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ABSTRACT

This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic
microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission tempera-
ture data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter
ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck tempera-
ture data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8±0.9) km s−1Mpc−1, a matter density parameter
Ωm = 0.308±0.012, and a tilted scalar spectral index with ns = 0.968±0.006, consistent with the 2013 analysis. Note that in this abstract we quote
68 % confidence limits on measured parameters and 95 % upper limits on other parameters. We present the first results of polarization measure-
ments with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements
give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of zre = 8.8+1.7

−1.4. These results are consistent with
those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument.
We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with
other astrophysical data we find Neff = 3.15±0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046
of the Standard Model of particle physics. The sum of neutrino masses is constrained to

∑
mν < 0.23 eV. The spatial curvature of our Universe is

found to be very close to zero, with |ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper
limit on the tensor-to-scalar ratio of r0.002 < 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints
from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of
r0.002 < 0.09 and disfavours inflationary models with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on
deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cos-
mic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained
to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the
helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also analyse
constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence
for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type
Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses
of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base
ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and
many other astrophysical data sets.

Key words. Cosmology: observations – Cosmology: theory – cosmic microwave background – cosmological parameters 1
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1. Introduction

The cosmic microwave background (CMB) radiation offers an
extremely powerful way of testing the origin of fluctuations and
of constraining the matter content, geometry, and late-time evo-
lution of the Universe. Following the discovery of anisotropies
in the CMB by the COBE satellite (Smoot et al. 1992), ground-
based, sub-orbital experiments and notably the WMAP satellite
(Bennett et al. 2003, 2013) have mapped the CMB anisotropies
with increasingly high precision, providing a wealth of new in-
formation on cosmology.

Planck1 is the third-generation space mission, follow-
ing COBE and WMAP, dedicated to measurements of the
CMB anisotropies. The first cosmological results from Planck
were reported in a series of papers (for an overview see
Planck Collaboration I 2014, and references therein) together
with a public release of the first 15.5 months of temperature
data (which we will refer to as the nominal mission data).
Constraints on cosmological parameters from Planck were re-
ported in Planck Collaboration XVI (2014).2 The Planck 2013
analysis showed that the temperature power spectrum from
Planck was remarkably consistent with a spatially flat ΛCDM
cosmology specified by six parameters, which we will refer to
as the base ΛCDM model. However, the cosmological param-
eters of this model were found to be in tension, typically at
the 2–3σ level, with some other astronomical measurements,
most notably direct estimates of the Hubble constant (Riess et al.
2011), the matter density determined from distant supernovae
(Conley et al. 2011; Rest et al. 2014), and estimates of the am-
plitude of the fluctuation spectrum from weak gravitational
lensing (Heymans et al. 2013; Mandelbaum et al. 2013) and the
abundance of rich clusters of galaxies (Planck Collaboration XX
2014; Benson et al. 2013; Hasselfield et al. 2013). As reported in
the revised version of PCP13, and discussed further in Sect. 5,
some of these tensions have been resolved with the acquisition of
more astrophysical data, while other new tensions have emerged.

The primary goal of this paper is to present the results from
the full Planck mission, including a first analysis of the Planck
polarization data. In addition, this paper introduces some refine-
ments in data analysis and addresses the effects of small in-
strumental systematics discovered (or better understood) since
PCP13 appeared.

The Planck 2013 data were not entirely free of systematic
effects. The Planck instruments and analysis chains are com-
plex and our understanding of systematics has improved since
PCP13. The most important of these was the incomplete re-
moval of line-like features in the power spectrum of the time-
ordered data, caused by interference of the 4-K cooler electron-
ics with the bolometer readout electronics. This resulted in cor-
related systematics across detectors, leading to a small “dip” in
the power spectra at multipoles ` ≈ 1800 at 217 GHz, which is

∗Corresponding author: G. Efstathiou, gpe@ast.cam.ac.uk
1Planck (http://www.esa.int/Planck) is a project of the

European Space Agency (ESA) with instruments provided by two sci-
entific consortia funded by ESA member states and led by Principal
Investigators from France and Italy, telescope reflectors provided
through a collaboration between ESA and a scientific consortium led
and funded by Denmark, and additional contributions from NASA
(USA).

2This paper refers extensively to the earlier 2013 Planck cosmo-
logical parameters paper and CMB power spectra and likelihood paper
(Planck Collaboration XVI 2014; Planck Collaboration XV 2014). To
simplify the presentation, these papers will henceforth be referred to as
PCP13 and PPL13, respectively.

most noticeable in the first sky survey. Various tests were pre-
sented in PCP13 that suggested that this systematic caused only
small shifts to cosmological parameters. Further analyses, based
on the full mission data from the HFI (29 months, 4.8 sky sur-
veys) are consistent with this conclusion (see Sect. 3). In addi-
tion, we discovered a minor error in the beam transfer functions
applied to the 2013 217-GHz spectra, which had negligible im-
pact on the scientific results. Another feature of the Planck data,
not fully understood at the time of the 2013 data release, was a
2.6 % calibration offset (in power) between Planck and WMAP
(reported in PCP13, see also Planck Collaboration XXXI 2014).
As discussed in Appendix A of PCP13, the 2013 Planck and
WMAP power spectra agree to high precision if this multiplica-
tive factor is taken into account and it has no significant im-
pact on cosmological parameters apart from a rescaling of the
amplitude of the primordial fluctuation spectrum. The reasons
for the 2013 calibration offsets are now largely understood and
in the 2015 release the calibrations of both Planck instruments
and WMAP are consistent to within about 0.3 % in power (see
Planck Collaboration I 2016, for further details). In addition, the
Planck beams have been characterized more accurately in the
2015 data release and there have been minor modifications to
the low-level data processing.

The layout of this paper is as follows. Section 2 summarizes
a number of small changes to the parameter estimation method-
ology since PCP13. The full mission temperature and polariza-
tion power spectra are presented in Sect. 3. The first subsection
(Sect. 3.1) discusses the changes in the cosmological parameters
of the base ΛCDM cosmology compared to those presented in
2013. Section 3.2 presents an assessment of the impact of fore-
ground cleaning (using the 545-GHz maps) on the cosmological
parameters of the base ΛCDM model. The power spectra and
associated likelihoods are presented in Sect. 3.3. This subsec-
tion also discusses the internal consistency of the Planck TT ,
T E, and EE spectra. The agreement of T E and EE with the TT
spectra provides an important additional test of the accuracy of
our foreground corrections to the TT spectra at high multipoles.

PCP13 used the WMAP polarization likelihood at low mul-
tipoles to constrain the reionization optical depth parameter τ.
The 2015 analysis replaces the WMAP likelihood with polar-
ization data from the Planck Low Frequency Instrument (LFI,
Planck Collaboration II 2016). The impact of this change on τ is
discussed in Sect. 3.4, which also presents an alternative (and
competitive) constraint on τ based on combining the Planck
TT spectrum with the power spectrum of the lensing poten-
tial measured by Planck. We also compare the LFI polarization
constraints with the WMAP polarization data cleaned with the
Planck HFI 353-GHz maps.

Section 4 compares the Planck power spectra with the power
spectra from high-resolution ground-based CMB data from the
Atacama Cosmology Telescope (ACT, Das et al. 2014) and the
South Pole Telescope (SPT, George et al. 2015). This section
applies a Gibbs sampling technique to sample over foreground
and other “nuisance” parameters to recover the underlying
CMB power spectrum at high multipoles (Dunkley et al. 2013;
Calabrese et al. 2013). Unlike PCP13, in which we combined the
likelihoods of the high-resolution experiments with the Planck
temperature likelihood, in this paper we use the high-resolution
experiments mainly to check the consistency of the “damping
tail” in the Planck power spectrum at multipoles >∼ 2000.

Section 5 introduces additional data, including
the Planck lensing likelihood (described in detail in
Planck Collaboration XV 2016) and other astrophysical data
sets. As in PCP13, we are highly selective in the astrophysical

gpe@ast.cam.ac.uk
http://www.esa.int/Planck
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data sets that we combine with Planck. As mentioned above, the
main purpose of this paper is to describe what the Planck data
have to say about cosmology. It is not our purpose to present an
exhaustive discussion of what happens when the Planck data are
combined with a wide range of astrophysical data. This can be
done by others, using the publicly released Planck likelihood.
Nevertheless, some cosmological parameter combinations are
highly degenerate using CMB power spectrum measurements
alone, the most severe being the “geometrical degeneracy” that
opens up when spatial curvature is allowed to vary. Baryon
acoustic oscillation (BAO) measurements are a particularly
important astrophysical data set. Since BAO surveys involve
a simple geometrical measurement, these data are less prone
to systematic errors than most other astrophysical data. As in
PCP13, BAO measurements are used as a primary astrophys-
ical data set in combination with Planck to break parameter
degeneracies. It is worth mentioning explicitly our approach to
interpreting tensions between Planck and other astrophysical
data sets. Tensions may be indicators of new physics beyond
that assumed in the base ΛCDM model. However, they may also
be caused by systematic errors in the data. Our primary goal
is to report whether the Planck data support any evidence for
new physics. If evidence for new physics is driven primarily by
astrophysical data, but not by Planck, then the emphasis must
necessarily shift to establishing whether the astrophysical data
are free of systematics. This type of assessment is beyond the
scope of this paper, but sets a course for future research.

Extensions to the base ΛCDM cosmology are discussed in
Sect. 6, which explores a large grid of possibilities. In addition
to these models, we also explore constraints on big bang nu-
cleosynthesis, dark matter annihilation, cosmic defects, and de-
partures from the standard recombination history. As in PCP13,
we find no convincing evidence for a departure from the base
ΛCDM model. As far as we can tell, a simple inflationary model
with a slightly tilted, purely adiabatic, scalar fluctuation spec-
trum fits the Planck data and most other precision astrophys-
ical data. There are some “anomalies” in this picture, includ-
ing the poor fit to the CMB temperature fluctuation spectrum
at low multipoles, as reported by WMAP (Bennett et al. 2003)
and in PCP13, suggestions of departures from statistical isotropy
at low multipoles (as reviewed in Planck Collaboration XXIII
2014; Planck Collaboration XVI 2016), and hints of a discrep-
ancy with the amplitude of the matter fluctuation spectrum at
low redshifts (see Sect. 5.5). However, none of these anomalies
are of decisive statistical significance at this stage.

One of the most interesting developments since the ap-
pearance of PCP13 was the detection by the BICEP2 team
of a B-mode polarization anisotropy (BICEP2 Collaboration
2014), apparently in conflict with the 95 % upper limit
on the tensor-to-scalar ratio, r0.002 < 0.11,3 reported in
PCP13. Clearly, the detection of B-mode signal from pri-
mordial gravitational waves would have profound conse-
quences for cosmology and inflationary theory. However, a
number of studies, in particular an analysis of Planck 353-
GHz polarization data, suggested that polarized dust emis-
sion might contribute a significant part of the BICEP2 sig-
nal (Planck Collaboration Int. XXX 2016; Mortonson & Seljak

3The subscript on r refers to the pivot scale in Mpc−1 used to de-
fine the tensor-to-scalar ratio. For Planck we usually quote r0.002, since
a pivot scale of 0.002 Mpc−1 is close to the scale at which there is some
sensitivity to tensor modes in the large-angle temperature power spec-
trum. For a scalar spectrum with no running and a scalar spectral index
of ns = 0.965, r0.05 ≈ 1.12r0.002 for small r. For r ≈ 0.1, assuming the
inflationary consistency relation, we have instead r0.05 ≈ 1.08r0.002.

2014; Flauger et al. 2014). The situation is now clearer fol-
lowing the joint analysis of BICEP2, Keck Array, and
Planck data (BICEP2/Keck Array and Planck Collaborations
2015, hereafter BKP); this increases the signal-to-noise ratio on
polarized dust emission primarily by directly cross-correlating
the BICEP2 and Keck Array data at 150 GHz with the Planck
polarization data at 353 GHz. The results of BKP give a 95 %
upper limit on the tensor-to-scalar ratio of r0.05 < 0.12, with
no statistically significant evidence for a primordial gravitational
wave signal. Section 6.2 presents a brief discussion of this result
and how it fits in with the indirect constraints on r derived from
the Planck 2015 data.

Our conclusions are summarized in Sect. 7.

2. Model, parameters, and methodology

The notation, definitions and methodology used in this paper
largely follow those described in PCP13, and so will not be re-
peated here. For completeness, we list some derived parameters
of interest in Sect. 2.2. We have made a small number of modi-
fications to the methodology, as described in Sect. 2.1. We have
also made some minor changes to the model of unresolved fore-
grounds and nuisance parameters used in the high-` likelihood.
These are described in detail in Planck Collaboration XI (2016),
but to make this paper more self-contained, these changes are
summarized in Sect. 2.3.

2.1. Theoretical model

We adopt the same general methodology as described in PCP13,
with small modifications. Our main results are now based on the
lensed CMB power spectra computed with the updated January
2015 version of the camb4 Boltzmann code (Lewis et al. 2000),
and parameter constraints are based on the January 2015 version
of CosmoMC (Lewis & Bridle 2002; Lewis 2013). Changes in
our physical modelling are as follows.

• For each model in which the fraction of baryonic mass in
helium YP is not varied independently of other parameters,
it is now set from the big bang nucleosynthesis (BBN) pre-
diction by interpolation from a recent fitting formula based
on results from the PArthENoPE BBN code (Pisanti et al.
2008). We now use a fixed fiducial neutron decay constant
of τn = 880.3 s, and also account for the small difference be-
tween the mass-fraction ratio YP and the nucleon-based frac-
tion YBBN

P . These modifications result in changes of about
1 % to the inferred value of YP compared to PCP13, giving
best-fit values YP ≈ 0.2453 (YBBN

P ≈ 0.2467) in ΛCDM.
See Sect. 6.5 for a detailed discussion of the impact of un-
certainties arising from variations of τn and nuclear reac-
tion rates; however, these uncertainties have minimal impact
on our main results. Section 6.5 also corrects a small error
arising from how the difference between Neff = 3.046 and
Neff = 3 was handled in the BBN fitting formula.

• We have corrected a missing source term in the dark energy
modelling for w , −1. The correction of this error has very
little impact on our science results, since it is only important
for values of w far from −1.

• To model the small-scale matter power spectrum, we use the
halofit approach (Smith et al. 2003), with the updates of
Takahashi et al. (2012), as in PCP13, but with revised fitting

4http://camb.info
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parameters for massive neutrino models.5 We also now in-
clude the halofit corrections when calculating the lensed
CMB power spectra.

As in PCP13 we adopt a Bayesian framework for testing
theoretical models. Tests using the “profile likelihood” method,
described in Planck Collaboration Int. XVI (2014), show excel-
lent agreement for the mean values of the cosmological pa-
rameters and their errors, for both the base ΛCDM model and
its Neff extension. Tests have also been carried out using the
class Boltzmann code (Lesgourgues 2011) and the Monte
PythonMCMC code (Audren et al. 2013) in place of camb and
CosmoMC, respectively. Again, for flat models we find excellent
agreement with the baseline choices used in this paper.

2.2. Derived parameters

Our base parameters are defined as in PCP13, and we also calcu-
late the same derived parameters. In addition we now compute:

• the helium nucleon fraction defined by YBBN
P ≡ 4nHe/nb;

• where standard BBN is assumed, the mid-value deuterium
ratio predicted by BBN, yDP ≡ 105nD/nH, using a fit from
the PArthENoPE BBN code (Pisanti et al. 2008);

• the comoving wavenumber of the perturbation mode that
entered the Hubble radius at matter-radiation equality zeq,
where this redshift is calculated approximating all neutrinos
as relativistic at that time, i.e., keq ≡ a(zeq)H(zeq);

• the comoving angular diameter distance to last scattering,
DA(z∗);

• the angular scale of the sound horizon at matter-radiation
equality, θs,eq ≡ rs(zeq)/DA(z∗), where rs is the sound hori-
zon and z∗ is the redshift of last scattering;

• the amplitude of the CMB power spectrum D` ≡ `(` +
1)C`/2π in µK2, for ` = 40, 220, 810, 1520, and 2000;

• the primordial spectral index of the curvature perturbations
at wavenumber k = 0.002 Mpc−1, ns,0.002 (as in PCP13, our
default pivot scale is k = 0.05 Mpc−1, so that ns ≡ ns,0.05);

• parameter combinations close to those probed by galaxy and
CMB lensing (and other external data), specifically σ8Ω0.5

m
and σ8Ω0.25

m ;
• various quantities reported by BAO and redshift-space dis-

tortion measurements, as described in Sects. 5.2 and 5.5.1.

2.3. Changes to the foreground model

Unresolved foregrounds contribute to the temperature power
spectrum and must be modelled to extract accurate cosmolog-
ical parameters. PPL13 and PCP13 used a parametric approach
to modelling foregrounds, similar to the approach adopted in the
analysis of the SPT and ACT experiments (Reichardt et al. 2012;
Dunkley et al. 2013). The unresolved foregrounds are described
by a set of power spectrum templates together with nuisance pa-
rameters, which are sampled via MCMC along with the cosmo-
logical parameters.6 The components of the extragalactic fore-
ground model consist of:

5Results for neutrino models with galaxy and CMB lensing alone
use the camb Jan 2015 version of halofit to avoid problems at large
Ωm; other results use the previous (April 2014) halofit version.

6Our treatment of Galactic dust emission also differs from that used
in PPL13 and PCP13. Here we describe changes to the extragalactic
model and our treatment of errors in the Planck absolute calibration,
deferring a discussion of Galactic dust modelling in temperature and
polarization to Sect. 3.

• the shot noise from Poisson fluctuations in the number den-
sity of point sources;

• the power due to clustering of point sources (loosely referred
to as the CIB component);

• a thermal Sunyaev-Zeldovich (tSZ) component;
• a kinetic Sunyaev-Zeldovich (kSZ) component;
• the cross-correlation between tSZ and CIB.

In addition, the likelihood includes a number of other nui-
sance parameters, such as relative calibrations between frequen-
cies, and beam eigenmode amplitudes. We use the same tem-
plates for the tSZ, kSZ, and tSZ/CIB cross-correlation as in the
2013 papers. However, we have made a number of changes to the
CIB modelling and the priors adopted for the SZ effects, which
we now describe in detail.

2.3.1. CIB

In the 2013 papers, the CIB anisotropies were modelled as a
power law:

D
ν1×ν2
`

= ACIB
ν1×ν2

(
`

3000

)γCIB

. (1)

Planck data alone provide a constraint on ACIB
217×217 and very weak

constraints on the CIB amplitudes at lower frequencies. PCP13
reported typical values of ACIB

217×217 = (29 ± 6) µK2 and γCIB =
0.40 ± 0.15, fitted over the range 500 ≤ ` ≤ 2500. The addition
of the ACT and SPT data (“highL”) led to solutions with steeper
values of γCIB, closer to 0.8, suggesting that the CIB component
was not well fit by a power law.

Planck results on the CIB, using H i as a tracer of Galactic
dust, are discussed in detail in Planck Collaboration XXX
(2014). In that paper, a model with 1-halo and 2-halo con-
tributions was developed that provides an accurate description
of the Planckand IRAS CIB spectra from 217 GHz through to
3000 GHz. At high multipoles, ` >∼ 3000, the halo-model spectra
are reasonably well approximated by power laws, with a slope
γCIB ≈ 0.8 (though see Sect. 4). At multipoles in the range
500 <∼ ` <∼ 2000, corresponding to the transition from the 2-halo
term dominating the clustering power to the 1-halo term domi-
nating, the Planck Collaboration XXX (2014) templates have a
shallower slope, consistent with the results of PCP13. The am-
plitudes of these templates at ` = 3000 are

ACIB
217×217 = 63.6 µK2, ACIB

143×217 = 19.1, µK2,

ACIB
143×143 = 5.9 µK2, ACIB

100×100 = 1.4 µK2. (2)

Note that in PCP13, the CIB amplitude of the 143×217 spectrum
was characterized by a correlation coefficient

ACIB
143×217 = rCIB

143×217

√
ACIB

217×217ACIB
143×143. (3)

The combined Planck+highL solutions in PCP13 always give a
high correlation coefficient with a 95 % lower limit of rCIB

143×217
>∼

0.85, consistent with the model of Eq. (2), which has rCIB
143×217 ≈

1. In the 2015 analysis, we use the Planck Collaboration XXX
(2014) templates, fixing the relative amplitudes at 100 × 100,
143 × 143, and 143 × 217 to the amplitude of the 217 × 217
spectrum. Thus, the CIB model used in this paper is specified by
only one amplitude, ACIB

217×217, which is assigned a uniform prior
in the range 0–200 µK2.
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In PCP13 we solved for the CIB amplitudes at the CMB
effective frequencies of 217 and 143 GHz, and so we included
colour corrections in the amplitudes ACIB

217×217 and ACIB
143×143 (there

was no CIB component in the 100 × 100 spectrum). In the 2015
Planck analysis, we do not include a colour term since we define
ACIB

217×217 to be the actual CIB amplitude measured in the Planck
217-GHz band. This is higher by a factor of about 1.33 com-
pared to the amplitude at the CMB effective frequency of the
Planck 217-GHz band. This should be borne in mind by readers
comparing 2015 and 2013 CIB amplitudes measured by Planck.

2.3.2. Thermal and kinetic SZ amplitudes

In the 2013 papers we assumed template shapes for the thermal
(tSZ) and kinetic (kSZ) spectra characterized by two amplitudes,
AtSZ and AkSZ, defined in equations (26) and (27) of PCP13.
These amplitudes were assigned uniform priors in the range 0–
10 (µK)2 . We used the Trac et al. (2011) kSZ template spec-
trum and the ε = 0.5 tSZ template from Efstathiou & Migliaccio
(2012). We adopt the same templates for the 2015 Planck
analysis, since, for example, the tSZ template is actually a
good match to the results from the recent numerical simula-
tions of McCarthy et al. (2014). In addition, we previously in-
cluded a template from Addison et al. (2012) to model the cross-
correlation between the CIB and tSZ emission from clusters of
galaxies. The amplitude of this template was characterized by
a dimensionless correlation coefficient, ξtSZ×CIB, which was as-
signed a uniform prior in the range 0–1. The three parameters
AtSZ, AkSZ, and ξtSZ×CIB, are not well constrained by Planck
alone. Even when combined with ACT and SPT, the three pa-
rameters are highly correlated with each other. Marginalizing
over ξtSZ×CIB, Reichardt et al. (2012) find that SPT spectra con-
strain the linear combination

AkSZ + 1.55 AtSZ = (9.2 ± 1.3) µK2. (4)

The slight differences in the coefficients compared to the formula
given in Reichardt et al. (2012) come from the different effec-
tive frequencies used to define the Planck amplitudes AkSZ and
AtSZ. An investigation of the 2013 Planck+highL solutions show
a similar degeneracy direction, which is almost independent of
cosmology, even for extensions to the base ΛCDM model:

ASZ = AkSZ + 1.6 AtSZ = (9.4 ± 1.4) µK2 (5)

for Planck+WP+highL, which is very close to the degener-
acy direction (Eq. 4) measured by SPT. In the 2015 Planck
analysis, we impose a conservative Gaussian prior for ASZ, as
defined in Eq. (5), with a mean of 9.5 µK2 and a dispersion
3µK2 (i.e., somewhat broader than the dispersion measured by
Reichardt et al. 2012). The purpose of imposing this prior on ASZ

is to prevent the parameters AkSZ and AtSZ from wandering into
unphysical regions of parameter space when using Planck data
alone. We retain the uniform prior of [0,1] for ξtSZ×CIB. As this
paper was being written, results from the complete 2540 deg2

SPT-SZ survey area appeared (George et al. 2015). These are
consistent with Eq. (5) and in addition constrain the correla-
tion parameter to low values, ξtSZ×CIB = 0.113+0.057

−0.054. The looser
priors on these parameters adopted in this paper are, however,
sufficient to eliminate any significant sensitivity of cosmologi-
cal parameters derived from Planck to the modelling of the SZ
components.

2.3.3. Absolute Planck calibration

In PCP13, we treated the calibrations of the 100 and 217-GHz
channels relative to 143 GHz as nuisance parameters. This was
an approximate way of dealing with small differences in rela-
tive calibrations between different detectors at high multipoles,
caused by bolometer time-transfer function corrections and in-
termediate and far sidelobes of the Planck beams. In other
words, we approximated these effects as a purely multiplicative
correction to the power spectra over the multipole range ` = 50–
2500. The absolute calibration of the 2013 Planck power spectra
was therefore fixed, by construction, to the absolute calibration
of the 143-5 bolometer. Any error in the absolute calibration of
this reference bolometer was not propagated into errors on cos-
mological parameters. For the 2015 Planck likelihoods we use
an identical relative calibration scheme between 100, 143, and
217 GHz, but we now include an absolute calibration parame-
ter yp, at the map level, for the 143-GHz reference frequency.
We adopt a Gaussian prior on yp centred on unity with a (con-
servative) dispersion of 0.25 %. This overall calibration uncer-
tainty is then propagated through to cosmological parameters
such as As and σ8. A discussion of the consistency of the abso-
lute calibrations across the nine Planck frequency bands is given
in Planck Collaboration I (2016).

3. Constraints on the parameters of the base
ΛCDM cosmology from Planck

3.1. Changes in the base ΛCDM parameters compared to
the 2013 data release

The principal conclusion of PCP13 was the excellent agreement
of the base ΛCDM model with the temperature power spectra
measured by Planck. In this subsection, we compare the param-
eters of the base ΛCDM model reported in PCP13 with those
measured from the full-mission 2015 data. Here we restrict the
comparison to the high multipole temperature (TT ) likelihood
(plus low-` polarization), postponing a discussion of the T E and
EE likelihood blocks to Sect. 3.2. The main differences between
the 2013 and 2015 analyses are as follows.

(1) There have been a number of changes to the low-level
Planck data processing, as discussed in Planck Collaboration II
(2016) and Planck Collaboration VII (2016). These include:
changes to the filtering applied to remove “4-K” cooler lines
from the time-ordered data (TOD); changes to the deglitching
algorithm used to correct the TOD for cosmic ray hits; improved
absolute calibration based on the spacecraft orbital dipole and
more accurate models of the beams, accounting for the interme-
diate and far sidelobes. These revisions largely eliminate the cal-
ibration difference between Planck-2013 and WMAP reported in
PCP13 and Planck Collaboration XXXI (2014), leading to up-
ward shifts of the HFI and LFI Planck power spectra of approx-
imately 2.0 % and 1.7 %, respectively. In addition, the mapmak-
ing used for 2015 data processing utilizes “polarization destrip-
ing” for the polarized HFI detectors (Planck Collaboration VIII
2016).

(2) The 2013 papers used WMAP polarization measurements
(Bennett et al. 2013) at multipoles ` ≤ 23 to constrain the optical
depth parameter τ; this likelihood was denoted “WP” in the 2013
papers. In the 2015 analysis, the WMAP polarization likelihood
is replaced by a Planck polarization likelihood constructed from
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Table 1. Parameters of the base ΛCDM cosmology (as defined in PCP13) determined from the publicly released nominal-mission
CamSpecDetSet likelihood [2013N(DS)] and the 2013 full-mission CamSpecDetSet and cross-yearly (Y1×Y2) likelihoods with the
extended sky coverage [2013F(DS) and 2013F(CY)]. These three likelihoods are combined with the WMAP polarization likelihood
to constrain τ. The column labelled 2015F(CHM) lists parameters for a CamSpec cross-half-mission likelihood constructed from
the 2015 maps using similar sky coverage to the 2013F(CY) likelihood (but greater sky coverage at 217 GHz and different point
source masks, as discussed in the text). The column labelled 2015F(CHM) (Plik) lists parameters for the Plik cross-half-mission
likelihood that uses identical sky coverage to the CamSpec likelihood. The 2015 temperature likelihoods are combined with the
Planck lowP likelihood to constrain τ. The last two columns list the deviations of the Plik parameters from those of the nominal-
mission and the CamSpec 2015(CHM) likelihoods. To help refer to specific columns, we have numbered the first six explicitly. The
high-` likelihoods used here include only TT spectra. H0 is given in the usual units of km s−1 Mpc−1.

[1] Parameter [2] 2013N(DS) [3] 2013F(DS) [4] 2013F(CY) [5] 2015F(CHM) [6] 2015F(CHM) (Plik) ([2] − [6])/σ[6] ([5] − [6])/σ[5]

100θMC . . . . . . . . . 1.04131 ± 0.00063 1.04126 ± 0.00047 1.04121 ± 0.00048 1.04094 ± 0.00048 1.04086 ± 0.00048 0.71 0.17
Ωbh2 . . . . . . . . . . . 0.02205 ± 0.00028 0.02234 ± 0.00023 0.02230 ± 0.00023 0.02225 ± 0.00023 0.02222 ± 0.00023 −0.61 0.13
Ωch2 . . . . . . . . . . . 0.1199 ± 0.0027 0.1189 ± 0.0022 0.1188 ± 0.0022 0.1194 ± 0.0022 0.1199 ± 0.0022 0.00 −0.23
H0 . . . . . . . . . . . . 67.3 ± 1.2 67.8 ± 1.0 67.8 ± 1.0 67.48 ± 0.98 67.26 ± 0.98 0.03 0.22
ns . . . . . . . . . . . . 0.9603 ± 0.0073 0.9665 ± 0.0062 0.9655 ± 0.0062 0.9682 ± 0.0062 0.9652 ± 0.0062 −0.67 0.48
Ωm . . . . . . . . . . . . 0.315 ± 0.017 0.308 ± 0.013 0.308 ± 0.013 0.313 ± 0.013 0.316 ± 0.014 −0.06 −0.23
σ8 . . . . . . . . . . . . 0.829 ± 0.012 0.831 ± 0.011 0.828 ± 0.012 0.829 ± 0.015 0.830 ± 0.015 −0.08 −0.07
τ . . . . . . . . . . . . . 0.089 ± 0.013 0.096 ± 0.013 0.094 ± 0.013 0.079 ± 0.019 0.078 ± 0.019 0.85 0.05
109Ase−2τ . . . . . . . . 1.836 ± 0.013 1.833 ± 0.011 1.831 ± 0.011 1.875 ± 0.014 1.881 ± 0.014 −3.46 −0.42

low-resolution maps of Q and U polarization measured by LFI at
70 GHz, foreground cleaned using the LFI 30-GHz and HFI 353-
GHz maps as polarized synchrotron and dust templates, respec-
tively, as described in Planck Collaboration XI (2016). After a
comprehensive analysis of survey-to-survey null tests, we found
possible low-level residual systematics in Surveys 2 and 4,
likely related to the unfavourable alignment of the CMB dipole
in those two surveys (for details see Planck Collaboration II
2016). We therefore conservatively use only six of the eight
LFI 70-GHz full-sky surveys, excluding Surveys 2 and 4, The
foreground-cleaned LFI 70-GHz polarization maps are used over
46 % of the sky, together with the temperature map from the
Commander component-separation algorithm over 94 % of the
sky (see Planck Collaboration IX 2016, for further details), to
form a low-` Planck temperature+polarization pixel-based like-
lihood that extends up to multipole ` = 29. Use of the polariza-
tion information in this likelihood is denoted as “lowP” in this
paper The optical depth inferred from the lowP likelihood com-
bined with the Planck TT likelihood is typically τ ≈ 0.07, and
is about 1σ lower than the typical values of τ ≈ 0.09 inferred
from the WMAP polarization likelihood (see Sect. 3.4) used in
the 2013 papers. As discussed in Sect. 3.4 (and in more detail
in Planck Collaboration XI 2016) the LFI 70-GHz and WMAP
polarization maps are consistent when both are cleaned with the
HFI 353-GHz polarization maps.7

(3) In the 2013 papers, the Planck temperature likelihood was
a hybrid: over the multipole range `= 2–49, the likelihood
was based on the Commander algorithm applied to 87 % of

7Throughout this paper, we adopt the following labels for likeli-
hoods: (i) Planck TT denotes the combination of the TT likelihood at
multipoles ` ≥ 30 and a low-` temperature-only likelihood based on
the CMB map recovered with Commander; (ii) Planck TT+lowP fur-
ther includes the Planck polarization data in the low-` likelihood, as de-
scribed in the main text; (iii) labels such as Planck TE+lowP denote the
T E likelihood at ` ≥ 30 plus the polarization-only component of the
map-based low-` Planck likelihood; and (iv) Planck TT,TE,EE+lowP
denotes the combination of the likelihood at ` ≥ 30 using TT , T E,
and EE spectra and the low-` temperature+polarization likelihood. We
make occasional use of combinations of the polarization likelihoods at
` ≥ 30 and the temperature+polarization data at low-`, which we denote
with labels such as Planck TE+lowT,P.

the sky computed using a Blackwell-Rao estimatorl the likeli-
hood at higher multipoles (`=50–2500) was constructed from
cross-spectra over the frequency range 100–217 GHz using the
CamSpec software (Planck Collaboration XV 2014), which is
based on the methodology developed in Efstathiou (2004) and
Efstathiou (2006). At each of the Planck HFI frequencies, the
sky is observed by a number of detectors. For example, at
217 GHz the sky is observed by four unpolarized spider-web
bolometers (SWBs) and eight polarization sensitive bolometers
(PSBs). The TOD from the 12 bolometers can be combined to
produce a single map at 217 GHz for any given period of time.
Thus, we can produce 217-GHz maps for individual sky surveys
(denoted S1, S2, S3, etc.), or by year (Y1, Y2), or split by half-
mission (HM1, HM2). We can also produce a temperature map
from each SWB and a temperature and polarization map from
quadruplets of PSBs. For example, at 217 GHz we produce four
temperature and two temperature+polarization maps. We refer
to these maps as detectors-set maps (or “DetSets” for short);
note that the DetSet maps can also be produced for any arbitrary
time period. The high multipole likelihood used in the 2013 pa-
pers was computed by cross-correlating HFI DetSet maps for
the “nominal” Planck mission extending over 15.5 months.8 For
the 2015 papers we use the full-mission Planck data, extending
over 29 months for the HFI and 48 months for the LFI. In the
Planck 2015 analysis, we have produced cross-year and cross-
half-mission likelihoods in addition to a DetSet likelihood. The
baseline 2015 Planck temperature-polarization likelihood is also
a hybrid, matching the high-multipole likelihood at ` = 30 to the
Planck pixel-based likelihood at lower multipoles.

(4) The sky coverage used in the 2013 CamSpec likelihood was
intentionally conservative, retaining effectively 49 % of the sky
at 100 GHz and 31 % of the sky at 143 and 217 GHz.9 This was
done to ensure that on the first exposure of Planck cosmological
results to the community, corrections for Galactic dust emission
were demonstrably small and had negligible impact on cosmo-

8Although we analysed a Planck full-mission temperature likeli-
hood extensively, prior to the release of the 2013 papers.

9These quantities are explicitly the apodized effective f eff
sky, calcu-

lated as the average of the square of the apodized mask values (see
Eq. 10).
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logical parameters. In the 2015 analysis we make more aggres-
sive use of the sky at each of these frequencies. We have also
tuned the point-source masks to each frequency, rather than us-
ing a single point-source mask constructed from the union of
the point source catalogues at 100, 143, 217, and 353 GHz. This
results in many fewer point source holes in the 2015 analysis
compared to the 2013 analysis.

(5) Most of the results in this paper are derived from a revised
Plik likelihood, based on cross-half-mission spectra. The Plik
likelihood has been modified since 2013 so that it is now similar
to the CamSpec likelihood used in PCP13. Both likelihoods use
similar approximations to compute the covariance matrices. The
main difference is in the treatment of Galactic dust corrections
in the analysis of the polarization spectra. The two likelihoods
have been written independently and give similar (but not iden-
tical) results, as discussed further below. The Plik likelihood
is discussed in Planck Collaboration XI (2016). The CamSpec
likelihood is discussed in a separate paper (Efstathiou et al. in
preparation).

(6) We have made minor changes to the foreground modelling
and to the priors on some of the foreground parameters, as dis-
cussed in Sect. 2.3 and Planck Collaboration XI (2016).

Given these changes to data processing, mission length, sky
coverage, etc., it is reasonable to ask whether the base ΛCDM
parameters have changed significantly compared to the 2013
numbers. In fact, the parameter shifts are relatively small. The
situation is summarized in Table 1. The second column of this
table lists the Planck+WP parameters, as given in table 5 of
PCP13. Since these numbers are based on the 2013 processing of
the nominal mission and computed via a DetSet CamSpec likeli-
hood, the column is labelled 2013N(DS). We now make a num-
ber of specific remarks about these comparisons.

(1) 4-K cooler line systematics. After the submission of PCP13
we found strong evidence that a residual in the 217×217 DetSet
spectrum at ` ≈ 1800 was a systematic caused by electromag-
netic interference between the Joule-Thomson 4-K cooler elec-
tronics and the bolometer readout electronics. This interference
leads to a set of time-variable narrow lines in the power spec-
trum of the TOD. The data processing pipelines apply a filter to
remove these lines; however, the filtering failed to reduce their
impact on the power spectra to negligible levels. Incomplete re-
moval of the 4-K cooler lines affects primarily the 217 × 217
PSB×PSB cross-spectrum in Survey 1. The presence of this sys-
tematic was reported in the revised versions of 2013 Planck
papers. Using simulations and also comparison with the 2013
full-mission likelihood (in which the 217 × 217 power spec-
trum “dip” is strongly diluted by the additional sky surveys)
we assessed that the 4-K line systematic was causing shifts
in cosmological parameters of less than 0.5σ.10 Column 3 in
Table 1 lists the DetSet parameters for the full-mission 2013
data. This full-mission likelihood uses more extensive sky cov-
erage than the nominal mission likelihood (effectively 39 % of
sky at 217 GHz, 55 % of sky at 143 GHz, and 63 % of sky at

10The revised version of PCP13 also reported an error in the ordering
of the beam-transfer functions applied to some of the 2013 217 × 217
DetSet cross-spectra, leading to an offset of a few (µK)2 in the coadded
217 × 217 spectrum. As discussed in PCP13, this offset is largely ab-
sorbed by the foreground model and has negligible impact on the 2013
cosmological parameters.

100 GHz); otherwise the methodology and foreground model are
identical to the CamSpec likelihood described in PPL13. The pa-
rameter shifts are relatively small and consistent with the im-
provement in signal-to-noise of the full-mission spectra and the
systematic shifts caused by the 217×217 dip in the nominal mis-
sion (for example, raising H0 and ns, as discussed in appendix C4
of PCP13).

(2) DetSets versus cross-surveys. In a reanalysis of the pub-
licly released Planck maps, Spergel et al. (2015) constructed
cross-survey (S1 × S2) likelihoods and found cosmological pa-
rameters for the base ΛCDM model that were close to (within
approximately 1σ) the nominal mission parameters listed in
Table 1. The Spergel et al. (2015) analysis differs substantially
in sky coverage and foreground modelling compared to the 2013
Planck analysis and so it is encouraging that they find no major
differences with the results presented by the Planck collabora-
tion. On the other hand, they did not identify the reasons for the
roughly 1σ parameter shifts. They argue that foreground mod-
elling and the `= 1800 dip in the 217 × 217 DetSet spectrum
can contribute towards some of the differences but cannot pro-
duce 1σ shifts, in agreement with the conclusions of PCP13.
The 2013F(DS) likelihood disfavours the Spergel et al. (2015)
cosmology (with parameters listed in their table 3) by ∆χ2 = 11,
i.e., by about 2σ, and almost all of the ∆χ2 is contributed by
the multipole range 1000–1500, so the parameter shifts are not
driven by cotemporal systematics resulting in correlated noise
biases at high multipoles. However, as discussed in PPL13 and
Planck Collaboration XI (2016), low-level correlated noise in
the DetSet spectra affects all HFI channels at high multipoles
where the spectra are noise dominated. The impact of this corre-
lated noise on cosmological parameters is relatively small. This
is illustrated by column 4 of Table 1 (labelled “2013F(CY)”),
which lists the parameters of a 2013 CamSpec cross-year like-
lihood using the same sky coverage and foreground model as
the DetSet likelihood used for column 3. The parameters from
these two likelihoods are in good agreement (better than 0.2σ),
illustrating that cotemporal systematics in the DetSets are at suf-
ficiently low levels that there is very little effect on cosmolog-
ical parameters. Nevertheless, in the 2015 likelihood analysis
we apply corrections for correlated noise to the DetSet cross-
spectra, as discussed in Planck Collaboration XI (2016), and
typically find agreement in cosmological parameters between
DetSet, cross-year, and cross-half-mission likelihoods to better
than 0.5σ accuracy for a fixed likelihood code (and to better
than 0.2σ accuracy for base ΛCDM).

(3) 2015 versus 2013 processing. Column 5 (labelled
“2015F(CHM)”) lists the parameters computed from the
CamSpec cross-half-mission likelihood using the HFI 2015 data
with revised absolute calibration and beam-transfer functions.
We also replace the WP likelihood of the 2013 analysis with
the Planck lowP likelihood. The 2015F(CHM) likelihood uses
slightly more sky coverage (60 %) at 217 GHz, compared to
the 2013F(CY) likelihood and also uses revised point source
masks. Despite these changes, the base ΛCDM parameters de-
rived from the 2015 CamSpec likelihood are within ≈ 0.4σ of
the 2013F(CY) parameters, with the exception of θMC, which is
lower by 0.67σ, τ, which is lower by 1σ, and Ase−2τ, which is
higher by about 4σ . The change in τ simply reflects the prefer-
ence for a lower value of τ from the Planck LFI polarization data
compared to the WMAP polarization likelihood in the form de-
livered by the WMAP team (see Sect. 3.4 for further discussion).
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Fig. 1. Planck 2015 temperature power spectrum. At multipoles ` ≥ 30 we show the maximum likelihood frequency-averaged
temperature spectrum computed from the Plik cross-half-mission likelihood, with foreground and other nuisance parameters de-
termined from the MCMC analysis of the base ΛCDM cosmology. In the multipole range 2 ≤ ` ≤ 29, we plot the power spectrum
estimates from the Commander component-separation algorithm, computed over 94 % of the sky. The best-fit base ΛCDM theoreti-
cal spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown
in the lower panel. The error bars show ±1σ uncertainties.

The large upward shift in Ase−2τ reflects the change in the abso-
lute calibration of the HFI. As noted in Sect. 2.3, the 2013 analy-
sis did not propagate an error on the Planck absolute calibration
through to cosmological parameters. Coincidentally, the changes
to the absolute calibration compensate for the downward change
in τ and variations in the other cosmological parameters to keep
the parameter σ8 largely unchanged from the 2013 value. This
will be important when we come to discuss possible tensions
between the amplitude of the matter fluctuations at low redshift
estimated from various astrophysical data sets and the Planck
CMB values for the base ΛCDM cosmology (see Sect. 5.6).

(4) Likelihoods. Constructing a high-multipole likelihood for
Planck, particularly with T E and EE spectra, is complicated
and difficult to check at the sub-σ level against numerical
simulations because the simulations cannot model the fore-
grounds, noise properties, and low-level data processing of
the real Planck data to sufficiently high accuracy. Within the
Planck collaboration, we have tested the sensitivity of the re-
sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2016). The most highly developed of

them are the CamSpec and revised Plik pipelines. For the 2015
Planck papers, the Plik pipeline was chosen as the baseline.
Column 6 of Table 1 lists the cosmological parameters for base
ΛCDM determined from the Plik cross-half-mission likeli-
hood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods differ in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations,
and multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2σ, except for ns, which
differs by nearly 0.5σ. The difference in ns is perhaps not sur-
prising, since this parameter is sensitive to small differences in
the foreground modelling. Differences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ΛCDM models discussed in Sect. 6. We emphasize that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on
the full “TT,TE,EE” likelihoods) would differ in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015
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likelihood and the published 2013 nominal mission parameters
are summarized in column 7 of Table 1. These shifts are within
0.7σ except for the parameters τ and Ase−2τ, which are sensitive
to the low-multipole polarization likelihood and absolute cali-
bration.

In summary, the Planck 2013 cosmological parameters were
pulled slightly towards lower H0 and ns by the ` ≈ 1800 4-K line
systematic in the 217 × 217 cross-spectrum, but the net effect of
this systematic is relatively small, leading to shifts of 0.5σ or
less in cosmological parameters. Changes to the low-level data
processing, beams, sky coverage, etc., as well as the likelihood
code also produce shifts of typically 0.5σ or less. The combined
effect of these changes is to introduce parameter shifts relative to
PCP13 of less than 0.7σ, with the exception of τ and Ase−2τ. The
main scientific conclusions of PCP13 are therefore consistent
with the 2015 Planck analysis.

Parameters for the base ΛCDM cosmology derived from
full-mission DetSet, cross-year, or cross-half-mission spectra are
in extremely good agreement, demonstrating that residual (i.e.,
uncorrected) cotemporal systematics are at low levels. This is
also true for the extensions of the ΛCDM model discussed in
Sect. 6. It is therefore worth explaining why we have adopted
the cross-half-mission likelihood as the baseline for this and
other 2015 Planck papers. The cross-half-mission likelihood has
lower signal-to-noise than the full-mission DetSet likelihood;
however, the errors on the cosmological parameters from the
two likelihoods are almost identical, as can be seen from the
entries in Table 1. This is also true for extended ΛCDM models.
However, for more complicated tests, such as searches for lo-
calized features in the power spectra (Planck Collaboration XX
2016), residual 4-K line systematic effects and residual uncor-
rected correlated noise at high multipoles in the DetSet likeli-
hood can produce results suggestive of new physics (though not
at a high significance level). We have therefore decided to adopt
the cross-half-mission likelihood as the baseline for the 2015
analysis, sacrificing some signal-to-noise in favour of reduced
systematics. For almost all of the models considered in this pa-
per, the Planck results are limited by small systematics of vari-
ous types, including systematic errors in modelling foregrounds,
rather than by signal-to-noise.

The foreground-subtracted, frequency-averaged, cross-half-
mission spectrum is plotted in Fig. 1, together with the
Commander power spectrum at multipoles ` ≤ 29. The high
multipole spectrum plotted in this figure is an approximate max-
imum likelihood solution based on equations (A24) and (A25) of
PPL13, with the foregrounds and nuisance parameters for each
spectrum fixed to the best-fit values of the base ΛCDM solu-
tion. Note that a different way of solving for the Planck CMB
spectrum, by marginalizing over foreground and nuisance pa-
rameters, is presented in Sect. 4. The best-fit base ΛCDM model
is plotted in the upper panel, while residuals with respect to this
model are plotted in the lower panel. In this plot, there are only
four bandpowers at ` ≥ 30 that differ from the best-fit model
by more than 2σ. These are: `= 434 (−2.0σ); `= 465 (2.5σ);
`= 1214 (−2.5σ); and `= 1455 (−2.1σ). The χ2 of the coadded
TT spectrum plotted in Fig. 1 relative to the best-fit base ΛCDM
model is 2547 for 2479 degrees of freedom (30 ≤ ` ≤ 2500),
which is a 0.96σ fluctuation (PTE = 16.8 %). These numbers
confirm the extremely good fit of the base ΛCDM cosmology
to the Planck TT data at high multipoles. The consistency of
the Planck polarization spectra with base ΛCDM is discussed in
Sect. 3.3.

PCP13 noted some mild internal tensions within the Planck
data, for example, the preference of the phenomenological lens-

ing parameter AL (see Sect. 5.1) towards values greater than
unity and a preference for a negative running of the scalar spec-
tral index (see Sect. 6.2.2). These tensions were partly caused
by the poor fit of base ΛCDM model to the temperature spec-
trum at multipoles below about 50. As noted by the WMAP
team (Hinshaw et al. 2003), the temperature spectrum has a low
quadrupole amplitude and a glitch in the multipole range 20 <∼
` <∼ 30. These features can be seen in the Planck 2015 spectrum
of Fig. 1. They have a similar (though slightly reduced) effect on
cosmological parameters to those described in PCP13.

3.2. 545-GHz-cleaned spectra

As discussed in PCP13, unresolved extragalactic foregrounds
(principally Poisson point sources and the clustered component
of the CIB) contribute to the Planck TT spectra at high mul-
tipoles. The approach to modelling these foreground contribu-
tions in PCP13 is similar to that used by the ACT and SPT
teams (Reichardt et al. 2012; Dunkley et al. 2013) in that the
foregrounds are modelled by a set of physically motivated power
spectrum template shapes with an associated set of adjustable
nuisance parameters. This approach has been adopted as the
baseline for the Planck 2015 analysis. The foreground model has
been adjusted for this new analysis, in relatively minor ways,
as summarized in Sect. 2.3 and described in further detail in
Planck Collaboration XII (2016). Galactic dust emission also
contributes to the temperature and polarization power spectra
and must be subtracted from the spectra used to form the Planck
likelihood. Unlike the extragalactic foregrounds, Galactic dust
emission is anisotropic and so its impact can be reduced by ap-
propriate masking of the sky. In PCP13, we intentionally adopted
conservative masks, tuned for each of the frequencies used to
form the likelihood, to keep dust emission at low levels. The
results in PCP13 were therefore insensitive to the modelling of
residual dust contamination.

In the 2015 analysis, we have extended the sky coverage at
each of 100, 143, and 217 GHz, and so in addition to testing the
accuracy of the extragalactic foreground model, it is important
to test the accuracy of the Galactic dust model. As described
in PPL13 and Planck Collaboration XII (2016) the Galactic dust
templates used in the CamSpec and Plik likelihoods are derived
by fitting the 545-GHz mask-differenced power spectra. Mask
differencing isolates the anisotropic contribution of Galactic dust
from the isotropic extragalactic components. For the extended
sky coverage used in the 2015 likelihoods, the Galactic dust
contributions are a significant fraction of the extragalactic fore-
ground contribution in the 217 × 217 temperature spectrum at
high multipoles, as illustrated in Fig. 2. Galactic dust dominates
over all other foregrounds at multipoles ` <∼ 500 at HFI frequen-
cies.

A simple and direct test of the parametric foreground mod-
elling used in the CamSpec and Plik likelihoods is to compare
results with a completely different approach in which the low-
frequency maps are “cleaned” using higher frequency maps as
foreground templates (see, e.g., Lueker et al. 2010). In a similar
approach to Spergel et al. (2015), we can form cleaned maps at
lower frequencies ν by subtracting a 545-GHz map as a template,

MTνclean = (1 + αTν )MTν − αTν MTνt , (6)

where νt is the frequency of the template map MTνt and αTν is
the cleaning coefficient. Since the maps have different beams,
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Fig. 2. Residual plots illustrating the accuracy of the foreground modelling. The blue points in the upper panels show the CamSpec
2015(CHM) spectra after subtraction of the best-fit ΛCDM spectrum. The residuals in the upper panel should be accurately de-
scribed by the foreground model. Major foreground components are shown by the solid lines, colour coded as follows: total fore-
ground spectrum (red); Poisson point sources (orange); clustered CIB (blue); thermal SZ (green); and Galactic dust (purple). Minor
foreground components are shown by the dotted lines, colour-coded as follows: kinetic SZ (green); and tSZ×CIB cross-correlation
(purple). The red points in the upper panels show the 545-GHz-cleaned spectra (minus the best-fit CMB as subtracted from the
uncleaned spectra) that are fitted to a power-law residual foreground model, as discussed in the text. The lower panels show the
spectra after subtraction of the best-fit foreground models. These agree to within a few (µK)2. The χ2 values of the residuals of the
blue points, and the number of bandpowers, are listed in the lower panels.

the subtraction is actually done in the power spectrum domain:

ĈTν1 Tν2 clean = (1 + αTν1 )(1 + αTν2 )ĈTν1 Tν2

−(1 + αTν1 )αTν2 ĈTν2 Tνt

−(1 + αTν2 )αTν1 ĈTν1 Tνt + αTν1αTν2 ĈTνt Tνt , (7)

where ĈTν1 Tν2 etc. are the mask-deconvolved beam-corrected
power spectra. The coefficients αTνi are determined by minimiz-
ing

`max∑
`=`min

`max∑
`′=`min

Ĉ
Tνi Tνi clean
`

(
M̂

Tνi Tνi
``′

)−1
Ĉ

Tνi Tνi clean
`′

, (8)

where M̂Tνi Tνi is the covariance matrix of the estimates ĈTνi Tνi .
We choose `min = 100 and `max = 500 and compute the spectra in
Eq. (7) by cross-correlating half-mission maps on the 60 % mask
used to compute the 217× 217 spectrum. The resulting cleaning
coefficients are αT

143 = 0.00194 and αT
217 = 0.00765; note that

all of the input maps are in units of thermodynamic tempera-
ture. The cleaning coefficients are therefore optimized to remove
Galactic dust at low multipoles, though by using 545 GHz as a
dust template we find that the cleaning coefficients are almost
constant over the multipole range 50–2500. We note, however,
that this is not true if the 353- and 857-GHz maps are used as
dust templates, as discussed in Efstathiou et al. (in preparation).

The 545-GHz-cleaned spectra are shown by the red points
in Fig. 2 and can be compared directly to the “uncleaned” spec-
tra used in the CamSpec likelihood (upper panels). As can be
seen, Galactic dust emission is removed to high accuracy and the
residual foreground contribution at high multipoles is strongly
suppressed in the 217×217 and 143×217 spectra. Nevertheless,
there remains small foreground contributions at high multipoles,
which we model heuristically as power laws,

D̂` = A
(

`

1500

)ε
, (9)

with free amplitudes A and spectral indices ε. We construct an-
other CamSpec cross-half-mission likelihood using exactly the
same sky masks as the 2015F(CHM) likelihood, but using 545-
GHz-cleaned 217 × 217, 143 × 217, and 143 × 143 spectra. We
then use the simple model of Eq. (9) in the likelihood to remove
residual unresolved foregrounds at high multipoles for each fre-
quency combination. We do not clean the 100×100 spectrum and
so for this spectrum we use the standard parametric foreground
model in the likelihood. The lower panels in Fig. 2 show the
residuals with respect to the best-fit base ΛCDM model and fore-
ground solution for the uncleaned CamSpec spectra (blue points)
and for the 545-GHz-cleaned spectra (red points). These resid-
uals are almost identical, despite the very different approaches
to Galactic dust removal and foreground modelling. The cosmo-
logical parameters from these two likelihoods are also in very
good agreement, typically to better than 0.1σ, with the excep-
tion of ns, which is lower in the cleaned likelihood by 0.26σ. It
is not surprising, given the heuristic nature of the model (Eq. 9),
that ns shows the largest shift. We can also remove the 100×100
spectrum from the likelihood entirely, with very little impact on
cosmological parameters.

Further tests of map-based cleaning are presented in
Planck Collaboration XI (2016), which additionally describes
another independently written power-spectrum analysis pipeline
(MSPEC) tuned to map-cleaned cross-spectrum analysis and us-
ing a more complex model for fitting residual foregrounds
than the heuristic model of Eq. (9). Planck Collaboration XI
(2016) also describes power spectrum analysis and cosmologi-
cal parameters derived from component-separated Planck maps.
However, the simple demonstration presented in this section
shows that the details of modelling residual dust contamination
and other foregrounds are under control in the 2015 Planck like-
lihood. A further strong argument that our TT results are insen-
sitive to foreground modelling is presented in the next section,
which compares the cosmological parameters derived from the
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TT , T E, and EE likelihoods. Unresolved foregrounds at high
multipoles are completely negligible in the polarization spec-
tra and so the consistency of the parameters, particularly from
the T E spectrum (which has higher signal-to-noise than the EE
spectrum) provides an additional cross-check of the TT results.

Finally, one can ask why we have not chosen to use a 545-
GHz-cleaned likelihood as the baseline for the 2015 Planck pa-
rameter analysis. Firstly, it would not make any difference to
the results of this paper had we chosen to do so. Secondly, we
feel that the parametric foreground model used in the baseline
likelihood has a sounder physical basis. This allows us to link
the amplitudes of the unresolved foregrounds across the various
Planck frequencies with the results from other ways of studying
foregrounds, including the higher resolution CMB experiments
described in Sect. 4.

3.3. The 2015 Planck temperature and polarization spectra
and likelihood

The coadded 2015 Planck temperature spectrum was introduced
in Fig. 1. In this section, we present additional details and con-
sistency checks of the temperature likelihood and describe the
full mission Planck T E and EE spectra and likelihood; pre-
liminary Planck T E and EE spectra were presented in PCP13.
We then discuss the consistency of the cosmological parame-
ters for base ΛCDM measured separately from the TT , T E,
and EE spectra. For the most part, the discussion given in this
section is specific to the Plik likelihood, which is used as the
baseline in this paper. A more complete discussion of the Plik
and other likelihoods developed by the Planck team is given in
Planck Collaboration XI (2016).

3.3.1. Temperature spectra and likelihood

(1) Temperature masks. As in the 2013 analysis, the high-
multipole TT likelihood uses the 100×100 , 143×143, 217×217,
and 143 × 217 spectra. However, in contrast to the 2013 anal-
ysis, which used conservative sky masks to reduce the effects
of Galactic dust emission, we make more aggressive use of sky
in the 2015 analysis. The 2015 analysis retains 80 %, 70 %,
and 60 % of sky at 100 GHz, 143 GHz, and 217 GHz, respec-
tively, before apodization. We also apply apodized point source
masks to remove compact sources with a signal-to-noise thresh-
old > 5 at each frequency (see Planck Collaboration XXVI 2016
for a description of the Planck Catalogue of Compact Sources).
Apodized masks are also applied to remove extended objects,
and regions of high CO emission were masked at 100 GHz and
217 GHz (see Planck Collaboration X 2016). As an estimate of
the effective sky area, we compute the following sum over pix-
els:

f eff
sky =

1
4π

∑
w2

i Ωi, (10)

where wi is the weight of the apodized mask and Ωi is the area of
pixel i. All input maps are at HEALpix (Górski et al. 2005) res-
olution Nside = 2048. Eq. (10) gives f eff

sky = 66.3 % at 100 GHz,
57.4 % at 143 GHz, and 47.1 % at 217 GHz.

(2) Galactic dust templates. With the increased sky coverage
used in the 2015 analysis, we take a slightly different approach
to subtracting Galactic dust emission to that described in PPL13
and PCP13. The shape of the Galactic dust template is deter-
mined from mask-differenced power spectra estimated from the
545-GHz maps. The mask differencing removes the isotropic

contribution from the CIB and point sources. The resulting dust
template has a similar shape to the template used in the 2013
analysis, with power-law behaviourDdust

` ∝ `−0.63 at high multi-
poles, but with a “bump” at ` ≈ 200 (as shown in Fig. 2). The ab-
solute amplitude of the dust templates at 100, 143, and 217 GHz
is determined by cross-correlating the temperature maps at these
frequencies with the 545-GHz maps (with minor corrections for
the CIB and point source contributions). This allows us to gen-
erate priors on the dust template amplitudes, which are treated
as additional nuisance parameters when running MCMC chains
(unlike the 2013 analysis, in which we fixed the amplitudes of
the dust templates). The actual priors used in the Plik likelihood
are Gaussians on Ddust

`=200 with the following means and disper-
sions: (7 ± 2) µK2 for the 100 × 100 spectrum; (9 ± 2) µK2 for
143 × 143; (21 ± 8.5) µK2 for 143 × 217; and (80 ± 20) µK2 for
217 × 217. The MCMC solutions show small movements of the
best-fit dust template amplitudes, but always within statistically
acceptable ranges given the priors.

(3) Likelihood approximation and covariance matrices. The
approximation to the likelihood function follows the methodol-
ogy described in PPL13 and is based on a Gaussian likelihood
assuming a fiducial theoretical power spectrum (a fit to Plik TT
with prior τ = 0.07 ± 0.02). We have also included a number
of small refinements to the covariance matrices. Foregrounds,
including Galactic dust, are added to the fiducial theoretical
power spectrum, so that the additional small variance associated
with foregrounds is included, along with cosmic variance of the
CMB, under the assumption that the foregrounds are Gaussian
random fields. The 2013 analysis did not include corrections to
the covariance matrices arising from leakage of low-multipole
power to high multipoles via the point source holes; these can
introduce errors in the covariance matrices of a few percent at
` ≈ 300, corresponding approximately to the first peak of the
CMB spectrum. In the 2015 analysis we apply corrections to the
fiducial theoretical power spectrum, based on Monte Carlo sim-
ulations, to correct for this effect. We also apply Monte Carlo
based corrections to the analytic covariance matrices at multi-
poles ` ≤ 50, where the analytic approximations begin to be-
come inaccurate even for large effective sky areas (see Efstathiou
2004). Finally, we add the uncertainties on the beam shapes to
the covariance matrix following the methodology described in
PPL13. The Planck beams are much more accurately character-
ized in the 2015 analysis, and so the beam corrections to the
covariance matrices are extremely small. The refinements to the
covariance matrices described in this paragraph are all relatively
minor and have little impact on cosmological parameters.

(4) Binning. The baseline Plik likelihood uses binned tempera-
ture and polarization spectra. This is done because all frequency
combinations of the T E and EE spectra are used in the Plik
likelihood, leading to a large data vector of length 22 865 if the
spectra are retained multipole-by-multipole. The baseline Plik
likelihood reduces the size of the data vector by binning these
spectra. The spectra are binned into bins of width ∆` = 5 for
30 ≤ ` ≤ 99, ∆` = 9 for 100 ≤ ` ≤ 1503, ∆` = 17 for
1504 ≤ ` ≤ 2013 and ∆` = 33 for 2014 ≤ ` ≤ 2508, with
a weighting of C` proportional to `(` + 1) over the bin widths.
The bins span an odd number of multipoles, since for approxi-
mately azimuthal masks we expect a nearly symmetrical correla-
tion function around the central multipole. The binning does not
affect the determination of cosmological parameters in ΛCDM-
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Table 2. Goodness-of-fit tests for the 2015 Planck temperature and polarization spectra. ∆χ2 = χ2 − Ndof is the difference from
the mean assuming that the best-fit base ΛCDM model (fitted to Planck TT+lowP) is correct and Ndof is the number of degrees of
freedom (set equal to the number of multipoles). The sixth column expresses ∆χ2 in units of the expected dispersion,

√
2Ndof , and

the last column lists the probability to exceed (PTE) the tabulated value of χ2.

Likelihood Frequency Multipole range χ2 χ2/Ndof Ndof ∆χ2/
√

2Ndof PTE [%]

TT 100×100 30–1197 1234.37 1.06 1168 1.37 8.66
143×143 30–1996 2034.45 1.03 1967 1.08 14.14
143×217 30–2508 2566.74 1.04 2479 1.25 10.73
217×217 30–2508 2549.66 1.03 2479 1.00 15.78
Combined 30–2508 2546.67 1.03 2479 0.96 16.81

T E 100×100 30– 999 1088.78 1.12 970 2.70 0.45
100×143 30– 999 1032.84 1.06 970 1.43 7.90
100×217 505– 999 526.56 1.06 495 1.00 15.78
143×143 30–1996 2028.43 1.03 1967 0.98 16.35
143×217 505–1996 1606.25 1.08 1492 2.09 2.01
217×217 505–1996 1431.52 0.96 1492 −1.11 86.66
Combined 30–1996 2046.11 1.04 1967 1.26 10.47

EE 100×100 30– 999 1027.89 1.06 970 1.31 9.61
100×143 30– 999 1048.22 1.08 970 1.78 4.05
100×217 505– 999 479.72 0.97 495 −0.49 68.06
143×143 30–1996 2000.90 1.02 1967 0.54 29.18
143×217 505–1996 1431.16 0.96 1492 −1.11 86.80
217×217 505–1996 1409.58 0.94 1492 −1.51 93.64
Combined 30–1996 1986.95 1.01 1967 0.32 37.16

type models (which have smooth power spectra), but signifi-
cantly reduces the size of the joint TT,TE,EE covariance ma-
trix, speeding up the computation of the likelihood. However, for
some specific purposes, e.g., searching for oscillatory features in
the TT spectrum, or testing χ2 statistics, we produce blocks of
the likelihood multipole-by-multipole.

(5) Goodness of fit. The first five rows of Table 2 list χ2 statis-
tics for the TT spectra (multipole-by-multipole) relative to the
Planck best-fit base ΛCDM model and foreground parameters
(fitted to Planck TT+lowP). The first four entries list the statis-
tics separately for each of the four spectra that form the TT
likelihood and the fifth line (labelled “Combined”) gives the
χ2 value for the maximum likelihood TT spectrum plotted in
Fig. 1. Each of the individual spectra provides an acceptable fit
to the base ΛCDM model, as does the frequency-averaged spec-
trum plotted in Fig. 1. This demonstrates the excellent consis-
tency of the base ΛCDM model across frequencies. More de-
tailed consistency checks of the Planck spectra are presented
in Planck Collaboration XI (2016); however, as indicated by
Table 2, we find no evidence for any inconsistencies between
the foreground-corrected temperature power spectra computed
for different frequency combinations. The temperature spectra
are largely signal dominated over the multipole ranges listed in
Table 2 and so the χ2 values are insensitive to small errors in
the Planck noise model used in the covariance matrices. As dis-
cussed in the next subsection, this is not true for the T E and EE
spectra, which are noise dominated over much of the multipole
range.

3.3.2. Polarization spectra and likelihood

In addition to the TT spectra, the 2015 Planck likelihood in-
cludes the T E and EE spectra. As discussed in Sect. 3.1, the
Planck 2015 low-multipole polarization analysis is based on the
LFI 70-GHz data. Here we discuss the T E and EE spectra that

are used in the high-multipole likelihood, which are computed
from the HFI data at 100, 143 and 217 GHz. As summarized in
Planck Collaboration XI (2016), there is no evidence for any un-
resolved foreground components at high multipoles in the polar-
ization spectra. We therefore include all frequency combinations
in computing the T E and EE spectra to maximize the signal-to-
noise.11

(1) Masks and dust corrections. At low multipoles (` <∼ 300)
polarized Galactic dust emission is significant at all frequen-
cies and is subtracted in a similar way to the dust subtraction
in temperature, i.e., by including additional nuisance parame-
ters quantifying the amplitudes of a power-law dust template
with a slope constrained to Ddust

` ∝ `−0.40 for both T E and EE
(Planck Collaboration Int. XXX 2016). Polarized synchrotron
emission (which has been shown to be negligible at 100 GHz
and higher frequencies for Planck noise levels, Fuskeland et al.
2014) is ignored. Gaussian priors on the polarization dust ampli-
tudes are determined by cross-correlating the lower frequency
maps with the 353-GHz polarization maps (the highest fre-
quency polarized channel of the HFI) in a similar way to the de-
termination of temperature dust priors. We use the temperature-
based apodized masks in Q and U at each frequency, retaining
70 %, 50 %, and 41 % of the sky at 100, 143, and 217 GHz, re-
spectively, after apodization (slightly smaller than the tempera-
ture masks at 143 and 217 GHz). However, we do not apply point
source or CO masks to the Q and U maps. The construction of
the full TT,TE,EE likelihood is then a straightforward extension
of the TT likelihood using the analytic covariance matrices given
by Efstathiou (2006) and Hamimeche & Lewis (2008).

11In temperature, the 100 × 143 and 100 × 217 spectra are not in-
cluded in the likelihood because the temperature spectra are largely sig-
nal dominated. These spectra therefore add little new information on
the CMB, but would require additional nuisance parameters to correct
for unresolved foregrounds at high multipoles.
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Fig. 3. Frequency-averaged T E and EE spectra (without fitting for temperature-to-polarization leakage). The theoretical T E and
EE spectra plotted in the upper panel of each plot are computed from the Planck TT+lowP best-fit model of Fig. 1. Residuals with
respect to this theoretical model are shown in the lower panel in each plot. The error bars show ±1σ errors. The green lines in the
lower panels show the best-fit temperature-to-polarization leakage model of Eqs. (11a) and (11b), fitted separately to the T E and
EE spectra.
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Fig. 4. Conditionals for the Plik T E and EE spectra, given the TT data computed from the Plik likelihood. The black lines show
the expected T E and EE spectra given the TT data. The shaded areas show the ±1 and ±2σ ranges computed from Eq. (16). The
blue points show the residuals for the measured T E and EE spectra.

Fig. 5. Conditionals for the CamSpec T E and EE spectra, given the TT data computed from the CamSpec likelihood. As in Fig. 4,
the shaded areas show ±1 and ±2σ ranges, computed from Eq. (16) and blue points show the residuals for the measured T E and
EE spectra.

(2) Polarization spectra and residual systematics. Maximum
likelihood frequency coadded T E and EE spectra are shown in
Fig. 3. The theoretical curves plotted in these figures are the T E
and EE spectra computed from the best-fit base ΛCDM model
fitted to the temperature spectra (Planck TT+lowP), as plotted
in Fig. 1. The lower panels in each figure show the residuals
with respect to this model. The theoretical model provides a very
good fit to the T E and EE spectra. Table 2 lists χ2 statistics for
the T E and EE spectra for each frequency combination (with
the T E and ET spectra for each frequency combination coad-
ded to form a single T E spectrum). Note that since the T E and
EE spectra are noisier than the TT spectra, these values of χ2

are sensitive to the procedure used to estimate Planck noise (see
Planck Collaboration XI 2016 for further details).

Some of these χ2 values are unusually high, for example the
100×100 and 143×217 T E spectra and the 100×143 EE spec-
trum all have low PTEs. The Planck T E and EE spectra for dif-
ferent frequency combinations are not as internally consistent as
the Planck TT spectra. Inter-comparison of the T E and EE spec-
tra at different frequencies is much more straightforward than
for the temperature spectra because unresolved foregrounds are

unimportant in polarization. The high χ2 values listed in Table 2
therefore provide clear evidence of residual instrumental system-
atics in the T E and EE spectra.

With our present understanding of the Planck polarization
data, we believe that the dominant source of systematic error in
the polarization spectra is caused by beam mismatch that gener-
ates leakage from temperature to polarization (recalling that the
HFI polarization maps are generated by differencing signals be-
tween quadruplets of polarization sensitive bolometers). In prin-
ciple, with accurate knowledge of the beams this leakage could
be described by effective polarized beam window functions. For
the 2015 papers, we use the TT beams rather than polarized
beams, and characterize temperature-to-polarization leakage us-
ing a simplified model. The impact of beam mismatch on the
polarization spectra in this model is

∆CT E
` = ε`CTT

` , (11a)

∆CEE
` = ε2

`CTT
` + 2ε`CT E

` , (11b)

where ε` is a polynomial in multipole. As a consequence of the
Planck scanning strategy, pixels are visited approximately every
six months, with a rotation of the focal plane by 180◦, leading to
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a weak coupling to beam modes b`m with odd values of m. The
dominant contributions are expected to come from modes with
m = 2 and 4, describing the beam ellipticity. We therefore fit the
spectra using a fourth-order polynomial,

ε` = a0 + a2`
2 + a4`

4, (12)

treating the coefficients a0, a2, and a4 as nuisance parameters in
the MCMC analysis. We have ignored the odd coefficients of the
polynomial, which should be suppressed by our scanning strat-
egy. We do however include a constant term in the polynomial to
account for small deviations of the polarization efficiency from
unity.

The fit is performed separately on the T E and EE spectra. A
different polynomial is used for each cross-frequency spectrum.
The coadded corrections are shown in the lower panels of Fig. 3.
Empirically, we find that temperature-to-polarization leakage
systematics tend to cancel in the coadded spectra. Although the
best-fit leakage corrections to the coadded spectra are small, the
corrections for individual frequency cross-spectra can be up to 3
times larger than those shown in Fig. 3. The model of Eqs. (11a)
and (11b) is clearly crude, but gives us some idea of the impact
of temperature-to-polarization leakage in the coadded spectra.
With our present empirical understanding of leakage, we find a
correlation between the polarization spectra that have the high-
est expected temperature-to-polarization leakage and those that
display high χ2 in Table 2. However, the characterization of this
leakage is not yet accurate enough to reduce the χ2 values for
each frequency combination to acceptable levels.

As discussed in PCP13, each Planck data release and ac-
companying set of papers should be viewed as a snapshot of
the state of the Planck analysis at the time of the release.
For the 2015 release, we have a high level of confidence in
the temperature power spectra. However, we have definite ev-
idence for low-level systematics associated with temperature-
to-polarization leakage in the polarization spectra. The tests de-
scribed above suggest that these are at low levels of a few (µK)2

in D`. However, temperature-to-polarization leakage can intro-
duce correlated features in the spectra, as shown by the EE leak-
age model plotted in Fig. 3. Until we have a more accurate char-
acterization of these systematics, we urge caution in the inter-
pretation of features in the T E and EE spectra. For some of the
2015 papers, we use the T E and EE spectra, without leakage
corrections. For most of the models considered in this paper, the
TT spectra alone provide tight constraints and so we take a con-
servative approach and usually quote the TT results. However,
as we will see, we find a high level of consistency between the
Planck TT and full Planck TT,T E, EE likelihoods. Some mod-
els considered in Sect. 6 are, however, sensitive to the polariza-
tion blocks of the likelihood. Examples include constraints on
isocurvature modes, dark matter annihilation, and non-standard
recombination histories. Planck 2015 constraints on these mod-
els should be viewed as preliminary, pending a more complete
analysis of polarization systematics, which will be presented in
the next series of Planck papers accompanying a third data re-
lease.

(3) T E and EE conditionals. Given the best-fit base ΛCDM
cosmology and foreground parameters determined from the tem-
perature spectra, one can test whether the T E and EE spectra are
consistent with the TT spectra by computing conditional proba-
bilities. Writing the data vector as

Ĉ = (ĈTT , ĈT E , ĈEE)T = (X̂T , X̂P)T, (13)

where the quantities ĈTT , ĈT E , and ĈEE are the maximum like-
lihood freqency co-added foreground-corrected spectra. The co-
variance matrix of this vector can be partitioned as

M̂ =

 MT MT P

MT
T P MP

 . (14)

The expected value of the polarization vector, given the observed
temperature vector X̂T is

X̂cond
P = X̂theory

P + MT
T P M−1

T (X̂T − X̂theory
T ), (15)

with covariance

Σ̂P = MP −MT
T PM−1

T MT P. (16)

In Eq. (15), Xtheory
T and Xtheory

P are the theoretical temperature
and polarization spectra deduced from minimizing the Planck
TT+lowP likelihood. Equations (15) and (16) give the expecta-
tion values and distributions of the polarization spectra condi-
tional on the observed temperature spectra. These are shown in
Fig. 4. Almost all of the data points sit within the ±2σ bands
and in the case of the T E spectra, the data points track the fluc-
tuations expected from the TT spectra at multipoles ` <∼ 1000.
Figure 4 therefore provides an important additional check of the
consistency of the T E and EE spectra with the base ΛCDM cos-
mology.

(4) Likelihood implementation. Section 3.1 showed good con-
sistency between the independently written CamSpec and Plik
codes in temperature. The methodology used for the temperature
likelihoods are very similar, but the treatment of the polarization
spectra in the two codes differs substantially. CamSpec uses low-
resolution CMB-subtracted 353-GHz polarization maps thresh-
olded by P = (Q2 + U2)1/2 to define diffuse Galactic polariza-
tion masks. The same apodized polarization mask, with an effec-
tive sky fraction f eff

sky = 48.8 % (as defined by Eq. (10)), is used
for 100-, 143-, and 217-GHz Q and U maps. Since there are
no unresolved extragalactic foregrounds detected in the T E and
EE spectra, all of the different frequency combinations of T E
and EE spectra are compressed into single T E and EE spectra
(weighted by the inverse of the diagonals of the appropriate co-
variance matrices), after foreground cleaning using the 353-GHz
maps12 (generalizing the map cleaning technique described in
Sect. 3.2 to polarization). This allows the construction of a full
TT,T E, EE likelihood with no binning of the spectra and with
no additional nuisance parameters in polarization. As noted in
Sect. 3.1 the consistency of results from the polarization blocks
of the CamSpec and Plik likelihoods is not as good as in tem-
perature. Cosmological parameters from fits to the T E and EE
CamSpec and Plik likelihoods can differ by up to about 1.5σ,
although no major science conclusions would change had we
chosen to use the CamSpec likelihood as the baseline in this pa-
per. We will, however, sometimes quote results from CamSpec in
addition to those from Plik to give the reader an indication of
the uncertainties in polarization associated with different likeli-
hood implementations. Figure 5 shows the CamSpec T E and EE
residuals and error ranges conditional on the best-fit base ΛCDM
and foreground model fitted to the CamSpec temperature+lowP

12To reduce the impact of noise at 353 GHz, the map-based cleaning
of the T E and EE spectra is applied at ` ≤ 300. At higher multipoles,
the polarized dust corrections are small and are subtracted as power
laws fitted to the Galactic dust spectra at lower multipoles.
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Table 3. Parameters of the base ΛCDM cosmology computed from the 2015 baseline Planck likelihoods, illustrating the consistency
of parameters determined from the temperature and polarization spectra at high multipoles. Column [1] uses the TT spectra at low
and high multipoles and is the same as column [6] of Table 1. Columns [2] and [3] use only the T E and EE spectra at high
multipoles, and only polarization at low multipoles. Column [4] uses the full likelihood. The last column lists the deviations of the
cosmological parameters determined from the Planck TT+lowP and Planck TT,TE,EE+lowP likelihoods.

Parameter [1] Planck TT+lowP [2] Planck TE+lowP [3] Planck EE+lowP [4] Planck TT,TE,EE+lowP ([1] − [4])/σ[1]

Ωbh2 . . . . . . . . . . 0.02222 ± 0.00023 0.02228 ± 0.00025 0.0240 ± 0.0013 0.02225 ± 0.00016 −0.1
Ωch2 . . . . . . . . . . 0.1197 ± 0.0022 0.1187 ± 0.0021 0.1150+0.0048

−0.0055 0.1198 ± 0.0015 0.0
100θMC . . . . . . . . 1.04085 ± 0.00047 1.04094 ± 0.00051 1.03988 ± 0.00094 1.04077 ± 0.00032 0.2
τ . . . . . . . . . . . . . 0.078 ± 0.019 0.053 ± 0.019 0.059+0.022

−0.019 0.079 ± 0.017 −0.1
ln(1010As) . . . . . . 3.089 ± 0.036 3.031 ± 0.041 3.066+0.046

−0.041 3.094 ± 0.034 −0.1
ns . . . . . . . . . . . . 0.9655 ± 0.0062 0.965 ± 0.012 0.973 ± 0.016 0.9645 ± 0.0049 0.2
H0 . . . . . . . . . . . 67.31 ± 0.96 67.73 ± 0.92 70.2 ± 3.0 67.27 ± 0.66 0.0
Ωm . . . . . . . . . . . 0.315 ± 0.013 0.300 ± 0.012 0.286+0.027

−0.038 0.3156 ± 0.0091 0.0
σ8 . . . . . . . . . . . . 0.829 ± 0.014 0.802 ± 0.018 0.796 ± 0.024 0.831 ± 0.013 0.0
109Ase−2τ . . . . . . 1.880 ± 0.014 1.865 ± 0.019 1.907 ± 0.027 1.882 ± 0.012 −0.1

likelihood. The residuals in both T E and EE are similar to those
from Plik. The main difference can be seen at low multipoles
in the EE spectrum, where CamSpec shows a higher dispersion,
consistent with the error model, though there are several high
points at ` ≈ 200 corresponding to the minimum in the EE spec-
trum, which may be caused by small errors in the subtraction
of polarized Galactic emission using 353 GHz as a foreground
template (and there are also differences in the covariance matri-
ces at high multipoles caused by differences in the methods used
in CamSpec and Plik to estimate noise). Generally, cosmolog-
ical parameters determined from the CamSpec likelihood have
smaller formal errors than those from Plik because there are no
nuisance parameters describing polarized Galactic foregrounds
in CamSpec.

3.3.3. Consistency of cosmological parameters from the TT ,
T E, and EE spectra

The consistency between parameters of the base ΛCDM model
determined from the Plik temperature and polarization spec-
tra are summarized in Table 3 and in Fig. 6. As pointed out by
Zaldarriaga et al. (1997) and Galli et al. (2014), precision mea-
surements of the CMB polarization spectra have the potential to
constrain cosmological parameters to higher accuracy than mea-
surements of the TT spectra because the acoustic peaks are nar-
rower in polarization and unresolved foreground contributions at
high multipoles are much lower in polarization than in temper-
ature. The entries in Table 3 show that cosmological parameters
that do not depend strongly on τ are consistent between the TT
and T E spectra, to within typically 0.5σ or better. Furthermore,
the cosmological parameters derived from the T E spectra have
comparable errors to the TT parameters. None of the conclu-
sions in this paper would change in any significant way were we
to use the T E parameters in place of the TT parameters. The
consistency of the cosmological parameters for base ΛCDM be-
tween temperature and polarization therefore gives added confi-
dence that Planck parameters are insensitive to the specific de-
tails of the foreground model that we have used to correct the
TT spectra. The EE parameters are also typically within about
1σ of the TT parameters, though because the EE spectra from
Planck are noisier than the TT spectra, the errors on the EE pa-
rameters are significantly larger than those from TT . However,
both the T E and EE likelihoods give lower values of τ, As and
σ8, by over 1σ compared to the TT solutions. Noticee that the

T E and EE entries in Table 3 do not use any information from
the temperature in the low-multipole likelihood. The tendency
for higher values of σ8, As, and τ in the Planck TT+lowP solu-
tion is driven, in part, by the temperature power spectrum at low
multipoles.

Columns [4] and [5] of Table 3 compare the parameters
of the Planck TT likelihood with the full Planck TT,T E, EE
likelihood. These are in agreement, shifting by less than 0.2σ.
Although we have emphasized the presence of systematic ef-
fects in the Planck polarization spectra, which are not accounted
for in the errors quoted in column [4] of Table 3, the consis-
tency of the Planck TT and Planck TT,T E, EE parameters pro-
vides strong evidence that residual systematics in the polariza-
tion spectra have little impact on the scientific conclusions in this
paper. The consistency of the base ΛCDM parameters from tem-
perature and polarization is illustrated graphically in Fig. 6. As a
rough rule-of-thumb, for base ΛCDM, or extensions to ΛCDM
with spatially flat geometry, using the full Planck TT,T E, EE
likelihood produces improvements in cosmological parameters
of about the same size as adding BAO to the Planck TT+lowP
likelihood.

3.4. Constraints on the reionization optical depth parameter τ

The reionization optical depth parameter τ provides an important
constraint on models of early galaxy evolution and star forma-
tion. The evolution of the inter-galactic Lyα opacity measured in
the spectra of quasars can be used to set limits on the epoch of
reionization (Gunn & Peterson 1965). The most recent measure-
ments suggest that the reionization of the inter-galactic medium
was largely complete by a redshift z ≈ 6 (Fan et al. 2006). The
steep decline in the space density of Lyα-emitting galaxies over
the redshift range 6 <∼ z <∼ 8 also implies a low redshift of reion-
ization (Choudhury et al. 2015). As a reference, for the Planck
parameters listed in Table 3, instantaneous reionization at red-
shift z = 7 results in an optical depth of τ = 0.048.

The optical depth τ can also be constrained from observa-
tions of the CMB. The WMAP9 results of Bennett et al. (2013)
give τ = 0.089 ± 0.014, corresponding to an instantaneous red-
shift of reionization zre = 10.6 ± 1.1. The WMAP constraint
comes mainly from the EE spectrum in the multipole range
` = 2–6. It has been argued (e.g., Robertson et al. 2013, and ref-
erences therein) that the high optical depth reported by WMAP
cannot be produced by galaxies seen in deep redshift surveys,
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Fig. 6. Comparison of the base ΛCDM model parameter constraints from Planck temperature and polarization data.

even assuming high escape fractions for ionizing photons, im-
plying additional sources of photoionizing radiation from still
fainter objects. Evidently, it would be useful to have an indepen-
dent CMB measurement of τ.

The τ measurement from CMB polarization is difficult be-
cause it is a small signal, confined to low multipoles, requiring
accurate control of instrumental systematics and polarized fore-
ground emission. As discussed by Komatsu et al. (2009), uncer-
tainties in modelling polarized foreground emission are compa-
rable to the statistical error in the WMAP τ measurement. In
particular, at the time of the WMAP9 analysis there was very
little information available on polarized dust emission. This sit-
uation has been partially rectified by the 353-GHz polariza-

tion maps from Planck (Planck Collaboration Int. XXII 2015;
Planck Collaboration Int. XXX 2016). In PPL13, we used pre-
liminary 353-GHz Planck polarization maps to clean the WMAP
Ka, Q, and V maps for polarized dust emission, using WMAP
K-band as a template for polarized synchrotron emission. This
lowered τ by about 1σ to τ = 0.075 ± 0.013, compared to
τ = 0.089 ± 0.013 using the WMAP dust model.13 However,
given the preliminary nature of the Planck polarization analysis
we decided for the Planck 2013 papers to use the WMAP polar-
ization likelihood, as produced by the WMAP team.

13Neither of these error estimates reflect the true uncertainty in fore-
ground removal.
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In the 2015 papers, we use Planck polarization maps based
on low-resolution LFI 70-GHz maps, excluding Surveys 2 and 4.
These maps are foreground-cleaned using the LFI 30-GHz and
HFI 353-GHz maps as polarized synchrotron and dust templates,
respectively. These cleaned maps form the polarization part
(“lowP’ ) of the low-multipole Planck pixel-based likelihood, as
described in Planck Collaboration XI (2016). The temperature
part of this likelihood is provided by the Commander component-
separation algorithm. The Planck low-multipole likelihood re-
tains 46 % of the sky in polarization and is completely inde-
pendent of the WMAP polarization likelihood. In combination
with the Planck high multipole TT likelihood, the Planck low-
multipole likelihood gives τ = 0.078 ± 0.019. This constraint
is somewhat higher than the constraint τ = 0.067 ± 0.022
derived from the Planck low-multipole likelihood alone (see
Planck Collaboration XI 2016 and also Sect. 5.1.2).

Following the 2013 analysis, we have used the 2015 HFI
353-GHz polarization maps as a dust template, together with
the WMAP K-band data as a template for polarized synchrotron
emission, to clean the low-resolution WMAP Ka, Q, and V maps
(see Planck Collaboration XI 2016 for further details). For the
purpose of cosmological parameter estimation, this data set is
masked using the WMAP P06 mask, which retains 73 % of
the sky. The noise-weighted combination of the Planck 353-
cleaned WMAP polarization maps yields τ = 0.071 ± 0.013
when combined with the Planck TT information in the range
2 ≤ ` <∼ 2508, consistent with the value of τ obtained from
the LFI 70-GHz polarization maps. In fact, null tests described
in Planck Collaboration XI (2016) demonstrate that the LFI and
WMAP polarization data are statistically consistent. The HFI
polarization maps have higher signal-to-noise than the LFI and
could, in principle, provide a third cross-check. However, at the
time of writing, we are not yet confident that systematics in the
HFI maps at low multipoles (` <∼ 20) are at negligible levels. A
discussion of HFI polarization at low multipoles will therefore
be deferred to future papers.14

Given the difficulty of making accurate CMB polarization
measurements at low multipoles, it is useful to investigate other

14See Planck Collaboration Int. XLVI (2016), which has been sub-
mitted since this paper was written.

ways of constraining τ. Measurements of the temperature power
spectrum provide a highly accurate measurement of the ampli-
tude Ase−2τ. However, as shown in PCP13 CMB lensing breaks
the degeneracy between τ and As. The observed Planck TT spec-
trum is, of course, lensed, so the degeneracy between τ and As
is partially broken when we fit models to the Planck TT like-
lihood. However, the degeneracy breaking is much stronger if
we combine the Planck TT likelihood with the Planck lensing
likelihood constructed from measurements of the power spec-
trum of the lensing potential Cφφ

`
. The 2015 Planck TT and lens-

ing likelihoods are statistically more powerful than their 2013
counterparts and the corresponding determination of τ is more
precise. The 2015 Planck lensing likelihood (labelled “lens-
ing”) is summarized in Sec. 5.1 and discussed in more detail in
Planck Collaboration XV (2016). The constraints on τ and zre

15

for various data combinations excluding low-multipole polariza-
tion data from Planck are summarized in Fig. 7 and compared
with the baseline Planck TT+lowP parameters. This figure also
shows the shifts of other parameters of the base ΛCDM cosmol-
ogy, illustrating their sensitivity to changes in τ.

The Planck constraints on τ and zre in the base ΛCDM model
for various data combinations are:

τ = 0.078+0.019
−0.019, zre = 9.9+1.8

−1.6, Planck TT+lowP; (17a)

τ = 0.070+0.024
−0.024, zre = 9.0+2.5

−2.1, Planck TT+lensing; (17b)

τ = 0.066+0.016
−0.016, zre = 8.8+1.7

−1.4, Planck TT+lowP (17c)
+lensing;

τ = 0.067+0.016
−0.016, zre = 8.9+1.7

−1.4, Planck TT+lensing (17d)
+BAO;

τ = 0.066+0.013
−0.013, zre = 8.8+1.3

−1.2, Planck TT+lowP (17e)
+lensing+BAO.

15We use the same specific definition of zre as in the 2013 papers,
where reionization is assumed to be relatively sharp, with a mid-point
parameterized by a redshift zre and width ∆zre = 0.5. Unless otherwise
stated we impose a flat prior on the optical depth with τ > 0.01.
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The constraint from Planck TT+lensing+BAO on τ is com-
pletely independent of low-multipole CMB polarization data and
agrees well with the result from Planck polarization (and has
comparable precision). These results all indicate a lower redshift
of reionization than the value zre = 11.1± 1.1 derived in PCP13,
based on the WMAP9 polarization likelihood. The low values
of τ from Planck are also consistent with the lower value of τ
derived from the WMAP Planck 353-GHz-cleaned polarization
likelihood, suggesting strongly that the WMAP9 value is biased
slightly high by residual polarized dust emission.

The Planck results of Eqs. (17a)–(17e) provide evidence for
a lower optical depth and redshift of reionization than inferred
from WMAP (Bennett et al. 2013), partially alleviating the dif-
ficulties in reionizing the intergalactic medium using starlight
from high-redshift galaxies. A key goal of the Planck analysis
over the next year is to assess whether these results are consis-
tent with the HFI polarization data at low multipoles.

Given the consistency between the LFI and WMAP po-
larization maps when both are cleaned with the HFI 353-
GHz polarization maps, we have also constructed a combined
WMAP+Planck low-multipole polarization likelihood (denoted
“lowP+WP”). This likelihood uses 73 % of the sky and is con-
structed from a noise-weighted combination of LFI 70-GHz and
WMAP Ka, Q, and V maps, as summarized in Sect. 3.1 and
discussed in more detail in Planck Collaboration XI (2016). In
combination with the Planck high-multipole TT likelihood, the
combined lowP+WP likelihood gives τ = 0.074+0.011

−0.013, consistent
with the individual LFI and WMAP likelihoods to within about
0.5σ.

The various Planck and Planck+WMAP constraints on τ are
summarized in Fig. 8. The tightest of these constraints comes
from the combined lowP+WP likelihood. It is therefore reason-
able to ask why we have chosen to use the lowP likelihood as the
baseline in this paper, which gives a higher statistical error on τ.
The principal reason is to produce a Planck analysis, utilizing the
LFI polarization data, that is independent of WMAP. All of the

constraints shown in Fig. 8 are compatible with each other, and
insofar as other cosmological parameters are sensitive to small
changes in τ, it would make very little difference to the results
in this paper had we chosen to use WMAP or Planck+WMAP
polarization data at low multipoles.

4. Comparison of the Planck power spectrum with
high-resolution experiments

In PCP13 we combined Planck with the small-scale measure-
ments of the ground-based, high-resolution Atacama Cosmology
Telescope (ACT) and South Pole Telescope (SPT). The primary
role of using ACT and SPT was to set limits on foreground com-
ponents that were poorly constrained by Planck alone and to pro-
vide more accurate constraints on the damping tail of the tem-
perature power spectrum. In this paper, with the higher signal-to-
noise levels of the full mission Planck data, we have taken a dif-
ferent approach, using the ACT and SPT data to impose a prior
on the thermal and kinetic SZ power spectrum parameters in the
Planck foreground model as described in Sect. 2.3. In this sec-
tion, we check the consistency of the temperature power spectra
measured by Planck, ACT, and SPT, and test the effects of in-
cluding the ACT and SPT data on the recovered CMB power
spectrum.

We use the latest ACT temperature power spectra pre-
sented in Das et al. (2014), with a revised binning de-
scribed in Calabrese et al. (2013) and final beam estimates in
Hasselfield et al. (2013). As in PCP13 we use ACT data in the
range 1 000 < ` < 10 000 at 148 GHz, and 1 500 < ` < 10 000
for the 148 × 218 and 218-GHz spectra. We use SPT measure-
ments in the range 2 000 < ` < 13 000 from the complete
2 540 deg2 SPT-SZ survey at 95, 150, and 220 GHz presented
in George et al. (2015).

Each of these experiments uses a foreground model to de-
scribe the multi-frequency power spectra. Here we implement a
common foreground model to combine Planck with the high-
multipole data, following a similar approach to PCP13 but
with some refinements. Following the 2013 analysis, we solve
for common nuisance parameters describing the tSZ, kSZ, and
tSZ×CIB components, extending the templates used for Planck
to ` = 13 000 to cover the full ACT and SPT multipole range.
As in PCP13, we use five point-source amplitudes to fit for the
total dusty and radio Poisson power, namely APS,ACT

148 , APS,ACT
218 ,

APS,SPT
95 , APS,SPT

150 , and APS,SPT
220 . We rescale these amplitudes to

cross-frequency spectra using point-source correlation coeffi-
cients, improving on the 2013 treatment by using different pa-
rameters for the ACT and SPT correlations, rPS,ACT

148×218 and rPS,SPT
150×220

(a single rPS
150×220 parameter was used in 2013). We vary rPS,SPT

95×150
and rPS,SPT

95×220 as in 2013, and include dust amplitudes for ACT,
with Gaussian priors as in PCP13.

As described in Sect. 2.3 we use a theoretically motivated
clustered CIB model fitted to Planck+IRAS estimates of the
CIB. The model at all frequencies in the range 95–220 GHz is
specified by a single amplitude ACIB

217 . The CIB power is well
constrained by Planck data at ` < 2000. At multipoles ` >∼ 3000,
the 1-halo component of the CIB model steepens and becomes
degenerate with the Poisson power. This causes an underesti-
mate of the Poisson levels for ACT and SPT, inconsistent with
predictions from source counts. We therefore use the Planck
CIB template only in the range 2 < ` < 3000, and extrapo-
late to higher multipoles using a power law D` ∝ ` 0.8. While
this may not be a completely accurate model for the clustered

19



Planck Collaboration: Cosmological parameters

1000 1500 2000 2500 3000 3500 4000

Multipole moment, `

−100

−50

0

50

100

R
es

id
ua

ls
[µ

K
2
]

Planck

ACT-S

ACT-E

SPT

0.18◦ 0.1◦ 0.072◦ 0.05◦
Angular scale
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The ACT and SPT bandpowers are scaled by the best-fit calibra-
tion factors.

CIB spectrum at high multipoles (see, e.g., Viero et al. 2013;
Planck Collaboration XXX 2014), this extrapolation is consis-
tent with the CIB model used in the analysis of ACT and SPT.
We then need to extrapolate the Planck 217-GHz CIB power
to the ACT and SPT frequencies. This requires converting the
CIB measurement in the HFI 217-GHz channel to the ACT
and SPT bandpasses assuming a spectral energy distribution; we
use the CIB spectral energy distribution from Béthermin et al.
(2012). Combining this model with the ACT and SPT band-
passes, we find that ACIB

217 has to be multiplied by 0.12 and 0.89
for ACT 148 and 218 GHz, and by 0.026, 0.14, and 0.91 for
SPT 95, 150, and 220 GHz, respectively. With this model in
place, the best-fit Planck, ACT, and SPT Poisson levels agree
with those predicted from source counts, as discussed further in
Planck Collaboration XI (2016).

The nuisance model includes seven calibration parameters
as in PCP13 (four for ACT and three for SPT). The ACT spec-
tra are internally calibrated using the WMAP 9-year maps, with
2 % and 7 % uncertainty at 148 and 218 GHz, while SPT cali-
brates using the Planck 2013 143-GHz maps, with 1.1 %, 1.2 %,
and 2.2 % uncertainty at 95, 150, and 220 GHz. To account for
the increased 2015 Planck absolute calibration (2 % higher in
power) we increase the mean of the SPT map-based calibrations
from 1.00 to 1.01.

This common foreground and calibration model fits the data
well. We first fix the cosmology to that of the best-fit Planck
TT+lowP base-ΛCDM model, and estimate the foreground and
calibration parameters, finding a best-fitting χ2 of 734 for 731
degrees of freedom (reduced χ2 = 1.004, PTE = 0.46). We then
simultaneously estimate the Planck, ACT- (S: south, E: equa-
torial) and SPT CMB bandpowers, Cb, following the Gibbs
sampling scheme of Dunkley et al. (2013) and Calabrese et al.
(2013), marginalizing over the nuisance parameters.

To simultaneously solve for the Planck, ACT, and SPT CMB
spectra, we extend the nuisance model described above, includ-
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ing the four Planck point source amplitudes, the dust parameters
and the Planck 100-GHz and 217-GHz calibration parameters
(relative to 143 GHz) with the same priors as used in the Planck
multi-frequency likelihood analysis. For ACT and SPT, the cal-
ibration factors are defined for each frequency (rather than rel-
ative to a central frequency). Following Calabrese et al. (2013),
we separate out the 148-GHz calibration for the ACT-(S,E) spec-
tra and the 150-GHz calibration for SPT, estimating the CMB
bandpowers as Cb/Acal.16 We impose Gaussian priors on Acal:
1.00 ± 0.02 for ACT-(S,E); and 1.010 ± 0.012 for SPT. The es-
timated CMB spectrum will then have an overall calibration un-
certainty for each of the ACT-S, ACT-E, and SPT spectra. We do
not require the Planck CMB bandpowers to be the same as those
for ACT or SPT, so that we can check for consistency between
the three experiments.

In Fig. 9 we show the residual CMB power with respect to
the Planck TT+lowP ΛCDM best-fit model for the three experi-
ments. All of the data sets are consistent over the multipole range
plotted in this figure. For ACT-S, we find χ2 = 17.54 (18 data
points, PTE = 0.49); For ACT-E we find χ2 = 23.54 (18 data
points, PTE = 0.17); and for SPT χ2 = 5.13 (6 data points,
PTE = 0.53).

Figure 10 shows the effect of including ACT and SPT data
on the recovered Planck CMB spectrum. We find that includ-
ing the ACT and SPT data does not reduce the Planck errors
significantly. This is expected because the dominant small-scale
foreground contributions for Planck are the Poisson source am-
plitudes, which are treated independently of the Poisson ampli-
tudes for ACT and SPT. The high-resolution experiments do help

16This means that the other calibration factors (e.g., ACT 218 GHz)
are re-defined to be relative to 148 GHz (or 150 GHz for SPT) data.
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tighten the CIB amplitude (which is reasonably well constrained
by Planck) and the tSZ and kSZ amplitudes (which are sub-
dominant foregrounds for Planck). The kSZ effect in particular
is degenerate with the CMB, since both have blackbody compo-
nents; imposing a prior on the allowed kSZ power (as discussed
in Sect. 2.3) breaks this degeneracy. The net effect is that the er-
rors on the recovered Planck CMB spectrum are only marginally
reduced with the inclusion of the ACT and SPT data. This moti-
vates our choice to include the information from ACT and SPT
into the joint tSZ and kSZ prior applied to Planck.

The Gibbs sampling technique recovers a best-fit CMB spec-
trum marginalized over foregrounds and other nuisance pa-
rameters. The Gibbs samples can then be used to form a fast
CMB-only Planck likelihood that depends on only one nui-
sance parameter, the overall calibration yp. MCMC chains run
using the CMB-only likelihood therefore converge much faster
than using the full multi-frequency Plik likelihood. The CMB-
only likelihood is also extremely accurate, even for extensions
to the base ΛCDM cosmology and is discussed further in
Planck Collaboration XI (2016).

5. Comparison of the Planck base ΛCDM model
with other astrophysical data sets

5.1. CMB lensing measured by Planck

Gravitational lensing by large-scale structure leaves imprints on
the CMB temperature and polarization that can be measured in
high angular resolution, low-noise observations, such as those
from Planck. The most relevant effects are a smoothing of the
acoustic peaks and troughs in the TT , T E, and EE power spec-
tra, the conversion of E-mode polarization to B-modes, and the
generation of significant non-Gaussianity in the form of a non-
zero connected 4-point function (see Lewis & Challinor 2006
for a review). The latter is proportional to the power spectrum
Cφφ
`

of the lensing potential φ, and so one can estimate this
power spectrum from the CMB 4-point functions. In the 2013
Planck release, we reported a 10σ detection of the lensing ef-
fect in the TT power spectrum (see PCP13) and a 25σ mea-
surement of the amplitude of Cφφ

`
from the TTTT 4-point func-

tion (Planck Collaboration XVII 2014). The power of such lens-
ing measurements is that they provide sensitivity to parameters
that affect the late-time expansion, geometry, and matter cluster-
ing (e.g., spatial curvature and neutrino masses) from the CMB
alone.

Since the 2013 Planck release, there have been significant
developments in the field of CMB lensing. The SPT team have
reported a 7.7σ detection of lens-induced B-mode polariza-
tion based on the EBφCIB 3-point function, where φCIB is a
proxy for the CMB lensing potential φ derived from CIB mea-
surements (Hanson et al. 2013). The POLARBEAR collabora-
tion (POLARBEAR Collaboration 2014b) and the ACT collabo-
ration (van Engelen et al. 2015) have performed similar analyses
at somewhat lower significance (POLARBEAR Collaboration
2014b). In addition, the first detections of the polarization 4-
point function from lensing, at a significance of around 4σ,
have been reported by the POLARBEAR (Ade et al. 2014) and
SPT (Story et al. 2015) collaborations, and the former have also
made a direct measurement of the BB power spectrum due
to lensing on small angular scales with a significance around
2σ (POLARBEAR Collaboration 2014a). Finally, the BB power
spectrum from lensing has also been detected on degree angu-
lar scales, with similar significance, by the BICEP2 collabora-
tion (BICEP2 Collaboration 2014); see also BKP.

5.1.1. The Planck lensing likelihood

Lensing results from the full-mission Planck data are discussed
in Planck Collaboration XV (2016).17 With approximately twice
the amount of temperature data, and the inclusion of polariza-
tion, the noise levels on the reconstructed φ are a factor of about
2 better than in Planck Collaboration XVII (2014). The broad-
band amplitude of Cφφ

`
is now measured to better than 2.5 %

accuracy, the most significant measurement of CMB lensing
to date. Moreover, lensing B-modes are detected at 10σ, both
through a correlation analysis with the CIB and via the TT EB
4-point function. Many of the results in this paper make use of
the Planck measurements of Cφφ

`
. In particular, they provide an

alternative route to estimate the optical depth (as already dis-
cussed in Sect. 3.4), and to tightly constrain spatial curvature
(Sect. 6.2.4).

The estimation of Cφφ
`

from the Planck full-mission data is
discussed in detail in Planck Collaboration XV (2016). There are
a number of significant changes from the 2013 analysis that are
worth noting here.

• The lensing potential power spectrum is now estimated from
lens reconstructions that use both temperature and polariza-
tion data in the multipole range 100 ≤ ` ≤ 2048. The like-
lihood used here is based on the power spectrum of a lens
reconstruction derived from the minimum-variance combi-
nation of five quadratic estimators (TT , T E, EE, T B, and
EB). The power spectrum is therefore based on 15 different
4-point functions.

• The results used here are derived from foreground-cleaned
maps of the CMB synthesized from all nine Planck fre-
quency maps with the SMICA algorithm, while the baseline
2013 results used a minimum-variance combination of the
143-GHz and 217-GHz nominal-mission maps. After mask-
ing the Galaxy and point-sources, 67.3 % of the sky is re-
tained for the lensing analysis.

• The lensing power spectrum is estimated in the multipole
range 8 ≤ ` ≤ 2048. Multipoles ` < 8 have large mean-field
corrections due to survey anisotropy and are rather unsta-
ble to analysis choices; they are therefore excluded from all
lensing results. Here, we use only the range 40 ≤ ` ≤ 400
(the same as used in the 2013 analysis), with eight bins
each of width ∆` = 45. This choice is based on the exten-
sive suite of null tests reported in Planck Collaboration XV
(2016). Nearly all tests are passed over the full multipole
range 8 ≤ ` ≤ 2048, with the exception of a slight excess of
curl modes in the TT reconstruction around ` = 500. Given
that the range 40 ≤ ` ≤ 400 contains most of the statistical
power in the reconstruction, we have conservatively adopted
this range for use in the Planck 2015 cosmology papers.

• To normalize Cφφ
`

from the measured 4-point functions re-
quires knowledge of the CMB power spectra. In practice, we
normalize with fiducial spectra, but then correct for changes
in the true normalization at each point in parameter space
within the likelihood. The exact renormalization scheme
adopted in the 2013 analysis proved to be too slow for the
extension to polarization, so we now use a linearized approx-
imation, based on pre-computed response functions, which is
very efficient within an MCMC analysis. Spot-checks have
confirmed the accuracy of this approach.

17In that paper we are careful to highlight the 4-point function ori-
gin of the lensing power spectrum reconstruction by using the index L;
however, in this paper we use the notation `.
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Fig. 11. Planck measurements of the lensing power spectrum compared to the prediction for the best-fitting base ΛCDM model to
the Planck TT+lowP data. Left: the conservative cut of the Planck lensing data used throughout this paper, covering the multipole
range 40 ≤ ` ≤ 400. Right: lensing data over the range 8 ≤ ` ≤ 2048, demonstrating the general consistency with the ΛCDM
prediction over this extended multipole range. In both cases, green points are the power from lensing reconstructions using only
temperature data, while blue points combine temperature and polarization. They are offset in ` for clarity and error bars are ±1σ. In
the top panels the solid lines are the best-fitting base ΛCDM model to the Planck TT+lowP data with no renormalization or δN(1)

correction applied (see text for explanation). The bottom panels show the difference between the data and the renormalized and
δN(1)-corrected theory bandpowers, which enter the likelihood. The mild preference of the lensing measurements for lower lensing
power around ` = 200 pulls the theoretical prediction for Cφφ

`
downwards at the best-fitting parameters of a fit to the combined

Planck TT+lowP+lensing data, shown by the dashed blue lines (always for the conservative cut of the lensing data, including
polarization).

• The measurement of Cφφ
`

can be thought of as being de-
rived from an optimal combination of trispectrum configu-
rations. In practice, the expectation value of this combina-
tion at any multipole ` has a local part proportional to Cφφ

`
,

but also a non-local (“N(1) bias”) part that couples to a broad
range of multipoles in Cφφ

`
(Kesden et al. 2003); this non-

local part comes from non-primary trispectrum couplings. In
the Planck 2013 analysis we corrected for the N(1) bias by
making a fiducial correction, but this ignores its parameter
dependence. We improve on this in the 2015 analysis by cor-
recting for errors in the fiducial N(1) bias at each point in
parameter space within the lensing likelihood. As with the
renormalization above, we linearize this δN(1) correction for
efficiency. As a result, we no longer need to make an approx-
imate correction in the Cφφ

`
covariance matrix to account for

the cosmological uncertainty in N(1).
• Beam uncertainties are no longer included in the covariance

matrix of Cφφ
`

, since, with the improved knowledge of the
beams, the estimated uncertainties are negligible for the lens-
ing analysis. The only inter-bandpower correlations included
in the Cφφ

`
bandpower covariance matrix are from the uncer-

tainty in the correction applied for the point-source 4-point
function.

As in the 2013 analysis, we approximate the lensing likelihood
as Gaussian in the estimated bandpowers, with a fiducial co-
variance matrix. Following the arguments in Schmittfull et al.
(2013), it is a good approximation to ignore correlations between
the 2- and 4-point functions; so, when combining the Planck
power spectra with Planck lensing, we simply multiply their re-
spective likelihoods.

It is also worth noting that the changes in absolute calibra-
tion of the Planck power spectra (around 2 % between the 2013
and 2015 releases) do not directly affect the lensing results. The
CMB 4-point functions do, of course, respond to any recalibra-
tion of the data, but in estimating Cφφ

`
this dependence is re-

moved by normalizing with theory spectra fit to the observed
CMB spectra. The measured Cφφ

`
bandpowers from the 2013 and

current Planck releases can therefore be directly compared, and
are in good agreement (Planck Collaboration XV 2016). Care is
needed, however, in comparing consistency of the lensing mea-
surements across data releases with the best-fitting model pre-
dictions. Changes in calibration translate directly into changes
in Ase−2τ, which, along with any change in the best-fitting opti-
cal depth, alter As, and hence the predicted lensing power. These
changes from 2013 to the current release go in opposite direc-
tions, leading to a net decrease in As of 0.6 %. This, combined
with a small (0.15 %) increase in θeq, reduces the expected Cφφ

`
by approximately 1.5 % for multipoles ` > 60.

The Planck measurements of Cφφ
`

, based on the temperature
and polarization 4-point functions, are plotted in Fig. 11 (with
results of a temperature-only reconstruction included for com-
parison). The measured Cφφ

`
are compared with the predicted

lensing power from the best-fitting base ΛCDM model to the
Planck TT+lowP data in this figure. The bandpowers that are
used in the conservative lensing likelihood adopted in this pa-
per are shown in the left-hand plot, while bandpowers over the
range 8 ≤ ` ≤ 2048 are shown in the right-hand plot, to demon-
strate the general consistency with the ΛCDM prediction over
the full multipole range. The difference between the measured
bandpowers and the best-fit prediction are shown in the bottom
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panels. Here, the theory predictions are corrected in the same
way as they are in the likelihood.18

Figure 11 suggests that the Planck measurements of Cφφ
`

are
mildly in tension with the prediction of the best-fitting ΛCDM
model. In particular, for the conservative multipole range 40 ≤
` ≤ 400, the temperature+polarization reconstruction has χ2 =
15.4 (for eight degrees of freedom), with a PTE of 5.2 %. For
reference, over the full multipole range χ2 = 40.8 for 19 degrees
of freedom (PTE of 0.3 %); the large χ2 is driven by a single
bandpower (638 ≤ ` ≤ 762), and excluding this gives an ac-
ceptable χ2 = 26.8 (PTE of 8 %). We caution the reader that
this multipole range is where the lensing reconstruction shows a
mild excess of curl-modes (Planck Collaboration XV 2016), and
for this reason we adopt the conservative multipole range for the
lensing likelihood in this paper.

This simple χ2 test does not account for the uncertainty in
the predicted Cφφ

`
. In the ΛCDM model, the dominant uncer-

tainty in the multipole range 40 ≤ ` ≤ 400 comes from that in
As (1σ uncertainty of 3.7 % for Planck TT+lowP), which itself
derives from the uncertainty in the reionization optical depth, τ.
The predicted rms lensing deflection from Planck TT+lowP data
is 〈d2〉1/2 = (2.50 ± 0.05) arcmin, corresponding to a 3.6 % un-
certainty (1σ) in the amplitude of Cφφ

`
(which improves to 3.1 %

uncertainty for the combined Planck+WP likelihood). Note that
this is larger than the uncertainty on the measured amplitude,
i.e., the lensing measurement is more precise than the prediction
from the CMB power spectra in even the simplest ΛCDM model.
This model uncertainty is reflected in a scatter in the χ2 of the
lensing data over the Planck TT+lowP chains, χ2

lens = 17.9±9.0,
which is significantly larger than the expected scatter in χ2 at the
true model, due to the uncertainties in the lensing bandpowers
(
√

2Ndof = 4). Following the treatment in PCP13, we can assess
consistency more carefully by introducing a parameter Aφφ

L that
scales the theory lensing trispectrum at every point in parame-
ter space in a joint analysis of the CMB spectra and the lensing
spectrum. We find

Aφφ
L = 0.95 ± 0.04 (68%,Planck TT+lowP+lensing), (18)

in good agreement with the expected value of unity. The pos-
terior for Aφφ

L , and other lensing amplitude measures discussed
below, is shown in Fig. 12.

Given the precision of the measured Cφφ
`

compared to the
uncertainty in the predicted spectrum from fits to the Planck
TT+lowP data, the structure in the residuals seen in Fig. 11
might be expected to pull parameters in joint fits. As discussed
in Planck Collaboration XV (2016) and Pan et al. (2014), the
primary parameter dependence of Cφφ

`
at multipoles ` >∼ 100

is through As and `eq in ΛCDM models. Here, `eq ∝ 1/θeq is the
angular multipole corresponding to the horizon size at matter-
radiation equality observed at a distance χ∗. The combination
As`eq determines the mean-squared deflection 〈d2〉, while `eq

controls the shape of Cφφ
`

. For the parameter ranges of interest,

δCφφ
`
/Cφφ

`
= δAs/As + (n` + 1)δ`eq/`eq, (19)

18In detail, the theory spectrum is binned in the same way as the
data, renormalized to account for the (very small) difference between
the CMB spectra in the best-fit model and the fiducial spectra used in the
lensing analysis, and corrected for the difference in N(1), calculated for
the best-fit and fiducial models (around a 4 % change in N(1), since the
fiducial-model Cφφ

` is higher by this amount than in the best-fit model).

0.6 1.0 1.4 1.8 2.2

AL

0

2

4

6

8

10

P
ro

b
ab

ili
ty

d
en

si
ty

Planck TT+lowP

+lensing (AφφL )

Planck TE+lowP

Planck EE+lowP

Planck TT,TE,EE+lowP

Fig. 12. Marginalized posterior distributions for measures of the
lensing power amplitude. The dark-blue (dot-dashed) line is the
constraint on the parameter Aφφ

L , which scales the amplitude of
the lensing power spectrum in the lensing likelihood for the
Planck TT+lowP+lensing data combination. The other lines are
for the AL parameter, which scales the lensing power spectrum
used to lens the CMB spectra, for the data combinations Planck
TT+lowP (blue, solid), Planck TE+lowP (red, dashed), Planck
EE+lowP (green, dashed), and Planck TT,TE,EE+lowP (black,
dashed). The dotted lines show the AL constraints when the Plik
likelihood is replaced with CamSpec, highlighting that the pref-
erence for high AL in the Planck EE+lowP data combination is
not robust to the treatment of polarization on intermediate and
small scales.

where n` arises (mostly) from the strong wavenumber depen-
dence of the transfer function for the gravitational potential, with
n` ≈ 1.5 around ` = 200.

In joint fits to Planck TT+lowP+lensing, the main param-
eter changes from Planck TT+lowP alone are a 2.6 % reduc-
tion in the best-fit As, with an accompanying reduction in the
best-fit τ, to 0.067 (around 0.6σ; see Sect. 3.4). There is also
a 0.7 % reduction in `eq, achieved at fixed θ∗ by reducing ωm.
These combine to reduce Cφφ

`
by approximately 4 % at ` = 200,

consistent with Eq. (19). The difference between the theory lens-
ing spectrum at the best-fit parameters in the Planck TT+lowP
and Planck TT+lowP+lensing fits are shown by the dashed blue
lines in Fig. 11. In the joint fit, the χ2 for the lensing bandpow-
ers improves by 6, while the χ2 for the Planck TT+lowP data
degrades by only 1.2 (2.8 for the high-` TT data and −1.6 for
the low-` T EB data).

The lower values of As and ωm in the joint fit give a 2 %
reduction in σ8, with

σ8 = 0.815 ± 0.009 (68%,Planck TT+lowP+lensing), (20)

as shown in Fig. 19. The decrease in matter density leads to a
corresponding decrease in Ωm, and at fixed θ∗ (approximately
∝ Ωmh3) a 0.5σ increase in H0, giving

H0 = (67.8 ± 0.9) km s−1Mpc−1

Ωm = 0.308 ± 0.012

}
Planck TT+lowP+lensing.

(21)
Joint Planck+lensing constraints on other parameters of the base
ΛCDM cosmology are given in Table. 4.
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Planck Collaboration XV (2016) discusses the effect on pa-
rameters of extending the lensing multipole range in joint fits
with Planck TT+lowP. In the base ΛCDM model, using the
full multipole range 8 ≤ ` ≤ 2048, the parameter combination
σ8Ω

1/4
m ≈ (As`

2.5
eq )1/2 (which is well determined by the lensing

measurements) is pulled around 1σ lower that its value using
the conservative lensing range, with a negligible change in the
uncertainty. Around half of this shift comes from the 3.6σ out-
lying bandpower (638 ≤ ` ≤ 762). In massive neutrino models,
the total mass is similarly pulled higher by around 1σ when us-
ing the full lensing multipole range.

5.1.2. Detection of lensing in the CMB power spectra

The smoothing effect of lensing on the acoustic peaks
and troughs of the TT power spectrum is detected at
high significance in the Planck data. Following PCP13 (see
also Calabrese et al. 2008), we introduce a parameter AL, which
scales the theory Cφφ

`
power spectrum at each point in param-

eter space, and which is used to lens the CMB spectra.19 The
expected value for base ΛCDM is AL = 1. The results of such
an analysis for models with variable AL is shown in Fig. 12. The
marginalized constraint on AL is

AL = 1.22 ± 0.10 (68%,Planck TT+lowP) . (22)

This is very similar to the result from the 2013 Planck data re-
ported in PCP13. The persistent preference for AL > 1 is dis-
cussed in detail there. For the 2015 data, we find that ∆χ2 = −6.4
between the best-fitting ΛCDM+AL model and the best-fitting
base ΛCDM model. There is roughly equal preference for high
AL from intermediate and high multipoles (i.e., the Plik likeli-
hood; ∆χ2 = −2.6) and from the low-` likelihood (∆χ2 = −3.1),
with a further small change coming from the priors.

Increases in AL are accompanied by changes in all other pa-
rameters, with the general effect being to reduce the predicted
CMB power on large scales, and in the region of the second
acoustic peak, and to increase CMB power on small scales (see
Fig. 13). A reduction in the high-` foreground power compen-
sates the CMB increase on small scales. Specifically, ns is in-
creased by 1 % relative to the best-fitting base model and As is
reduced by 4 %, both of which lower the large-scale power to
provide a better fit to the measured spectra around ` = 20 (see
Fig. 1). The densities ωb and ωc respond to the change in ns, fol-
lowing the usual ΛCDM acoustic degeneracy, and Ase−2τ falls
by 1 %, attempting to reduce power in the damping tail due to
the increase in ns and reduction in the diffusion angle θD (which
follows from the reduction in ωm). The changes in As and Ase−2τ

lead to a reduction in τ from 0.078 to 0.060. With these cos-
mological parameters, the lensing power is lower than in the
base model, which additionally increases the CMB power in the
acoustic peaks and reduces it in the troughs. This provides a poor
fit to the measured spectra around the fourth and fifth peaks, but
this can be mitigated by increasing AL to give more smoothing
from lensing than in the base model. However, AL further in-
creases power in the damping tail, but this is partly offset by
reduction of the power in the high-` foregrounds.

19We emphasize the difference between the phenomenological pa-
rameters AL and Aφφ

L (introduced earlier). The amplitude AL multiplies
Cφφ
` when calculating both the lensed CMB theory spectra and the lens-

ing likelihood, while Aφφ
L affects only the lensing likelihood by scaling

the theory Cφφ
` when comparing with the power spectrum of the recon-

structed lensing potential φ.
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Fig. 13. Changes in the CMB TT spectrum and foreground spec-
tra, between the best-fitting AL model and the best-fitting base
ΛCDM model to the Planck TT+lowP data. The solid blue line
shows the difference between the AL model and ΛCDM while
the dashed line has the the same values of the other cosmologi-
cal parameters, but with AL set to unity, to highlight the changes
in the spectrum arising from differences in the other parame-
ters. Also shown are the changes in the best-fitting foreground
contributions to the four frequency cross-spectra between the AL
model and the ΛCDM model. The data points (with ±1σ er-
rors) are the differences between the high-`maximum-likelihood
frequency-averaged CMB spectrum and the best-fitting ΛCDM
model to the Planck TT+lowP data (as in Fig. 1). Note that the
changes in the CMB spectrum and the foregrounds should be
added when comparing to the residuals in the data points.

The trends in the TT spectrum that favour high AL have a
similar pull on parameters such as curvature (Sect. 6.2.4) and
the dark energy equation of state (Sect. 6.3) in extended models.
These parameters affect the late-time geometry and clustering
and so alter the lensing power, but their effect on the primary
CMB fluctuations is degenerate with changes in the Hubble con-
stant (to preserve θ∗). The same parameter changes as those in
AL models are found in these extended models, but with, for ex-
ample, the increase in AL replaced by a reduction in ΩK . Adding
external data, however, such as the Planck lensing data or BAO
(Sect. 5.2), pull these extended models back to base ΛCDM.

Finally, we note that lensing is also detected at lower signif-
icance in the polarization power spectra (see Fig. 12):

AL = 0.98+0.21
−0.24 (68%,Planck TE+lowP) ; (23a)

AL = 1.54+0.28
−0.33 (68%,Planck EE+lowP) . (23b)

These results use only polarization at low multipoles, i.e., with
no temperature data at multipoles ` < 30. These are the first de-
tections of lensing in the CMB polarization spectra, and reach
almost 5σ in T E. We caution the reader that the AL constraints
from EE and low-` polarization are rather unstable between
high-` likelihoods because of differences in the treatment of the
polarization data (see Fig. 12, which compares constraints from
the Plik and CamSpec polarization likelihoods). The result of
replacing Plik with the CamSpec likelihood is AL = 1.19+0.20

−0.24,
i.e., around 1σ lower than the result from Plik reported in
Eq. (23b). If we additionally include the low-` temperature data,
AL from T E increases:

AL = 1.13 ± 0.2 (68%,Planck TE+lowT,P) . (24)
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Fig. 14. Acoustic-scale distance ratio DV(z)/rdrag in the base
ΛCDM model divided by the mean distance ratio from Planck
TT+lowP+lensing. The points with 1σ errors are as follows:
green star (6dFGS, Beutler et al. 2011); square (SDSS MGS,
Ross et al. 2015); red triangle and large circle (BOSS “LOWZ”
and CMASS surveys, Anderson et al. 2014); and small blue cir-
cles (WiggleZ, as analysed by Kazin et al. 2014). The grey bands
show the 68 % and 95 % confidence ranges allowed by Planck
TT+lowP+lensing.

The pull to higher AL in this case is due to the reduction in TT
power in these models on large scales (as discussed above).

5.2. Baryon acoustic oscillations

Baryon acoustic oscillation (BAO) measurements are geometric
and largely unaffected by uncertainties in the nonlinear evolution
of the matter density field and additional systematic errors that
may affect other types of astrophysical data. As in PCP13, we
therefore use BAO as a primary astrophysical data set to break
parameter degeneracies from CMB measurements.

Figure 14 shows an updated version of figure 15 from
PCP13. The plot shows the acoustic-scale distance ratio
DV(z)/rdrag measured from a number of large-scale struc-
ture surveys with effective redshift z, divided by the mean
acoustic-scale ratio in the base ΛCDM cosmology using Planck
TT+lowP+lensing. Here rdrag is the comoving sound horizon at
the end of the baryon drag epoch and DV is a combination of the
angular diameter distance DA(z) and Hubble parameter H(z),

DV(z) =

[
(1 + z)2D2

A(z)
cz

H(z)

]1/3

. (25)

The grey bands in the figure show the ±1σ and ±2σ ranges
allowed by Planck in the base ΛCDM cosmology.

The changes to the data points compared to figure 15 of
PCP13 are as follows. We have replaced the SDSS DR7 mea-
surements of Percival et al. (2010) with the recent analysis of
the SDSS Main Galaxy Sample (MGS) of Ross et al. (2015)
at zeff = 0.15, and by the Anderson et al. (2014) analysis of
the Baryon Oscillation Spectroscopic Survey (BOSS) “LOWZ”
sample at zeff = 0.32. Both of these analyses use peculiar veloc-
ity field reconstructions to sharpen the BAO feature and reduce
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Fig. 15. 68 % and 95 % constraints on the angular diameter dis-
tance DA(z = 0.57) and Hubble parameter H(z = 0.57) from
the Anderson et al. (2014) analysis of the BOSS CMASS-DR11
sample. The fiducial sound horizon adopted by Anderson et al.
(2014) is rfid

drag = 149.28 Mpc. Samples from the Planck
TT+lowP+lensing chains are plotted coloured by their value of
Ωch2, showing consistency of the data, but also that the BAO
measurement can tighten the Planck constraints on the matter
density.

the errors on DV/rdrag. The blue points in Fig. 14 show a reanal-
ysis of the WiggleZ redshift survey by Kazin et al. (2014) that
applyies peculiar velocity reconstructions. These reconstructions
cause small shifts in DV/rdrag compared to the unreconstructed
WiggleZ results of Blake et al. (2011) and lead to reductions
in the errors on the distance measurements at zeff = 0.44 and
zeff = 0.73. The point labelled BOSS CMASS at zeff = 0.57
shows DV/rdrag from the analysis of Anderson et al. (2014), up-
dating the BOSS-DR9 analysis of Anderson et al. (2012) used in
PCP13.

In fact, the Anderson et al. (2014) analysis solves jointly for
the positions of the BAO feature in both the line-of-sight and
transverse directions (the distortion in the transverse direction
caused by the background cosmology is sometimes called the
Alcock-Paczynski effect, Alcock & Paczynski 1979), leading to
joint constraints on the angular diameter distance DA(zeff) and
the Hubble parameter H(zeff). These constraints, using the tabu-
lated likelihood included in the CosmoMC module,20 are plotted
in Fig. 15. Samples from the Planck TT+lowP+lensing chains
are shown for comparison, coloured by the value of Ωch2. The
length of the degeneracy line is set by the allowed variation in H0
(or equivalently Ωmh2). In the Planck TT+lowP+lensing ΛCDM
analysis the line is defined approximately by

DA(0.57)/rdrag

9.384

(
H(0.57)rdrag/c

0.4582

)1.7

= 1.0000 ± 0.0004, (26)

which just grazes the BOSS CMASS 68 % error ellipse plotted
in Fig. 15. Evidently, the Planck base ΛCDM parameters are
in good agreement with both the isotropized DV BAO measure-
ments plotted in Fig. 14, and with the anisotropic constraints
plotted in Fig. 15.

20http://www.sdss3.org/science/boss_publications.php
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In this paper, we use the 6dFGS, SDSS-MGS, and BOSS-
LOWZ BAO measurements of DV/rdrag (Beutler et al. 2011;
Ross et al. 2015; Anderson et al. 2014) and the CMASS-DR11
anisotropic BAO measurements of Anderson et al. (2014). Since
the WiggleZ volume partially overlaps that of the BOSS-
CMASS sample, and the correlations have not been quantified,
we do not use the WiggleZ results in this paper. It is clear from
Fig. 14 that the combined BAO likelihood is dominated by the
two BOSS measurements.

In the base ΛCDM model, the Planck data constrain the
Hubble constant H0 and matter density Ωm to high precision:

H0 = (67.3 ± 1.0) km s−1Mpc−1

Ωm = 0.315 ± 0.013

}
Planck TT+lowP. (27)

With the addition of the BAO measurements, these constraints
are strengthened significantly to

H0 = (67.6 ± 0.6) km s−1Mpc−1

Ωm = 0.310 ± 0.008

}
Planck TT+lowP+BAO.

(28)
These numbers are consistent with the Planck+lensing con-
straints of Eq. (21). Section 5.4 discusses the consistency of
these estimates of H0 with direct measurements.

Although low-redshift BAO measurements are in good
agreement with Planck for the base ΛCDM cosmology, this
may not be true at high redshifts. Recently, BAO features have
been measured in the flux-correlation function of the Lyα for-
est of BOSS quasars (Delubac et al. 2015) and in the cross-
correlation of the Lyα forest with quasars (Font-Ribera et al.
2014). These observations give measurements of c/(H(z)rdrag)
and DA(z)/rdrag (with somewhat lower precision) at z = 2.34
and z = 2.36, respectively. For example, from table II of
Aubourg et al. (2015) the two Lyα BAO measurements com-
bined give c/(H(2.34)rdrag) = 9.14 ± 0.20, compared to the pre-
dictions of the base Planck ΛCDM cosmology of 8.586± 0.021,
which are discrepant at the 2.7σ level. At present, it is not clear
whether this discrepancy is caused by systematics in the Lyα
BAO measurements (which are more complex and less mature
than galaxy BAO measurements) or an indicator of new physics.
As Aubourg et al. (2015) discuss, it is difficult to find a physical
explanation for the Lyα BAO results without disrupting the con-
sistency with the much more precise galaxy BAO measurements
at lower redshifts.

5.3. Type Ia supernovae

Type Ia supernovae (SNe) are powerful probes of cosmology
(Riess et al. 1998; Perlmutter et al. 1999) and particularly of the
equation of state of dark energy. In PCP13, we used two sam-
ples of type Ia SNe, the “SNLS” compilation (Conley et al.
2011) and the “Union2.1” compilation (Suzuki et al. 2012). The
SNLS sample was found to be in mild tension, at about the 2σ
level, with the 2013 Planck base ΛCDM cosmology favouring
a value of Ωm ≈ 0.23 compared to the Planck value of Ωm =
0.315±0.017. Another consequence of this tension showed up in
extensions to the base ΛCDM model, where the combination of
Planck and the SNLS sample showed 2σ evidence for a “phan-
tom” (w < −1) dark energy equation of state.

Following the submission of PCP13, Betoule et al. (2013) re-
ported the results of an extensive campaign to improve the rel-
ative photometric calibrations between the SNLS and SDSS su-
pernova surveys. The “Joint Light-curve Analysis” (JLA) sam-
ple, used in this paper, is constructed from the SNLS and SDSS

SNe data, together with several samples of low redshift SNe.21.
Cosmological constraints from the JLA sample are discussed
by Betoule et al. (2014) and residual biases associated with the
photometry and light curve fitting are assessed by Mosher et al.
(2014). For the base ΛCDM cosmology, Betoule et al. (2014)
find Ωm = 0.295 ± 0.034, consistent with the 2013 and 2015
Planck values for base ΛCDM. This relieves the tension between
the SNLS and Planck data reported in PCP13. Given the consis-
tency between Planck and the JLA sample for base ΛCDM, one
can anticipate that the combination of these two data sets will
constrain the dark energy equation of state to be close to w = −1
(see Sect. 6.3).

Since the submission of PCP13, first results from a sample
of Type Ia SNe discovered with the Pan-STARRS survey have
been reported by Rest et al. (2014) and Scolnic et al. (2014). The
Pan-STARRS sample is still relatively small (consisting of 146
spectroscopically confirmed Type Ia SNe) and is not used in this
paper.

5.4. The Hubble constant

CMB experiments provide indirect and highly model-dependent
estimates of the Hubble constant. It is therefore important to
compare CMB estimates with direct estimates of H0, since any
significant evidence of a tension could indicate the need for new
physics. In PCP13, we used the Riess et al. (2011, hereafter R11)
Hubble Space Telescope (HST) Cepheid+SNe based estimate of
H0 = (73.8 ± 2.4) km s−1Mpc−1 as a supplementary “H0-prior.”
This value was in tension at about the 2.5σ level with the 2013
Planck base ΛCDM value of H0.

For the base ΛCDM model, CMB and BAO experiments
consistently find a value of H0 lower than the R11 value.
For example, the 9-year WMAP data (Bennett et al. 2013;
Hinshaw et al. 2013) give:22

H0 = (69.7 ± 2.1) km s−1Mpc−1, WMAP9, (29a)
H0 = (68.0 ± 0.7) km s−1Mpc−1, WMAP9+BAO. (29b)

These numbers can be compared with the Planck 2015 values
given in Eqs. (27) and (28). The WMAP constraints are driven
towards the Planck values by the addition of the BAO data and so
there is persuasive evidence for a low H0 in the base ΛCDM cos-
mology independently of the high-multipole CMB results from
Planck. The 2015 Planck TT+lowP value is entirely consistent
with the 2013 Planck value and so the tension with the R11 H0
determination remains at about 2.4σ.

The tight constraint on H0 in Eq. (29b) is an example of an
“inverse distance ladder,” where the CMB primarily constrains
the sound horizon within a given cosmology, providing an ab-
solute calibration of the BAO acoustic-scale (e.g., Percival et al.
2010; Cuesta et al. 2015; Aubourg et al. 2015, see also PCP13).
In fact, in a recent paper Aubourg et al. (2015) use the 2013
Planck constraints on rs in combination with BAO and the JLA
SNe data to find H0 = (67.3 ± 1.1) km s−1Mpc−1, in excellent
agreement with the 2015 Planck value for base ΛCDM given in

21A CosmoMC likelihood model for the JLA sample is avail-
able at http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.
html. The latest version in CosmoMC includes numerical integration
over the nuisance parameters for use when calculating joint constraints
using importance sampling; this can give different χ2 values compared
to parameter best fits.

22These numbers are taken from our parameter grid, which includes
a neutrino mass of 0.06 eV and the same updated BAO compilation as
Eq. (28) (see Sect. 5.2).
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Eq. (27), which is based on the Planck temperature power spec-
trum. Note that by adding SNe data, the Aubourg et al. (2015)
estimate of H0 is insensitive to spatial curvature and to late time
variations of the dark energy equation of state. Evidently, there
are a number of lines of evidence that point to a lower value of
H0 than the direct determination of R11.

The R11 Cepheid data have been reanalysed by Efstathiou
(2014, hereafter E14) using the revised geometric maser distance
to NGC 4258 of Humphreys et al. (2013). Using NGC 4258 as a
distance anchor, E14 finds

H0 = (70.6 ± 3.3) km s−1Mpc−1, NGC 4258, (30)

which is within 1σ of the Planck TT estimate given in Eq. (27).
In this paper we use Eq. (30) as a “conservative” H0 prior.

R11 also use Large Magellanic Cloud Cepheids and a small
sample of Milky Way Cepheids with parallax distances as al-
ternative distance anchors to NGC4258. The R11 H0 prior used
in PCP13 combines all three distance anchors. Combining the
LMC and MW distance anchors, E14 finds

H0 = (73.9 ± 2.7) km s−1Mpc−1, LMC + MW, (31)

under the assumption that there is no metallicity variation of
the Cepheid period-luminosity relation. This is discrepant with
Eq. (27) at about the 2.2σ level. However, neither the central
value nor the error in Eq. (31) is reliable. The MW Cepheid
sample is small and dominated by short period (< 10 day) ob-
jects. The MW Cepheid sample therefore has very little over-
lap with the period range of SNe host galaxy Cepheids observed
with HST. As a result, the MW solutions for H0 are unstable
(see Appendix A of E14). The LMC solution is sensitive to the
metallicity dependence of the Cepheid period-luminosity rela-
tion which is poorly constrained by the R11 data. Furthermore,
the estimate in Eq. (30) is based on a differential measurement,
comparing HST photometry of Cepheids in NGC 4258 with
those in SNe host galaxies. It is therefore less prone to pho-
tometric systematics, such as crowding corrections, than is the
LMC+MW estimate of Eq. (31). It is for these reasons that we
have adopted the prior of Eq. (30) in preference to using the
LMC and MW distance anchors.23

Direct measurements of the Hubble constant have a long and
sometimes contentious history (see, e.g., Tammann et al. 2008).
The controversy continues to this day and in the literature one
can find “high” values, e.g., H0 = (74.3 ± 2.6) km s−1Mpc−1

(Freedman et al. 2012), and “low” values, e.g., H0 = (63.7 ±
2.3) km s−1Mpc−1 (Tammann & Reindl 2013). The key point
that we wish to make is that the Planck-only estimates of
Eqs. (21) and (27), and the Planck+BAO estimate of Eq. (28)
all have small errors and are consistent. If a persuasive case can
be made that a direct measurement of H0 conflicts with these es-
timates, then this will be strong evidence for additional physics
beyond the base ΛCDM model.

23As this paper was nearing completion, results from the Nearby
Supernova Factory have been presented that indicate a correlation be-
tween the peak brightness of Type Ia SNe and the local star-formation
rate (Rigault et al. 2015). These authors argue that this correlation intro-
duces a systematic bias of around 1.8 km s−1Mpc−1 in the SNe/Cepheid
distance scale measurement of H0 . For example, according to these
authors, the estimate of Eq. (30) should be lowered to H0 = (68.8 ±
3.3) km s−1Mpc−1, a downward shift of approximately 0.5σ. Clearly,
further work needs to be done to assess the importance of such a bias
on the distance scale. It is ignored in the rest of this paper.

Finally, we note that in a recent analysis Bennett et al. (2014)
derive a “concordance” value of H0 = (69.6±0.7) km s−1Mpc−1

for base ΛCDM by combining WMAP9+SPT+ACT+BAO
with a slightly revised version of the R11 H0 value, (73.0 ±
2.4) km s−1Mpc−1. The Bennett et al. (2014) central value for
H0 differs from the Planck value of Eq. (28) by nearly 3 % (or
2.5σ). The reason for this difference is that the Planck data are
in tension with the Story et al. (2013) SPT data (as discussed in
Appendix B of PCP13; note that the tension is increased with the
Planck full mission data) and with the revised R11 H0 determi-
nation. Both tensions drive the Bennett et al. (2014) value of H0
away from the Planck solution.

5.5. Additional data

5.5.1. Redshift space distortions

Transverse versus line-of-sight anisotropies in the redshift-space
clustering of galaxies induced by peculiar motions can, poten-
tially, provide a powerful way of constraining the growth rate of
structure (e.g., Percival & White 2009). A number of studies of
redshift-space distortions (RSD) have been conducted to mea-
sure the parameter combination fσ8(z), where for models with
scale-independent growth

f (z) =
d ln D
d ln a

, (32)

and D is the linear growth rate of matter fluctuations. Notice
that the parameter combination fσ8 is insensitive to differences
between the clustering of galaxies and dark matter, i.e., to galaxy
bias (Song & Percival 2009). In the base ΛCDM cosmology, the
growth factor f (z) is well approximated as f (z) = Ωm(z)0.545.
More directly, in linear theory the quadrupole of the redshift-
space clustering anisotropy actually probes the density-velocity
correlation power spectrum, and we therefore define

fσ8(z) ≡

[
σ(vd)

8 (z)
]2

σ(dd)
8 (z)

, (33)

as an approximate proxy for the quantity actually being mea-
sured. Here σ(vd)

8 measures the smoothed density-velocity corre-
lation and is defined analogously toσ8 ≡ σ

(dd)
8 , but using the cor-

relation power spectrum Pvd(k), where v = −∇ · vN/H and vN is
the Newtonian-gauge (peculiar) velocity of the baryons and dark
matter, and d is the total matter density perturbation. This defi-
nition assumes that the observed galaxies follow the flow of the
cold matter, not including massive neutrino velocity effects. For
models close to ΛCDM, where the growth is nearly scale inde-
pendent, it is equivalent to defining fσ8 in terms of the growth of
the baryon+CDM density perturbations (excluding neutrinos).

The use of RSD as a measure of the growth of structure is
still under active development and is considerably more difficult
than measuring the positions of BAO features. Firstly, adopt-
ing the wrong fiducial cosmology can induce an anisotropy in
the clustering of galaxies, via the Alcock-Paczynski (AP) ef-
fect, which is strongly degenerate with the anisotropy induced
by peculiar motions. Secondly, much of the RSD signal cur-
rently comes from scales where nonlinear effects and galaxy
bias are significant and must be accurately modelled in order to
relate the density and velocity fields (see, e.g., the discussions
in Bianchi et al. 2012; Okumura et al. 2012; Reid et al. 2014;
White et al. 2015).
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Fig. 16. Constraints on the growth rate of fluctuations from
various redshift surveys in the base ΛCDM model: green star
(6dFGRS, Beutler et al. 2012); purple square (SDSS MGS,
Howlett et al. 2015); cyan cross (SDSS LRG, Oka et al. 2014);
red triangle (BOSS LOWZ survey, Gil-Marı́n et al. 2015); large
red circle (BOSS CMASS, as analysed by Samushia et al. 2014);
blue circles (WiggleZ, Blake et al. 2012); and green diamond
(VIPERS, de la Torre et al. 2013). The points with dashed red
error bars correspond to alternative analyses of BOSS CMASS
from Beutler et al. (2014, small circle, offset for clarity) and
Chuang et al. (2013, small square). Of the BOSS CMASS
points, two are based on the same DR11 data set (Samushia et al.
2014; Beutler et al. 2014), while the third is based on the more
recent DR12 (Chuang et al. 2013), and are therefore not inde-
pendent. The grey bands show the range allowed by Planck
TT+lowP+lensing in the base ΛCDM model. Where available
(for SDSS MGS and BOSS), we have plotted conditional con-
straints on fσ8 assuming a Planck ΛCDM background cosmol-
ogy. The WiggleZ points are plotted conditional on the mean
Planck cosmology prediction for FAP (evaluated using the co-
variance between fσ8 and FAP given in Blake et al. 2012). The
6dFGS point is at sufficiently low redshift that it is insensitive to
the cosmology.

Current constraints,24 assuming a Planck base ΛCDM
model, are shown in Fig. 16. Neglecting the AP effect can lead to
biased measurements of fσ8 if the assumed cosmology differs,
and to significant underestimation of the errors (Howlett et al.
2015). The analyses summarized in Fig. 16 solve simultaneously
for RSD and the AP effect, except for the 6dFGS point (which
is insensitive to cosmology) and the VIPERS point (which has a
large error). The grey bands show the range allowed by Planck
TT+lowP+lensing in the base ΛCDM model, and are consistent
with the RSD data. The tightest constraints on fσ8 in this figure
come from the BOSS CMASS-DR11 analyses of Beutler et al.
(2014) and Samushia et al. (2014). The Beutler et al. (2014)
analysis is performed in Fourier space and shows a small bias
in fσ8 compared to numerical simulations when fitting over
the wavenumber range 0.01–0.20 hMpc−1. The Samushia et al.

24The constraint of Chuang et al. (2013) plotted in the original ver-
sion of this paper was subsequently shown to be in error. We there-
fore now show updated BOSS data points for DR12 from Chuang et al.
(2013, for CMASS) and Gil-Marı́n et al. (2015, for LOWZ).
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Fig. 17. 68 % and 95 % contours in the fσ8–FAP plane
(marginalizing over Dv/rs) for the CMASS-DR11 sample as
analysed by Samushia et al. (2014, solid, our defult), and
Beutler et al. (2014, dotted). The green contours show the con-
straint from Planck TT+lowP+lensing in the base ΛCDM
model.

(2014) analysis is performed in configuration space and shows
no evidence of biases when compared to numerical simulations.
The updated DR12 CMASS result from Chuang et al. (2013)
marginalizes over a polynomial model for systematic errors in
the correlation function monopole, and is consistent with these
and the Planck constraints, with a somewhat larger error bar.

The Samushia et al. (2014) results are expressed as a 3 × 3
covariance matrix for the three parameters DV/rdrag, FAP and
fσ8, evaluated at an effective redshift of zeff = 0.57, where FAP
is the “Alcock-Paczynski” parameter

FAP(z) = (1 + z)DA
H(z)

c
. (34)

The principal degeneracy is between fσ8 and FAP and is il-
lustrated in Fig. 17, compared to the constraint from Planck
TT+lowP+lensing for the base ΛCDM cosmology. The Planck
results sit slightly high but overlap the 68 % contour from
Samushia et al. (2014). The Planck result lies about 1.5σ higher
than the Beutler et al. (2014) analysis of the BOSS CMASS sam-
ple.

RSD measurements are not used in combination with Planck
in this paper. However, in the companion paper exploring dark
energy and modified gravity (Planck Collaboration XIV 2016),
the RSD/BAO measurements of Samushia et al. (2014) are used
together with Planck. Where this is done, we exclude the
Anderson et al. (2014) BOSS-CMASS results from the BAO
likelihood. Since Samushia et al. (2014) do not apply a density
field reconstruction in their analysis, the BAO constraints from
BOSS-CMASS are then slightly weaker, though consistent, with
those of Anderson et al. (2014).
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5.5.2. Weak gravitational lensing

Weak gravitational lensing offers a potentially powerful tech-
nique for measuring the amplitude of the matter fluctuation spec-
trum at low redshifts. Currently, the largest weak lensing data
set is provided by the CFHTLenS survey (Heymans et al. 2012;
Erben et al. 2013). The first science results from this survey ap-
peared shortly before the completion of PCP13 and it was not
possible to do much more than offer a cursory comparison with
the Planck 2013 results. As reported in PCP13, at face value
the results from CFHTLenS appeared to be in tension with the
Planck 2013 base ΛCDM cosmology at about the 2–3σ level.
Since neither the CFHTLenS results nor the 2015 Planck results
have changed significantly from those in PCP13, it is worth dis-
cussing this discrepancy in more detail in this paper.

Weak lensing data can be analysed in various ways. For ex-
ample, one can compute two correlation functions from the ellip-
ticities of pairs of images separated by angle θ,which are related
to the convergence power spectrum Pκ(`) of the survey at multi-
pole ` via

ξ±(θ) =
1

2π

∫
d``Pκ(`)J±(`θ), (35)

where the Bessel functions in (35) are J+ ≡ J0 and J− ≡ J4
(see, e.g., Bartelmann & Schneider 2001). Much of the informa-
tion from the CFHTLenS survey correlation function analyses
comes from wavenumbers at which the matter power spectrum
is strongly nonlinear, complicating any direct comparison with
Planck.

This can be circumventing by performing a 3D spherical har-
monic analysis of the shear field, allowing one to impose lower
limits on the wavenumbers that contribute to a weak lensing like-
lihood. This has been done by Kitching et al. (2014). Including
only wavenumbers with k ≤ 1.5 hMpc−1, Kitching et al. (2014)
find constraints in the σ8–Ωm plane that are consistent with the
results from Planck. However, by excluding modes with higher
wavenumbers, the lensing constraints are weakened. When they
increase the wavenumber cut-off to k = 5 hMpc−1 some tension
with Planck begins to emerge (which these authors argue may
be an indication of the effects of baryonic feedback in suppress-
ing the matter power spectrum at small scales). The large-scale
properties of CFHTLenS therefore seem broadly consistent with
Planck and it is only as CFHTLenS probes higher wavenumbers,
particular in the 2D and tomographic correlation function anal-
yses (Heymans et al. 2013; Kilbinger et al. 2013; Fu et al. 2014;
MacCrann et al. 2015), that apparently strong discrepancies with
Planck appear.

The situation is summarized in Fig. 18. The sample points
show parameter values in the σ8–Ωm plane for the ΛCDM base
model, computed from the Heymans et al. (2013, hereafter H13)
tomographic measurements of ξ±. These data consist of correla-
tion function measurements in six photometric redshift bins ex-
tending over the redshift range 0.2–1.3. We use the blue galaxy
sample, since H13 find that this sample shows no evidence for
intrinsic galaxy alignments (simplifying the comparison with
theory) and we apply the “conservative” cuts of H13, intended
to reduce sensitivity to the nonlinear part of the power spec-
trum; these cuts eliminate measurements with θ < 3′ for any
redshift combination that involves the lowest two redshift bins.
Here we have used the halofit prescription of Takahashi et al.
(2012) to model the nonlinear power spectrum, but do not in-
clude any model of baryon feedback or intrinsic alignments.
For the lensing-only constraint we also impose additional pri-
ors in a similar way to the CMB lensing analysis described
in Planck Collaboration XV (2016), i.e., Gaussian priors Ωbh2 =
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Fig. 18. Samples in the σ8–Ωm plane from the H13 CFHTLenS
data (with angular cuts as discussed in the text), coloured by the
value of the Hubble parameter, compared to the joint constraints
when the lensing data are combined with BAO (blue), and BAO
with the CMB acoustic scale parameter fixed to θMC = 1.0408
(green). For comparison, the Planck TT+lowP constraint con-
tours are shown in black. The grey bands show the constraint
from Planck CMB lensing. We impose a weak prior on the pri-
moridal amplitude, 2 < ln(1010As) < 4, which has some impact
on the distribution of CFHTLenS-only samples.

0.0223 ± 0.0009 and ns = 0.96 ± 0.02, where the exact val-
ues (chosen to span reasonable ranges given CMB data) have
little impact on the results. The sample range shown also re-
stricts the Hubble parameter to 0.2 < h < 1; note that when
comparing with constraint contours, the location of the contours
can change significantly depending on the H0 prior range as-
sumed. We also use a weak prior on the primoridal amplitude,
2 < ln(1010As) < 4, which shows up the strong correlation be-
tween Ωm–σ8–H0 in the region of parameter space relevant for
comparison with Planck. In Fig. 18 we only show lensing con-
tours after the samples have been projected into the space al-
lowed by the BAO data (blue contours), or also additionally re-
stricting to the reduced space where θMC is fixed to the Planck
value, which is accurately measured. The black contours show
the constraints from Planck TT+lowP.

The lensing samples just overlap with Planck, and superfi-
cially one might conclude that the two data sets are consistent.
However, the weak lensing constraints approximately define a
1D degeneracy in the 3D Ωm–σ8–H0 space, so consistency of the
Hubble parameter at each point in the projected space must also
be considered (see appendix E1 of Planck Collaboration XV
2016). Comparing the contours in Fig. 18 (the regions where
the weak lensing constraints are consistent with BAO obser-
vations) the CFHTLenS data favour a lower value of σ8 than
the Planck data (and much of the area of the blue contours
also has higher Ωm). However, even with the conservative an-
gular cuts applied by H13, the weak lensing constraints de-
pend on the nonlinear model of the power spectrum and on the
possible influence of baryonic feedback in reshaping the mat-
ter power spectrum at small spatial scales (Harnois-Déraps et al.
2015; MacCrann et al. 2015). The importance of these effects
can be reduced by imposing even more conservative angular
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cuts on ξ±, but of course, this weakens the statistical power
of the weak lensing data. The CFHTLenS data are not used
in combination with Planck in this paper (apart from specific
cases in Sects. 6.3 and 6.4.4) and, in any case, would have lit-
tle impact on most of the extended ΛCDM constraints discussed
in Sect. 6. Weak lensing can, however, provide important con-
straints on dark energy and modified gravity. The CFHTLenS
data are therefore used in combination with Planck in the com-
panion paper (Planck Collaboration XIV 2016), which explores
several halofit prescriptions and the impact of applying more
conservative angular cuts to the H13 measurements.

5.5.3. Planck cluster counts

In 2013 we noted a possible tension between our primary CMB
constraints and those from the Planck SZ cluster counts, with the
clusters preferring lower values of σ8 in the base ΛCDM model
in some analyses (Planck Collaboration XX 2014). The compar-
ison is interesting because the cluster counts directly measure σ8
at low redshift; any tension could signal the need for extensions
to the base model, such as non-minimal neutrino mass (though
see Sect. 6.4). However, limited knowledge of the scaling rela-
tion between SZ signal and mass have hampered the interpreta-
tion of this result.

With the full mission data we have created a larger cata-
logue of SZ clusters with a more accurate characterization of
its completeness (Planck Collaboration XXIV 2016). By fitting
the counts in redshift and signal-to-noise, we are able to si-
multaneously constrain the slope of the SZ signal–mass scal-
ing relation and the cosmological parameters. A major uncer-
tainty, however, remains the overall mass calibration, which in
Planck Collaboration XX (2014) we quantified with a “hydro-
static bias” parameter, (1 − b), with a fiducial value of 0.8 and
a range 0.7 < (1 − b) < 1 (consistent with some other stud-
ies, e.g., Simet et al. 2015). In the base ΛCDM model, the pri-
mary CMB constraints prefer a normalization below the lower
end of this range, (1 − b) ≈ 0.6. The recent, empirical nor-
malization of the relation by the Weighing the Giants lensing
programme (WtG; von der Linden et al. 2014) gives 0.69± 0.07
for the 22 clusters in common with the Planck cluster sample.
This calibration reduces the tension with the primary CMB con-
straints in base ΛCDM. In contrast, correlating the entire Planck
2015 SZ cosmology sample with Planck CMB lensing gives
1/(1−b) = 1.0±0.2 (Planck Collaboration XXIV 2016), toward
the upper end of the range adopted in Planck Collaboration XX
(2014), although with a large uncertainty. An alternative lens-
ing calibration analysis by the Canadian Cluster Comparison
Project, which uses 37 clusters in common with the Planck
cluster sample (Hoekstra et al. 2015) finds (1 − b) = 0.76 ±
0.05 (stat.)± 0.06 (syst.), which lies between the other two mass
calibrations. These calibrations are not yet definitive and the sit-
uation will continue to evolve with improvements in mass mea-
surements from larger samples of clusters.

A recent analysis of cluster counts for an X-ray-selected
sample (REFLEX II) shows some tension with the Planck base
ΛCDM cosmology (Böhringer et al. 2014). However, an analy-
sis of cluster counts of X-ray-selected clusters by the WtG col-
laboration, incorporating the WtG weak lensing mass calibra-
tion, finds σ8(Ωm/0.3)0.17 = 0.81±0.03, in good agreement with
the Planck CMB results for base ΛCDM (Mantz et al. 2015).
This raises the possibility that there may be systematic biases
in the assumed scaling relations for SZ-selected clusters com-
pared to X-ray-selected clusters (in addition to a possible mass
calibration bias). Mantz et al. (2015) give a brief review of re-
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Fig. 19. Marginalized constraints on parameters of the base
ΛCDM model without low-` E-mode polarization (filled con-
tours), compared to the constraints from using low-` E-mode
polarization (unfilled contours) or assuming a strong prior that
reionization was at zre = 7 ± 1 and zre > 6.5 (“reion prior,”
dashed contours). Grey bands show the constraint from CMB
lensing alone.

cent determinations of σ8 from X-ray, optically-selected, and
SZ-selected samples, to which we refer the reader. More detailed
discussion of constraints from combining Planck cluster counts
with primary CMB anisotropies and other data sets can be found
in Planck Collaboration XXIV (2016).

5.6. Cosmic concordance?

Table 4 summarizes the cosmological parameters in the base
ΛCDM for Planck combined with various data sets discussed in
this section. Although we have seen from the survey presented
above that base ΛCDM is consistent with a wide range of cos-
mological data, there are two areas of tension:

1. the Lyα BAO measurements at high redshift (Sect. 5.2);
2. the Planck CMB estimate of the amplitude of the fluctuation

spectrum and the lower values inferred from weak lensing,
and (possibly) cluster counts and redshift space distortions
(Sect. 5.5).

The first point to note is that the astrophysical data in areas
(1) and (2) are complex and more difficult to interpret than most
of the astrophysical data sets discussed in this section. The inter-
pretation of the data in area (2) depends on nonlinear modelling
of the power spectrum, and in the case of clusters and weak lens-
ing, on uncertain baryonic physics. Understanding these effects
more accurately sets a direction for future research.

It is, however, worth reviewing our findings on σ8 and Ωm
from Planck assuming base ΛCDM. These are summarized in
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Fig. 19 and the following constraints:

σ8 = 0.829 ± 0.014, Planck TT+lowP; (36a)
σ8 = 0.815 ± 0.009, Planck TT+lowP+lensing; (36b)
σ8 = 0.810 ± 0.006, Planck TT+lensing+zre. (36c)

The last line imposes a Gaussian prior of zre = 7 ± 1 with a
limit zre > 6.5 on the reionization redshift in place of the reion-
ization constraints from the lowP likelihood. As discussed in
Sect. 3.4, such a low redshift of reionization is close to the low-
est plausible value allowed by astrophysical data (though such
low values are not favoured by either the WMAP or LFI polar-
ization data). The addition of Planck lensing data pulls σ8 down
by about 1σ from the Planck TT+lowP value, so Eq. (36c) is
the lowest possible range allowed by the Planck CMB data. As
shown in Fig. 19, adding the T E and EE spectra at high mul-
tipoles does not change the Planck constraints. If a convincing
case can be made that astrophysical data conflict with the esti-
mate of Eq. (36c), then this will be powerful evidence for new
physics beyond base ΛCDM with minimal-mass neutrinos.

A number of authors have interpreted the discrepancies in
area (2) as evidence for new physics in the neutrino sector (e.g.,
Planck Collaboration XX 2014; Hamann & Hasenkamp 2013;
Battye & Moss 2014; Battye et al. 2015; Wyman et al. 2014;
Beutler et al. 2014). They use various data combinations to-
gether with Planck to argue for massive neutrinos with mass∑

mν ≈ 0.3 eV or for a single sterile neutrino with somewhat
higher mass. The problem here is that any evidence for new
neutrino physics is driven mainly by the additional astrophysi-
cal data, not by Planck CMB anisotropy measurements. In addi-
tion, the external data sets are not entirely consistent, so tensions
remain. As discussed in PCP13 (see also Leistedt et al. 2014;
Battye et al. 2015) Planck data usually favour base ΛCDM over
extended models. Implications of the Planck 2015 data for neu-
trino physics are discussed in Sect. 6.4 and tensions between
Planck and external data in various extended neutrino models
are discussed further in Sect. 6.4.4.

As mentioned above, we do not use RSD or galaxy weak
lensing measurements for combined constraints in this paper
(apart from Sects. 6.3 and 6.4.4, where we use the CFHTLenS
data) . They are, however, used in the paper exploring constraints
on dark energy and modified gravity (Planck Collaboration XIV
2016). For some models discussed in that paper, the combination
of Planck, RSD, and weak lensing data does prefer extensions to
the base ΛCDM cosmology.

6. Extensions to the base ΛCDM model

6.1. Grid of models

The full grid results are available online.25 Figure 20 and Table 5
summarize the constraints on one-parameter extensions to base
ΛCDM. As in PCP13, we find no strong evidence in favour of
any of these simple one-parameter extensions using Planck or
Planck combined with BAO. The entire grid has been run using
both the Plik and CamSpec likelihoods. As noted in Sect. 3, the
parameters derived from these two TT likelihoods agree to better
than 0.5σ for base ΛCDM. This level of agreement also holds
for the extended models analysed in our grid. In Sect. 3 we also
pointed out that we have definite evidence, by comparing spec-
tra computed with different frequency combinations, of residual

25See the Planck Legacy Archive, http://www.cosmos.esa.int/
web/planck/pla, which contains considerably more detailed informa-
tion than presented in this paper.

systematics in the T E and EE spectra. These systematics aver-
age down in the coadded T E and EE spectra, but the remaining
level of systematics in these coadded spectra are not yet well
quantified (though they are small). Thus, we urge the reader to
treat parameters computed from the TT,TE,EE likelihoods with
some caution. In the case of polarization, the agreement between
the Plik and CamSpec T E and EE likelihoods is less good, with
shifts in parameters of up to 1.5σ (though such large shifts are
unusual). In general, the behaviour of the TT,TE,EE likelihoods
is as shown in Fig. 20. For extended models, the addition of the
Planck polarization data at high multipoles reduces the errors on
extended parameters compared to the Planck temperature data
and pulls the parameters towards those of base ΛCDM. A sim-
ilar behaviour is seen if the Planck TT (or Planck TT,TE,EE)
data are combined with BAO.

The rest of this section discusses the grid results in more de-
tail and also reports results on some additional models (specifi-
cally dark matter annihilation, tests of the recombination history,
and cosmic defects) that are not included in our grid.

6.2. Early-Universe physics

Arguably the most important result from 2013 Planck analysis
was the finding that simple single-field inflationary models, with
a tilted scalar spectrum ns ≈ 0.96, provide a very good fit to
the Planck data. We found no evidence for a tensor component
or running of the scalar spectral index, no strong evidence for
isocurvature perturbations or features in the primordial power
spectrum (Planck Collaboration XXII 2014), and no evidence
for non-Gaussianity (Planck Collaboration XXIV 2014), cosmic
strings or other topological defects (Planck Collaboration XXV
2014). On large angular scales, the Planck data showed some
evidence for “anomalies” seen previously in the WMAP data
(Bennett et al. 2011). These include a dip in the power spectrum
in the multipole range 20 <∼ ` <∼ 30 (see Fig. 1) and some evi-
dence for a departure from statistical isotropy on large angular
scales (Planck Collaboration XXIII 2014). However, the statisti-
cal significance of these anomalies is not high enough to provide
compelling evidence for new physics beyond simple single-field
inflation.

The Planck 2013 results led to renewed interest in the R2 in-
flationary model, originally introduced by Starobinsky (1980),
and related inflationary models that have flat effective poten-
tials of similar form (e.g., Kallosh & Linde 2013; Ferrara et al.
2013; Buchmuller et al. 2013; Ellis et al. 2013). A characteristic
of these models is that they produce a red tilted scalar spectrum
and a low tensor-to-scalar ratio. For reference, the Starobinsky
model predicts

ns ≈ 1 −
2
N
∈ (0.960, 0.967), (37a)

r ≈
12
N2 ∈ (0.003, 0.005), (37b)

dns

d ln k
≈ −

2
N2 ∈ (−0.0008,−0.0006), (37c)

where N is the number of e-foldings between the end of in-
flation and the time that our present day Hubble scale crossed
the inflationary horizon, and numerical values are for the range
50 ≤ N ≤ 60.

Although the Planck 2013 results stimulated theoretical
work on inflationary models with low tensor-to-scalar ratios, the
cosmological landscape became more complicated following the
detection of a B-mode polarization anisotropy by the BICEP2
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Table 4. Parameter 68 % confidence limits for the base ΛCDM model from Planck CMB power spectra, in combination with lensing
reconstruction (“lensing”) and external data (“ext”, BAO+JLA+H0). While we see no evidence that systematic effects in polarization
are biasing parameters in the base ΛCDM model, a conservative choice would be to use the parameter values listed in Column 3
(i.e., for TT+lowP+lensing). Nuisance parameters are not listed here for brevity, but can be found in the extensive tables on the
Planck Legacy Archive, http://pla.esac.esa.int/pla; however, the last three parameters listed here give a summary measure
of the total foreground amplitude (in µK2) at ` = 2000 for the three high-` temperature power spectra used by the likelihood.
In all cases the helium mass fraction used is predicted by BBN from the baryon abundance (posterior mean YP ≈ 0.2453, with
theoretical uncertainties in the BBN predictions dominating over the Planck error on Ωbh2). The Hubble constant is given in units
of km s−1 Mpc−1, while r∗ is in Mpc and wavenumbers are in Mpc−1.

TT+lowP TT+lowP+lensing TT+lowP+lensing+ext TT,TE,EE+lowP TT,TE,EE+lowP+lensing TT,TE,EE+lowP+lensing+ext
Parameter 68 % limits 68 % limits 68 % limits 68 % limits 68 % limits 68 % limits

Ωbh2 . . . . . . . . . . . 0.02222 ± 0.00023 0.02226 ± 0.00023 0.02227 ± 0.00020 0.02225 ± 0.00016 0.02226 ± 0.00016 0.02230 ± 0.00014

Ωch2 . . . . . . . . . . . 0.1197 ± 0.0022 0.1186 ± 0.0020 0.1184 ± 0.0012 0.1198 ± 0.0015 0.1193 ± 0.0014 0.1188 ± 0.0010

100θMC . . . . . . . . . 1.04085 ± 0.00047 1.04103 ± 0.00046 1.04106 ± 0.00041 1.04077 ± 0.00032 1.04087 ± 0.00032 1.04093 ± 0.00030

τ . . . . . . . . . . . . . 0.078 ± 0.019 0.066 ± 0.016 0.067 ± 0.013 0.079 ± 0.017 0.063 ± 0.014 0.066 ± 0.012

ln(1010As) . . . . . . . . 3.089 ± 0.036 3.062 ± 0.029 3.064 ± 0.024 3.094 ± 0.034 3.059 ± 0.025 3.064 ± 0.023

ns . . . . . . . . . . . . 0.9655 ± 0.0062 0.9677 ± 0.0060 0.9681 ± 0.0044 0.9645 ± 0.0049 0.9653 ± 0.0048 0.9667 ± 0.0040

H0 . . . . . . . . . . . . 67.31 ± 0.96 67.81 ± 0.92 67.90 ± 0.55 67.27 ± 0.66 67.51 ± 0.64 67.74 ± 0.46

ΩΛ . . . . . . . . . . . . 0.685 ± 0.013 0.692 ± 0.012 0.6935 ± 0.0072 0.6844 ± 0.0091 0.6879 ± 0.0087 0.6911 ± 0.0062

Ωm . . . . . . . . . . . . 0.315 ± 0.013 0.308 ± 0.012 0.3065 ± 0.0072 0.3156 ± 0.0091 0.3121 ± 0.0087 0.3089 ± 0.0062

Ωmh2 . . . . . . . . . . 0.1426 ± 0.0020 0.1415 ± 0.0019 0.1413 ± 0.0011 0.1427 ± 0.0014 0.1422 ± 0.0013 0.14170 ± 0.00097

Ωmh3 . . . . . . . . . . 0.09597 ± 0.00045 0.09591 ± 0.00045 0.09593 ± 0.00045 0.09601 ± 0.00029 0.09596 ± 0.00030 0.09598 ± 0.00029

σ8 . . . . . . . . . . . . 0.829 ± 0.014 0.8149 ± 0.0093 0.8154 ± 0.0090 0.831 ± 0.013 0.8150 ± 0.0087 0.8159 ± 0.0086

σ8Ω0.5
m . . . . . . . . . . 0.466 ± 0.013 0.4521 ± 0.0088 0.4514 ± 0.0066 0.4668 ± 0.0098 0.4553 ± 0.0068 0.4535 ± 0.0059

σ8Ω0.25
m . . . . . . . . . 0.621 ± 0.013 0.6069 ± 0.0076 0.6066 ± 0.0070 0.623 ± 0.011 0.6091 ± 0.0067 0.6083 ± 0.0066

zre . . . . . . . . . . . . 9.9+1.8
−1.6 8.8+1.7

−1.4 8.9+1.3
−1.2 10.0+1.7

−1.5 8.5+1.4
−1.2 8.8+1.2

−1.1

109As . . . . . . . . . . 2.198+0.076
−0.085 2.139 ± 0.063 2.143 ± 0.051 2.207 ± 0.074 2.130 ± 0.053 2.142 ± 0.049

109Ase−2τ . . . . . . . . 1.880 ± 0.014 1.874 ± 0.013 1.873 ± 0.011 1.882 ± 0.012 1.878 ± 0.011 1.876 ± 0.011

Age/Gyr . . . . . . . . 13.813 ± 0.038 13.799 ± 0.038 13.796 ± 0.029 13.813 ± 0.026 13.807 ± 0.026 13.799 ± 0.021

z∗ . . . . . . . . . . . . 1090.09 ± 0.42 1089.94 ± 0.42 1089.90 ± 0.30 1090.06 ± 0.30 1090.00 ± 0.29 1089.90 ± 0.23

r∗ . . . . . . . . . . . . 144.61 ± 0.49 144.89 ± 0.44 144.93 ± 0.30 144.57 ± 0.32 144.71 ± 0.31 144.81 ± 0.24

100θ∗ . . . . . . . . . . 1.04105 ± 0.00046 1.04122 ± 0.00045 1.04126 ± 0.00041 1.04096 ± 0.00032 1.04106 ± 0.00031 1.04112 ± 0.00029

zdrag . . . . . . . . . . . 1059.57 ± 0.46 1059.57 ± 0.47 1059.60 ± 0.44 1059.65 ± 0.31 1059.62 ± 0.31 1059.68 ± 0.29

rdrag . . . . . . . . . . . 147.33 ± 0.49 147.60 ± 0.43 147.63 ± 0.32 147.27 ± 0.31 147.41 ± 0.30 147.50 ± 0.24

kD . . . . . . . . . . . . 0.14050 ± 0.00052 0.14024 ± 0.00047 0.14022 ± 0.00042 0.14059 ± 0.00032 0.14044 ± 0.00032 0.14038 ± 0.00029

zeq . . . . . . . . . . . . 3393 ± 49 3365 ± 44 3361 ± 27 3395 ± 33 3382 ± 32 3371 ± 23

keq . . . . . . . . . . . . 0.01035 ± 0.00015 0.01027 ± 0.00014 0.010258 ± 0.000083 0.01036 ± 0.00010 0.010322 ± 0.000096 0.010288 ± 0.000071

100θs,eq . . . . . . . . . 0.4502 ± 0.0047 0.4529 ± 0.0044 0.4533 ± 0.0026 0.4499 ± 0.0032 0.4512 ± 0.0031 0.4523 ± 0.0023

f 143
2000 . . . . . . . . . . . 29.9 ± 2.9 30.4 ± 2.9 30.3 ± 2.8 29.5 ± 2.7 30.2 ± 2.7 30.0 ± 2.7

f 143×217
2000 . . . . . . . . . 32.4 ± 2.1 32.8 ± 2.1 32.7 ± 2.0 32.2 ± 1.9 32.8 ± 1.9 32.6 ± 1.9

f 217
2000 . . . . . . . . . . . 106.0 ± 2.0 106.3 ± 2.0 106.2 ± 2.0 105.8 ± 1.9 106.2 ± 1.9 106.1 ± 1.8

Table 5. Constraints on 1-parameter extensions to the base ΛCDM model for combinations of Planck power spectra, Planck lensing,
and external data (BAO+JLA+H0, denoted “ext”). All limits and confidence regions quoted here are 95 %.

Parameter TT TT+lensing TT+lensing+ext TT,TE,EE TT,TE,EE+lensing TT,TE,EE+lensing+ext

ΩK . . . . . . . . . . . . . . −0.052+0.049
−0.055 −0.005+0.016

−0.017 −0.0001+0.0054
−0.0052 −0.040+0.038

−0.041 −0.004+0.015
−0.015 0.0008+0.0040

−0.0039
Σmν [eV] . . . . . . . . . . < 0.715 < 0.675 < 0.234 < 0.492 < 0.589 < 0.194
Neff . . . . . . . . . . . . . . 3.13+0.64

−0.63 3.13+0.62
−0.61 3.15+0.41

−0.40 2.99+0.41
−0.39 2.94+0.38

−0.38 3.04+0.33
−0.33

YP . . . . . . . . . . . . . . . 0.252+0.041
−0.042 0.251+0.040

−0.039 0.251+0.035
−0.036 0.250+0.026

−0.027 0.247+0.026
−0.027 0.249+0.025

−0.026
dns/d ln k . . . . . . . . . . −0.008+0.016

−0.016 −0.003+0.015
−0.015 −0.003+0.015

−0.014 −0.006+0.014
−0.014 −0.002+0.013

−0.013 −0.002+0.013
−0.013

r0.002 . . . . . . . . . . . . . < 0.103 < 0.114 < 0.114 < 0.0987 < 0.112 < 0.113
w . . . . . . . . . . . . . . . −1.54+0.62

−0.50 −1.41+0.64
−0.56 −1.006+0.085

−0.091 −1.55+0.58
−0.48 −1.42+0.62

−0.56 −1.019+0.075
−0.080
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Fig. 21. Left: Constraints on the tensor-to-scalar ratio r0.002 in the ΛCDM model, using Planck TT+lowP and Planck
TT+lowP+lensing+BAO+JLA+H0 (red and blue, respectively) assuming negligible running and the inflationary consistency rela-
tion. The result is model-dependent; for example, the grey contours show how the results change if there were additional relativistic
degrees of freedom with ∆Neff = 0.39 (disfavoured, but not excluded, by Planck). Dotted lines show loci of approximately con-
stant e-folding number N, assuming simple V ∝ (φ/mPl)p single-field inflation. Solid lines show the approximate ns–r relation for
quadratic and linear potentials, to first order in slow roll; red lines show the approximate allowed range assuming 50 < N < 60 and
a power-law potential for the duration of inflation. The solid black line (corresponding to a linear potential) separates concave and
convex potentials. Right: Equivalent constraints in the ΛCDM model when adding B-mode polarization results corresponding to the
default configuration of the BICEP2/Keck Array+Planck (BKP) likelihood. These exclude the quadratic potential at a higher level
of significance compared to the Planck-alone constraints.

team (BICEP2 Collaboration 2014). If the BICEP2 signal were
primarily caused by primordial gravitational waves, then the in-
ferred tensor-to-scalar ratio would have been r0.01 ≈ 0.2,26 ap-
parently in conflict with the 2013 Planck 95 % upper limit of
r0.002 < 0.11, based on fits to the temperature power spectrum.
Since the Planck constraints on r are highly model dependent
(and fixed mainly by lower k) it is possible to reconcile these re-
sults by introducing additional parameters, such as large tilts or
strong running of the spectral indices.

The situation has been clarified following a joint analysis
of BICEP2/Keck observations and Planck polarization data re-
ported in BKP. This analysis shows that polarized dust emission
contributes a significant part of the BICEP2 signal. Correcting
for polarized dust emission, BKP report a 95 % upper limit of
r0.05 < 0.12 on scale-invariant tensor modes, eliminating the
tension between the BICEP2 and the Planck 2013 results. There
is therefore no evidence for inflationary tensor modes from B-
mode polarization measurements at this time (although the BKP
analysis leaves open the possibility of a much higher tensor-to-
scalar ratio than the prediction of Eq. 37b for Starobinsky-type
models).

The layout of the rest of this subsection is as follows. In
Sect. 6.2.1 we review the Planck 2015 and Planck+BKP con-
straints on ns and r. Constraints on the running of the scalar spec-
tral index are presented in Sect. 6.2.2. Polarization data provide
a powerful way of testing for isocurvature modes, as discussed
in Sect. 6.2.3. Finally, Sect. 6.2.4 summarizes our results on spa-

26The pivot scale quoted here is roughly appropriate for the multi-
poles probed by BICEP2.

tial curvature. A discussion of specific inflationary models and
tests for features in the primordial power spectrum can be found
in Planck Collaboration XX (2016).

6.2.1. Scalar spectral index and tensor fluctuations

Primordial tensor fluctuations (gravitational waves) contribute
to both the CMB temperature and polarization power spectra.
Gravitational waves entering the horizon between recombina-
tion and the present day generate a tensor contribution to the
large-scale CMB temperature anisotropy. In this data release,
the strongest constraint on tensor modes from Planck data still
comes from the CMB temperature spectrum at ` <∼ 100. The cor-
responding comoving wavenumbers probed by the Planck tem-
perature spectrum have k <∼ 0.008 Mpc−1, with very little sensi-
tivity to higher wavenumbers because gravitational waves decay
on sub-horizon scales. The precision of the Planck constraint is
limited by cosmic variance of the large-scale anisotropies (which
are dominated by the scalar component), and it is also model de-
pendent. In polarization, in addition to B-modes, the EE and T E
spectra also contain a signal from tensor modes coming from the
last-scattering and reionization epochs. However, in this release
the addition of Planck polarization constraints at ` ≥ 30 do not
significantly change the results from temperature and low-` po-
larization (see Table 5).

Figure 21 shows the 2015 Planck constraint in the ns–r plane,
adding r as a 1-parameter extension to base ΛCDM. For base
ΛCDM (r = 0), the value of ns is

ns = 0.9655 ± 0.0062, Planck TT+lowP. (38)
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We highlight this number here since ns, a key parameter for in-
flationary cosmology, shows one of the largest shifts of any pa-
rameter in base ΛCDM between the Planck 2013 and Planck
2015 analyses (about 0.7σ). As explained in Sect. 3.1, part of
this shift was caused by the ` ≈ 1800 systematic in the nominal-
mission 217 × 217 spectrum used in PCP13.

The red contours in Fig. 21 show the constraints from Planck
TT+lowP. These are similar to the constraints shown in Fig. 23
of PCP13, but with ns shifted to slightly higher values. The ad-
dition of BAO or the Planck lensing data to Planck TT+lowP
lowers the value of Ωch2, which, at fixed θ∗, increases the small-
scale CMB power. To maintain the fit to the Planck temperature
power spectrum for models with r = 0, these parameter shifts
are compensated by a change in the amplitude As and the tilt
ns (by about 0.4σ). The increase in ns to match the observed
power on small scales leads to a decrease in the scalar power
on large scales, allowing room for a slightly larger contribu-
tion from tensor modes. The constraints shown by the blue con-
tours in Fig. 21, which combine Planck lensing, BAO, and other
astrophysical data, are therefore tighter in the ns direction and
shifted to slightly higher values, but marginally weaker in the
r-direction. The 95 % limits on r0.002 are

r0.002 < 0.10, Planck TT+lowP, (39a)
r0.002 < 0.11, Planck TT+lowP+lensing+ext, (39b)

consistent with the results reported in PCP13. Here we assume
the second-order slow-roll consistency relation for the tensor
spectral index. The result in Eqs. (39a) and (39b) are mildly scale
dependent, with equivalent limits on r0.05 being weaker by about
5 %.

PCP13 noted a mismatch between the best-fit base ΛCDM
model and the temperature power spectrum at multipoles ` <∼ 40,
partly driven by the dip in the multipole range 20 <∼ ` <∼ 30. If
this mismatch is simply a statistical fluctuation of the ΛCDM
model (and there is no compelling evidence to think otherwise),
the strong Planck limit (compared to forecasts) is the result of
chance low levels of scalar mode confusion. On the other hand, if
the dip represents a failure of the ΛCDM model, the 95 % limits
of Eqs. (39a) and (39b) may be underestimates. These issues are
considered at greater length in Planck Collaboration XX (2016)
and will not be discussed further in this paper.

As mentioned above, the Planck temperature constraints on
r are model-dependent and extensions to ΛCDM can give sig-
nificantly different results. For example, extra relativistic de-
grees of freedom increase the small-scale damping of the CMB
anisotropies at a fixed angular scale, which can be compensated
by increasing ns, allowing a larger tensor mode. This is illus-
trated by the grey contours in Fig. 21, which show the constraints
for a model with ∆Neff = 0.39. Although this value of ∆Neff is
disfavoured by the Planck data (see Sect. 6.4.1) it is not excluded
at a high significance level.

This example emphasizes the need for direct tests of
tensor modes based on measurements of a large-scale B-
mode pattern in CMB polarization. Planck B-mode constraints
from the 100- and 143-GHz HFI channels, presented in
Planck Collaboration XI (2016), give a 95 % upper limit of r <∼
0.27. However, at present the tightest B-mode constraints on r
come from the BKP analysis of the BICEP2/Keck field, which
covers approximately 400
, deg2 centred on RA = 0h, Dec = −57.◦5. These measurements
probe the peak of the B-mode power spectrum at around ` = 100,
corresponding to gravitational waves with k ≈ 0.01 Mpc−1 that
enter the horizon during recombination (i.e., somewhat smaller

0.90 0.95 1.00 1.05 1.10

ns,0.002

0.0

0.1

0.2

0.3

0.4

r 0
.0

0
2

ΛCDM+running+tensors

ΛCDM+tensors

−
0

.0
4

0
−

0
.0

2
4

−
0

.0
0

8
0

.0
0

8

d
n

s /
d

ln
k

Fig. 22. Constraints on the tensor-to-scalar ratio r0.002 in
the ΛCDM model with running, using Planck TT+lowP
(samples, coloured by the running parameter), and Planck
TT+lowP+lensing+BAO (black contours). Dashed contours
show the corresponding constraints also including the BKP B-
mode likelihood. These are compared to the constraints when the
running is fixed to zero (blue contours). Parameters are plotted
at k = 0.002 Mpc−1, which is approximately the scale at which
Planck probes tensor fluctuations; however, the scalar tilt is only
constrained well on much smaller scales. The inflationary slow-
roll consistency relation is used here for nt (though the range of
running allowed is much larger than would be expected in most
slow-roll models).

than the scales that contribute to the Planck temperature con-
straints on r). The results of BKP give a posterior for r that peaks
at r0.05 ≈ 0.05, but is consistent with r0.05 = 0. Thus, at present
there is no convincing evidence of a primordial B-mode signal.
At these low values of r, there is no longer any tension with
Planck temperature constraints.

The analysis of BKP constrains r defined relative to a fixed
fiducial B-mode spectrum, and on its own does not give a use-
ful constraint on either the scalar amplitude or ns. A combined
analysis of the Planck CMB spectra and the BKP likelihood can,
self-consistently, give constraints in the ns–r plane, as shown in
the right-hand panel of Fig. 21. The BKP likelihood pulls the
contours to slightly non-zero values of r, with best fits of around
r0.002 ≈ 0.03, but at very low levels of statistical significance.
The BKP likelihood also rules out the upper tail of r values al-
lowed by Planck alone. The joint Planck+BKP likelihood anal-
yses give the 95 % upper limits

r0.002 < 0.08, Planck TT+lowP+BKP, (40a)
r0.002 < 0.09, Planck TT+lowP+lensing+ext+BKP. (40b)

The exact values of these upper limits are weakly dependent on
the details of the foreground modelling applied in the BKP anal-
ysis (see BKP for further details). The results given here are for
the baseline 2-parameter model, varying the B-mode dust ampli-
tude and frequency scaling, using the lowest five B-mode band-
powers.

Allowing a running of the scalar spectral index as an addi-
tional free parameter weakens the Planck constraints on r0.002, as
shown in Fig. 22. The coloured samples in Fig. 22 illustrate how
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a negative running allows the large-scale scalar spectral index
ns,0.002 to shift towards higher values, lowering the scalar power
on large scales relative to small scales, thereby allowing a larger
tensor contribution. However adding the BKP likelihood, which
directly constrains the tensor amplitude on smaller scales, signif-
icantly reduces the extent of this degeneracy leading to a 95 %
upper limit of r0.002 < 0.10 even in the presence of running (i.e.,
similar to the results of Eqs. 40a and 40b).

The Planck+BKP joint analysis rules out a quadratic infla-
tionary potential (V(φ) ∝ m2φ2, predicting r ≈ 0.16) at over
99 % confidence and reduces the allowed range of the param-
eter space for models with convex potentials. Starobinsky-type
models are an example of a wider class of inflationary theories
in which ns − 1 = O(1/N) is not a coincidence, yet r = O(1/N2)
(Roest 2014; Creminelli et al. 2015). These models have con-
cave potentials, and include a variety of string-inspired models
with exponential potentials. Models with r = O(1/N) are, how-
ever, still allowed by the data, including a simple linear potential
and fractional-power monomials, as well as regions of parameter
space in between where ns − 1 = O(1/N) is just a coincidence.
Models that have sub-Planckian field evolution, so satisfying the
Lyth bound (Lyth 1997; Garcia-Bellido et al. 2014), will typi-
cally have r <∼ 2 × 10−5 for ns ≈ 0.96, and are also consistent
with the tensor constraints shown in Fig. 21. For further discus-
sion of the implications of the Planck 2015 data for a wide range
of inflationary models see Planck Collaboration XX (2016).

In summary, the Planck limits on r are consistent with the
BKP limits from B-mode measurements. Both data sets are con-
sistent with r = 0; however, the combined data sets yield an up-
per limit to the tensor-to-scalar ratio of r ≈ 0.09 at the 95 % level.
The Planck temperature constraints on r are limited by cosmic
variance. The only way of improving these limits, or poten-
tially detecting gravitational waves with r <∼ 0.09, is through di-
rect B-mode detection. The Planck 353-GHz polarization maps
(Planck Collaboration Int. XXX 2016) show that at frequencies
of around 150 GHz, Galactic dust emission is an important con-
taminant at the r ≈ 0.05 level even in the cleanest regions of the
sky. BKP demonstrates further that on small regions of the sky
covering a few hundred square degrees (typical of ground based
B-mode experiments), the Planck 353-GHz maps are of limited
use as monitors of polarized Galactic dust emission because of
their low signal-to-noise level. To achieve limits substantially
below r ≈ 0.05 will require observations of comparably high
sensitivity over a range of frequencies, and with increased sky
coverage. The forthcoming measurements from Keck Array and
BICEP3 at 95 GHz and the Keck Array receivers at 220 GHz
should offer significant improvements on the current constraints.
A number of other ground-based and sub-orbital experiments
should also return high precision B-mode data within the next
few years (see Abazajian et al. 2015a, for a review).

6.2.2. Scale dependence of primordial fluctuations

In simple single-field models of inflation, the running of the
spectral index is of second order in inflationary slow-roll pa-
rameters and is typically small, |dns/d ln k| ≈ (ns − 1)2 ≈ 10−3

(Kosowsky & Turner 1995). Nevertheless, it is possible to con-
struct models that produce a large running over a wavenum-
ber range accessible to CMB experiments, whilst simultane-
ously achieving enough e-folds of inflation to solve the horizon
problem. Inflation with an oscillatory potential of sufficiently
long period, perhaps related to axion monodromy, is an exam-
ple (Silverstein & Westphal 2008; Meerburg 2014; Czerny et al.
2014; Minor & Kaplinghat 2015).
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Fig. 23. Constraints on the running of the scalar spectral in-
dex in the ΛCDM model, using Planck TT+lowP (samples,
coloured by the spectral index at k = 0.05 Mpc−1), and Planck
TT,TE,EE+lowP (black contours). The Planck data are consis-
tent with zero running, but also allow for significant negative
running, which gives a positive tilt on large scales and hence
less power on large scales.

As reviewed in PCP13, previous CMB experiments, either
on their own or in combination with other astrophysical data,
have sometimes given hints of a non-zero running at about the
2σ level (Spergel et al. 2003; Hinshaw et al. 2013; Hou et al.
2014). The results of PCP13 showed a slight preference for nega-
tive running at the 1.4σ level, driven almost entirely by the mis-
match between the CMB temperature power spectrum at high
multipoles and the spectrum at multipoles ` <∼ 50.

The 2015 Planck results (Fig. 23) are similar to those in
PCP13. Adding running as an additional parameter to base
ΛCDM with r = 0, we find

dns

d ln k
= −0.0084 ± 0.0082, Planck TT+lowP, (41a)

dns

d ln k
= −0.0057 ± 0.0071, Planck TT,TE,EE+lowP. (41b)

There is a slight preference for negative running, which, as in
PCP13, is driven by the mismatch between the high and low
multipoles in the temperature power spectrum. However, in the
2015 Planck data the tension between high and low multipoles
is reduced somewhat, primarily because of changes to the HFI
beams at multipoles ` <∼ 200 (see Sect. 3.1). A consequence
of this reduced tension can be seen in the 2015 constraints on
models that include tensor fluctuations in addition to running:

dns

d ln k
= −0.0126+0.0098

−0.0087, Planck TT+lowP; (42a)

dns

d ln k
= −0.0085 ± 0.0076, Planck TT,TE,EE+lowP; (42b)

dns

d ln k
= −0.0065 ± 0.0076, Planck TT+lowP+lensing

+ext+BKP. (42c)

PCP13 found an approximately 2σ pull towards negative run-
ning for these models. This tension is reduced to about 1σ with
the 2015 Planck data, and to lower values when we include the
BKP likelihood, which reduces the range of allowed tensor am-
plitudes.
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In summary, the Planck data are consistent with zero running
of the scalar spectral index. However, as illustrated in Fig. 23,
the Planck data still allow running at roughly the 10−2 level,
i.e., an order of magnitude higher than expected in simple in-
flationary models. One way of potentially improving these con-
straints is to extend the wavenumber range from CMB scales
to smaller scales using additional astrophysical data, for exam-
ple by using measurements of the Lyα flux power spectrum
of high-redshift quasars (as in the first year WMAP analysis,
Spergel et al. 2003). Palanque-Delabrouille et al. (2015) have re-
cently reported an analysis of a large sample of quasar spec-
tra from the SDSSIII/BOSS survey. These authors find a low
value of the scalar spectral index ns = 0.928 ± 0.012 (stat.) ±
(0.02) (syst.) on scales of k ≈ 1 Mpc−1. To extract physical pa-
rameters, the Lyα power spectra need to be calibrated against
numerical hydrodynamical simulations. The large systematic er-
ror in this spectral index determination is dominated by the fi-
delity of the hydrodynamic simulations and by the splicing used
to achieve high resolution over large scales. These uncertain-
ties need to be reduced before addressing the consistency of Lyα
results with CMB measurements of the running of the spectral
index.

6.2.3. Isocurvature perturbations

A key prediction of single-field inflation is that the primordial
perturbations are adiabatic. More generally, the observed fluc-
tuations will be adiabatic in any model in which the curvature
perturbations were the only super-horizon perturbations left by
the time that dark matter (and other matter) first decoupled, or
was produced by decay. The different matter components then
all have perturbations proportional to the curvature perturbation,
so there are no isocurvature perturbations. However, it is possible
to produce an observable amount of isocurvature modes by hav-
ing additional degrees of freedom present during inflation and
through reheating. For example, the curvaton model can gener-
ate correlated adiabatic and isocurvature modes from a second
field (Mollerach 1990; Lyth & Wands 2002).

Isocurvature modes describe relative perturbations between
the different species (Bucher et al. 2001b), with perhaps the sim-
plest being a perturbation in the baryonic or dark matter sector
(relative to the radiation). However, only one total matter isocur-
vature mode is observable in the linear CMB (in the accurate
approximation in which the baryons are pressureless); a com-
pensated mode (between the baryons and the cold dark matter)
with δρb = −δρc has no net density perturbation, and produces
no CMB anisotropies (Gordon & Lewis 2003; Grin et al. 2011;
Grin et al. 2014). It is possible to generate isocurvature modes in
the neutrino sector; however, this requires interaction of an ad-
ditional perturbed super-horizon field with neutrinos after they
have decoupled, and hence is harder to achieve. Finally, neutrino
velocity potential and vorticity modes are other possible con-
sistent perturbations to the photon-neutrino fluid after neutrino
decoupling. However, they are essentially impossible to excite,
since they consist of photon and neutrino fluids coherently mov-
ing in opposite directions on super-horizon scales (although the
relative velocity would have been zero before neutrino decou-
pling).

Planck Collaboration XXII (2014) presented constraints on
a variety of general isocurvature models using the Planck tem-
perature data, finding consistency with adiabaticity, though with
some mild preference for isocurvature models that reduce the
power at low multipoles to provide a better match to the Planck
temperature spectrum at ` <∼ 50. For matter isocurvature pertur-
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Fig. 24. Constraints on the correlated matter isocurvature mode
amplitude parameter α, where α = 0 corresponds to purely adia-
batic perturbations. The Planck temperature data slightly favour
negative values, since this lowers the large-scale anisotropies;
however, the polarization signal from an isocurvature mode is
distinctive and the Planck polarization data significantly shrink
the allowed region around the value α = 0 corresponding to adi-
abatic perturbations.

bations, the photons are initially unperturbed but perturbations
develop as the Universe becomes more matter dominated. As a
result, the phase of the acoustic oscillations differs from adia-
batic modes; this is most clearly distinctive with the addition of
polarization data (Bucher et al. 2001a)

An extended analysis of isocurvature models is given in
Planck Collaboration XX (2016). Here we focus on a simple il-
lustrative case of a totally-correlated matter isocurvature mode.
We define an isocurvature amplitude parameter α, such that27

S m = sgn(α)

√
|α|

1 − |α|
ζ, (43)

where ζ is the primordial curvature perturbation. Here S m is the
total matter isocurvature mode, defined as the observable sum
of the baryon and CDM isocurvature modes, i.e., S m = S c +
S b(ρb/ρc), where

S i ≡
δρi

ρi
−

3δργ
4ργ

. (44)

All modes are assumed to have a power spectrum with the
same spectral index ns, so that α is independent of scale. For
positive α this agrees with the definitions in Bean et al. (2006)
and Larson et al. (2011) for α−1, but also allows for the corre-
lation to have the opposite sign. Approximately, sgn(α)α2 ≈

Bc, where Bc is the CDM version of the amplitude defined as
in Amendola et al. (2002). Note that in our conventions, nega-
tive values of α lower the Sachs–Wolfe contribution to the large-
scale TT power spectrum. We caution the reader that this con-
vention differs from some others, e.g., Larson et al. (2011).

27Planck Collaboration XX (2016) gives equivalent one-tailed con-
straints on βiso = |α|, where the correlated and anti-correlated cases are
considered separately.
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Fig. 25. Power spectra drawn from the Planck TT+lowP posterior for the correlated matter isocurvature model, colour-coded by the
value of the isocurvature amplitude parameter α, compared to the Planck data points. The left-hand figure shows how the negatively-
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` < 30 are not shown for polarization, as they are included with both the default temperature (i.e., TT+lowP) and polarization (i.e.,
TT,TE,EE+lowP) likelihood combinations.

Planck constraints on the correlated isocurvature amplitude
are shown in Fig. 24, with and without high-multipole polariza-
tion. The corresponding marginalized limit from the temperature
data is

α = −0.0025+0.0035
−0.0047 (95%,Planck TT+lowP), (45)

which is significantly tightened around zero when Planck polar-
ization information is included at high multipoles:

α = 0.0003+0.0016
−0.0012 (95%,Planck TT,TE,EE+lowP). (46)

This strongly limits the isocurvature contribution to be less than
about 3 % of the adiabatic modes. Figure 25 shows how models
with negative correlation parameter, α, fit the temperature data at
low multipoles slightly better than models with α = 0; however,
these models are disfavoured from the corresponding change in
the polarization acoustic peaks.

In this model most of the gain in sensitivity comes from
relatively large scales, ` <∼ 300, where the correlated isocur-
vature modes with delayed phase change the first polarization
acoustic peak (` ≈ 140) significantly more than in tempera-
ture (Bucher et al. 2001a). The polarization data are not entirely
robust to systematics on these scales, but in this case the result
appears to be quite stable between the different likelihood codes.
However, it should be noted that a particularly low point in the
T E spectrum at ` ≈ 160 (see Fig. 3) pulls in the direction of
positive α, and could be giving an artificially strong constraint if
this were caused by an unidentified systematic.

6.2.4. Curvature

The simplifying assumptions of large-scale homogeneity and
isotropy lead to the familiar Friedman-Lemaı̂tre-Robertson-
Walker (FLRW) metric that appears to be an accurate description
of our Universe. The base ΛCDM cosmology assumes an FLRW
metric with a flat 3-space. This is a very restrictive assumption
that needs to be tested empirically. In this subsection, we investi-
gate constraints on the parameter ΩK , where for ΛCDM models
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Fig. 26. Constraints in the Ωm–ΩΛ plane from the Planck
TT+lowP data (samples; colour-coded by the value of H0) and
Planck TT,TE,EE+lowP (solid contours). The geometric degen-
eracy between Ωm and ΩΛ is partially broken because of the ef-
fect of lensing on the temperature and polarization power spec-
tra. These limits are improved significantly by the inclusion
of the Planck lensing reconstruction (blue contours) and BAO
(solid red contours). The red contours tightly constrain the ge-
ometry of our Universe to be nearly flat.

ΩK ≡ 1 − Ωm − ΩΛ. For FLRW models ΩK > 0 corresponds
to negatively-curved 3-geometries while ΩK < 0 corresponds
to positively-curved 3-geometries. Even with perfect data within
our past lightcone, our inference of the curvature ΩK is limited
by the cosmic variance of curvature perturbations that are still
super-horizon at the present, since these cannot be distinguished
from background curvature within our observable volume.
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The parameter ΩK decreases exponentially with time during
inflation, but grows only as a power law during the radiation
and matter-dominated phases, so the standard inflationary pre-
diction has been that curvature should be unobservably small
today. Nevertheless, by fine-tuning parameters it is possible to
devise inflationary models that generate open (e.g., Bucher et al.
1995; Linde 1999) or closed universes (e.g., Linde 2003). Even
more speculatively, there has been interest recently in multi-
verse models, in which topologically-open “pocket universes”
form by bubble nucleation (e.g., Coleman & De Luccia 1980;
Gott 1982) between different vacua of a “string landscape” (e.g.,
Freivogel et al. 2006; Bousso et al. 2015). Clearly, the detection
of a significant deviation from ΩK = 0 would have profound
consequences for inflation theory and fundamental physics.

The Planck power spectra give the constraint

ΩK = −0.052+0.049
−0.055 (95%,Planck TT+lowP). (47)

The well-known geometric degeneracy (Bond et al. 1997;
Zaldarriaga et al. 1997) allows for the small-scale linear CMB
spectrum to remain almost unchanged if changes in ΩK are com-
pensated by changes in H0 to obtain the same angular diam-
eter distance to last scattering. The Planck constraint is there-
fore mainly determined by the (wide) priors on H0, and the ef-
fect of lensing smoothing on the power spectra. As discussed in
Sect. 5.1, the Planck temperature power spectra show a slight
preference for more lensing than expected in the base ΛCDM
cosmology, and since positive curvature increases the amplitude
of the lensing signal, this preference also drives ΩK towards neg-
ative values.

Taken at face value, Eq. (47) represents a detection of posi-
tive curvature at just over 2σ, largely via the impact of lensing
on the power spectra. One might wonder whether this is mainly
a parameter volume effect, but that is not the case, since the best
fit closed model has ∆χ2 ≈ 6 relative to base ΛCDM, and the fit
is improved over almost all the posterior volume, with the mean
improvement being 〈∆χ2〉 ≈ 5 (very similar to the phenomeno-
logical case of ΛCDM+AL). Addition of the Planck polarization
spectra shifts ΩK towards zero by ∆ΩK ≈ 0.015:

ΩK = −0.040+0.038
−0.041 (95%,Planck TT,TE,EE+lowP), (48)

but ΩK remains negative at just over 2σ.
What’s more, the lensing reconstruction from Planck mea-

sures the lensing amplitude directly and, as discussed in
Sect. 5.1, this does not prefer more lensing than base ΛCDM.
The combined constraint shows impressive consistency with a
flat universe:

ΩK = −0.005+0.016
−0.017 (95%,Planck TT+lowP+lensing). (49)

The dramatic improvement in the error bar is another illustration
of the power of the lensing reconstruction from Planck.

The constraint can be sharpened further by adding external
data that break the main geometric degeneracy. Combining the
Planck data with BAO, we find

ΩK = 0.000 ± 0.005 (95%, Planck TT+lowP+lensing+BAO).
(50)

This constraint is unchanged at the quoted precision if we add
the JLA supernovae data and the H0 prior of Eq. (30).

Figure 26 illustrates these results in the Ωm–ΩΛ plane. We
adopt Eq. (50) as our most reliable constraint on spatial curva-
ture. Our Universe appears to be spatially flat to a 1σ accuracy
of 0.25 %.
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rameters w0 and wa using Planck TT+lowP+BAO+JLA data,
colour-coded by the value of the Hubble parameter H0. Contours
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6.3. Dark energy

The physical explanation for the observed accelerated expansion
of the Universe is currently not known. In standard ΛCDM the
acceleration is provided by a cosmological constant, i.e., an ad-
ditional fluid satisfying an equation of state w ≡ pDE/ρDE = −1.
However, there are many possible alternatives, typically de-
scribed either in terms of extra degrees of freedom associated
with scalar fields or modifications of general relativity on cos-
mological scales (for reviews see, e.g., Copeland et al. 2006;
Tsujikawa 2010). A detailed study of these models and the con-
straints imposed by Planck and other data are presented in a sep-
arate paper, Planck Collaboration XIV (2016).

Here we will limit ourselves to the most basic extensions
of ΛCDM, which can be phenomenologically described in
terms of the equation of state parameter w alone. Specifically
we will use the camb implementation of the “parameterized
post-Friedmann” (PPF) framework of Hu & Sawicki (2007) and
Fang et al. (2008) to test whether there is any evidence that w
varies with time. This framework aims to recover the behaviour
of canonical (i.e., those with a standard kinetic term) scalar field
cosmologies minimally coupled to gravity when w ≥ −1, and
accurately approximates them for values w ≈ −1. In these mod-
els the speed of sound is equal to the speed of light, so that the
clustering of the dark energy inside the horizon is strongly sup-
pressed. The advantage of using the PPF formalism is that it is
possible to study the phantom domain, w < −1, including transi-
tions across the “phantom barrier,” w = −1, which is not possible
for canonical scalar fields.

The CMB temperature data alone do not tightly constrain w,
because of a strong geometrical degeneracy, even for spatially-
flat models. From Planck we find

w = −1.54+0.62
−0.50 (95%,Planck TT+lowP), (51)

i.e., almost a 2σ shift into the phantom domain. This is partly,
but not entirely, a parameter volume effect, with the average ef-
fective χ2 improving by 〈∆χ2〉 ≈ 2 compared to base ΛCDM.
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This is consistent with the preference for a higher lensing am-
plitude discussed in Sect. 5.1.2, improving the fit in the w < −1
region, where the lensing smoothing amplitude becomes slightly
larger. However, the lower limit in Eq. (51) is largely determined
by the (arbitrary) prior H0 < 100 km s−1Mpc−1, chosen for the
Hubble parameter. Much of the posterior volume in the phan-
tom region is associated with extreme values for cosmological
parameters, which are excluded by other astrophysical data. The
mild tension with base ΛCDM disappears as we add more data
that break the geometrical degeneracy. Adding Planck lensing
and BAO, JLA and H0 (“ext”) gives the 95 % constraints

w = −1.023+0.091
−0.096 Planck TT+lowP+ext, (52a)

w = −1.006+0.085
−0.091 Planck TT+lowP+lensing+ext, (52b)

w = −1.019+0.075
−0.080 Planck TT,TE,EE+lowP+lensing+ext.

(52c)

The addition of Planck lensing, or using the full Planck tem-
perature+polarization likelihood together with the BAO, JLA,
and H0 data does not substantially improve the constraint of
Eq. (52a). All of these data set combinations are compatible with
the base ΛCDM value of w = −1. In PCP13, we conservatively
quoted w = −1.13+0.24

−0.25, based on combining Planck with BAO,
as our most reliable limit on w. The errors in Eqs. (52a)–(52c) are
substantially smaller, mainly because of the addition of the JLA
SNe data, which offer a sensitive probe of the dark energy equa-
tion of state at z <∼ 1. In PCP13, the addition of the SNLS SNe
data pulled w into the phantom domain at the 2σ level, reflecting
the tension between the SNLS sample and the Planck 2013 base
ΛCDM parameters. As noted in Sect. 5.3, this discrepancy is no
longer present, following improved photometric calibrations of
the SNe data in the JLA sample. One consequence of this is the
tightening of the errors in Eqs. (52a)–(52c) around the ΛCDM
value w = −1 when we combine the JLA sample with Planck.

If w differs from −1, it is likely to change with time. We
consider here the case of a Taylor expansion of w at first order in
the scale factor, parameterized by

w = w0 + (1 − a)wa. (53)

More complex models of dynamical dark energy are discussed
in Planck Collaboration XIV (2016). Figure 27 shows the 2D
marginalized posterior distribution for w0 and wa for the com-
bination Planck+BAO+JLA. The JLA SNe data are again cru-
cial in breaking the geometrical degeneracy at low redshift and
with these data we find no evidence for a departure from the
base ΛCDM cosmology. The points in Fig. 27 show samples
from these chains colour-coded by the value of H0. From these
MCMC chains, we find H0 = (68.2 ± 1.1) km s−1Mpc−1. Much
higher values of H0 would favour the phantom regime, w < −1.

As pointed out in Sects. 5.5.2 and 5.6 the CFHTLenS weak
lensing data are in tension with the Planck base ΛCDM param-
eters. Examples of this tension can be seen in investigations of
dark energy and modified gravity, since some of these models
can modify the growth rate of fluctuations from the base ΛCDM
predictions. This tension can be seen even in the simple model
of Eq. (53). The green regions in Fig. 28 show 68 % and 95 %
contours in the w0–wa plane for Planck TT+lowP combined with
the CFHTLenS H13 data. In this example, we have applied ultra-
conservative cuts, excluding ξ− entirely and excluding measure-
ments with θ < 17′ in ξ+ for all tomographic redshift bins. As
discussed in Planck Collaboration XIV (2016), with these cuts
the CFHTLenS data are insensitive to modelling the nonlinear
evolution of the power spectrum, but this reduction in sensitiv-
ity comes at the expense of reducing the statistical power of the

−2 −1 0 1

w0

−3

−2

−1

0

1

2

w
a

Planck TT+lowP+ext

Planck TT+lowP+WL
Planck TT+lowP+WL+H0

Fig. 28. Marginalized posterior distributions for (w0,wa) for var-
ious data combinations. We show Planck TT+lowP in combi-
nation with BAO, JLA, H0 (“ext”), and two data combinations
that add the CFHTLenS data with ultra-conservative cuts as de-
scribed in the text (denoted “WL”). Dashed grey lines show the
parameter values corresponding to a cosmological constant.

weak lensing data. Nevertheless, Fig. 28 shows that the combina-
tion of Planck+CFHTLenS pulls the contours into the phantom
domain and is discrepant with base ΛCDM at about the 2σ level.
The Planck+CFHTLenS data also favour a high value of H0. If
we add the (relatively weak) H0 prior of Eq. (30), the contours
(shown in cyan) in Fig. 28 shift towards w = −1. It therefore
seems unlikely that the tension between Planck and CFHTLenS
can be resolved by allowing a time-variable equation of state for
dark energy.

A much more extensive investigation of models of dark
energy and also models of modified gravity can be found in
Planck Collaboration XIV (2016). The main conclusions of that
analysis are as follows:

• an investigation of more general time-variations of the equa-
tion of state shows a high degree of consistency with w = −1;

• a study of several dark energy and modified gravity models
either finds compatibility with base ΛCDM, or mild tensions,
which are driven mainly by external data sets.

6.4. Neutrino physics and constraints on relativistic
components

In the following subsections, we update Planck constraints on
the mass of standard (active) neutrinos, additional relativistic de-
grees of freedom, models with a combination of the two, and
models with massive sterile neutrinos. In each subsection we
emphasize the Planck-only constraint, and the implications of
the Planck result for late-time cosmological parameters mea-
sured from other observations. We then give a brief discussion of
tensions between Planck and some discordant external data, and
assess whether any of these model extensions can help to resolve
them. Finally we provide constraints on neutrino interactions.
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6.4.1. Constraints on the total mass of active neutrinos

Detection of neutrino oscillations has proved that neutri-
nos have mass (see, e.g., Lesgourgues & Pastor 2006 and
Nakamura & Petcov 2014 for reviews). The Planck base ΛCDM
model assumes a normal mass hierarchy with

∑
mν ≈ 0.06 eV

(dominated by the heaviest neutrino mass eigenstate) but there
are other possibilities, including a degenerate hierarchy with∑

mν >∼ 0.1 eV. At this time there are no compelling theoreti-
cal reasons to strongly prefer any of these possibilities, so allow-
ing for larger neutrino masses is perhaps one of the most well-
motivated extensions to base ΛCDM considered in this paper.
There has also been significant interest recently in larger neu-
trino masses as a possible way to lower σ8 (the late-time fluctua-
tion amplitude), and thereby reconcile Planck with weak lensing
measurements and the abundance of rich clusters (see Sects. 5.5
and 5.6). Though model dependent, neutrino mass constraints
from cosmology are already significantly stronger than those
from tritium β-decay experiments (see, e.g., Drexlin et al. 2013).

Here we give constraints assuming three species of degener-
ate massive neutrinos, neglecting the small differences in mass
expected from the observed mass splittings. At the level of sensi-
tivity of Planck this is an accurate approximation, but note that it
does not quite match continuously on to the base ΛCDM model
(which assumes two massless and one massive neutrino with∑

mν = 0.06 eV). We assume that the neutrino mass is con-
stant, and that the distribution function is Fermi-Dirac with zero
chemical potential.

Masses well below 1 eV have only a mild effect on the shape
of the CMB power spectra, since they became non-relativistic af-
ter recombination. The effect on the background cosmology can
be compensated by changes in H0, to ensure the same observed
acoustic peak scale θ∗. There is, however, some sensitivity of
the CMB anisotropies to neutrino masses as the neutrinos start
to become less relativistic at recombination (modifying the early
ISW effect), and from the late-time effect of lensing on the power
spectrum. The Planck power spectrum (95 %) constraints are∑

mν < 0.72 eV Planck TT+lowP, (54a)∑
mν < 0.21 eV Planck TT+lowP+BAO, (54b)∑
mν < 0.49 eV Planck TT,TE,EE+lowP, (54c)∑
mν < 0.17 eV Planck TT,TE,EE+lowP+BAO. (54d)

The Planck TT+lowP constraint has a broad tail to high masses,
as shown in Fig. 29, which also illustrates the acoustic scale
degeneracy with H0. Larger masses imply a lower σ8 through
the effects of neutrino free-streaming on structure formation,
but the larger masses also require a lower Hubble constant,
leading to possible tensions with direct measurements of H0.
Masses below about 0.4 eV can provide an acceptable fit to
the direct H0 measurements, and adding the BAO data helps
to break the acoustic scale degeneracy and tightens the con-
straint on

∑
mν substantially. Adding Planck polarization data at

high multipoles produces a relatively small improvement to the
Planck TT+lowP+BAO constraint (and the improvement is even
smaller with the alternative CamSpec likelihood), so we consider
the TT results to be our most reliable constraints.

The constraint of Eq. (54b) is consistent with the 95 % limit
of

∑
mν < 0.23 eV reported in PCP13 for Planck+BAO. The

limits are similar because the linear CMB is insensitive to the
mass of neutrinos that are relativistic at recombination. There is
little to be gained from improved measurement of the CMB tem-
perature power spectra, though improved external data can help
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Fig. 29. Samples from the Planck TT+lowP posterior in the∑
mν–H0 plane, colour-coded by σ8. Higher

∑
mν damps the

matter fluctuation amplitude σ8, but also decreases H0. The
grey bands show the direct measurement, H0 = (70.6 ±
3.3) km s−1Mpc−1, Eq. (30). Solid black contours show the
constraint from Planck TT+lowP+lensing (which mildly prefers
larger masses), and filled contours show the constraints from
Planck TT+lowP+lensing+BAO.

to break the geometric degeneracy to higher precision. CMB
lensing can also provide additional information at lower red-
shifts, and future high-resolution CMB polarization measure-
ments that accurately reconstruct the lensing potential can probe
much smaller masses (see, e.g. Abazajian et al. 2015b).

As discussed in detail in PCP13 and Sect. 5.1, the Planck
CMB power spectra prefer somewhat more lensing smoothing
than predicted in ΛCDM (allowing the lensing amplitude to vary
gives AL > 1 at just over 2σ). The neutrino mass constraint
from the power spectra is therefore quite tight, since increas-
ing the neutrino mass lowers the predicted smoothing even fur-
ther compared to base ΛCDM. On the other hand the lensing
reconstruction data, which directly probes the lensing power,
prefers lensing amplitudes slightly below (but consistent with)
the base ΛCDM prediction (Eq. 18). The Planck+lensing con-
straint therefore pulls the constraints slightly away from zero to-
wards higher neutrino masses, as shown in Fig. 30. Although the
posterior has less weight at zero, the lensing data are incompati-
ble with very large neutrino masses so the Planck+lensing 95 %
limit is actually tighter than the Planck TT+lowP result:∑

mν < 0.68 eV (95%,Planck TT+lowP+lensing). (55)

Adding the polarization spectra improves this constraint slightly
to∑

mν < 0.59 eV (95%,Planck TT,TE,EE+lowP+lensing).
(56)

We take the combined constraint that further includes BAO,
JLA, and H0 (“ext”) as our best limit:∑

mν < 0.23 eV

Ωνh2 < 0.0025

 95%, Planck TT+lowP+lensing+ext.

(57)
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Fig. 30. Constraints on the sum of the neutrino masses for vari-
ous data combinations.

This is slightly weaker than the constraint from Planck
TT,TE,EE+lowP+lensing+BAO (which is tighter in both the
CamSpec and Plik likelihoods), but is immune to low level sys-
tematics that might affect the constraints from the Planck polar-
ization spectra. Equation (57) is therefore a conservative limit.
Marginalizing over the range of neutrino masses, the Planck con-
straints on the late-time parameters are28

H0 = 67.7 ± 0.6

σ8 = 0.810+0.015
−0.012

 Planck TT+lowP+lensing+ext. (58)

For this restricted range of neutrino masses, the impact on the
other cosmological parameters is small and, in particular, low
values of σ8 will remain in tension with the parameter space
preferred by Planck.

The constraint of Eq. (57) is weaker than the constraint of
Eq. (54b) excluding lensing, but there is no good reason to disre-
gard the Planck lensing information while retaining other astro-
physical data. The CMB lensing signal probes very-nearly lin-
ear scales and passes many consistency checks over the multi-
pole range used in the Planck lensing likelihood (see Sect. 5.1
and Planck Collaboration XV 2016). The situation with galaxy
weak lensing is rather different, as discussed in Sect. 5.5.2. In
addition to possible observational systematics, the weak lensing
data probe lower redshifts than CMB lensing, and smaller spa-
tial scales, where uncertainties in modelling nonlinearities in the
matter power spectrum and baryonic feedback become impor-
tant (Harnois-Déraps et al. 2015).

A larger range of neutrino masses was found by Beutler et al.
(2014) using a combination of RSD, BAO, and weak lens-
ing information. The tension between the RSD results and
base ΛCDM was subsequently reduced following the analysis
of Samushia et al. (2014), as shown in Fig. 17. Galaxy weak
lensing and some cluster constraints remain in tension with base
ΛCDM, and we discuss possible neutrino resolutions of these
problems in Sect. 6.4.4.

28To simplify the displayed equations, H0 is given in units of
km s−1Mpc−1 in this section.
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Fig. 31. Samples from Planck TT+lowP chains in the Neff–H0
plane, colour-coded by σ8. The grey bands show the constraint
H0 = (70.6 ± 3.3) km s−1Mpc−1 of Eq. (30). Notice that higher
Neff brings H0 into better consistency with direct measurements,
but increases σ8. Solid black contours show the constraints from
Planck TT,TE,EE+lowP+BAO. Models with Neff < 3.046 (left
of the solid vertical line) require photon heating after neutrino
decoupling or incomplete thermalization. Dashed vertical lines
correspond to specific fully-thermalized particle models, for ex-
ample one additional massless boson that decoupled around the
same time as the neutrinos (∆Neff ≈ 0.57), or before muon
annihilation (∆Neff ≈ 0.39), or an additional sterile neutrino
that decoupled around the same time as the active neutrinos
(∆Neff ≈ 1).

Another way of potentially improving neutrino mass con-
straints is to use measurements of the Lyα flux power spectrum
of high-redshift quasars. Palanque-Delabrouille et al. (2015)
have recently reported an analysis of a large sample of quasar
spectra from the SDSSIII/BOSS survey. When combining their
results with 2013 Planck data, these authors find a bound

∑
mν <

0.15 eV (95 % CL), compatible with the results presented in this
section.

An exciting future prospect is the possible direct detection
of non-relativistic cosmic neutrinos by capture on tritium, for
example with the PTOLEMY experiment (Cocco et al. 2007;
Betts et al. 2013; Long et al. 2014). Unfortunately, for the mass
range

∑
mν < 0.23 eV preferred by Planck, detection with the

first generation experiment will be extremely difficult.

6.4.2. Constraints on Neff

Dark radiation density in the early Universe is usually parame-
terized by Neff , defined so that the total relativistic energy density
in neutrinos and any other dark radiation is given in terms of the
photon density ργ at T � 1 MeV by

ρ = Neff

7
8

(
4

11

)4/3

ργ. (59)

The numerical factors in this equation are included so that
Neff = 3 for three standard model neutrinos that were thermal-
ized in the early Universe and decoupled well before electron-
positron annihilation. The standard cosmological prediction is
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actually Neff = 3.046, since neutrinos are not completely de-
coupled at electron-positron annihilation and are subsequently
slightly heated (Mangano et al. 2002).

In this section we focus on additional energy density from
massless particles. In addition to massless sterile neutrinos, a va-
riety of other particles could contribute to Neff . We assume that
the additional massless particles are produced well before re-
combination, and neither interact nor decay, so that their energy
density scales with the expansion exactly like massless neutri-
nos. An additional ∆Neff = 1 could correspond to a fully ther-
malized sterile neutrino that decoupled at T <∼ 100 MeV; for ex-
ample, any sterile neutrino with mixing angles large enough to
provide a potential resolution to short-baseline reactor neutrino
oscillation anomalies would most likely thermalize rapidly in the
early Universe. However, this solution to the neutrino oscillation
anomalies requires approximately 1-eV sterile neutrinos, rather
than the massless case considered in this section; exploration of
the two parameters Neff and

∑
mν is reported in Sect. 6.4.3. For

a review of sterile neutrinos see Abazajian et al. (2012).
More generally the additional radiation does not need to be

fully thermalized, for example there are many possible models of
non-thermal radiation production via particle decays (see, e.g.,
Hasenkamp & Kersten 2013; Conlon & Marsh 2013). The radi-
ation could also be produced at temperatures T > 100 MeV,
in which case typically ∆Neff < 1 for each additional species,
since heating by photon production at muon annihilation (cor-
responding to T ≈ 100 MeV) decreases the fractional impor-
tance of the additional component at the later times relevant for
the CMB. For particles produced at T � 100 MeV the den-
sity would be diluted even more by numerous phase transitions
and particle annihilations, and give ∆Neff � 1. Furthermore,
if the particle is not fermionic, the factors entering the entropy
conservation equation are different, and even thermalized par-
ticles could give specific fractional values of ∆Neff . For exam-
ple Weinberg (2013) considers the case of a thermalized mass-
less boson, which contributes ∆Neff = 4/7 ≈ 0.57 if it decouples
in the range 0.5 MeV < T < 100 MeV like the neutrinos, or
∆Neff ≈ 0.39 if it decouples at T > 100 MeV (before the photon
production at muon annihilation, hence undergoing fractional di-
lution).

In this paper we follow the usual phenomenological ap-
proach, where one constrains Neff as a free parameter with a
wide flat prior, although we comment on a few discrete cases
separately below. Values of Neff < 3.046 are less well motivated,
since they would require the standard neutrinos to be incom-
pletely thermalized or additional photon production after neu-
trino decoupling, but we include this range for completeness.

Figure 31 shows that Planck is entirely consistent with the
standard value Neff = 3.046. However, a significant density of
additional radiation is still allowed, with the (68 %) constraints

Neff = 3.13 ± 0.32 Planck TT+lowP, (60a)
Neff = 3.15 ± 0.23 Planck TT+lowP+BAO, (60b)
Neff = 2.99 ± 0.20 Planck TT,TE,EE+lowP, (60c)
Neff = 3.04 ± 0.18 Planck TT,TE,EE+lowP+BAO. (60d)

Notice the significantly tighter constraint with the inclusion of
Planck high-` polarization, with ∆Neff < 1 at over 4σ from
Planck alone. This constraint is not very stable between like-
lihoods, with the CamSpec likelihood giving a roughly 0.8σ
lower value of Neff . However, the strong limit from polarization
is also consistent with the joint Planck TT+lowP+BAO result,
so Eq. (60b) leads to the robust conclusion that ∆Neff < 1 at over

3σ. The addition of Planck lensing has very little effect on this
constraint.

For Neff > 3, the Planck data favour higher values of the
Hubble parameter than the Planck base ΛCDM value, which as
discussed in Sect. 5.4 may be in better agreement with some
direct measurements of H0 . This is because Planck accurately
measures the acoustic scale r∗/DA; increasing Neff means (via
the Friedmann equation) that the early Universe expands faster,
so the sound horizon at recombination, r∗, is smaller and hence
recombination has to be closer (larger H0 and hence smaller
DA) for it to subtend the same angular size observed by Planck.
However, models with Neff > 3 and a higher Hubble constant
also have higher values of the fluctuation amplitudeσ8, as shown
by the coloured samples in Fig. 31. As a result, these models in-
crease the tensions between the CMB measurements and astro-
physical measurements of σ8 discussed in Sect. 5.6. It therefore
seems unlikely that additional radiation alone can help to resolve
tensions with large-scale structure data.

The energy density in the early Universe can also be probed
by the predictions of BBN. In particular ∆Neff > 0 increases
the primordial expansion rate, leading to earlier freeze-out, with
a higher neutron density and hence a greater abundance of he-
lium and deuterium after BBN has completed. A detailed discus-
sion of the implications of Planck for BBN is given in Sect. 6.5.
Observations of both the primordial helium and deuterium abun-
dance are compatible with the predictions of standard BBN
for the Planck base ΛCDM value of the baryon density. The
Planck+BBN constraints on Neff (Eqs. 75 and 76) are compati-
ble, and slightly tighter than Eq. (60b).

Although there is a large continuous range of plausible Neff

values, it is worth mentioning briefly a few of the discrete values
from fully thermalized models. This serves as an indication of
how strongly Planck prefers base ΛCDM, and also how the in-
ferred values of other cosmological parameters might be affected
by this particular extension to base ΛCDM. As discussed above,
one fully thermalized neutrino (∆Neff ≈ 1) is ruled out at over
3σ, and is disfavoured by ∆χ2 ≈ 8 compared to base ΛCDM by
Planck TT+lowP, and much more strongly in combination with
Planck high-` polarization or BAO data. The thermalized boson
models that give ∆Neff = 0.39 or ∆Neff = 0.57 are disfavoured
by ∆χ2 ≈ 1.5 and ∆χ2 ≈ 3, respectively, and are therefore not
strongly excluded. We focus on the former, since it is also consis-
tent with the Planck TT+lowP+BAO constraint at 2σ. As shown
in Fig. 31, larger Neff corresponds to a region of parameter space
with significantly higher Hubble parameter,

H0 = 70.6±1.0 (68%,Planck TT+lowP; ∆Neff = 0.39). (61)

This can be compared to the direct measurements of H0 dis-
cussed in Sect. 5.4. Evidently, Eq. (61) is consistent with the
H0 prior adopted in this paper (Eq. 30), but this example shows
that an accurate direct measurement of H0 can potentially pro-
vide evidence for new physics beyond that probed by Planck. As
shown in Fig. 31, the ∆Neff = 0.39 cosmology also has a signif-
icantly higher small-scale fluctuation amplitude and the spectral
index ns is also bluer, with

σ8 = 0.850 ± 0.015
ns = 0.983 ± 0.006

}
Planck TT+lowP; ∆Neff = 0.39. (62)

Theσ8 range in this model is higher than preferred by the Planck
lensing likelihood in base ΛCDM. However, the fit to the Planck
lensing likelihood is model dependent and the lensing degener-
acy direction also associates high H0 and low Ωm values with
higher σ8. The joint Planck TT+lowP+lensing constraint does
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Fig. 32. Samples from Planck TT+lowP in the Neff–meff
ν, sterile

plane, colour-coded by σ8, for models with one massive ster-
ile neutrino family, with effective mass meff

ν, sterile, and the three
active neutrinos as in the base ΛCDM model. The physical mass
of the sterile neutrino in the thermal scenario, mthermal

sterile , is con-
stant along the grey dashed lines, with the indicated mass in
eV; the grey shading shows the region excluded by our prior
mthermal

sterile < 10 eV, which cuts out most of the area where the neu-
trinos behave nearly like dark matter. The physical mass in the
Dodelson-Widrow scenario, mDW

sterile, is constant along the dotted
lines (with the value indicated on the adjacent dashed lines).

pull σ8 down slightly to σ8 = 0.84 ± 0.01 and provides an ac-
ceptable fit to the Planck data. For Planck TT+lowP+lensing,
the difference in χ2 between the best fit base ΛCDM model and
the extension with ∆Neff = 0.39 is only ∆χ2

CMB ≈ 2. The higher
spectral index with ∆Neff = 0.39 gives a decrease in large-scale
power, fitting the low ` < 30 Planck TT spectrum better by
∆χ2 ≈ 1, but at the same time the high-` data prefer ∆Neff ≈ 0.
Correlations with other cosmological parameters can be seen
in Fig. 20. Clearly, a very effective way of testing these mod-
els would be to obtain reliable, accurate, astrophysical measure-
ments of H0 and σ8.

In summary, models with ∆Neff = 1 are disfavoured by
Planck combined with BAO data at about the 3σ level. Models
with fractional changes of ∆Neff ≈ 0.39 are mildly disfavoured
by Planck, but require higher H0 and σ8 compared to base
ΛCDM.

6.4.3. Simultaneous constraints on Neff and neutrino mass

As discussed in the previous sections, neither a higher neu-
trino mass nor additional radiation density alone can resolve
all of the tensions between Planck and other astrophysical data.
However, the presence of additional massive particles, such as
massive sterile neutrinos, could potentially improve the situa-
tion by introducing enough freedom to allow higher values of
the Hubble constant and lower values of σ8. As mentioned
in Sect. 6.4.2, massive sterile neutrinos offer a possible solu-
tion to reactor neutrino oscillation anomalies (Kopp et al. 2013;
Giunti et al. 2013) and this has led to significant recent in-
terest in this class of models (Hamann & Hasenkamp 2013;
Wyman et al. 2014; Battye & Moss 2014; Leistedt et al. 2014;

Bergström et al. 2014; MacCrann et al. 2015). Alternatively, ac-
tive neutrinos could have significant degenerate masses above
the minimal baseline value together with additional massless
particles contributing to Neff . Many more complicated scenarios
could also be envisaged.

In the case of massless radiation density, the cosmological
predictions are independent of the actual form of the distribu-
tion function, since all particles travel at the speed of light.
However, for massive particles the results are more model de-
pendent. To formulate a well-defined model, we follow PCP13
and consider the case of one massive sterile neutrino parameter-
ized by meff

ν, sterile ≡ (94.1 Ων,sterileh2) eV, in addition to the two
approximately massless and one massive neutrino of the base-
line model. For thermally-distributed sterile neutrinos, meff

ν, sterile
is related to the true mass via

meff
ν, sterile = (Ts/Tν)3mthermal

sterile = (∆Neff)3/4mthermal
sterile , (63)

and for the cosmologically-equivalent Dodelson-Widrow (DW)
case (Dodelson & Widrow 1994) the relation is given by

meff
ν, sterile = χs mDW

sterile , (64)

with ∆Neff = χs. We impose a prior on the physical thermal
mass, mthermal

sterile < 10 eV, when generating parameter chains, to
exclude regions of parameter space in which the particles are
so massive that their effect on the CMB spectra is identical to
that of cold dark matter. Although we consider only the specific
case of one massive sterile neutrino with a thermal (or DW) dis-
tribution, our constraints will be reasonably accurate for other
models, for example eV-mass particles produced as non-thermal
decay products (Hasenkamp 2014).

Figure 32 shows that although Planck is perfectly consistent
with no massive sterile neutrinos, a significant region of param-
eter space with fractional ∆Neff is allowed, where σ8 is lower
than in the base ΛCDM model. This is also the case for massless
sterile neutrinos combined with massive active neutrinos. In the
single massive sterile model, the combined constraints are

Neff < 3.7

meff
ν, sterile < 0.52 eV

 95%, Planck TT+lowP+lensing+BAO.

(65)
The upper tail of meff

ν, sterile is largely associated with high physical
masses near to the prior cutoff; if instead we restrict to the region
where mthermal

sterile < 2 eV the constraint is

Neff < 3.7

meff
ν, sterile < 0.38 eV

 95%, Planck TT+lowP+lensing+BAO.

(66)
Massive sterile neutrinos with mixing angles large enough to
help resolve the reactor anomalies would typically imply full
thermalization in the early Universe, and hence give ∆Neff = 1
for each additional species. Such a high value of Neff , espe-
cially combined with msterile ≈ 1 eV, as required by reactor
anomaly solutions, were virtually ruled out by previous cos-
mological data (Mirizzi et al. 2013; Archidiacono et al. 2013a;
Gariazzo et al. 2013). This conclusion is strengthened by the
analysis presented here, since Neff = 4 is excluded at greater
than 99 % confidence. Unfortunately, there does not appear to be
a consistent resolution to the reactor anomalies, unless thermal-
ization of the massive neutrinos can be suppressed, for example,
by large lepton asymmetry, new interactions, or particle decay
(see Gariazzo et al. 2014; Bergström et al. 2014, and references
therein).
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Fig. 33. 68 % and 95 % constraints from Planck TT+lowP (green), Planck TT+lowP+lensing (grey), and Planck
TT+lowP+lensing+BAO (red) on the late-Universe parameters H0, σ8, and Ωm in various neutrino extensions of the base ΛCDM
model. The blue contours show the base ΛCDM constraints from Planck TT+lowP+lensing+BAO. The dashed cyan contours
show joint constraints from the H13 CFHTLenS galaxy weak lensing likelihood (with angular cuts as in Fig. 18) at constant CMB
acoustic scale θMC (fixed to the Planck TT+lowP ΛCDM best fit) combined with BAO and the Hubble constant measurement of
Eq. (30). These additional constraints break large parameter degeneracies in the weak lensing likelihood that would otherwise ob-
scure the comparison with the Planck contours. Here priors on other parameters applied to the CFHTLenS analysis are as described
in Sect. 5.5.2.

We have also considered the case of additional radiation and
degenerate massive active neutrinos, with the combined con-
straint

Neff = 3.2 ± 0.5∑
mν < 0.32 eV

 95%, Planck TT+lowP+lensing+BAO.

(67)
Again Planck shows no evidence for a deviation from the base
ΛCDM model.

6.4.4. Neutrino models and tension with external data

The extended models discussed in this section allow Planck to be
consistent with a wider range of late-Universe parameters than in
base ΛCDM. Figure 33 summarizes the constraints on Ωm, σ8,
and H0 for the various models that we have considered. The in-
ferred Hubble parameter can increase or decrease, as required to
maintain the observed acoustic scale, depending on the relative
contribution of additional radiation (changing the sound hori-
zon) and neutrino mass (changing mainly the angular diameter
distance). However, all of the models follow similar degeneracy
directions in the Ωm–σ8 and H0–σ8 planes, so these models re-
main predictive: large common areas of the parameter space are
excluded in all of these models. The two-parameter extensions
are required to fit substantially lower values of σ8 without also
decreasing H0 below the values determined from direct measure-
ments, but the scope for doing this is clearly limited.

External data sets need to be reanalysed consistently in ex-
tended models, since the extensions change the growth of struc-
ture, angular distances, and the matter-radiation equality scale.

For example, the dashed lines in Fig. 33 show how different
models affect the CFHTLenS galaxy weak lensing constraints
from Heymans et al. (2013) (see Sect. 5.5.2), when restricted
to the region of parameter space consistent with the Planck
acoustic scale measurements and the local Hubble parameter.
The filled green, grey, and red contours in Fig. 33 show the
CMB constraints on these models for various data combina-
tions. The tightest of these constraints comes from the Planck
TT+lowP+lensing+BAO combination. The blue contours show
the constraints in the base ΛCDM cosmology. The red contours
are broader than the blue contours and there is greater overlap
with the CFHTLenS contours, but this offers only a marginal
improvement compared to base ΛCDM (compare with Fig. 18;
see also the discussions in Leistedt et al. 2014 and Battye et al.
2015). For each of these models, the CFHTLenS results prefer
lower values of σ8. Allowing for a higher neutrino mass low-
ers σ8 from Planck, but does not help alleviate the discrepancy
with the CFHTLenS data, since the Planck data prefer a lower
value of H0. A joint analysis of the CFHTLenS likelihood with
Planck TT+lowP shows a ∆χ2 < 1 preference for the extended
neutrino models compared to base ΛCDM, and the fits to Planck
TT+lowP are worse in all cases. In base ΛCDM the CFHTLenS
data prefer a region of parameter space ∆χ2 ≈ 4 away from the
Planck TT+lowP+CFHTLenS joint fit, indicative of the tension
between the data sets. This is only slightly relieved to ∆χ2 ≈ 3
in the extended models.

In summary, modifications to the neutrino sector alone can-
not easily explain the discrepancies between Planck and other
astrophysical data described in Sect. 5.5, including the inference
of a low value of σ8 from rich cluster counts.
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6.4.5. Testing perturbations in the neutrino background

As shown in the previous sections, the Planck data provide ev-
idence for a cosmic neutrino background at a very high signifi-
cance level. Neutrinos affect the CMB anisotropies at the back-
ground level, by changing the expansion rate before recombina-
tion and hence relevant quantities such as the sound horizon and
the damping scales. Neutrinos also affect the CMB anisotropies
via their perturbations. Perturbations in the neutrino background
are coupled through gravity to the perturbations in the pho-
ton background, and can be described (for massless neutrinos)
by the following set of equations (Hu 1998; Hu et al. 1999;
Trotta & Melchiorri 2005; Archidiacono et al. 2011):

δ̇ν =
ȧ
a

(
1 − 3c2

eff

) (
δν + 3

ȧ
a

qν
k

)
− k

(
qν +

2
3k

ḣ
)

; (68a)

q̇ν = k c2
eff

(
δν + 3

ȧ
a

qν
k

)
−

ȧ
a

qν −
2
3

kπν ; (68b)

π̇ν = 3k c2
vis

(
2
5

qν +
4

15k
(ḣ + 6η̇)

)
−

3
5

kFν,3 ; (68c)

Ḟν,` =
k

2` + 1
(
`Fν,`−1 − (` + 1) Fν,`+1

)
, (` ≥ 3) . (68d)

Here dots denote derivatives with respect to conformal time, δν
is the neutrino density contrast, qν is the neutrino velocity pertur-
bation, πν the anisotropic stress, Fν,` are higher-order moments
of the neutrino distribution function, and h and η are the scalar
metric perturbations in the synchronous gauge. In these equa-
tions, c2

eff
is the neutrino sound speed in its own reference frame

and c2
vis parameterizes the anisotropic stress. For standard non-

interacting massless neutrinos c2
eff

= c2
vis = 1/3. Any deviation

from the expected values could provide a hint of non-standard
physics in the neutrino sector.

A greater (lower) neutrino sound speed would increase (de-
crease) the neutrino pressure, leading to a lower (higher) per-
turbation amplitude. On the other hand, changing c2

vis alters the
viscosity of the neutrino fluid. For c2

vis = 0, the neutrinos act as
a perfect fluid, supporting undamped acoustic oscillations.

Several previous studies have used this approach to
constrain c2

eff
and c2

vis using cosmological data (see, e.g.,
Trotta & Melchiorri 2005; Smith et al. 2012; Archidiacono et al.
2013b; Gerbino et al. 2013; Audren et al. 2015), with the moti-
vation that deviations from the expected values could be a hint
of non-standard physics in the neutrino sector. Non-standard in-
teractions could involve, for example, neutrino coupling with
light scalar particles (Hannestad 2005; Beacom et al. 2004; Bell
2005; Sawyer 2006). If neutrinos are strongly coupled at recom-
bination, this would result in a lower value for c2

vis than in the
standard model. Alternatively, the presence of early dark en-
ergy that mimics a relativistic component at recombination could
possibly lead to a value for c2

eff
that differs from 1/3 (see, e.g.,

Calabrese et al. 2011).
In this analysis, for simplicity, we assume Neff = 3.046 and

massless neutrinos. By using an equivalent parameterization for
massive neutrinos (Audren et al. 2015) we have checked that as-
suming one massive neutrino with Σmν ≈ 0.06 eV, as in the base
model used throughout this paper, has no impact on the con-
straints on c2

eff
and c2

vis reported in this section.29 We adopt a flat
prior between zero and unity for both c2

vis and c2
eff

.

29We also do not explore extended cosmologies in this section,
since no significant degeneracies are expected between (

∑
mν, Neff , w,

dns/d ln k) and (c2
eff

, c2
vis) (Audren et al. 2015).
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Fig. 34. 1D posterior distributions for the neutrino perturbation param-
eters c2

eff
(top) and c2

vis (bottom). Dashed vertical lines indicate the con-
ventional values c2

eff
= c2

vis = 1/3.

The top and bottom panels of Fig. 34 show the pos-
terior distributions of c2

eff
and c2

vis from Planck TT+lowP,
Planck TT+lowP+BAO, Planck TT,TE,EE+lowP, and Planck
TT,TE,EE+lowP+BAO. The mean values and 68 % errors on c2

eff

and c2
vis are

c2
eff = 0.312 ± 0.011

c2
vis = 0.47+0.26

−0.12

 Planck TT+lowP,

(69a)
c2

eff = 0.316 ± 0.010

c2
vis = 0.44+0.15

−0.10

 Planck TT+lowP+BAO,

(69b)
c2

eff = 0.3240 ± 0.0060

c2
vis = 0.327 ± 0.037

 Planck TT,TE,EE+lowP,

(69c)
c2

eff = 0.3242 ± 0.0059

c2
vis = 0.331 ± 0.037

 Planck TT,TE,EE+lowP+BAO.

(69d)
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Constraints on these parameters are consistent with the con-
ventional values c2

eff
= c2

vis = 1/3. A vanishing value of c2
vis,

which might imply a strong interaction between neutrinos and
other species, is excluded at more than the 95 % level arising
from the Planck temperature data. This conclusion is greatly
strengthened (to about 9σ) when Planck polarization data are
included. As discussed in Bashinsky & Seljak (2004), neutrino
anisotropic stresses introduce a phase shift in the CMB angular
power spectra, which is more visible in polarization than temper-
ature because of the sharper acoustic peaks. This explains why
we see such a dramatic reduction in the error on c2

vis when in-
cluding polarization data.

The precision of our results is consistent with the forecasts
discussed in Smith et al. (2012), and we find strong evidence,
purely from CMB observations, for neutrino anisotropies with
the standard values c2

vis = 1/3 and c2
eff

= 1/3.

6.5. Primordial nucleosynthesis

6.5.1. Details of analysis approach

Standard big bang nucleosynthesis (BBN) predicts light element
abundances as a function of parameters relevant to the CMB,
such as the baryon-to-photon density ratio ηb ≡ nb/nγ, the radi-
ation density parameterized by Neff , and the chemical potential
of the electron neutrinos. In PCP13, we presented consistency
checks between the Planck 2013 results, light element abun-
dance data, and standard BBN. The goal of Sect. 6.5.2 below
is to update these results and to provide improved tests of the
standard BBN model. In Sect. 6.5.3 we show how Planck data
can be used to constrain nuclear reaction rates, and in Sect. 6.5.4
we will present the most stringent CMB bounds to date on the
primordial helium fraction.

For simplicity, our analysis assumes a negligible leptonic
asymmetry in the electron neutrino sector. For a fixed photon
temperature today (which we take to be T0 = 2.7255 K), ηb can
be related to ωb ≡ Ωbh2, up to a small (and negligible) uncer-
tainty associated with the primordial helium fraction. Standard
BBN then predicts the abundance of each light element as a func-
tion of only two parameters, ωb and ∆Neff ≡ Neff − 3.046, with
a theoretical error coming mainly from uncertainties in the neu-
tron lifetime and a few nuclear reaction rates.

We will confine our discussion to BBN predictions for the
primordial abundances30 of 4He and deuterium, expressed, re-
spectively as YBBN

P = 4nHe/nb and yDP = 105nD/nH. We will
not discuss other light elements, such as tritium and lithium, be-
cause the observed abundance measurements and their interpre-
tation is more controversial (see Fields et al. 2014, for a recent
review). As in PCP13, the BBN predictions for YBBN

P (ωb,∆Neff)
and yDP(ωb,∆Neff) are given by Taylor expansions obtained with
the PArthENoPE code (Pisanti et al. 2008), similar to the ones
presented in Iocco et al. (2009), but updated by the PArthENoPE
team with the latest observational data on nuclear rates and on

30BBN calculations usually refer to nucleon number density frac-
tions rather than mass fractions. To avoid any ambiguity with the helium
mass fraction YP, normally used in CMB physics, we use superscripts
to distinguish between the two definitions YCMB

P and YBBN
P . Typically,

YBBN
P is about 0.5 % higher than YCMB

P .
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Fig. 35. Predictions of standard BBN for the primordial abun-
dance of 4He (top) and deuterium (bottom), as a function of the
baryon density ωb. The width of the green stripes corresponds
to 68 % uncertainties on nuclear reaction rates and on the neu-
tron lifetime. The horizontal bands show observational bounds
on primordial element abundances compiled by various authors,
and the red vertical band shows the Planck TT+lowP+BAO
bounds on ωb (all with 68 % errors). The BBN predictions and
CMB results shown here assume Neff = 3.046 and no significant
lepton asymmetry.

the neutron life-time:

YBBN
P = 0.2311 + 0.9502ωb − 11.27ω2

b

+ ∆Neff

(
0.01356 + 0.008581ωb − 0.1810ω2

b

)
+ ∆N2

eff

(
−0.0009795 − 0.001370ωb + 0.01746ω2

b

)
;

(70)

yDP = 18.754 − 1534.4ωb + 48656ω2
b − 552670ω3

b

+ ∆Neff

(
2.4914 − 208.11ωb + 6760.9ω2

b − 78007ω3
b

)
+ ∆N2

eff

(
0.012907 − 1.3653ωb + 37.388ω2

b − 267.78ω3
b

)
.

(71)

By averaging over several measurements, the Particle Data
Group 2014 (Olive et al. 2014) estimates the neutron life-time
to be τn = (880.3 ± 1.1) s at 68 % CL.31 The expansions in
Eqs. (70) and (71) are based on this central value, and we as-
sume that Eq. (70) predicts the correct helium fraction up to a
standard error σ(YBBN

P ) = 0.0003, obtained by propagating the
error on τn.

The uncertainty on the deuterium fraction is dominated by
that on the rate of the reaction d(p, γ)3He. For that rate, in
PCP13 we relied on the result of Serpico et al. (2004), obtained
by fitting several experiments. The expansions of Eqs. (70)
and (71) now adopt the latest experimental determination by
Adelberger et al. (2011) and use the best-fit expression in their

31However, the most recent individual measurement by Yue et al.
(2013) gives τn = [887.8 ± 1.2 (stat.) ± 1.9 (syst.)] s, which is dis-
crepant at 3.3σ with the previous average (including only statistical
errors). Hence one should bear in mind that systematic effects could be
underestimated in the Particle Data Group result. Adopting the central
value of Yue et al. (2013) would shift our results by a small amount (by
a factor of 1.0062 for YP and 1.0036 for yDP).
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equation (29). We also rely on the uncertainty quoted in
Adelberger et al. (2011) and propagate it to the deuterium frac-
tion. This gives a standard error σ(yDP) = 0.06, which is more
conservative than the error adopted in PCP13.

6.5.2. Primordial abundances from Planck data and
standard BBN

We first investigate the consistency of standard BBN and the
CMB by fixing the radiation density to its standard value, i.e.,
Neff = 3.046, based on the assumption of standard neutrino
decoupling and no extra light relics. We can then use Planck
data to measure ωb, assuming base ΛCDM, and test for consis-
tency with experimental abundance measurements. The 95 % CL
bounds obtained for the base ΛCDM model for various data
combinations are

ωb =


0.02222+0.00045

−0.00043 Planck TT+lowP,

0.02226+0.00040
−0.00039 Planck TT+lowP+BAO,

0.02225+0.00032
−0.00030 Planck TT,TE,EE+lowP,

0.02229+0.00029
−0.00027 Planck TT,TE,EE+lowP+BAO,

(72)
corresponding to a predicted primordial 4He number density
fraction (95 % CL) of

YBBN
P =


0.24665+(0.00020) 0.00063

−(0.00019) 0.00063 Planck TT+lowP,

0.24667+(0.00018) 0.00063
−(0.00018) 0.00063 Planck TT+lowP+BAO,

0.24667+(0.00014) 0.00062
−(0.00014) 0.00062 Planck TT,TE,EE+lowP,

0.24668+(0.00013) 0.00061
−(0.00013) 0.00061 Planck TT,TE,EE+lowP+BAO,

(73)
and deuterium fraction (95 % CL)

yDP =


2.620+(0.083) 0.15

−(0.085) 0.15 Planck TT+lowP,

2.612+(0.075) 0.14
−(0.074) 0.14 Planck TT+lowP+BAO,

2.614+(0.057) 0.13
−(0.060) 0.13 Planck TT,TE,EE+lowP,

2.606+(0.051) 0.13
−(0.054) 0.13 Planck TT,TE,EE+lowP+BAO.

(74)
The first set of error bars (in parentheses) in Eqs. (73) and (74)
reflect only the uncertainty on ωb. The second set includes the
theoretical uncertainty on the BBN predictions, added in quadra-
ture to the errors from ωb. The total errors in the predicted he-
lium abundances are dominated by the BBN uncertainty, as in
PCP13. For deuterium, the Planck 2015 results improve the de-
termination of ωb to the point where the theoretical errors are
comparable or larger than the errors from the CMB. In other
words, for base ΛCDM the predicted abundances cannot be im-
proved substantially by further measurements of the CMB. This
also means that Planck results can, in principle, be used to in-
vestigate nuclear reaction rates that dominate the theoretical un-
certainty (see Sect. 6.5.3).

The results of Eqs. (73) and (74) are well within the
ranges indicated by the latest measurements of primordial abun-
dances, as illustrated in Fig. 35. The helium data compilation
of Aver et al. (2013) gives YBBN

P = 0.2465 ± 0.0097 (68 % CL),
and the Planck prediction is near the middle of this range.32 As

32A substantial part of this error comes from the regression to zero
metallicity. The mean of the 17 measurements analysed by Aver et al.
(2013) is 〈YBBN

P 〉 = 0.2535 ± 0.0036, i.e., about 1.7σ higher than the
Planck predictions of Eq. (73).
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Fig. 36. Constraints in the ωb–Neff plane from Planck and
Planck+BAO data (68 % and 95 % contours) compared to the
predictions of BBN, given primordial element abundance mea-
surements. We show the 68 % and 95 % confidence regions de-
rived from 4He bounds compiled by Aver et al. (2013) and from
deuterium bounds compiled by Cooke et al. (2014). In the CMB
analysis, Neff is allowed to vary as an additional parameter to
base ΛCDM, with YP fixed as a function of ωb and Neff , accord-
ing to BBN predictions. These constraints assume no significant
lepton asymmetry.

summarized by Aver et al. (2013) and Peimbert (2008), helium
abundance measurements derived from emission lines in low-
metallicity H ii regions are notoriously difficult and prone to sys-
tematic errors. As a result, many discrepant helium abundance
measurements can be found in the literature. Izotov et al. (2014)
have reported YBBN

P = 0.2551± 0.0022, which is discrepant with
the base ΛCDM predictions by 3.4σ. Such a high helium frac-
tion could be accommodated by increasing Neff (see Fig. 36 and
Sect. 6.5.4); however, at present it is not clear whether the er-
ror quoted by Izotov et al. (2014) accurately reflects systematic
uncertainties, including in particular the error in extrapolating to
zero metallicity.

Historically, deuterium abundance measurements have
shown excess scatter over that expected from statistical errors,
indicating the presence of systematic uncertainties in the ob-
servations. Figure 35 shows the data compilation of Iocco et al.
(2009), yDP = 2.87 ± 0.22 (68 % CL), which includes mea-
surements based on damped Lyα and Lyman limit systems.
We also show the more recent results by Cooke et al. (2014)
(see also Pettini & Cooke 2012) based on their observations of
low-metallicity damped Lyα absorption systems in two quasars
(SDSS J1358+6522, zabs = 3.06726 and SDSS J1419+0829,
zabs = 3.04973) and a reanalysis of archival spectra of damped
Lyα systems in three further quasars that satisfy strict selection
criteria. The Cooke et al. (2014) analysis gives yDP = 2.53±0.04
(68 % CL), somewhat lower than the central Iocco et al. (2009)
value, and with a much smaller error. The Cooke et al. (2014)
value is almost certainly the more reliable measurement, as ev-
idenced by the consistency of the deuterium abundances of the
five systems in their analysis. The Planck base ΛCDM predic-
tions of Eq. (74) lie within 1σ of the Cooke et al. (2014) result.
This is a remarkable success for the standard theory of BBN.
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It is worth noting that the Planck data are so accurate that ωb
is insensitive to the underlying cosmological model. In our grid
of extensions to base ΛCDM the largest degradation of the error
in ωb is in models that allow Neff to vary. In these models, the
mean value of ωb is almost identical to that for base ΛCDM, but
the error on ωb increases by about 30 %. The value of ωb is sta-
ble to even more radical changes to the cosmology, for example,
adding general isocurvature modes (Planck Collaboration XX
2016).

If we relax the assumption that Neff = 3.046 (but adhere
to the hypothesis that electron neutrinos have a standard distri-
bution, with a negligible chemical potential), BBN predictions
depend on both parameters (ωb and Neff . Following the same
methodology as in Sect. 6.4.4 of PCP13, we can identify the re-
gion of the ωb–Neff parameter space that is compatible with di-
rect measurements of the primordial helium and deuterium abun-
dances, including the BBN theoretical errors. This is illustrated
in Fig. 36 for the Neff extension to base ΛCDM. The region pre-
ferred by CMB observations lies at the intersection between the
helium and deuterium abundance 68 % CL preferred regions and
is compatible with the standard value of Neff = 3.046. This con-
firms the beautiful agreement between CMB and BBN physics.
Figure 36 also shows that the Planck polarization data help in
reducing the degeneracy between ωb and Neff .

We can actually make a more precise statement by combin-
ing the posterior distribution on ωb and Neff) obtained for Planck
with that inferred from helium and deuterium abundance, in-
cluding observational and theoretical errors. This provides joint
CMB+BBN predictions on these parameters. After marginaliz-
ing over ωb, the 95 % CL preferred ranges for Neff are

Neff =


3.11+0.59

−0.57 He+Planck TT+lowP,

3.14+0.44
−0.43 He+Planck TT+lowP+BAO,

2.99+0.39
−0.39 He+Planck TT,TE,EE+lowP,

(75)

when combining Planck with the helium abundance estimated
by Aver et al. (2013), or

Neff =


2.95+0.52

−0.52 D+Planck TT+lowP,

3.01+0.38
−0.37 D+Planck TT+lowP+BAO,

2.91+0.37
−0.37 D+Planck TT,TE,EE+lowP,

(76)

when combining with the deuterium abundance measured
by Cooke et al. (2014). These bounds represent the best
currently-available estimates of Neff and are remarkably consis-
tent with the standard model prediction.

The allowed region in ωb–Neff space does not increase sig-
nificantly when other parameters are allowed to vary at the same
time. From our grid of extended models, we have checked that
this conclusion holds in models with neutrino masses, tensor
fluctuations, or running of the scalar spectral index, for exam-
ple.

6.5.3. Constraints from Planck and deuterium observations
on nuclear reaction rates

We have seen that primordial element abundances estimated
from direct observations are consistent with those inferred from
Planck data under the assumption of standard BBN. However,
the Planck determination of ωb is so precise that the theoreti-
cal errors in the BBN predictions are now a dominant source
of uncertainty. As noted by Cooke et al. (2014), one can begin
to think about using CMB measurements together with accurate

deuterium abundance measurements to learn about the underly-
ing BBN physics.

While for helium the theoretical error comes mainly from
the uncertainties in the neutron lifetime, for deuterium it is
dominated by uncertainties in the radiative capture process
d(p, γ)3He, converting deuterium into helium. The present ex-
perimental uncertainty for the S -factor at low energy (relevant
for BBN), is in the range 6–10 % (Ma et al. 1997). However,
as noted by several authors (see, e.g., Nollett & Holder 2011;
Di Valentino et al. 2014) the best-fit value of S (E) inferred from
experimental data in the range 30 keV≤ E ≤ 300 keV is about
5–10 % lower than theoretical expectations (Viviani et al. 2000;
Marcucci et al. 2005). The PArthENoPE BBN code assumes the
lower experimental value for d(p, γ)3He, and this might explain
why the deuterium abundance determined by Cooke et al. (2014)
is slightly lower than the value inferred by Planck.

To investigate this further, following the methodology of
Di Valentino et al. (2014), we perform a combined analysis of
Planck and deuterium observations, to constrain the value of the
d(p, γ)3He reaction rate. As in Di Valentino et al. (2014), we pa-
rameterize the thermal rate R2(T ) of the d(p, γ)3He process in
the PArthENoPE code by introducing a rescaling factor A2 of
the experimental rate R ex

2 (T ), i.e., R2(T ) = A2 Rex
2 (T ), and solve

for A2 using various Planck+BAO data combinations, given the
Cooke et al. (2014) deuterium abundance measurements.

Assuming the base ΛCDM model we find (68 % CL)

A2 = 1.106 ± 0.071 Planck TT+lowP , (77a)
A2 = 1.098 ± 0.067 Planck TT+lowP+BAO , (77b)
A2 = 1.110 ± 0.062 Planck TT,TE,EE+lowP , (77c)
A2 = 1.109 ± 0.058 Planck TT,TE,EE+lowP+BAO . (77d)

The posteriors for A2 are shown in Fig. 37. These results sug-
gest that the d(p, γ)3He reaction rate may be have been under-
estimated by about 10 %. Evidently, tests of the standard BBN
picture appear to have reached the point where they are limited
by uncertainties in nuclear reaction rates. There is therefore a
strong case to improve the precision of experimental measure-
ments (e.g., Anders et al. 2014) and theoretical computations of
key nuclear reaction rates relevant for BBN.

6.5.4. Model-independent bounds on the helium fraction
from Planck

Instead of inferring the primordial helium abundance from BBN
codes using (ωb,Neff) constraints from Planck, we can measure it
directly, since variations in YBBN

P modify the density of free elec-
trons between helium and hydrogen recombination and therefore
affect the damping tail of the CMB anisotropies.

If we allow YCMB
P to vary as an additional parameter to base

ΛCDM, we find the following constraints (at 95 % CL):

YBBN
P =


0.253+0.041

−0.042 Planck TT+lowP ;

0.255+0.036
−0.038 Planck TT+lowP+BAO ;

0.251+0.026
−0.027 Planck TT,TE,EE+lowP ;

0.253+0.025
−0.026 Planck TT,TE,EE+lowP+BAO .

(78)
Joint constraints on YBBN

P and ωb are shown in Fig. 38. The
addition of Planck polarization measurements results in a sub-
stantial reduction in the uncertainty on the helium fraction.
In fact, the standard deviation on YBBN

P in the case of Planck
TT,TE,EE+lowP is only 30 % larger than the observational er-
ror quoted by Aver et al. (2013). As emphasized throughout this
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Fig. 37. Posteriors for the A2 reaction rate parameter for vari-
ous data combinations. The vertical dashed line shows the value
A2 = 1 that corresponds to the current experimental estimate of
the d(p, γ)3He rate used in the PArthENoPE BBN code.

0.020 0.022 0.024 0.026
ωb

0.
15

0.
20

0.
25

0.
30

0.
35

Y
B

B
N

P

Aver et al. (2013)

Excluded by

Serenelli & Basu (2010)

Standard BBN

Planck TT+lowP

Planck TT+lowP+BAO

Planck TT,TE,EE+lowP

Fig. 38. Constraints in the ωb–YBBN
P plane from Planck and

Planck+BAO, compared to helium abundance measurements.
Here 68 % and 95 % contours are plotted for the CMB(+BAO)
data combinations when YBBN

P is allowed to vary as an additional
parameter to base ΛCDM. The horizontal band shows observa-
tional bounds on 4He compiled by Aver et al. (2013) with 68 %
and 95 % errors, while the dashed line at the top of the figure
delineates the conservative 95 % upper bound inferred from the
Solar helium abundance by Serenelli & Basu (2010). The green
stripe shows the predictions of standard BBN for the primordial
abundance of 4He as a function of the baryon density. Both BBN
predictions and CMB results assume Neff = 3.046 and no signif-
icant lepton asymmetry.

paper, the systematic effects in the Planck polarization spectra,
although at low levels, have not been accurately characterized
at this time. Readers should therefore treat the polarization con-
straints with some caution. Nevertheless, as shown in Fig. 38,
all three data combinations agree well with the observed helium
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Fig. 39. As in Fig. 38, but now allowing YBBN
P and Neff to vary as

parameter extensions to base ΛCDM.

abundance measurements and with the predictions of standard
BBN.

There is a well-known parameter degeneracy between YP
and the radiation density (see the discussion in PCP13). Helium
abundance predictions from the CMB are therefore particularly
sensitive to the addition of the parameter Neff to base ΛCDM.
Allowing both YBBN

P and Neff to vary we find the following con-
straints (at 95 % CL):

YBBN
P =


0.252+0.058

−0.065 Planck TT+lowP ;

0.251+0.058
−0.064 Planck TT+lowP+BAO ;

0.263+0.034
−0.037 Planck TT,TE,EE+lowP ;

0.262+0.035
−0.037 Planck TT,TE,EE+lowP+BAO .

(79)
Contours in the YBBN

P –Neff plane are shown in Fig. 39. Here
again, the impact of Planck polarization data is important, and
helps to substantially reduce the degeneracy between these two
parameters. The Planck TT,TE,EE+lowP contours are in very
good agreement with standard BBN and Neff = 3.046. However,
even if we relax the assumption of standard BBN, the CMB does
not allow high values of Neff . It is therefore difficult to accommo-
date an extra thermalized relativistic species, even if the standard
BBN prior on the helium fraction is relaxed.

6.6. Dark matter annihilation

Energy injection from dark matter (DM) annihilation can
alter the recombination history, leading to changes in the
temperature and polarization power spectra of the CMB
(e.g., Chen & Kamionkowski 2004; Padmanabhan & Finkbeiner
2005). As demonstrated in several papers (e.g., Galli et al. 2009;
Slatyer et al. 2009; Finkbeiner et al. 2012), CMB anisotropies
offer an opportunity to constrain the nature of DM. Furthermore,
CMB experiments such as Planck can achieve limits on the an-
nihilation cross-section that are relevant for the interpretation of
the rise in the cosmic-ray positron fraction at energies >∼ 10 GeV
observed by PAMELA, Fermi, and AMS (Adriani et al. 2009;
Ackermann et al. 2012; Aguilar et al. 2014). The CMB con-
straints are complementary to those determined from other astro-

50



Planck Collaboration: Cosmological parameters

physical probes, such as the γ-ray observations of dwarf galaxies
by the Fermi satellite (Ackermann et al. 2014).

The way in which DM annihilations heat and ionize the
gaseous background depends on the nature of the cascade of par-
ticles produced following annihilation and, in particular, on the
production of e± pairs and photons that couple to the gas. The
fraction of the rest mass energy that is injected into the gas can be
modelled by an “efficiency factor,” f (z), which is typically in the
range 0.01–1 and depends on redshift.33 Computations of f (z)
for various annihilation channels can be found in Slatyer et al.
(2009), Hütsi et al. (2009), and Evoli et al. (2013). The rate of
energy release per unit volume by annihilating DM can there-
fore be written as

dE
dtdV

(z) = 2 g ρ2
critc

2Ω2
c(1 + z)6 pann(z), (80)

where pann is defined as

pann(z) ≡ f (z)
〈σ3〉

mχ
. (81)

Here ρcrit the critical density of the Universe today, mχ is the
mass of the DM particle, and 〈σ3〉 is the thermally-averaged
annihilation cross-section times the velocity (explicitly the so-
called Møller velocity); we will refer to this quantity loosely as
the “cross-section” hereafter. In Eq. (80), g is a degeneracy fac-
tor that is equal to 1/2 for Majorana particles and 1/4 for Dirac
particles. In this paper, the constraints will refer to Majorana
particles. Note that to produce the observed dark matter density
from thermal DM relics requires an annihilation cross-section of
〈σ3〉 ≈ 3 × 10−26 cm3 s−1 (assuming s-wave annihilation) at the
time of freeze-out (see, e.g., the review by Profumo 2013).

Both the amplitude and redshift dependence of the effi-
ciency factor f (z) depend on the details of the annihilation pro-
cess (e.g., Slatyer et al. 2009). The functional shape of f (z)
can be taken into account using generalized parameterizations
or principal components (Finkbeiner et al. 2012; Hutsi et al.
2011), similar to the analysis of the recombination history pre-
sented in Sect. 6.7.4. However, as shown in Galli et al. (2011),
Giesen et al. (2012), and Finkbeiner et al. (2012), to a first ap-
proximation the redshift dependence of f (z) can be ignored,
since current CMB data (including Planck) are sensitive to en-
ergy injection over a relatively narrow range of redshift, typi-
cally z ≈ 1000–600. The effects of DM annihilation can there-
fore be reasonably well parameterized by a single constant pa-
rameter, pann (with f (z) set to a constant feff), which encodes
the dependence on the properties of the DM particles. In the
following, we calculate constraints on the pann parameter, as-
suming that it is constant, and then project these constraints on
to a particular dark matter model assuming feff ≡ f (z = 600),
since the effect of dark matter annihilation peaks at z ≈ 600 (see
Finkbeiner et al. 2012). The f (z) functions used here are those
calculated in Slatyer et al. (2009), with the updates described in
Galli et al. (2013) and Madhavacheril et al. (2014). Finally, we
estimate the fractions of injected energy that affect the gaseous
background, from heating, ionizations, or Lyα excitations, us-
ing the updated calculations described in Galli et al. (2013) and
Valdes et al. (2010), following Shull & van Steenberg (1985).

33To maintain consistency with other papers on dark matter annihi-
lation, we retain the notation f (z) for the efficiency factor in this sec-
tion; it should not be confused with the growth rate factor introduced in
Eq. (32).
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Fig. 40. 2D marginal distributions in the pann–ns plane for Planck
TT+lowP (red), Planck EE+lowP (yellow), Planck TE+lowP
(green), and Planck TT,TE,EE+lowP (blue) data combinations.
We also show the constraints obtained using WMAP9 data (light
blue).

We compute the theoretical angular power spectrum in the
presence of DM annihilations by modifying the recfast routine
(Seager et al. 1999) in the camb code as in Galli et al. (2011).34

We then add pann as an additional parameter to those of the base
ΛCDM cosmology. Table 6 shows the constraints for various
data combinations.

Table 6. Constraints on pann in units of cm3 s−1 GeV−1.

Data combinations pann (95 % upper limits)

TT+lowP . . . . . . . . . . . . . . . . . < 5.7 × 10−27

EE+lowP . . . . . . . . . . . . . . . . . < 1.4 × 10−27

TE+lowP . . . . . . . . . . . . . . . . . < 5.9 × 10−28

TT+lowP+lensing . . . . . . . . . . . < 4.4 × 10−27

TT,TE,EE+lowP . . . . . . . . . . . . < 4.1 × 10−28

TT,TE,EE+lowP+lensing . . . . . . < 3.4 × 10−28

TT,TE,EE+lowP+ext . . . . . . . . . < 3.5 × 10−28

The constraints on pann from the Planck TT+lowP spec-
tra are about 3 times weaker than the 95 % limit of pann <
2.1 × 10−27 cm3 s−1 GeV−1 derived from WMAP9, which in-
cludes WMAP polarization data at low multipoles. On the other
hand, the Planck T E or EE spectra improve the constraints on
pann by about an order of magnitude compared to those from
Planck TT alone. This is because the main effect of dark matter
annihilation is to increase the width of last scattering, leading
to a suppression of the amplitude of the peaks, both in tem-
perature and polarization. As a result, the effects of DM an-
nihilation on the power spectra at high multipole are degen-
erate with other parameters of base ΛCDM, such as ns and
As (Chen & Kamionkowski 2004; Padmanabhan & Finkbeiner
2005). At large angular scales (` . 200), however, dark matter
annihilation can produce an enhancement in polarization, caused

34We checked that we obtain similar results using either the HyRec
code (Ali-Haimoud & Hirata 2011), as detailed in Giesen et al. (2012),
or CosmoRec (Chluba & Thomas 2011), instead of recfast.
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Fig. 41. Constraints on the self-annihilation cross-section at re-
combination, 〈σ3〉z∗ , times the efficiency parameter, feff (Eq. 81).
The blue area shows the parameter space excluded by the Planck
TT,TE,EE+lowP data at 95 % CL. The yellow line indicates the
constraint using WMAP9 data. The dashed green line delineates
the region ultimately accessible to a cosmic-variance-limited ex-
periment with angular resolution comparable to that of Planck.
The horizontal red band includes the values of the thermal-
relic cross-section multiplied by the appropriate feff for differ-
ent DM annihilation channels. The dark grey circles show the
best-fit DM models for the PAMELA/AMS-02/Fermi cosmic-
ray excesses, as calculated in Cholis & Hooper (2013) (caption
of their figure 6). The light grey stars show the best-fit DM mod-
els for the Fermi Galactic centre γ-ray excess, as calculated by
Calore et al. (2015) (their tables I, II, and III), with the light
grey area indicating the astrophysical uncertainties on the best-
fit cross-sections.

by the increased ionization fraction in the freeze-out tail follow-
ing recombination. As a result, large-angle polarization infor-
mation is crucial for breaking the degeneracies between param-
eters, as illustrated in Fig. 40. The strongest constraints on pann
therefore come from the full Planck temperature and polariza-
tion likelihood and there is little improvement if other astrophys-
ical data, or Planck lensing, are added.35

We verified the robustness of the Planck TT,TE,EE+lowP
constraint by also allowing other parameter extensions of base
ΛCDM (Neff , dns/d ln k, or YP) to vary together with pann.
We found that the constraint is weakened by up to 20 %.
Furthermore, we have verified that we obtain consistent results
when relaxing the priors on the amplitudes of the Galactic dust
templates or if we use the CamSpec likelihood instead of the
baseline Plik likelihood.

Figure 41 shows the constraints from WMAP9, Planck
TT,TE,EE+lowP, and a forecast for a cosmic-variance-limited
experiment with similar angular resolution to Planck.36 The hor-
izontal red band includes the values of the thermal-relic cross-
section multiplied by the appropriate feff for different DM anni-
hilation channels. For example, the upper red line corresponds to

35It is interesting to note that the constraint derived from Planck
TT,TE,EE+lowP is consistent with the forecast given in Galli et al.
(2009), pann < 3 × 10−28 cm3 s−1 GeV−1.

36We assumed here that the cosmic-variance-limited experiment
would measure the angular power spectra up to a maximum multipole
of `max = 2500, observing a sky fraction fsky = 0.65.

feff = 0.67, which is appropriate for a DM particle of mass mχ =
10 GeV annihilating into e+e−, while the lower red line corre-
sponds to feff = 0.13, for a DM particle annihilating into 2π+π−

through an intermediate mediator (see, e.g., Arkani-Hamed et al.
2009). The Planck data exclude at 95 % confidence level a ther-
mal relic cross-section for DM particles of mass mχ <∼ 44 Gev
annihilating into e+e− ( feff ≈ 0.6), mχ <∼ 16 GeV annihilating
into µ+µ− or bb̄ ( feff ≈ 0.2), and mχ <∼ 11 GeV annihilating into
τ+τ− ( feff ≈ 0.15).

The dark grey shaded area in Fig. 41 shows the approx-
imate allowed region of parameter space, as calculated by
Cholis & Hooper (2013) on the assumption that the PAMELA,
AMS, and Fermi cosmic-ray excesses are caused by DM annihi-
lation; the dark grey dots indicate the best-fit dark matter models
described in that paper (for a recent discussion on best-fitting
models, see also Boudaud et al. 2015). The favoured value of
the cross-section is about two orders of magnitude higher than
the thermal relic cross-section (≈ 3×10−26 cm3 s−1). Attempts to
reconcile such a high cross-section with the relic abundance of
DM include a Sommerfeld enhanced cross-section (that may sat-
urate at 〈σ3〉 ≈ 10−24 cm3 s−1) or non-thermal production of DM
(see, e.g., the discussion by Madhavacheril et al. 2014). Both of
these possibilities are strongly disfavoured by the Planck data.
We cannot, however, exclude more exotic possibilities, such as
DM annihilation through a p-wave channel with a cross-section
that scales as 32 (Diamanti et al. 2014). Since the relative veloc-
ity of DM particles at recombination is many orders of magni-
tude smaller than in the Galactic halo, such a model cannot be
constrained using CMB data.

Observations from the Fermi Large Area Telescope
of extended γ-ray emission towards the centre of the
Milky Way, peaking at energies of around 1–3 GeV, have
been interpreted as evidence for annihilating DM (e.g.,
Goodenough & Hooper 2009; Gordon & Macı́as 2013;
Daylan et al. 2016; Abazajian et al. 2014; Lacroix et al. 2014).
The light grey stars in Fig. 41 show specific models of DM
annihilation designed to fit the Fermi γ-ray excess (Calore et al.
2015), while the light grey box shows the uncertainties of
the best-fit cross-sections due to imprecise knowledge of the
Galactic DM halo profile. Although the interpretation of the
Fermi excess remains controversial (because of uncertainties
in the astrophysical backgrounds), DM annihilation remains a
possible explanation. The best-fit models of Calore et al. (2015)
are consistent with the Planck constraints on DM annihilation.

6.7. Testing recombination physics with Planck

The cosmological recombination process determines how CMB
photons decoupled from baryons around redshift z ≈ 103,
when the Universe was about 400 000 years old. The impor-
tance of this transition on the CMB anisotropies has long been
recognized (Sunyaev & Zeldovich 1970; Peebles & Yu 1970).
The most advanced computations of the ionization history
(e.g., Ali-Haı̈moud & Hirata 2010; Chluba & Thomas 2011;
Ali-Haimoud & Hirata 2011; Chluba et al. 2012) account for
many subtle atomic physics and radiative transfer effects that
were not included in the earliest calculations (Zeldovich et al.
1968; Peebles 1968).

With precision data from Planck, we are sensitive to sub-
percent variations of the free electron fraction around last-
scattering (e.g., Hu et al. 1995; Seager et al. 2000; Seljak et al.
2003). Quantifying the impact of uncertainties in the ionization
history around the maximum of the Thomson visibility function
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on predictions of the CMB power spectra is thus crucial for the
scientific interpretation of data from Planck. In particular, for
tests of models of inflation and extensions to ΛCDM, the inter-
pretation of the CMB data can be significantly compromised by
inaccuracies in the recombination calculation (e.g., Wong et al.
2008; Rubiño-Martı́n et al. 2010; Shaw & Chluba 2011). This
problem can be approached in two ways, either by using mod-
ified recombination models with a specific physical process (or
parameter) in mind, or in a semi-blind, model-independent way.
Both approaches provide useful insights in assessing the robust-
ness of the results from Planck.

Model-dependent limits on varying fundamental constants
(Kaplinghat et al. 1999; Scóccola et al. 2009; Galli et al. 2009),
annihilating or decaying particles (e.g., Chen & Kamionkowski
2004; Padmanabhan & Finkbeiner 2005; Zhang et al. 2006, and
Sect. 6.6), or more general sources of extra ionization and ex-
citation photons (Peebles et al. 2000; Doroshkevich et al. 2003;
Galli et al. 2008), have been discussed extensively in the litera-
ture.

As already discussed in PCP13, the choice for Planck has
been to use the rapid calculations of the recfast code, mod-
ified using corrections calculated with the more precise codes.
To start this sub-section we quantify the effect on the analy-
sis of Planck data of the remaining uncertainties in the stan-
dard recombination history obtained with different recombina-
tion codes (Sect. 6.7.1). We also derive CMB anisotropy-based
measurements of the hydrogen 2s–1s two-photon decay rate,
A2s→1s (Sect. 6.7.2), and the average CMB temperature, T0 de-
rived at the last-scattering epoch (Sect. 6.7.3). These two param-
eters strongly affect the recombination history but are usually
kept fixed when fitting models to CMB data (as in the analyses
described in previous sections). Section 6.7.4 describes model-
independent constraints on perturbed recombination scenarios.
A discussion of these cases provides both a test of the consis-
tency of the CMB data with the standard recombination scenario
and also a demonstration of the impressive sensitivity of Planck
to small variations in the ionization history at z ≈ 1100.

6.7.1. Comparison of different recombination codes

Even for pre-Planck data, it was realized that the early recombi-
nation calculations of Zeldovich et al. (1968) and Peebles (1968)
had to be improved. This led to the development of the widely-
used and computationally quick recfast code (Seager et al.
1999, 2000). However, for Planck, the recombination model of
recfast in its original form is not accurate enough. Percent-
level corrections, due to detailed radiative transfer and atomic
physics effects have to be taken into account. Ignoring these ef-
fects can bias the inferred cosmological parameters, some by as
much as a few standard deviations.

The recombination problem was solved as a com-
mon effort of several groups (Dubrovich & Grachev
2005; Kholupenko et al. 2007; Chluba & Sunyaev 2006b;
Rubiño-Martı́n et al. 2006; Karshenboim & Ivanov 2008;
Wong & Scott 2007; Switzer & Hirata 2008; Grin & Hirata
2010; Ali-Haı̈moud & Hirata 2010). This work was undertaken,
to a large extent, in preparation for the precision data from
Planck. Both CosmoRec (Chluba & Thomas 2011) and HyRec
(Ali-Haimoud & Hirata 2011) allow fast and precise computa-
tions of the ionization history, explicitly capturing the physics
of the recombination problem. For the standard cosmology,
the ionization histories obtained from these two codes in
their default settings agree to within 0.05 % for hydrogen
recombination (600 <∼ z <∼ 1600) and 0.35 % during helium

recombination37 (1600 <∼ z <∼ 3000). The effect of these small
differences on the CMB power spectra is <∼ 0.1 % at ` < 4000
and so has a negligible impact on the interpretation of precision
CMB data; for the standard six parameters of base ΛCDM, we
find that the largest effect is a bias in ln(1010As) at the level of
0.04σ ≈ 0.0012 for Planck TT,TE,EE+lowP+BAO.

For Planck analyses, the recombination model of recfast is
used by default. In recfast, the precise dynamics of recombi-
nation is not modelled physically, but approximated with fitting-
functions calibrated against the full recombination calculations
assuming a reference cosmology (Seager et al. 1999, 2000;
Wong et al. 2008). At the level of precision required for Planck,
the recfast approach is sufficiently accurate, provided that
the cosmologies are close to base ΛCDM (Rubiño-Martı́n et al.
2010; Shaw & Chluba 2011). Comparing the latest version of
recfast (camb version) with CosmoRec, we find agreement to
within 0.2 % for hydrogen recombination (600 <∼ z <∼ 1600) and
0.2 % during helium recombination for the standard ionization
history. The effect on the CMB power spectra is <∼ 0.15 % at ` <
4000, although with slightly more pronounced shifts in the peak
positions than when comparing CosmoRec and HyRec. For the
base ΛCDM model, we find that the largest bias is on ns, at the
level of 0.15σ (≈ 0.0006) for Planck TT,TE,EE+lowP+BAO.
Although this is about 5 times larger than the difference in ns
between CosmoRec and HyRec, this bias is nevertheless unim-
portant at the current level of precision (and smaller than the
differences seen from different likelihoods, see Sect. 3.1).

Finally we compare CosmoRec with recfast in its original
form (i.e., before recalibrating the fitting-functions on refined
recombination calculations). For base ΛCDM, we expect to see
biases of ∆Ωbh2 ≈ −2.1σ ≈ −0.00028 and ∆ns ≈ −3.3σ ≈
−0.012 (Shaw & Chluba 2011). Using the actual data (Planck
TT,TE,EE+lowP+BAO) we find biases of ∆Ωbh2 ≈ −1.8σ ≈
−0.00024 and ∆ns ≈ −2.6σ ≈ −0.010, very close to the ex-
pected values. This illustrates explicitly the importance of the
improvements of CosmoRec and HyRec over the original ver-
sion of recfast for the interpretation of Planck data. However,
CosmoRec and HyRec themselves are much more computation-
ally intensive than the modified recfast, which is why we use
recfast in most Planck cosmological analyses.

6.7.2. Measuring A2s→1s with Planck

The crucial role of the 2s–1s two-photon decay channel for the
dynamics of hydrogen recombination has been appreciated since
the early days of CMB research (Zeldovich et al. 1968; Peebles
1968). Recombination is an out-of-equilibrium process and ener-
getic photons emitted in the far Wien tail of the CMB by Lyman
continuum and series transitions keep the primordial plasma
ionized for a much longer period than expected from simple
equilibrium recombination physics. Direct recombinations to the
ground state of hydrogen are prohibited, causing a modification
of the free electron number density, Ne, by only ∆Ne/Ne ≈ 10−6

around z ≈ 103 (Chluba & Sunyaev 2007). Similarly, the slow
escape of photons from the Lyα resonance reduces the effec-
tive Ly-α transition rate to A∗2p→1s ≈ 1–10 s−1 (by more than
seven orders of magnitude), making it comparable to the vacuum
2s–1s two-photon decay rate of A2s→1s ≈ 8.22 s−1. About 57 %
of all hydrogen atoms in the Universe became neutral through
the 2s–1s channel (e.g., Wong et al. 2006; Chluba & Sunyaev

37Helium recombination is treated in more detail by CosmoRec (e.g.,
Rubiño-Martı́n et al. 2008; Chluba et al. 2012), which explains most of
the difference.
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2006a), and subtle effects, such as the induced 2s–1s two-photon
decay and Lyα re-absorption, need to be considered in pre-
cision recombination calculations (Chluba & Sunyaev 2006b;
Kholupenko & Ivanchik 2006; Hirata 2008).

The high sensitivity of the recombination process to the
2s–1s two-photon transition rate also implies that instead of
simply adopting a value for A2s→1s from theoretical computa-
tions (Breit & Teller 1940; Spitzer & Greenstein 1951; Goldman
1989) one can directly determine it with CMB data. From the
theoretical point of view it would be surprising to find a value
that deviates significantly from A2s→1s = 8.2206 s−1, derived
from the most detailed computation (Labzowsky et al. 2005).
However, laboratory measurements of this transition rate are
extremely challenging (O’Connell et al. 1975; Krüger & Oed
1975; Cesar et al. 1996). The most stringent limit is for the dif-
ferential decay rate, A2s→1s(λ) dλ = (1.5±0.65) s−1 (a 43 % error)
at wavelengths λ = 255.4–232.0 nm, consistent with the theoret-
ical value of A2s→1s(λ) dλ = 1.02 s−1 in the same wavelength
range (Krüger & Oed 1975). With precision data from Planck
we are in a position to perform the best measurement to date, us-
ing cosmological data to inform us about atomic transition rates
at last scattering (as also emphasized by Mukhanov et al. 2012).

The 2s–1s two-photon rate affects the CMB anisotropies
only through its effect on the recombination history. A larger
value of A2s→1s, accelerates recombination, allowing photons
and baryons to decouple earlier, an effect that shifts the acoustic
peaks towards smaller scales. In addition, slightly less damp-
ing occurs, as in the case of the stimulated 2s–1s two-photon
decays (Chluba & Sunyaev 2006b). This implies that for flat
cosmologies, variations of A2s→1s correlate with Ωch2 and H0
(which affect the distance to the last scattering surface), while
A2s→1s anti-correlates with Ωbh2 and ns (which modify the slope
of the damping tail). Despite these degeneracies, one expects
that Planck will provide a measurement of A2s→1s to within
±0.5 s−1, corresponding to an approximately 6 % uncertainty
(Mukhanov et al. 2012).

In Fig. 42, we show the marginalized posterior for A2s→1s
from Planck and for Planck combined with BAO. Using
CosmoRec to compute the recombination history, we find

A2s→1s = 7.70 ± 1.01 s−1 Planck TT+lowP, (82a)
A2s→1s = 7.72 ± 0.60 s−1 Planck TT,TE,EE+lowP, (82b)
A2s→1s = 7.71 ± 0.99 s−1 Planck TT+lowP+BAO, (82c)
A2s→1s = 7.75 ± 0.61 s−1 Planck TT,TE,EE+lowP

+BAO. (82d)

These results are in very good agreement with the theoretical
value, A2s→1s = 8.2206 s−1. For Planck TT,TE,EE+lowP+BAO,
approximately 8 % precision is reached using cosmological data.
These constraints are not sensitive to the addition of BAO, or
other external data (JLA+H0). The slight shift away from the
theoretical value is accompanied by small (fractions of a σ)
shifts in ns, Ωch2, and H0, to compensate for the effects of A2s→1s
on the distance to the last scattering surface and damping tail.
This indicates that additional constraints on the acoustic scale
are required to fully break degeneracies between these param-
eters and their effects on the CMB power spectrum, a task that
could be achieved in the future using large-scale structure sur-
veys and next generation CMB experiments.

The values for A2s→1s quoted above were obtained using
CosmoRec. When varying A2s→1s, the range of cosmologies be-
comes large enough to potentially introduce a mismatch of the
recfast fitting-functions that could affect the posterior. In par-
ticular, with recfast the 2s–1s two-photon and Lyα channels
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Fig. 42. Marginalized posterior for A2s→1s, obtained using
CosmoRec, with and without small-scale polarization data. We
find good agreement with the theoretical value of A2s→1s =
8.2206 s−1. For comparison, we also show the result for Planck
TT,TE,EE+lowP+BAO obtained with recfast, emphasizing
the consistency of different treatments.

are not treated separately, so that changes specific to the 2s–
1s decay channel propagate inconsistently.38 However, repeating
the analysis with recfast, we find A2s→1s = 7.78±0.58 s−1 (see
Fig. 42), for Planck TT,TE,EE+lowP+BAO, which is in excel-
lent agreement with CosmoRec, showing that these effects can
be neglected.

6.7.3. Measuring T0 at last-scattering with Planck

Our best constraint on the CMB monopole temperature
comes from the measurements of the CMB spectrum
with COBE/FIRAS, giving a 0.02 % determination of T0
(Fixsen et al. 1996; Fixsen 2009). Other constraints from molec-
ular lines typically reach 1 % precision (see table 2 in Fixsen
2009, for an overview), while independent BBN constraints pro-
vide 5–10 % limits (Simha & Steigman 2008; Jeong et al. 2014).

The CMB anisotropies provide additional ways of deter-
mining the value of T0 (for fixed values of Neff and YP). One
is through the energy distribution of the CMB anisotropies
(Fixsen et al. 1996; Fixsen 2003; Chluba 2014) and another
through their power spectra (Opher & Pelinson 2004, 2005;
Chluba 2014). Even small changes in T0, compatible with the
COBE/FIRAS error, affect the ionization history at the 0.5 %
level around last-scattering, propagating to a roughly 0.1 %
uncertainty in the CMB power spectrum (Chluba & Sunyaev
2008). Overall, the effect of this uncertainty on the parameters
of ΛCDM models is small (Hamann & Wong 2008); however,

38One effect is that by increasing A2s→1s fewer Lyα photons are pro-
duced. This reduces the Lyα feedback correction to the 2s–1s channel,
which further accelerates recombination, an effect that is not captured
with recfast in the current implementation.
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Fig. 43. Marginalized posterior for T0. We find excellent agree-
ment with the COBE/FIRAS measurement. For comparison, we
show the result for Planck TT,TE,EE+lowP+BAO obtained us-
ing both CosmoRec and recfast, emphasizing the consistency
of different treatments.

without prior knowledge of T0 from the COBE/FIRAS measure-
ment, the situation would change significantly.

The CMB monopole affects the CMB anisotropies in sev-
eral ways. Most importantly, for larger T0, photons decouple
from baryons at lower redshift, since more ionizing photons are
present in the Wien-tail of the CMB. This effect is amplified be-
cause of the exponential dependence of the atomic level popula-
tions on the ratio of the ionization potentials and CMB tempera-
ture. In addition, increasing T0 lowers the expansion timescale of
the Universe and the redshift of matter-radiation equality, while
increasing the photon sound speed. Some of these effects are
also produced by varying Neff ; however, the effects of T0 on the
ionization history and photon sound speed are distinct.

With CMB data alone, the determination of T0 is degenerate
with other parameters, but the addition of other data sets breaks
this degeneracy. Marginalized posterior distributions for T0 are
shown in Fig. 43. Using CosmoRec, we find

T0 = 2.722 ± 0.027 K Planck TT+lowP+BAO, (83a)
T0 = 2.718 ± 0.021 K Planck TT,TE,EE+lowP+BAO, (83b)

and similar results are obtained with recfast. This is in ex-
cellent agreement with the COBE/FIRAS measurement, T0 =
2.7255±0.0006 K (Fixsen et al. 1996; Fixsen 2009). These mea-
surements of T0 reach a precision that is comparable to the ac-
curacy obtained with interstellar molecules. Since the systemat-
ics of these independent methods are very different, this result
demonstrates the consistency of all these data. Allowing T0 to
vary causes the errors of the other cosmological parameters to
increase. The strongest effect is on θMC, which is highly degen-
erate with T0. The error on θMC increases by a factor of roughly
25 if T0 is allowed to vary. The error on Ωbh2 increases by a fac-
tor of about 4, while the errors on ns and Ωch2 increase by fac-
tors of 1.5–2, and the other cosmological parameters are largely

unaffected by variations in T0. Because of the strong degener-
acy with θMC, no constraint on T0 can be obtained using Planck
data alone. External data, such as BAO, are therefore required to
break this geometric degeneracy.

It is important to emphasize that the CMB measures the tem-
perature at a redshift of z ≈ 1100, so the comparison with mea-
surements of T0 at the present day is effectively a test of the
constancy of aTCMB, where a ≈ 1/1100 is the scale-factor at the
time of last-scattering. It is remarkable that we are able to test
the constancy of aTCMB ≡ T0 over such a large dynamic range
in redshift. Of course, if we did find that aTCMB around recom-
bination were discrepant with T0 now, then we would need to
invent a finely-tuned late-time photon injection mechanism39 to
explain the anomaly. Fortunately, the data are consistent with the
standard TCMB ∝ (1 + z) scaling of the CMB temperature.

Another approach to measuring aTCMB is through the ther-
mal Sunyaev-Zeldovich effect in rich clusters of galaxies at var-
ious redshifts (Fabbri et al. 1978; Rephaeli 1980), although it is
unclear how one would interpret a failure of this test without
an explicit model. In practice this approach is consistent with
a scaling aTCMB = constant, but with lower precision than ob-
tained here from Planck (e.g., Battistelli et al. 2002; Luzzi et al.
2009; Saro et al. 2014; Hurier et al. 2014). A simple TCMB =
T0(1 + z)1−β modification to the standard temperature redshift
relation is frequently discussed in the literature (though this case
is not justified by any physical model and is difficult to realize
without creating a CMB spectral distortion, see Chluba 2014).
For this parameterization we find

β = (0.2 ± 1.4) × 10−3 Planck TT+lowP+BAO, (84a)
β = (0.4 ± 1.1) × 10−3 Planck TT,TE,EE+lowP+BAO, (84b)

where we have adopted a recombination redshift of z∗ = 1100.40

Because of the long lever-arm in redshift afforded by the CMB,
this is an improvement over earlier constraints by more than an
order of magnitude (e.g., Hurier et al. 2014).

In a self-consistent picture, changes of T0 would also affect
the BBN era. We might therefore consider a simultaneous varia-
tion of Neff and YP to reflect the variation of the neutrino energy
density accompanying a putative variation in the photon energy
density. Since we find aTCMB at recombination to be highly con-
sistent with the observed CMB temperature from COBE/FIRAS,
considering this extra variation seems unnecessary. Instead, we
may view the aTCMB variation investigated here as further sup-
port for the limits discussed in Sects. 6.4 and 6.5.

6.7.4. Semi-blind perturbed recombination analysis

The high sensitivity of small-scale CMB anisotropies to the
ionization history of the Universe around the epoch of recom-
bination allows us to constrain possible deviations from the
standard recombination scenario in a model-independent way
(Farhang et al. 2012, 2013). The method relies on an eigen-
analysis (often referred to as a principle component analysis)
of perturbations in the free electron fraction, Xe(z) = Ne/NH,
where NH denotes the number density of hydrogen nuclei. The
eigenmodes selected are specific to the data used in the analysis.
Similar approaches have been used to constrain deviations of the
reionization history from the simplest models (Mortonson & Hu

39Pure energy release in the form of heating of ordinary matter would
leave a Compton y-distortion (Zeldovich & Sunyaev 1969) at these late
times (Burigana et al. 1991; Hu & Silk 1993; Chluba & Sunyaev 2012).

40The test depends on the logarithm of the redshift and so is insensi-
tive to the precise value adopted for z∗.
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Table 7. Standard parameters and the first three Xe-modes, as
determined for Planck TT,TE,EE+lowP+BAO.

Parameter + 1 mode + 2 modes + 3 modes

Ωbh2 . . . 0.02229 ± 0.00017 0.02237 ± 0.00018 0.02237 ± 0.00019
Ωch2 . . . 0.1190 ± 0.0010 0.1186 ± 0.0011 0.1187 ± 0.0012
H0 . . . . 67.64 ± 0.48 67.80 ± 0.51 67.80 ± 0.56
τ . . . . . . 0.065 ± 0.012 0.068 ± 0.013 0.068 ± 0.013
ns . . . . . 0.9667 ± 0.0053 0.9677 ± 0.0055 0.9678 ± 0.0067
ln(1010As) 3.062 ± 0.023 3.066 ± 0.024 3.066 ± 0.024
µ1 . . . . . −0.03 ± 0.12 0.03 ± 0.14 0.02 ± 0.15
µ2 . . . . . . . . −0.17 ± 0.18 −0.18 ± 0.19
µ3 . . . . . . . . . . . −0.02 ± 0.88

2008) and annihilating dark matter scenarios (Finkbeiner et al.
2012), both with the prior assumption that the standard recombi-
nation physics is fully understood, as well as for constraining tra-
jectories in inflation Planck Collaboration XX (2016) and dark
energy Planck Collaboration XIV (2016) parameterizations.

Here, we use Planck data to find preferred ionization frac-
tion trajectories Xe(z) composed of low-order perturbation eigen-
modes to the standard history (Xe-modes). The Xe-modes are
constructed through the eigen-decomposition of the inverse of
the Fisher information matrix for base ΛCDM (the six cosmo-
logical parameters and the nuisance parameters) and recombi-
nation perturbation parameters (see Farhang et al. 2012, for de-
tails). This procedure allows us to estimate the errors on the
eigenmode amplitudes, µi, providing a rank ordering of the Xe-
modes and their information content.

The first three Xe-modes for Planck TT,TE,EE+lowP are il-
lustrated in Fig. 44, together with their impact on the differ-
ential visibility function. Figure 45 shows the response of the
CMB temperature and polarization power spectra to these eigen-
modes. The first mode mainly leads to a change in the width
and height of the Thomson visibility function (bottom panel of
Fig. 44). This implies less diffusion damping, which is also re-
flected in the modifications to the CMB power spectra (as shown
in Fig. 45). The second mode causes the visibility maximum to
shift towards higher redshifts for µ2 > 0, which leads to a shift
of the CMB extrema to smaller scales; however, for roughly
constant width of the visibility function it also introduces less
damping at small scales. The third mode causes a combination
of changes in both the position and width of the visibility func-
tion, with a pronounced effect on the location of the acoustic
peaks. For the analysis of Planck data combinations, we only
use Xe-modes that are optimized for Planck TT,TE,EE+lowP.

We modified CosmoMC to estimate the mode amplitudes.
The results for Planck TT,TE,EE+lowP+BAO are presented in
Table 7. Although all mode amplitudes are consistent with stan-
dard recombination, adding the second Xe-mode causes mild
shifts in H0 and τ. For Planck TT+lowP, we find µ1 = −0.11 ±
0.51 and µ2 = −0.23 ± 0.50, using the Planck TT,TE,EE+lowP
eigenmodes, again consistent with the standard recombination
scenario. Adding the polarization data improves the errors by
more than a factor of 2. However, the mode amplitudes are in-
sensitive to the addition of external data.

With pre-Planck data, only the amplitude, µ1, of the first
eigenmode could be constrained. The corresponding change
in the ionization history translates mainly into a change in
the slope of the CMB damping tail, with this mode resem-
bling the first mode determined using Planck data (Fig. 44).
The WMAP9+SPT data gave a non-zero value for the first
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Fig. 44. Eigen-modes of the recombination history, marginalized
over the standard six cosmological and Planck nuisance parame-
ters. The upper panel shows the first three Xe-modes constructed
for Planck TT,TE,EE+lowP data. The lower panel show changes
in the differential visibility corresponding to 1σ deviations from
the standard recombination scenario for the first three Xe-modes.
The maximum of the Thomson visibility function and width are
indicated in both figures.

eigenmode at about 2σ, µSPT
1 = −0.80 ± 0.37. However, the

WMAP9+ACT data gave µACT
1 = 0.14 ± 0.45 and the com-

bined pre-Planck data (WMAP+ACT+SPT) gave µpre
1 = −0.44±

0.33, both consistent with the standard recombination scenario
(Calabrese et al. 2013). The variation among these results is an-
other manifestation of the tensions between different pre-Planck
CMB data, as discussed in PCP13.

Although not optimal for Planck data, we also com-
pute the amplitudes of the first three Xe-modes constructed
for the WMAP9+SPT data set. This provides a more di-
rect comparison with the pre-Planck constraints. For Planck
TT,TE,EE+lowP+BAO we obtain µSPT

1 = −0.10 ± 0.13 and
µSPT

2 = −0.13 ± 0.18. The mild tension of the pre-Planck data
with the standard recombination scenario disappears when us-
ing Planck data. This is especially impressive, since the er-
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Fig. 45. Changes in the TT (upper panel) and EE (lower panel)
power spectra caused by a 1σ deviation from the standard re-
combination scenario for the first three Xe-modes (see Fig. 44).

rors have improved by more than a factor of 2. By projecting
onto the Planck modes, we find that the first two SPT modes
can be expressed as µSPT

1 ≈ 0.69µ1 + 0.66µ2 ≈ −0.09 and
µSPT

2 ≈ −0.70µ1 + 0.64µ2 ≈ −0.13, which emphasizes the
consistency of the results. Adding the first three SPT modes,
we obtain µSPT

1 = −0.09 ± 0.13, µSPT
2 = −0.14 ± 0.21, and

µSPT
3 = −0.12 ± 0.86, which again is consistent with the stan-

dard model of recombination. The small changes in the mode
amplitudes when adding the third mode arise because the SPT
modes are not optimal for Planck and so are correlated.

6.8. Cosmic defects

Topological defects are a generic by-product of symmetry-
breaking phase transitions and a common phenomenon in con-
densed matter systems. Cosmic defects of various types can
be formed in phase transitions in the early Universe (Kibble
1976). In particular, cosmic strings can be produced in some su-
persymmetric and grand-unified theories at the end of inflation
(Jeannerot et al. 2003), as well as in higher-dimensional theories
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Fig. 46. Marginalized posterior distributions for the fractional
contribution, f10, of the defect contribution to the temperature
power spectrum at ` = 10 (see the text for the precise defini-
tion). Here we show the constraints for the Nambu-Goto cosmic
strings (NG, solid black), field-theory simulations of Abelian-
Higgs cosmic strings (AH, solid red), semi-local strings (SL,
dotted blue), and global textures (TX, dashed green). The upper
panel shows the 1D posterior for the Planck+lowP data, while
constraints shown in the lower panel additionally use the T E
and EE data.

(e.g., Polchinski 2005). Constraints on the abundance of cos-
mic strings and other defects therefore place limits on a range
of models of the early Universe. More discussion on the forma-
tion, evolution, and cosmological role of topological defects can
be found, for example, in the reviews by Vilenkin & Shellard
(2000), Hindmarsh & Kibble (1995), and Copeland & Kibble
(2010).

In this section we revisit the power spectrum-based con-
straints on the abundance of cosmic strings and other topo-
logical defects using the 2015 Planck data, including Planck
polarization measurements. The general approach follows that
described in the Planck 2013 analysis of cosmic defects
(Planck Collaboration XXV 2014), so here we focus on the up-
dated constraints rather than on details of the methodology.
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Topological defects are non-perturbative excitations of the
underlying field theory and their study requires numerical simu-
lations. Unfortunately, since the Hubble scale, c/H0, is over 50
orders of magnitude greater that the thickness of a GUT-scale
string, approximately (~/µc)1/2 with µ the mass per unit length
of the string, it is impractical to simulate the string dynamics ex-
actly in the late Universe. For this reason one needs to make ap-
proximations. One approach considers the limit of an infinitely
thin string, which corresponds to using the Nambu-Goto (“NG”)
action for the string dynamics. In an alternative approach, the
actual field dynamics for a given model are solved on a lattice.
In this case it is necessary to resolve the string core, which gen-
erally requires more computationally intensive simulations than
in the NG approach. Lattice simulations, however, can include
additional physics, such as field radiation that is not present in
NG simulations. Here we will use field-theory simulations of
the Abelian-Higgs action (“AH”); details of these simulations
are discussed in Bevis et al. (2007, 2010).

The field-theory approach also allows one to simulate theo-
ries in which the defects are not cosmic strings and so cannot be
described by the NG action. Examples include semi-local strings
(“SL”, Urrestilla et al. 2008) and global defects. Here we will
specifically consider the breaking of a global O(4) symmetry re-
sulting in texture defects (“TX”).

For the field-theory defects, we measure the energy-
momentum tensor from the simulations and insert it as an ad-
ditional constituent into a modified version of the CMBEASY
Boltzmann code (Doran 2005) to predict the defect contribu-
tion to the CMB temperature and polarization power spec-
tra (see, e.g., Durrer et al. 2002). The same approach can be
applied to NG strings, but rather than using simulations di-
rectly, we model the strings using the unconnected segment
model (“USM”, Albrecht et al. 1999; Pogosian & Vachaspati
1999). In this model, strings are represented by a set of un-
correlated straight segments, with scaling properties chosen to
match those determined from numerical simulations. In this
case, the string energy-momentum tensor can be computed ana-
lytically and used as an active source in a modified Boltzmann
code. For this analysis we use CMBACT version 4,41 whereas
Planck Collaboration XXV (2014) used version 3. There have
been several improvements to the code since the 2013 analysis,
including a correction to the normalization of vector mode spec-
tra. However, the largest change comes from an improved treat-
ment of the scaling properties. The string correlation length and
velocity are described by an updated velocity-dependent one-
scale model (Martins & Shellard 2002), which provides better
agreement with numerical simulations. Small-scale structure of
the string, which was previously a free parameter, is accounted
for by the one-scale model.

The CMB power spectra from defects are proportional to
(Gµ/c2)2. We scale the computed template CMB spectra, and
add these to the inflationary and foreground power spectra, to
form the theory spectra that enter the likelihood. In practice, we
parameterize the defects with their relative contribution to the
TT spectrum at multipole ` = 10, f10 ≡ CTT (defect)

10 /CTT (total)
10 .

We vary f10 and the standard six parameters of the base ΛCDM
model, using CosmoMC. We also report our results in terms of the
derived parameter Gµ/c2.

The constraints on f10 and the inferred limits on Gµ/c2 are
summarized in Table 8. The marginalized 1D posterior distribu-
tion functions are shown in Fig. 46. For Planck TT+lowP we
find that the results are similar to the Planck+WP constraints re-

41http://www.sfu.ca/˜levon/cmbact.html

Table 8. 95 % upper limits on the parameter f10 and on the de-
rived parameter Gµ/c2 for the defect models discussed in the
text. We show results for Planck TT+lowP data as well as for
Planck TT,TE,EE+lowP.

TT+lowP TT,TE,EE+lowP
Defect type f10 Gµ/c2 f10 Gµ/c2

NG . . . . . . . < 0.020 < 1.8 × 10−7 < 0.011 < 1.3 × 10−7

AH . . . . . . . < 0.030 < 3.3 × 10−7 < 0.015 < 2.4 × 10−7

SL . . . . . . . < 0.039 < 10.6 × 10−7 < 0.024 < 8.5 × 10−7

TX . . . . . . . < 0.047 < 9.8 × 10−7 < 0.036 < 8.6 × 10−7

ported in Planck Collaboration XXV (2014), for the AH model,
or somewhat better for SL and TX. However, the addition of the
Planck high-` T E and EE polarization data leads to a significant
improvement compared to the 2013 constraints.

For the NG string model, the results based on Planck
TT+lowP are slightly weaker than the 2013 Planck+WP con-
straints. This is caused by a difference in the updated defect
spectrum from the USM model, which has a less pronounced
peak and shifts towards the AH spectrum. With the inclusion of
polarization, Planck TT,TE,EE+lowP improves the upper limit
on f10 by a factor of 2, as for the AH model. The differences
between the AH and NG results quoted here can be regarded
as a rough indication of the uncertainty in the theoretical string
power spectra.

In summary, we find no evidence for cosmic defects from the
Planck 2015 data, with tighter limits than before.

7. Conclusions42

(1) The six-parameter base ΛCDM model continues to provide
a very good match to the more extensive 2015 Planck data, in-
cluding polarization. This is the most important conclusion of
this paper.

(2) The 2015 Planck TT , T E, EE, and lensing spectra are
consistent with each other under the assumption of the base
ΛCDM cosmology. However, when comparing the T E and
EE spectra computed for different frequency combinations, we
find evidence for systematic effects caused by temperature-to-
polarization leakage. These effects are at low levels and have
little impact on the science conclusions of this paper.

(3) We have presented the first results on polarization from
the LFI at low multipoles. The LFI polarization data, together
with Planck lensing and high-multipole temperature data, gives a
reionization optical depth of τ = 0.066±0.016 and a reionization
redshift of zre = 8.8+1.7

−1.4. These numbers are in good agreement
with those inferred from the WMAP9 polarization data cleaned
for polarized dust emission using HFI 353-GHz maps. They are
also in good agreement with results from Planck temperature
and lensing data, i.e., excluding any information from polariza-
tion at low multipoles.

(4) The absolute calibration of the Planck 2015 HFI spectra is
higher by 2 % (in power) compared to 2013, largely resolving

42As in the abstract, here we quote 68 % confidence limits on
measured parameters and 95 % upper limits on other parameters.
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the calibration difference noted in PCP13 between WMAP and
Planck. In addition, there have been a number of small changes
to the low-level Planck processing and more accurate calibra-
tions of the HFI beams. The 2015 Planck likelihood also makes
more aggressive use of sky than in PCP13 and incorporates
some refinements to the modelling of unresolved foregrounds.
Apart from differences in τ (caused by switching to the LFI low-
multipole polarization likelihood, as described in item 3 above)
and the amplitude-τ combination Ase−2τ (caused by the change
in absolute calibration), the 2015 parameters for base ΛCDM are
in good agreement with those reported in PCP13.

(5) The Planck TT , T E, and EE spectra are accurately de-
scribed by a purely adiabatic spectrum of fluctuations with a
spectral tilt ns = 0.968 ± 0.006, consistent with the predic-
tions of single-field inflationary models. Combining Planck data
with BAO, we find tight limits on the spatial curvature of the
Universe, |ΩK | < 0.005, again consistent with the inflationary
prediction of a spatially-flat Universe.

(6) The Planck data show no evidence for tensor modes. Adding
a tensor amplitude as a one-parameter extension to base ΛCDM,
we derive a 95 % upper limit of r0.002 < 0.11. This is consis-
tent with the B-mode polarization analysis reported in BKP, re-
solving the apparent discrepancy between the Planck constraints
on r and the BICEP2 results reported by BICEP2 Collaboration
(2014). In fact, by combining the Planck and BKP likelihoods,
we find an even tighter constraint, r0.002 < 0.09, strongly dis-
favouring inflationary models with a V(φ) ∝ φ2 potential.

(7) The Planck data show no evidence for any significant run-
ning of the spectral index. We also set strong limits on a possible
departure from a purely adiabatic spectrum, either through an ad-
mixture of fully-correlated isocurvature modes or from cosmic
defects.

(8) The Planck best-fit base ΛCDM cosmology (we quote num-
bers for Planck TT+lowP+lensing here) is in good agreement
with results from BAO surveys, and with the recent JLA sam-
ple of Type Ia SNe. The Hubble constant in this cosmology
is H0 = (67.8 ± 0.9) km s−1Mpc−1, consistent with the di-
rect measurement of H0 of Eq. (30) used as an H0 prior in
this paper. The Planck base ΛCDM cosmology is also con-
sistent with the recent analysis of redshift-space distortions of
the BOSS CMASS-DR11 data by Samushia et al. (2014) and
Beutler et al. (2014). The amplitude of the present-day fluc-
tuation spectrum, σ8, of the Planck base ΛCDM cosmology
is higher than inferred from weak lensing measurements from
the CFHTLenS survey (Heymans et al. 2012; Erben et al. 2013)
and, possibly, from counts of rich clusters of galaxies (including
Planck cluster counts reported in Planck Collaboration XXIV
2016). The Planck base ΛCDM cosmology is also discordant
with Lyα BAO measurements at z ≈ 2.35 (Delubac et al. 2015;
Font-Ribera et al. 2014). At present, the reasons for these ten-
sions are unclear.

(9) By combining the Planck TT+lowP+lensing data with other
astrophysical data, including the JLA supernovae, the equation
of state for dark energy is constrained to w = −1.006 ± 0.045
and is therefore compatible with a cosmological constant, as as-
sumed in the base ΛCDM cosmology.

(10) We have presented a detailed analysis of possible ex-
tensions to the neutrino sector of the base ΛCDM model.
Combining Planck TT+lowP+lensing with BAO we find Neff =
3.15 ± 0.23 for the effective number of relativistic degrees of
freedom, consistent with the value Neff = 3.046 of the standard
model. The sum of neutrino masses is constrained to

∑
mν <

0.23 eV. The Planck data strongly disfavour fully thermalized
sterile neutrinos with msterile ≈ 1 eV that have been proposed as a
solution to reactor neutrino oscillation anomalies. From Planck,
we find no evidence for new neutrino physics. Standard neutri-
nos with masses larger than those in the minimal mass hierarchy
are still allowed, and could be detectable in combination with
future astrophysical and CMB lensing data.

(11) The standard theory of big bang nucleosynthesis, with
Neff = 3.046 and negligible leptonic asymmetry in the elec-
tron neutrino sector, is in excellent agreement with Planck data
and observations of primordial light element abundances. This
agreement is particularly striking for deuterium, for which accu-
rate primordial abundance measurements have been reported re-
cently (Cooke et al. 2014). The BBN theoretical predictions for
deuterium are now dominated by uncertainties in nuclear reac-
tion rates (principally the d(p, γ)3He radiative capture process),
rather than from Planck uncertainties in the physical baryon den-
sity ωb ≡ Ωbh2.

(12) We have investigated the temperature and polarization sig-
natures associated with annihilating dark matter and possible de-
viations from the standard recombination history. Again, we find
no evidence for new physics from the Planck data.

In summary, the Planck temperature and polarization spec-
tra presented in Figs. 1 and 3 are more precise (and accu-
rate) than those from any previous CMB experiment, and im-
prove on the 2013 spectra presented in PCP13. Yet we find no
signs for any significant deviation from the base ΛCDM cos-
mology. Similarly, the analysis of 2015 Planck data reported
in Planck Collaboration XVII (2016) sets unprecedentedly tight
limits on primordial non-Gaussianity. The Planck results of-
fer powerful evidence in favour of simple inflationary mod-
els, which provide an attractive mechanism for generating the
slightly tilted spectrum of (nearly) Gaussian adiabatic perturba-
tions that match our data to such high precision. In addition, the
Planck data show that the neutrino sector of the theory is con-
sistent with the assumptions of the base ΛCDM model and that
the dark energy is compatible with a cosmological constant. If
there is new physics beyond base ΛCDM, then the correspond-
ing observational signatures in the CMB are weak and difficult
to detect. This is the legacy of the Planck mission for cosmology.
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Studi di Padova, via Marzolo 8, 35131 Padova, Italy

39 Dipartimento di Fisica e Scienze della Terra, Università di Ferrara,
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