arrival of any 
given photon cannot be precisely predicted and thus creates a 
noise behavior which tends to a Gaussian distribution for a 
large amount of photons  

Sky background The sky background is a faint, diffuse white glow, which 
manifests as background light on the detector. This 
background manifests as shot noise as well. 

Cosmic rays Charge is generated on a pixel or several pixels of the CCD 
when being hit by a cosmic ray. These pixels can be corrected 
to a certain extent. 

Earth stray light Noise from Earth stray light is taken into account as the stray 
light suppression of the instrument is not perfect. This noise 
contributor is season and pointing dependent. 

Jitter + Flat Field + 
Breathing 

Jitter origins in the not perfect relative pointing accuracy and 
‘smears’ the stellar PSF on the CCD. As the flat field 
correction is not arbitrarily good, this creates a noise 
contributor.  

Read out noise (CCD) The read out of the CCD creates a noise behavior which 
follows a Poisson distribution. 

Dark current variation 
noise 

There are two components to the noise associated with dark 
current. These are the shot noise associated with the dark 
current level, and the induced variation in the level of the dark 
current (largely as a result of temperature variation). 

CCD Gain variability 
+ QE change 

The gain variability and QE change is taken into account as 
consequence of the temperature variation of the CCD. 
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Analog electronics 
stability 

The analogue electronics stability is the noise contributor from 
the CCD bias voltage variability due to temperature variation, 
reference voltage variation, etc.  

Offset in analog 
electronics stability 

Offset errors are independent of the analog electronics stability 
and taken into account separately. 

Timing error Uncertainties in the knowledge of the exposure time lead to 
timing errors and thus noise contributions. 

Quantization noise The quantization noise is introduced due to the digitalization of 
the signal. 

Analog chain random 
noise 

This corresponds to the high frequency noise from the front 
end electronics on top of the read out noise. 

Table 1: Photometric noise contributions and description. 

Considering all the noise contributions listed in Table 1 an exhaustive noise budget has been established. As the project 
evolves, increasing amount of the contributors can be verified by test. Certain of the parameters can be directly measured 
and a few of them can only be estimated indirectly as for example the stray light rejection capabilities as this cannot be 
measured at system level. 
Considering the current best estimate and knowledge of the noise sources, it can be stated that the science requirements 
related to the photometric precision mentioned in chapter 2 are met. Table 1 compares the photometric error with the 
requirement. 
 

Case number A B C 
Stellar magnitude 6 (ST = G) 9 (ST = G) 12 (ST = K) 
Error time average [ppm] 16.1 18.0 47.4 
Requirement [ppm] 20 20 85 

Table 2: Current best estimate of the noise budget for different brightnesses and spectral types (ST) of the target star. 

 
 

7. CONCLUSIONS 
 
The first small class mission (S-mission) in ESA’s Science Program, CHEOPS, is currently in phase C/D. Half time 
through the development time of the mission, the instrument with its science objectives, instrument summary, major 
challenges, development status and performance estimations are described. 
After successful PRR and SRR in 2013, PDR in July 2014, a complete instrument STM has been built and successfully 
tested at instrument and spacecraft level, including a challenging stability test with the flight model of the telescope 
structure. The instrument EM has been tested and provided to Airbus DS Spain beginning of April 2016 and is being 
tested with the spacecraft EFM. An instrument Demonstration Model was built and tested in addition. 
The instrument CDR has been passed successfully and the system CDR is expected to be closed mid-2016. 
Several flight model units and sub-units have already been manufactured and successfully tested while initial 
measurements provide confidence of that the mission meets the science performances. 
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