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ABSTRACT

We compute and investigate four types of imprint of a stochastic background of primordial magnetic fields (PMFs) on the cosmic microwave
background (CMB) anisotropies: the impact of PMFs on the CMB temperature and polarization spectra, which is related to their contribu-
tion to cosmological perturbations; the effect on CMB polarization induced by Faraday rotation; the impact of PMFs on the ionization history;
magnetically-induced non-Gaussianities and related non-zero bispectra; and the magnetically-induced breaking of statistical isotropy. We present
constraints on the amplitude of PMFs that are derived from different Planck data products, depending on the specific effect that is being analysed.
Overall, Planck data constrain the amplitude of PMFs to less than a few nanoGauss, with different bounds that depend on the considered model. In
particular, individual limits coming from the analysis of the CMB angular power spectra, using the Planck likelihood, are B1 Mpc < 4.4 nG (where
B1 Mpc is the comoving field amplitude at a scale of 1 Mpc) at 95% confidence level, assuming zero helicity. By considering the Planck likelihood,
based only on parity-even angular power spectra, we obtain B1 Mpc < 5.6 nG for a maximally helical field. For nearly scale-invariant PMFs we
obtain B1 Mpc < 2.0 nG and B1 Mpc < 0.9 nG if the impact of PMFs on the ionization history of the Universe is included in the analysis. From
the analysis of magnetically-induced non-Gaussianity, we obtain three different values, corresponding to three applied methods, all below 5 nG.
The constraint from the magnetically-induced passive-tensor bispectrum is B1 Mpc < 2.8 nG. A search for preferred directions in the magnetically-
induced passive bispectrum yields B1 Mpc < 4.5 nG, whereas the compensated-scalar bispectrum gives B1 Mpc < 3 nG. The analysis of the Faraday
rotation of CMB polarization by PMFs uses the Planck power spectra in EE and BB at 70 GHz and gives B1 Mpc < 1380 nG. In our final analysis,
we consider the harmonic-space correlations produced by Alfvén waves, finding no significant evidence for the presence of these waves. Together,
these results comprise a comprehensive set of constraints on possible PMFs with Planck data.

Key words. magnetic fields – cosmic background radiation – early Universe
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1. Introduction

1.1. Cosmic magnetism

Magnetic fields are one of the fundamental and ubiquitous com-
ponents of our Universe. They are a common feature of many
astrophysical objects, starting from the smallest up to the largest
observed scales (for reviews see Ryu et al. 2012; and Widrow
et al. 2012). In particular, large-scale magnetic fields are ob-
served in almost every galaxy, starting from the Milky Way,
with possible hints of their presence in high-redshift galaxies too
(Beck 2000; Bernet et al. 2008; Wolfe et al. 2008), suggesting an
early origin for the galactic fields.

Large-scale magnetic fields are also probed in galaxy clus-
ters, both through the measurement of the Faraday rotation ef-
fect on the light of background galaxies and through radio emis-
sion from the halos and relics of the clusters (Govoni & Feretti
2004; Ferrari et al. 2008; Feretti et al. 2012). These large-scale
magnetic fields have measured amplitudes that range from a
few to several microgauss. Recent Faraday rotation measure-
ments from low-density intercluster regions also suggest the
presence of large-scale magnetic fields in cosmic structure fil-
aments (Neronov et al. 2013a). A recent addition to the large-
scale magnetic field constraints comes from the interpretation of
Fermi-LAT data (Neronov & Vovk 2010). High-energy γ-rays
(in the TeV band) emitted by blazars generate electron-positron
pairs when interacting with the optical and infrared background
light. These pairs re-emit at lower energies (GeV), but Fermi-
LAT data do not show this re-emitted flux in the GeV band.
One possible explanation for this observation is a deflection of
the electron-positron pairs owing to the presence of a diffuse
magnetic field (see Neronov & Vovk 2010; Taylor et al. 2011;
Tavecchio et al. 2011; Vovk et al. 2012; and Neronov et al. 2013b
for details on this explanation; and see Broderick et al. 2012 for
alternative scenarios). Constraints on the GeV emission provide
lower limits on the amplitude of intergalactic fields of the or-
der of 10−18–10−15 G (Tavecchio et al. 2010; Taylor et al. 2011;
Dermer et al. 2011; Vovk et al. 2012), if this scenario is correct.

The origin of large-scale magnetic fields is strongly debated.
Several mechanisms have been proposed and one popular hy-
pothesis is that the observed large-scale fields are remnants of
fields that existed from the earliest times, i.e., primordial fields.
During structure formation the adiabatic compression and tur-
bulent shock flows would naturally lead to an amplification of
initial seeds (which may act in addition to astrophysical mech-
anisms of large-scale magnetic field generation, like AGN ejec-
tion and galactic dynamos; for reviews see Widrow 2002; and
Giovannini 2004b). A Kolmogorov-like magnetic power spec-
trum has been observed in the central region of the Hydra cluster
(Kuchar & Enßlin 2011), supporting the idea that the observed
extragalactic magnetic fields are largely shaped and amplified by
hydrodynamical processes. Primordial magnetic fields (PMFs)
can naturally provide the initial seeds to be amplified into the ob-
served large-scale fields. Several early-Universe scenarios pre-
dict the generation of cosmological magnetic fields, either dur-
ing inflation (Ratra 1992), with a suitable breaking of conformal
invariance of electromagnetism (Turner & Widrow 1988), dur-
ing phase transitions motivated by particle physics (Vachaspati
1991; Grasso & Riotto 1998), or via other physical processes
(Durrer & Caprini 2003; Ichiki et al. 2006). The importance
of PMF studies not only lies in the possibility of PMFs being
the progenitors of the observed cosmic magnetic fields, but also
in them providing a new potential observational window to the
early Universe (for reviews see Kahniashvili 2005; Giovannini
2008; Kunze 2013; and Durrer & Neronov 2013).

1.2. Imprints of primordial magnetism

PMFs leave imprints on several cosmological observables and
can be constrained with different cosmological data sets. In par-
ticular, interesting constraints come from their influence on Big
Bang Nucleosynthesis (BBN), which provides upper limits of
the order of 0.1 µG (Grasso & Rubinstein 1995; Kahniashvili
et al. 2010), and from their impact on large-scale structure for-
mation (see, e.g., Shaw & Lewis 2012 and Fedeli & Moscardini
2012).

Another limit on PMFs based on BBN is derived by Caprini
& Durrer (2002). Gravitational waves can be produced by PMFs,
in particular before neutrino free streaming. The upper limit on
the amount of gravitational waves allowed at nucleosynthesis to
not spoil the BBN predictions poses a constraint on the ampli-
tude of PMFs, which is especially strong for causal magnetoge-
nesis mechanisms.

It has been suggested that PMFs could have an influence on
the formation of the filamentary large-scale structure, in the pi-
oneering work of Wasserman (1978) and by Kim et al. (1996).
In particular, Battaner et al. (1997) conclude that magnetic fields
with comoving strengths lower than 1 nG have negligible effect
and that for strengths higher than 10 nG the influence is too high
to be compatible with observations.

Other constraints on PMFs come from their impact on the
thermal spectrum of the cosmic microwave background (CMB)
radiation. PMFs can induce spectral distortions of both early
and late type via injection of dissipated magnetic energy into
the plasma through damping processes (Jedamzik et al. 2000;
Sethi & Subramanian 2005; Kunze & Komatsu 2014). PMFs
also imply photon emission and absorption through the cyclotron
process, which, depending on the amplitude of PMFs, could in
principle play a role in the generation and evolution of spec-
tral distortions and in particular in the thermalization process
(for a general overview see Burigana et al. 1991; Hu & Silk
1993; and Chluba & Sunyaev 2012). On the other hand, the
cyclotron process is only relevant at very long wavelengths.
Thus, for realistic shapes of distorted spectra and PMFs with
amplitudes compatible with current constraints, the cyclotron
contribution is found to be much less important than radiative
Compton and bremsstrahlung contributions in re-establishing
a blackbody spectrum (Burigana & Zizzo 2006) and also ex-
tremely small in generating a polarized signal (Zizzo & Burigana
2005). Thus, the current constraints derived from COBE-
FIRAS present good prospects for possible future observations
(Jedamzik et al. 2000; Kunze & Komatsu 2014; Chluba et al.
2015) while polarization anisotropies directly induced by PMFs
are not significantly affected by the cyclotron process associated
with PMFs.

Many of the stronger and more robust constraints come from
the impact of PMFs on the CMB anisotropies. CMB data are a
crucial source of information for investigating and constraining
PMF characteristics, understanding their origin, and exploring
the possibility of them being the seeds that generated the ob-
served large-scale magnetic fields.

The first release of Planck1 data in 2013 has led
to some of the most stringent constraints on PMFs

1 Planck (http://www.esa.int/Planck) is a project of the
European Space Agency (ESA) with instruments provided by two sci-
entific consortia funded by ESA member states and led by Principal
Investigators from France and Italy, telescope reflectors provided
through a collaboration between ESA and a scientific consortium led
and funded by Denmark, and additional contributions from NASA
(USA).
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(see Planck Collaboration XVI 2014). The scope of this
paper is to provide the “Planck constraints on PMFs” through
combined analyses of the temperature and polarization data. The
results of this paper are derived from Planck products, which
are based on the work done in Planck Collaboration I (2016),
Planck Collaboration II (2016), Planck Collaboration III (2016),
Planck Collaboration IV (2016), Planck Collaboration V (2016),
Planck Collaboration VI (2016), Planck Collaboration VII
(2016), and Planck Collaboration VIII (2016). Before going
into the description of our analysis, we briefly discuss the most
important PMF models.

The simplest PMF model is that of a homogeneous field. This
model cannot be included in a homogeneously and isotropically
expanding cosmological model. It needs to be analysed in the
context of an anisotropic cosmological model with associated
isotropy-breaking predictions (Kahniashvili et al. 2008), and
has already been strongly constrained by COBE data (Barrow
et al. 1997). More recently, Adamek et al. (2011) have recon-
sidered the impact of a homogeneous large-scale magnetic field
on the CMB anisotropies, with the addition of the contribution
from free-streaming particles like neutrinos. The presence of
the anisotropic neutrino stress induces a compensation of the
magnetic field effect, allowing for a larger homogeneous-field
amplitude than concluded from previous analyses.

The most widely used model of PMFs is a stochastic
background modelled as a fully inhomogeneous component
of the cosmological plasma (we neglect PMF energy density
and anisotropic stress contributions at the homogeneous level),
with the energy momentum tensor components (quadratic in
the fields) on the same footing as cosmological perturbations.
Within this model, PMFs leave several signatures in the CMB
temperature and polarization anisotropy patterns, also inducing
non-Gaussianities.

In this paper, we predict and analyse four different types
of PMF signatures: the impact on the CMB power spectra in
temperature and polarization; the impact on polarization power
spectra induced by Faraday rotation; the impact on CMB non-
Gaussianities and the related non-zero magnetically-induced
bispectra; and finally the impact on the statistics of CMB
anisotropies and in particular the breaking of statistical isotropy,
given by induced correlations in harmonic space.

The energy momentum tensor of PMFs sources all types of
cosmological perturbations, i.e., scalar, vector, and tensor per-
turbations. Magnetically-induced pertubations have some cru-
cial differences with respect to the primary perturbations. Firstly,
PMFs generate vector perturbations that are sourced by the
Lorentz force and, unlike the primary ones, are not decay-
ing. Secondly, magnetically-induced perturbations are not sup-
pressed by Silk damping (Hu & White 1997; Subramanian &
Barrow 1998a). Their impact on the CMB temperature power
spectrum is dominant on small angular scales, where the primary
CMB is suppressed, and therefore they can be strongly con-
strained by high-resolution CMB data. Of additional interest are
helical PMFs, which may be generated during inflation through
mechanisms like pseudoscalar coupling and may be crucial for
connecting these PMFs to the magnetic fields observed on large
scales. A helical PMF generates parity-violating correlations,
such as T B and EB (Caprini et al. 2004; Kahniashvili & Ratra
2005; Kahniashvili et al. 2014), which can be used to constrain
PMFs with CMB polarization data. After recombination, PMFs
are dissipated via two additional effects that take place in the
magnetized, not fully ionized, plasma: ambipolar diffusion and
magnetohydrodynamical (MHD) turbulence. The dissipation in-
jects magnetic energy into the plasma, heating it and thereby

modifying the optical depth of recombination, with an impact
on the primary CMB power spectra (Sethi & Subramanian 2005;
Kunze & Komatsu 2014, 2015; Chluba et al. 2015).

PMFs have another effect on the primary polarization
anisotropies. They induce Faraday rotation, which rotates
E-modes into B-modes, thus generating a new B-mode sig-
nal, and vice versa. This signal grows with decreasing obser-
vational frequency and therefore is a good target for Planck’s
low-frequency channels.

PMFs modelled as a stochastic background have a non-
Gaussian contribution to CMB anisotropies, even if the mag-
netic fields themselves are Gaussian distributed, since the com-
ponents of the energy momentum tensor are quadratic in the
fields and therefore approximately follow χ2 statistics (Brown &
Crittenden 2005). In particular, PMFs generate non-zero higher-
order statistical moments. The third-order moment, the CMB
bispectrum, can be used as a probe to derive constraints on
PMFs that are complementary to the previously mentioned ones.
Planck polarization data thus provide a new way of probing
PMFs, namely through the magnetically-induced polarization
bispectrum.

The presence of PMFs induces and sustains the propagation
of Alfvén waves. These waves have an impact on the statistics
of the CMB anisotropies and in particular induce specific corre-
lations between harmonic modes (Kahniashvili et al. 2008). It is
possible to use this effect to constrain the amplitude of Alfvén
waves and thus indirectly constrain the PMF amplitude (Durrer
et al. 1998; Kim & Naselsky 2009; Planck Collaboration XXIV
2014).

In the MHD limit, assuming that the fields are only modi-
fied by cosmic expansion, the magnetic field strength decreases
as a−2, where a is the cosmological scale factor. Throughout, we
will use a “comoving” magnetic field, defined as B = a2 B(phys),
where B(phys) is the physical strength of the magnetic field.

1.3. Structure of the paper

The paper is structured as follows. In Sect. 2 we describe the
analysis of the impact of helical and non-helical PMFs on CMB
power spectra in temperature and polarization and we derive the
constraints on the PMF amplitude and spectral index that come
from Planck data. In Sect. 3 we present three different analyses
of the magnetically-induced bispectrum, specifically two analy-
ses of the magnetically-induced passive bispectrum and an ana-
lytical treatment of the magnetically-induced scalar bispectrum.
In all cases we derive the constraints on the amplitude of PMFs
with a scale-invariant spectrum using Planck non-Gaussianity
measurements. In Sect. 4 we present our analysis of the Faraday
rotation signal induced by PMFs and we derive constraints from
Planck low frequency polarization data. In Sect. 5 we present
the analysis of the impact of Alfvén waves on statistical correla-
tions in harmonic space and the associated constraints on Alfvén
waves derived from Planck data. We summarize our conclusions
in Sect. 6

2. Impact of primordial magnetic fields
on the CMB power spectra

PMFs affect cosmological perturbations and may leave signifi-
cant imprints on the CMB power spectra in temperature and po-
larization. Accurate prediction of these signatures allows us to
derive constraints on PMF characteristics from CMB anisotropy
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data from Planck using the Planck likelihood. In this section
we derive the predictions for the magnetically-induced power
spectra in temperature and polarization, considering helical
and non-helical PMFs, and present the resulting constraints on
PMFs.

2.1. Magnetic modes

When considering a stochastic background of PMFs, we can ne-
glect the contribution of energy density and anisotropic stress at
the homogeneous level. The magnetic energy momentum ten-
sor can be seen as describing perturbations carrying energy den-
sity and anisotropic stress and inducing a Lorentz force on the
charged particles of the plasma. PMFs source all types of pertur-
bations; scalar, vector, and tensor. In the past years, several dif-
ferent analyses of magnetically-induced perturbations have been
performed. Some examples from the wide literature of the field
concern magnetically-induced scalar perturbations (Giovannini
2004a; Kahniashvili & Ratra 2007; Yamazaki et al. 2007, 2008;
Finelli et al. 2008; Giovannini & Kunze 2008c,a,b; Bonvin &
Caprini 2010; Bonvin 2010; Kunze 2011), while other treat-
ments also include magnetically-induced vector and tensor per-
turbations (Subramanian & Barrow 1998b, 2002; Durrer et al.
2000; Kahniashvili et al. 2001; Mack et al. 2002; Caprini &
Durrer 2002; Subramanian et al. 2003; Lewis 2004; Caprini
2006; Paoletti et al. 2009; Shaw & Lewis 2010). We can iden-
tify three different classes of initial conditions for magnetically-
induced perturbations; compensated (Giovannini 2004a; Finelli
et al. 2008), passive (Lewis 2004; Shaw & Lewis 2010), and
inflationary (Bonvin et al. 2013).

In this paper we focus on the two magnetically-induced
modes that are present for all types of PMFs produced prior
to decoupling, independent of their generation mechanism, i.e.,
the compensated and passive modes. We do not consider spe-
cific inflationary initial conditions (Bonvin et al. 2013) to main-
tain the generality of the PMFs we constrain. For the same rea-
son we neither consider a possible cross-correlation between the
magnetically-induced and the adiabatic mode motivated by in-
flation (Jain & Sloth 2012).

2.1.1. Compensated modes

The compensated modes are the regular magnetically-induced
modes. These are the regular (finite at τ → 0) solutions of the
perturbed Einstein-Boltzmann equations, including the magnetic
contributions after neutrino decoupling. These modes are called
“compensated” because the magnetic contributions to the met-
ric perturbations in the initial conditions are compensated by
fluid modes to leading order. The initial conditions are the solu-
tions of the Einstein-Boltzmann equation system for large wave-
lengths at early times, with the perturbed quantities expanded
in power series of kτ (where k is the perturbation wavenumber
and τ is the conformal time). When performing this calculation
for the magnetically-induced modes, the growing regular mode
requires the source terms in the equations for the metric pertur-
bations to vanish at the lowest order. This can only be realized by
a compensation between the magnetic terms and the perturbed
quantities of the fluid.

2.1.2. Passive modes

The second class, the passive modes, is generated by the pres-
ence of a PMF before neutrino decoupling. Without neutrinos

free-streaming, there is no counterpart in the fluid to balance the
anisotropic stress of the PMF. This generates a logarithmically
growing mode (in conformal time, which diverges for early
times). After neutrino decoupling, the anisotropic neutrino stress
compensates the anisotropic stress, which is due to the PMF,
leading back to the compensated case described before. But an
imprint of this logarithmically growing mode survives neutrino
decoupling in form of a constant offset on the amplitude of the
inflationary non-magnetic mode (the primary cosmological per-
tubations of the standard model without PMFs). This amplitude
offset is due to the continuity condition for the matching of the
initial conditions before and after neutrino decoupling. Passive
modes have a logarithmic dependence on the ratio between the
neutrino decoupling time and the generation time of the PMF,
i.e., their amplitudes grow as h(k) ∝ ln(τν/τB) (where τν is the
neutrino decoupling time and τB is the PMF generation time).
The passive modes, unlike the compensated ones, evolve fol-
lowing the standard non-magnetic equations and only influence
scalar and tensor perturbations.

2.2. Impact of non-helical PMFs on the CMB angular power
spectra

Our analysis is based on previous treatments of magnetically-
induced compensated and passive scalar, vector, and tensor
modes presented by Lewis (2004), Finelli et al. (2008), Paoletti
et al. (2009), and Shaw & Lewis (2010).

At linear order, PMFs evolve like a stiff source and we can
therefore discard the back-reaction of gravity onto the stochas-
tic background of PMFs. Prior to the recombination epoch the
electric conductivity of the primordial plasma is very large. We
therefore consider the limit of infinite conductivity, in which the
induced electric field is zero. In this limit, the temporal evolution
of the PMF reduces to B(phys)(x, τ) = B(x)/a(τ)2, where B(x) is
the comoving field2.

We model a non-helical stochastic PMF with a power-law
power spectrum, where the two-point correlation function is de-
scribed by3〈
Bi(k) B∗j(k′)

〉
=

(2π)3

2
δ(3)(k − k′)

(
δi j − k̂ik̂ j

)
PB(k), (1)

where PB(k) = AB knB and k̂i denotes a cartesian component of
a normalized wave vector. In this model, the PMF is character-
ized by two quantities, the amplitude of the power spectrum, AB,
and the spectral index nB. The latter is one of the major discrim-
inating factors between generation mechanisms, since different
mechanisms generate fields with different spectral indices (for
example, causal mechanisms generate fields with nB ≥ 2; Durrer
& Caprini 2003). While magnetically-induced compensated per-
turbations do not suffer from Silk damping, PMFs are neverthe-
less suppressed on small scales by radiation viscosity (Jedamzik
et al. 1998; Kahniashvili et al. 2001). To account for this damp-
ing we introduce a sharp cut-off in the PMF power spectrum at
the damping scale kD.
2 We choose the standard convention in which the scale factor is
a(τ0) = 1 at the present time τ0.
3 For the Fourier transform and its inverse, we use

Y(k,τ) =

∫
d3 x eik·xY(x,τ),

Y(x,τ) =

∫
d3k

(2π)3 e−ik·xY(k,τ),

where Y is a generic function.
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For the amplitude we use the convention to smooth over a
comoving scale of λ = 1 Mpc,

B2
λ =

∫ ∞

0

dk k2

2π2 e−k2λ2
PB(k) =

AB

4π2λnB+3 Γ

(
nB + 3

2

)
· (2)

For the damping scale we use (Subramanian & Barrow 1998a;
Mack et al. 2002)4

kD = (5.5 × 104)
1

nB+5

( Bλ
nG

)− 2
nB+5

(
2π

λ/Mpc

) nB+3
nB+5

× h
1

nB+5

(
Ωbh2

0.022

) 1
nB+5 ∣∣∣∣

λ= 1 Mpc
Mpc−1, (3)

where h is the reduced Hubble constant, H0 =
100 h km s−1 Mpc−1, and Ωb is the baryon density parameter5.
Magnetically-induced scalar, vector, and tensor perturbations
are sourced by the energy momentum tensor components due to
PMFs, together with the Lorentz force contribution. The energy
momentum tensor of the PMFs is

κ0
0 = −ρB = −

B2(x)
8πa4(τ)

, (4)

κ0
i = 0, (5)

κi
j =

1
4πa4(τ)

(
B2(x)

2
δi

j − B j(x) Bi(x)
)
, (6)

where the components are all quadratic in the magnetic field. The
power spectra of the perturbations are therefore fourth-order in
the magnetic field and given by convolutions of the magnetic
power spectrum. The two-point correlation function of the spa-
tial part of the energy momentum tensor is6

〈
κ∗ab(k) κcd(k′)

〉
=

∫
d3q d3 p

64π5 δab δcd

×
〈
Bl(q) Bl(k − q) Bm(p) Bm(k′ − p)

〉
−

∫
d3q d3 p

32π5

×
〈
Ba(q) Bb(k − q) Bc(p) Bd(k′ − p)

〉
.

We can then obtain scalar, vector, and tensor correlation
functions,〈
Π∗(S)(k) Π(S)(k′)

〉
= δab δcd

〈
κ∗ab(k) κcd(k′)

〉
,〈

Π
∗(V)
i (k) Π

(V)
j (k′)

〉
= ka Pib(k) k′c P jd(k′)

〈
κ∗ab(k) κcd(k′)

〉
,〈

Π
∗(T)
i j (k) Π

(T)
tl (k′)

〉
=

[
Pia(k) P jb(k) −

1
2

Pi j(k) Pab(k)
]

×

[
Ptc(k′) Pld(k′) −

1
2

Ptl(k′) Pcd(k′)
] 〈
κ∗ab(k) κcd(k′)

〉
, (7)

4 Note that, unlike in previous analyses (Finelli et al. 2008; Paoletti
et al. 2009; Paoletti & Finelli 2011), we explicitly include the depen-
dence of the damping scale on the baryon density to account for the
updated cosmology with respect to the previous treatments.
5 For a quasi-scale-invariant PMF power spectrum (nB ≈ −3), the es-
timated value for kD varies slightly, by about 30–40%, for different ap-
proaches (Subramanian & Barrow 1998a; Jedamzik et al. 2000; Kunze
& Komatsu 2015). However, this does not affect the main results of this
paper significantly.
6 We use the convention that Latin indices run from 1 to 3, while Greek
indices run from 0 to 3.

where the Π(X) are the scalar, vector, and tensor components of
the energy momentum tensor, Pi j = δi j − k̂ik̂ j, and we sum over
repeated indices. Such convolutions can be written in terms of
spectra as〈

Π∗(S)(k) Π(S)(k′)
〉

=
∣∣∣Π(S)(k)

∣∣∣2 δ(k − k′),〈
Π
∗(V)
i (k) Π

(V)
j (k′)

〉
=

1
2

∣∣∣Π(V)(k)
∣∣∣2 Pi j(k) δ(k − k′),〈

Π
∗(T)
i j (k) Π

(T)
tl (k′)

〉
=

1
4

∣∣∣Π(T)(k)
∣∣∣2 Mi jtl(k) δ(k − k′),

whereMi jtl = PitP jl + PilP jt − Pi jPtl. With this convention, the
relevant components of the energy momentum tensor become

|ρB(k)|2 =
1

1024 π5

∫
Ω

d3 p PB(p) PB(|k − p|) (1 + µ2), (8)

∣∣∣L(S)
B (k)

∣∣∣2 =
1

128 π2 a8

∫
Ω

d3 p PB(p)

× PB(|k − p|)
[
1 + µ2 + 4γβ(γβ − µ)

]
, (9)

∣∣∣Π(V)(k)
∣∣∣2 =

1
512 π5

∫
Ω

d3 p PB(p) PB(|k − p|)

×
[
(1 + β2)(1 − γ2) + γβ(µ − γβ)

]
, (10)

∣∣∣Π(T)(k)
∣∣∣2 =

1
512 π5

∫
Ω

d3 p PB(p) PB(|k − p|)

× (1 + 2γ2 + γ2β2), (11)

where µ = p̂ · (k − p)/|k − p|, γ = k̂ · p̂, β = k̂ · (k − p)/|k − p|,
and Ω denotes the volume with p < kD.

The conservation equations for the fields give a relation be-
tween the scalar projection of the anisotropic stress, the energy
density, and the Lorentz force, σB =

ρB
3 +LB

7 (which reduces to a
simple relation between Lorentz force and anisotropic stress for
vector modes, Π

(V)
B = kiL(V)

i ). This relation simplifies the treat-
ment, reducing the number of correlators to be computed by a
factor of 2. We use the analytic solutions to the convolutions de-
rived by Finelli et al. (2008) and Paoletti et al. (2009) for fixed
spectral indices. For general nB, we use the fits to the generic an-
alytic solutions provided by Paoletti & Finelli (2011). These fits
simplify the computation owing to the presence of hypergeomet-
ric functions in the analytic solutions. The infrared behaviour of
the spectra, which is relevant for CMB anisotropies, depends on
the spectral index. In particular, the spectra describe white noise
for indices greater than nB = − 3

2 , whereas they are infrared-
dominated, as k2nB+3, for smaller indices. We use the initial con-
ditions derived by Lewis (2004), Paoletti et al. (2009), Paoletti &
Finelli (2011), and Shaw & Lewis (2010) for scalar and compen-
sated tensor modes, vector modes, and passive modes, respec-
tively. We use an extended version of the CAMB code (Lewis &
Challinor 2011) that includes all magnetic contributions to cal-
culate predictions for the CMB power spectra in temperature and
polarization.

2.2.1. Compensated modes

In Fig. 1, we show the predictions for magnetically-induced
compensated modes. This shows that the dominant compensated
7 Note that we use the notation of Ma & Bertschinger (1995) for the
scalar anisotropic stress σB.
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Fig. 1. Magnetically-induced CMB TT (top left), T E (top right), EE (bottom left), and BB (bottom right) power spectra. The solid lines represent
primary CMB anisotropies, the dotted lines represent magnetically-induced compensated scalar modes (except for the BB panel, where it represents
the lensing contributions and the solid line represents primary tensor modes with a tensor-to-scalar ratio of r = 0.1), the dashed lines represent
vector modes, whereas the dot-dashed lines represent magnetically-induced compensated tensor modes. We consider PMFs with B1 Mpc = 4.5 nG
and nB = −1.

contributions to the angular power spectra are given by the
scalar and vector modes. In particular, because magnetically-
induced perturbations are not suppressed by Silk damping, a
significant contribution of magnetically-induced modes arises
on small angular scales, where the primary CMB fluctuations
are suppressed. As we will show, the impact of PMFs on the
CMB power spectrum at high multipoles is particularly rele-
vant for the high-precision Planck data, allowing us to derive
strong constraints on the PMF amplitude. Since magnetically-
induced perturbations are solely sourced by energy momen-
tum tensor components that are due to PMFs, the shape of
the magnetically-induced spectra strongly depends on the PMF
spectral index. In Fig. 2, we show this dependence for the tem-
perature power spectrum for scalar and vector perturbations.
We note the qualitatively different dependence for two regimes.
For nB > −3/2 the angular power spectrum remains flat (i.e.,
`(` + 1)C` ∝ `

2) with a rescaling of the amplitude owing to the
amplitude of the Fourier spectra, whereas for nB < −3/2 the
shape varies according to the infrared domination of the energy
momentum tensor of the PMFs.

2.2.2. Passive modes

In addition to compensated initial conditions, we also consider
passive tensor modes. The magnetically-induced passive modes
are not completely determined by the amplitude and spectral in-
dex of the PMF, but also depend on the ratio τν/τB. For tensors
we specifically have h(k) ∝ Π(T)(k) ln(τν/τB), where h(k) is the
tensor metric perturbation. This ratio may vary between 1017 and
106 for fields originating at the grand unification energy scale
(GUT) and at later phase transitions (Shaw & Lewis 2010). We
consider the passive tensor modes, since, for red spectra, they
give the dominant contribution on large angular scales, where the
compensated modes are subdominant. In Fig. 3, we compare the
magnetically-induced passive tensor modes for a nearly scale-
invariant spectrum, nB = −2.9, for PMFs generated at the GUT
scale (for which τν/τB = 1017) with the corresponding dominant
compensated modes. In Fig. 4, we show the dependence of the
CMB power spectrum due to passive tensor modes on the spec-
tral index, for GUT scale PMFs, and its dependence on the time
ratio, showing the two extreme values of the possible range. We
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Fig. 2. Dependence of the magnetically-induced CMB power spectrum on the spectral index. For all plotted cases, the amplitude is B1 Mpc = 4.5 nG.
The black lines show primary CMB anisotropies; for the other colours we refer to the legend. Left: scalar contributions, right: vector contributions.

note that the compensated vector modes dominate at small an-
gular scales, but the passive tensor modes give a contribution at
low and intermediate multipoles for red spectra. For bluer spec-
tra, the passive spectrum becomes steeper and therefore subdom-
inant with respect to primary CMB fluctuations on large angular
scales and with respect to vector modes on small angular scales.
A similar behaviour can be observed in the scalar passive mode,
which has the same origin as the tensor one but in the scalar sec-
tor. Shaw & Lewis (2010) have shown that, just like the tensor
mode, the scalar passive mode becomes relevant on large angu-
lar scales for nearly scale-invariant power spectra. We will show
below that the dominant passive contribution to the constraints
on the PMF amplitude is given by tensor modes.

2.3. Impact of helical PMFs on CMB anisotropies

In addition to the ubiquitous presence of magnetic fields in the
Universe, astrophysical observations show that some galaxies
might have a helical magnetic field structure (Widrow 2002;
Vallée 2004). Following the hypothesis that the amplification of
PMFs may have played a role in the generation of large-scale
magnetic fields, the observed magnetic helicity may be related
to helicity of the PMFs. A helical intergalactic magnetic field
could also be related to a possible CP violation recently hypoth-
esized by Tashiro et al. (2014) in an indirect study of cosmolog-
ical large-scale magnetic fields in voids using secondary γ-ray
data. Helicity of the PMFs influences MHD processes in the
early plasma, as well as cosmological perturbation dynamics, al-
lowing different processes of energy transport, for example the
inverse cascade mechanism (Biskamp 2003). These processes of
energy transport play a role in the early time evolution of the
PMFs and may have an impact on our understanding of their
generation mechanisms, especially if PMFs with a non-zero he-
licity are generated. Moreover, the presence of helicity would
test possible modifications of Maxwell’s theory by constrain-
ing parameters describing the gauge invariance (i.e., mass of
the photon) and Lorentz invariance (i.e., existence of a preferred
frame of reference) as discussed by Carroll et al. (1990). Thus
it would carry information about particle physics at very high
temperatures (above 1 TeV).

A possible way to detect magnetic helicity directly from
CMB data is to study the polarized CMB (cross-) power
spectra. A non-zero helicity in the PMFs changes the ampli-
tudes of the parity-even power spectra and induces parity-odd
cross-correlations between the temperature and B-polarization
anisotropies and E- and B-polarization anisotropies (Pogosian
et al. 2002; Caprini et al. 2004; Kahniashvili & Ratra 2005;
Ballardini et al. 2015). Such parity-odd cross-correlators are also

generated by Faraday rotation, but only owing to homogeneous
PMFs, not owing to the stochastic model for PMFs considered in
this paper (Kosowsky et al. 2005). Parity-odd signals may there-
fore give a more direct possibility for studying helical PMFs.

Our present study for a stochastic background of helical
PMFs is an extension of the model described in the previous sec-
tion. We consider the impact of such PMFs on CMB anisotropies
in temperature and polarization. Using the exact expressions for
the energy-momentum tensor components including the helical
contribution discussed by Ballardini et al. (2015), we derive the
predictions for the impact of a helical PMF on the CMB power
spectra in temperature and polarization.

The most general ansatz for the two-point correlation func-
tion, built on Eq. (1), but taking into account an antisymmetric
part (Pogosian et al. 2002), is〈
Bi(k) B∗j(k′)

〉
=

(2π)3

2
δ(3)(k − k′)

×
[
(δi j − k̂ik̂ j) PB(k) + i εi jl k̂l PH(k)

]
, (12)

with PH(k) = AH knH . From a geometrical point of view PB(k)
denotes the symmetric part and PH(k) the antisymmetric part of
the correlator. The totally antisymmetric tensor εi jl is related to
the parity violation under a transformation k → −k. The realiz-
ability condition gives |PH(k)| < PB(k).

In this case the model is described by four parameters, two
amplitudes and two spectral indices, where AB is the ampli-
tude of the power spectrum of the fields, the same as defined
in Eq. (2), and AH is the amplitude of the power spectrum of the
helical part of the PMFs. These amplitudes can be expressed in
terms of mean-square values of the magnetic field and of the he-
lical component, respectively. As done for the amplitude of the
magnetic field in Eq. (2), we can express the amplitude of the
helical component on a comoving scale of λ as (Ballardini et al.
2015)

B2
λ = λ

∫ ∞

0

dk k3

2π2 e−k2λ2
|PH(k)| =

|AH |

4π2λnH+3 Γ

(
nH + 4

2

)
· (13)

The helical spectral index needs to satisfy nH > −4 for
convergence.

The helical term in Eq. (12) generates new sources that
contribute to the energy momentum tensor. All components of
the energy momentum tensor are quadratic in the fields, so the
Fourier-space two-point correlation function generates symmet-
ric and antisymmetric sources: symmetric ones that are due to
products of PB with PB (the components found in the non-helical
case) and products of PH with PH; antisymmetric ones, which
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Fig. 3. Magnetically-induced CMB TT (top left), T E (top right), EE (bottom left), and BB (bottom right) power spectra due to passive tensor
modes, compared with the ones that are due to compensated modes. The solid lines represent primary CMB anisotropies, the dotted lines represent
magnetically-induced compensated scalar modes (except for the BB panel, where it represents the lensing contribution), the dashed lines represent
vector modes, whereas dot-dashed lines represent magnetically-induced passive tensor modes. We consider PMFs with B1 Mpc = 4.5 nG and
nB = −2.9.
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generate odd-parity angular power spectra, from products of PB
with PH . The Fourier components of the energy momentum
tensor are

|ρB(k)|2 = |ρB(k)|2non−helical

−
1

512 π5

∫
Ω

d3 p PH(p) PH(|k − p|) µ, (14)∣∣∣L(S)
B (k)

∣∣∣2 =
∣∣∣L(S)

B (k)
∣∣∣2
non−helical +

1
64 π2 a8

×

∫
Ω

d3 p p PH(p) PH(|k − p|) (µ − 2γβ) , (15)∣∣∣Π(V)(k)
∣∣∣2 =

∣∣∣Π(V)(k)
∣∣∣2
non−helical

+
1

512 π5

∫
Ω

d3 p PH(p) PH(|k − p|) (µ − γβ) , (16)∣∣∣Π(T)(k)
∣∣∣2 =

∣∣∣Π(T)(k)
∣∣∣2
non−helical

+
1

128 π5

∫
Ω

d3 p PH(p) PH(|k − p|) γ β, (17)

where the non-helical parts are given by Eqs. (8)–(11). The sys-
tem of equations for the background and the perturbations, as
well as the initial conditions, are unmodified.

In Fig. 5 we show the predictions for the magnetically-
induced compensated modes, considering the additional con-
tributions to the sources owing to helicity. We consider the
maximally helical case, AH = AB, with equal spectral indices,
nB = nH , using the solutions to the helical energy momentum
tensor components derived by Ballardini et al. (2015). The pre-
dictions show no difference in the shape and in the slope of the
angular power spectra, with a small shift in the amplitude, which
is always smaller for the helical case, at least for scales rele-
vant for the CMB. Magnetic helicity induces parity-odd cross-
correlations between the E- and B-polarization anisotropies, as
well as between temperature and B-polarization anisotropies.

The parity-odd cross-correlations are sourced by the mixed
terms in the correlation function of the energy momentum tensor,
proportional to

∫
d3 p PB(p) PH(|k − p|). These terms, after de-

composition, contribute to the vector and tensor sources as

∣∣∣A(V)(k)
∣∣∣2 =

1
1024 π5

∫
Ω

d3 p
{

PB(p) PH(|k − p|)[
β
(
1 − γ2

)
− (γβ − µ) γ

]
+PH(p) PB(|k − p|)

[
γ
(
1 − β2

)
− (γβ − µ) β

]}
, (18)

∣∣∣A(T)(k)
∣∣∣2 =

1
256 π5

∫
Ω

d3 p
{

PB(p) PH(|k − p|)
[
β
(
1 + γ2

)]
+PH(p) PB(|k − p|)

[
γ
(
1 + β2

)]}
. (19)

In the limit of small momenta, i.e., k � kD, the spectra never
show a white-noise behaviour,

∣∣∣A(X)(k)
∣∣∣ = const, contrary to

what happens for the symmetric and non-helical parts. For
nB + nH > −2 the behaviour is proportional to k knB+nH+2

D and for
nB + nH < −2 it does not depend on the damping scale and is
proportional to knB+nH+2.

2.4. Constraints from the CMB temperature
and polarization power spectra

Here we present the constraints from Planck on helical and non-
helical PMFs. In the literature there are several previous stud-
ies that already derived constraints on PMFs using different
combinations of observed CMB power spectra (Caprini 2010;
Yamazaki et al. 2010; Paoletti & Finelli 2011; Shaw & Lewis
2012; Paoletti & Finelli 2013; Ade et al. 2015). We use an ex-
tended version of the CosmoMC code (Lewis & Bridle 2011),
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modified to include the magnetic contributions to the CMB
power spectra, as described in the previous subsections, and to
include the parameters characterizing the PMFs in the Markov
chain Monte Carlo analysis.

We assume a flat Universe and a CMB temperature T0 =
2.7255 K, and we use the BBN consistency condition (Ichikawa
& Takahashi 2006; Hamann et al. 2008). We restrict our analy-
sis to three massless neutrinos. A non-vanishing neutrino mass
would not modify the results since it would only enhance the
power on large scales in the presence of PMFs for the compen-
sated modes, where the PMF contribution is less relevant (Shaw
& Lewis 2010). The pivot scale of the primordial scalar is set to
k∗ = 0.05 Mpc−1. We consider the lensing effect for the primary
CMB power spectrum and follow the method implemented in
the Planck likelihood to marginalize over astrophysical residuals
and secondary anisotropy contamination of the small-angular-
scale data (Planck Collaboration XI 2016). This contamination
is particularly relevant for the PMF scenario, since PMFs im-
pact mainly small angular scales. If this contamination is not
properly considered it may lead to biased constraints on PMFs
(Paoletti & Finelli 2013). We sample the posterior using the
Metropolis-Hastings algorithm (Hastings 1970), generating be-
tween four and sixteen parallel chains and imposing a conser-
vative Gelman-Rubin convergence criterion (Gelman & Rubin
1992) of R − 1 < 0.018. We vary the baryon density ωb = Ωbh2,
the cold dark matter density ωc = Ωch2 , the reionization optical
depth τreion, the ratio of the sound horizon to the angular diame-
ter distance at decoupling θ, the scalar amplitude ln(As1010), and
the scalar slope ns. In the Markov Chain Monte Carlo (MCMC)
analysis, we include the magnetic parameters B1 Mpc and nB for
the compensated modes, and add the parameter τrat = τν/τB
whenever we also consider the passive tensor mode. We use
flat priors for the magnetic parameters in the ranges [0, 10] for
B1 Mpc/nG, [−2.9, 3] for nB (nB > −3 to avoid infrared diver-
gence in the PMF energy momentum tensor correlations). We
sample τrat logarithmically, with a flat prior on log10 τrat in the
range [4, 17].

2.4.1. Likelihood

We derive the constraints on PMFs using the Planck likelihood,
which is described in detail in Planck Collaboration XI (2016).
Here we give a brief summary of the main points. The Planck
likelihood is based on the Planck 2015 data and considers both
temperature and polarization. As in 2013, we use a hybrid ap-
proach with the combination of two likelihoods, one dedicated
to low ` and the other to high `.

The Planck low-` likelihood is a fully pixel-based likelihood
with temperature and polarization treated jointly and at the same
resolution, Nside = 16. The `-range is 2 < ` < 29 in TT ,
T E, EE, and BB. The likelihood is based on the foreground-
cleaned LFI maps at 70 GHz and the temperature map derived
by the component separation method Commander using 94% of
the sky at frequencies from 30 to 353 GHz (Planck Collaboration
IX 2016). The polarization map covers 54% of the sky and
is derived from the 70 GHz Q and U maps cleaned with the

8 This convergence criterion is based on the analysis of the variance
within a chain and between chains. The posterior marginal variance
is a weighted average of the different variances. If all the chains have
reached convergence, this value will be very close to the variance within
each single chain. The parameter R is defined as the square root of the
ratio of the posterior marginal variance and the variance within a chain.
With this definition, the closer R is to unity, the closer to convergence
the chains are.

30 GHz map as a synchrotron template and the 353 GHz map as
a dust template (see Planck Collaboration XI 2016). This like-
lihood is denoted as “lowP” throughout the paper. Contrary to
the 2013 analysis, where a combination of Planck temperature
and WMAP9 polarization data was used, the 2015 low-` likeli-
hood is based entirely on Planck data for both temperature and
polarization.

The Planck high-` likelihood is based on a Gaussian
approximation (Planck Collaboration XV 2014 and
Planck Collaboration XI 2016 for polarization) and covers
the `-range 30 < ` < 2500. It uses the half-mission cross-power
spectra of the 100 GHz, 143 GHz, and 217 GHz channels,
measured in the cleanest region of the sky far from the Galactic
plane and bright point sources. The sky fractions considered are
66% of the sky for 100 GHz, 57% for 143 GHz, and 47% for
217 GHz in temperature, whereas in polarization they are 70%,
50%, and 41%, respectively. The likelihood takes foregrounds
and secondary anisotropies into account. In particular, for the
temperature spectra it considers the contributions of dust, clus-
tered Cosmic Infrared Background (CIB), thermal and kinetic
Sunyaev Zeldovich effect (tSZ and kSZ), the cross-correlation
between tSZ and CIB, and a Poissonian term for unresolved
point sources for the temperature spectra. In polarization, only
the dust contribution is considered. Each model is parameterized
as a template contribution to the C` with a free amplitude. The
dominant contribution for ` < 500 is dust, whereas high `-modes
are dominated by point sources and in particular the CIB for
the 217 GHz auto-correlation. For the details of the foreground
modelling see Planck Collaboration XI (2016). This high-`
likelihood is denoted as “Planck TT”, for temperature only,
or “Planck TT , T E, EE”, for temperature plus polarization,
throughout the paper.

2.4.2. Constraints with compensated scalar and vector
contributions

We perform an analysis with the Planck 2015 baseline likeli-
hood. In Table 1 we report the derived constraints. The constraint
on the PMF amplitude is B1 Mpc < 4.4 nG at the 95% confidence
limit (CL) for the case that includes temperature and polarization
data both at low and high multipoles. The same constraint results
when including the polarization only at low `. As in previous
analyses, PMFs with positive spectral indices are constrained to
lower amplitudes than PMFs with negative spectral indices. In
Fig. 6 we present the results of this analysis compared with the
Planck 2013 constraints (Planck Collaboration XVI 2014). The
upper limits from current Planck data are slightly higher than
those obtained in 2013 (Planck Collaboration XVI 2014), where
the constraint from Planck data alone was B1 Mpc < 4.1 nG. The
weaker constraint can be explained by several changes of the
2015 data and likelihood with respect to 2013. The change in
the calibration (see Planck Collaboration I 2016), the different
likelihood implementation, and the different models for the fore-
ground residuals are all factors that contribute to the changed
upper limit. In fact, all these factors, including also the slightly
higher spectral index ns with respect to 2013, are mimicking a
slightly larger signal in the temperature anisotropies, which is
compatible with larger values of the PMF amplitude.

We now include the polarization data in the analysis.
Although the impact of PMFs on T E and EE polarization is less
important than on temperature anisotropies, we show the results
for the case of Planck data, which also includes high-` T E and
EE polarization, in Fig. 6. Although the shape of the posterior
changes slightly, there is no net improvement on the 95% CL
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Table 1. Mean parameter values and bounds of the central 68% CL from
Planck TT , T E, EE (left column) and Planck TT (right column).

Parameter Planck TT , T E, EE + lowP Planck TT + lowP

ωb . . . . . . . . . . . 0.0222 ± 0.0002 0.0222 ± 0.0002
ωc . . . . . . . . . . . 0.1198 ± 0.0015 0.1197 ± 0.0022
θ . . . . . . . . . . . . 1.0408 ± 0.0003 1.0408 ± 0.0005
τreion . . . . . . . . . 0.078 ± 0.017 0.075 ± 0.019
log[As10−9] . . . . 3.09 ± 0.03 3.08 ± 0.04
ns . . . . . . . . . . . 0.963 ± 0.005 0.964 ± 0.007
H0 . . . . . . . . . . 67.77+0.68

−0.67 67.82+0.98
−1.00

B1 Mpc/nG . . . . . <4.4 <4.4
nB . . . . . . . . . . . <−0.008 <−0.31

Notes. When consistent with zero, the upper bound of the 95% CL is
reported. Note that H0 is a derived parameter. The posterior of the spec-
tral index nB is strongly prior-dependent since B1 Mpc is consistent with
zero.

upper bound on B1 Mpc with the addition of the high-` T E and
EE polarization.

2.4.3. Constraints with passive tensor contributions

As described in the previous subsection, in addition to regu-
lar magnetically-induced compensated modes, the presence of
PMFs prior to neutrino decoupling generates passive modes.
In Fig. 3 we show that the passive tensor modes may give the
dominant magnetic contribution to the CMB power spectra for
a nearly scale-invariant PMF power spectrum. Their inclusion
in the analysis may therefore be relevant for the constraints on
PMFs. We include the passive tensor contribution in the MCMC
code with the addition of the parameter τrat, with the settings
described above. We perform MCMC analyses with the Planck
2015 likelihood, combining the low-` temperature and polar-
ization data either with high-` temperature data or with high-`
temperature and polarization data, i.e., TT+lowP and TT , T E,
EE+lowP.

Figure 7 and Table 2 present the results, compared to the
results of the case that includes only compensated contribu-
tions. The 95% CL constraint on the PMF amplitude is B1 Mpc <
4.5 nG, which implies that the addition of the passive tensor
contribution does not improve the constraint on the amplitude of
the PMFs. This result is expected on the basis of the shape of the
angular power spectra that are due to passive tensor modes and
their strong dependence on the PMF spectral index. This mode is
basically a primary tensor mode with an amplitude that depends
on the PMFs. Its spectrum flattens on large angular scales and
then decays on intermediate ones for red PMF spectra, whereas
it acquires a steeper shape for blue PMF spectra, but with a much
lower amplitude than for compensated vector modes. Therefore,
passive tensor modes only contribute significantly for nearly
scale-invariant indices. In Fig. 8 we present the two-dimensional
plot for the PMF amplitude and the spectral index. It shows the
strong degeneracy between the two parameters, meaning that the
same magnetically-induced power spectrum can be realized with
different pairs of amplitude and spectral index. The effect of pas-
sive tensor modes on the CMB temperature angular power spec-
trum is dominant over the primary CMB anisotropies only for
a very limited range of spectral indices, near the scale-invariant
case. Therefore, the degeneracy between amplitude and spectral
index reduces the influence of the passive tensor mode contribu-
tion on the constraints on the amplitude and we do not see any
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Fig. 6. Comparison of the constraints on the smoothed PMF ampli-
tude (top) and the spectral index (bottom) from the 2015 tempera-
ture and temperature plus polarization data with the 2013 results for
magnetically-induced compensated initial conditions only.

improvement in adding the passive tensor mode. While the con-
straint on the amplitude is almost unchanged, the spectral index
in the MCMC analysis is sensitive to the contribution of the pas-
sive mode. In the lower panel of Fig. 7 we show the different
shapes of the posterior distributions for the PMF spectral index
for different data combinations. The inclusion of the passive ten-
sor mode influences the low-spectral index part of the posterior,
while the compensated modes influence the high-spectral index
part. In addition to the analyses that consider the combination of
passive and compensated modes, we perform an analysis includ-
ing only the contribution of the passive tensor mode. We obtain
B1 Mpc < 6.5 nG at 95% CL using Planck TT+lowP. This re-
sult shows that the contribution of the passive term alone, when
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Table 2. Upper bounds of the central 95% CL for the PMF amplitude.

B1 Mpc/nG

TT , T E, EE+lowP: C . . . . <4.4
TT+lowP: C . . . . . . . . . . . <4.4
TT , T E, EE+lowP: C+P . . <4.5
TT+lowP: C+P . . . . . . . . . <4.5
TT + τreion prior: C+P . . . . <4.4

Notes. C stands for compensated mode, C+P for compensated plus pas-
sive modes, τreion prior indicates the case where instead of the low-` po-
larization likelihood, as a cross-check, we used a Gaussian prior on the
optical depth, τreion = 0.07 ± 0.02.

considering the spectral index and the generation epoch as free
parameters, does not have the constraining power of the combi-
nation of passive and compensated modes.

2.4.4. Impact of astrophysical residuals

We adopt the Planck likelihood treatment of astrophysi-
cal contaminants as described in the Planck likelihood pa-
per. Considering the complexity of this model and the num-
ber of nuisance parameters involved, we investigate whether
foreground residuals have an impact on the constraints on
PMFs. Specifically, we investigate possible degeneracies with
the foreground parameters by considering the two-dimensional
distributions of the magnetic parameters and foreground param-
eters. The relevant cases are shown in Fig. 9. There, we present
the two-dimensional distributions of the PMF amplitude and the
Poissonian amplitudes for the three frequencies considered in
the Planck high-` likelihood: 100 GHz, 143 GHz, 217 GHz, and
the 143 × 217 GHz cross-spectrum. We note that especially for
the 143 GHz and the 143 × 217 GHz analyses, a weak degen-
eracy between the two parameters is seen. This result may in-
dicate an impact of the astrophysical residual modelling on the
PMF constraints. To investigate this issue, we perform an analy-
sis by fixing the four parameters for the Poissonian amplitudes to
their best-fit values from the standard Lambda Cold Dark Matter
model. This analysis yields a limit of B1 Mpc < 3.0 nG, which
is smaller than the constraint obtained in the case where the pa-
rameters associated to astrophysical residuals are free to vary.
This result has no statistical significance, but demonstrates that
there is an impact of the astrophysical residuals on the PMF con-
straints when the data considered require a complex model for
the residuals. The shape of the dominant PMF contributions to
the angular power spectrum on small angular scales is responsi-
ble for this degeneracy. In fact, the steep slope of the vector mode
may be degenerate with astrophysical residual contributions, as
shown by Paoletti & Finelli (2013). For comparison we show an
analogous plot for the 2013 analysis in Fig. A.1, which consid-
ers the degeneracy for the foreground parameters of the Planck
2013 likelihood. We note how, in contrast to the 2015 analysis,
there is only a small degeneracy with the Poissonian amplitude
at 143 GHz. This result shows the importance of the foreground
residual modelling for the PMF constraints.

In contrast to the Poissonian terms, we do not observe any
degeneracy with the other foreground components, as shown in
Fig. A.2, including the clustering component of the foreground
residuals, which is the other dominant contribution on small an-
gular scales at the frequencies considered in this analysis. The
fact that we do not observe a degeneracy in this case is due to
the difference in the spectral shape of the PMF contribution and
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Fig. 7. Constraints on the smoothed PMF amplitude (top) and spectral
index (bottom) from Planck temperature data with and without the pas-
sive tensor contribution. Constraints including both compensated and
passive modes are indicated with C+P in the legend, constraints using
only compensated modes are marked with C.

the clustering term. Although both are relevant on small angular
scales the slightly different shapes break the degeneracy.

2.4.5. Constraints for specific PMF models

Planck 2015 results confirm what has been observed in previous
analyses, namely that CMB data allow negative PMF spectral
indices with larger field amplitudes than positive indices. The
spectral index of the PMFs is the main discriminating factor
among possible generation mechanisms.

Some cases are of particular interest owing to their con-
nection with specific classes of generation mechanisms. In
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particular, PMFs generated during phase transitions or via
second-order perturbative effects, vector perturbations, etc., are
characterized by positive spectral indices, equal or greater than 2.
To investigate the maximal amplitude allowed by Planck data for
fields of this type, we perform two dedicated analyses, the first
with fixed index nB = 2, and the second only restricted to pos-
itive spectral indices for PMFs. We include both compensated
and passive modes in the analysis, giving B1 Mpc < 0.011 nG
at 95% CL (B1 Mpc < 0.012 nG at 95% CL, when considering
Planck TT , T E, EE+lowP) for the nB = 2 case and B1 Mpc <
0.55 nG at 95% CL for nB > 0.

We consider a third case of interest, the almost scale-
invariant fields with nB = −2.9. This specific case is con-
nected to PMF generation from inflation and is studied to test
the strength of the passive tensor modes in constraining the am-
plitude of the PMFs. Moreover, we want to compare the re-
sults obtained from the Planck power spectra with those coming

Table 3. 95% CL upper bounds of the PMF amplitude for fixed spectral
index with compensated plus passive tensor modes.

nB . . . . . . . . . 2 1 0 −1 −1.5 −2 −2.5 −2.9

B1 Mpc/nG . . . 0.011 0.1 0.5 3.2 4.8 4.5 2.4 2.0

from the non-Gaussianity analysis, presented in the next sec-
tion, which is performed for this spectral index as well. We
obtain B1 Mpc < 2.0 nG at the 95% CL. Note that this nearly
scale-invariant case is dominated by the tensor passive mode.
In fact, when we only consider the tensor passive contributions,
excluding the compensated ones, we obtain the same result as
in the passive-compensated combined case, B1 Mpc < 2.0 nG at
the 95% CL.

Together with the passive tensor mode there is also a scalar
passive mode, as shown by Shaw & Lewis (2010). When we
include this scalar passive contribution in our analysis we obtain
again B1 Mpc < 2.0 nG at the 95% CL. We can therefore conclude
that the passive scalar contribution is subdominant with respect
to the tensor one. As will become clear in the next section, this
result shows that the constraining power of the angular power
spectrum is comparable to the one of the non-Gaussianity.

In addition to these specific types of PMFs we have per-
formed some analyses with fixed spectral index, choosing a grid
of values covering the full range we sample. With respect to the
case where the spectral index is a free variable, the cases with
fixed spectral index are expected to give stronger constraints on
the PMF amplitude, with a trend in agreement with the general
case, because one of the two parameters describing the PMF is
fixed. In Table 3 we present the results of these analyses. We note
how, as expected, the trend of the results with fixed spectral in-
dex is in agreement with the one of the two-dimensional plot of
Fig. 8 obtained with the generic sampling of the index. We also
note how the constraint is weakest for nB = −1.5 as expected
from the impact on the angular power spectrum.

2.4.6. Constraints from the BICEP2/Keck-Planck joint
analysis

We perform an analysis using the recent BICEP2/Keck-Planck
cross-correlation (indicated as BKP; BICEP2/Keck Array and
Planck Collaborations 2015) in addition to the Planck 2015 data.
The BKP likelihood is obtained from the BB and EE bandpow-
ers for all cross-spectra between the BICEP2/Keck maps and the
Planck maps at all frequencies (BICEP2/Keck Array and Planck
Collaborations 2015). We consider both compensated and pas-
sive contributions and study two cases, one in which we leave
the spectral index free to vary and another in which we fix it
to nB = −2.9. In the latter case, there is a contribution to the
B-mode polarization on large angular scales from the passive
tensor mode. Figure 10 shows the comparison of the results of
these two analyses with the results obtained from Planck data
alone. The constraints are B1 Mpc < 4.7 nG for the case with free
spectral index and B1 Mpc < 2.2 nG at the 95% CL for the case
with nB = −2.9. These are slightly higher upper bounds for the
amplitude of PMFs, but they are fully compatible with the re-
sults derived from Planck data alone. We note that the posterior
distribution for the nearly scale-invariant case changes with the
addition of the BKP data but it does not show any significant
deviation from the posterior based only on Planck data.
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Fig. 10. Probability distributions for the PMF amplitude including the
BICEP2/Keck-Planck cross-correlation, compared with the one based
only on Planck data. Top: the case in which the spectral index is free to
vary, bottom: the case with nB = −2.9.

2.4.7. Constraints with maximally helical contributions

We perform an MCMC analysis including the maximally heli-
cal contribution. We restrict our analysis to the case of tempera-
ture and polarization with only even cross-correlations. The odd
cross-correlations T B and EB are present only in the lowP like-
lihood, therefore only for very low multipoles where the signal
from helical PMFs is negligible. Thus we do not include odd
cross-correlators in our analysis.

We perform an analysis using the PlanckTT+lowP likeli-
hood. The constraint on the PMF amplitude in the maximally
helical case is B1 Mpc < 5.6 nG at the 95% CL. A comparison
with the corresponding results for the non-helical case is shown
in Fig. 11. The analysis with the Planck TT , T E, EE+lowP
likelihood gives B1 Mpc < 5.8 nG at the 95% CL. As in the
non-helical case, the inclusion of high-` polarization does not
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Fig. 11. PMF amplitude constraint for the helical case (solid black)
compared with the non-helical case (dashed red). The dotted blue line
shows the constraint on the amplitude of the helical component as an
alternative interpretation of the constraints on the amplitude of PMFs
with a helical component.

improve the constraints. Figure 5 shows that magnetic fields with
a maximally helical component produce smaller CMB fluctua-
tions in temperature and polarization than non-helical fields of
the same strength. As a result of this, the amplitude of maxi-
mally helical magnetic fields is less constrained than the one of
non-helical fields for this Planck 2015 data release. When con-
sidering helical PMFs, we have two components that contribute
to the magnetically-induced perturbations, as shown in Eq. (12),
a symmetric and an antisymmetric part, represented by PB and
PH , respectively. These power spectra can be associated with two
amplitudes of the field, B1 Mpc associated with the symmetric part
and B1 Mpc associated with the antisymmetric part (see Eq. (13)).
In the maximally helical case the two amplitudes are not inde-
pendent from each other, they are related through the conditions
AH = AB and nB = nH . Therefore we constrain a single am-
plitude, which can be expressed either through B1 Mpc or B1 Mpc.
The constraint B1 Mpc < 5.6 nG can thus be converted into the
constraint B1 Mpc < 4.6 nG at the 95% CL. Figure 11 shows the
posterior distribution for the amplitude expressed as B1 Mpc in
blue.

2.4.8. Constraints from the impact of PMFs on the CMB
anisotropies via their impact on the thermal history
of the Universe

Primordial magnetic fields are damped on scales smaller than
the photon diffusion and free-streaming scale. This leads to
heating of ordinary matter (electrons and baryons), which af-
fects both the thermal and ionization history of the Universe
(Subramanian & Barrow 1998a; Jedamzik et al. 2000; Sethi
& Subramanian 2005; Schleicher et al. 2008; Kunze &
Komatsu 2014; Chluba et al. 2015), leading to a Compton-y
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distortion of the CMB and changes in the CMB power spectra
through modifications of the Thomson visibility function around
decoupling.

Two heating mechanisms have been discussed in the liter-
ature, one due to decaying magnetic turbulence at very small
scales and the other due to ambipolar diffusion (e.g., Sethi &
Subramanian 2005). In this paper, we follow the approach de-
scribed by Chluba et al. (2015) to incorporate these heating
mechanisms9.

We perform an analysis considering the combination of
the heating terms with the gravitational contribution of PMFs.
Considering ambipolar diffusion, decaying magnetic turbulence,
and gravitational effects we obtain an upper limit of B1 Mpc <
0.90 nG at 95% CL for nearly scale-invariant PMFs with nB =
−2.9. We obtain the same result, namely B1 Mpc < 0.90 nG at
95% CL, when dropping the gravitational effect and consider-
ing only the impact of PMFs on the primary CMB anisotropies
through their heating effect. These results show that the dom-
inant contribution is given by the heating terms. We have also
performed analyses with the two terms of ambipolar diffusion
and decaying magnetic turbulence considered separately. The re-
sults show that the two terms are roughly at the same level in
constraining PMFs, with a slightly stronger contribution from
the decaying magnetic turbulence term (see also Chluba et al.
2015).

Together with the Planck TT+ lowP likelihood combination,
we have performed an analysis including high-` polarization. In
particular, we have considered the case of Planck TT , T E, EE+
lowP. The result is: B1 Mpc < 0.86 nG at the 95% CL. Owing to
the nature of the effect of PMFs on the thermal history of the
Universe and its impact on the CMB angular power spectra, the
polarization data on small angular scales tighten the constraints
of this analysis.

3. Magnetically-induced non-Gaussianities

The CMB anisotropies induced by PMFs are non-Gaussian. This
is because magnetic forcing (as described by the magnetic en-
ergy momentum tensor) is quadratic in the magnetic fields and
therefore the resulting fluctuations are non-Gaussian even for
Gaussian fields10 (Brown & Crittenden 2005). There are al-
ready published theoretical studies of the passive-mode bispec-
tra (Trivedi et al. 2010; Shiraishi et al. 2011, 2012; Shiraishi
2013), as well as studies of the compensated-mode bispectra
(Seshadri & Subramanian 2009; Caprini et al. 2009; Cai et al.
2010; Shiraishi et al. 2010; Kahniashvili & Lavrelashvili 2010)
and of trispectra (Trivedi et al. 2012, 2014). This illustrates that it
is possible to use CMB non-Gaussianities to constrain the PMF
amplitude for different generation mechanisms. Several non-
Gaussianity constraints have previously been used for this pur-
pose (Caprini et al. 2009; Seshadri & Subramanian 2009; Trivedi
et al. 2010, 2012; Shiraishi et al. 2012). The non-Gaussianity
constraints on PMFs are complementary to those derived from

9 As explained by Chluba et al. (2015), the effect of PMFs on the ion-
ization history was previously overestimated using an approach similar
to the one of RECFAST. The reason is that in RECFAST the photoion-
ization rates are evaluated assuming temperature T ≡ Te, although from
a physical point of view the radiation temperature should be used. This
reduces the effect on the ionization history by up to one order of mag-
nitude and a consistent treatment is implemented both in Recfast++
and CosmoRec (Chluba & Thomas 2011).
10 This peculiarity is in common with topological defects (see Figueroa
et al. 2010).

the angular power spectra. In this section we present three differ-
ent methods for constraining PMFs using non-Gaussianity mea-
surements, all involving the first of the higher-order stastical mo-
ments, the bispectrum. The methods can be applied to either the
passive or the compensated modes.

3.1. Magnetically-induced passive-tensor bispectrum

The goal of this subsection is to derive an observational limit
on the PMF strength from the passive bispectrum. The dominant
contribution to the passive bispectrum is the large-scale tensor
mode, while the scalar mode contributes subdominantly to the
small scales. According to Shiraishi et al. (2012) and Shiraishi
(2013), the signal-to-noise ratio (integrated over `) is expected
to be almost saturated beyond ` = 500 in estimates based on
the temperature bispectrum. Including higher multipoles would
therefore not bring significant improvements. Thus, we take into
account the tensor-mode contribution for ` ≤ 500 in the fol-
lowing. Here we concentrate on the almost scale-invariant case,
nB = −2.9. In this case, the passive-tensor bispectrum is ampli-
fied in the squeezed-limit configuration with `1 � `2 ≈ `3, as
a consequence of the local-type structure of the non-Gaussian
gravitational waves induced by the PMF, given by

hi j(k) ≈ −1.8
ln(τν/τB)

4πργ,0
Mi jkl( k̂)

∫
d3 p

(2π)3 Bk(p) Bl(k − p) . (20)

Here τν and τB are defined in the same way as in the previ-
ous section, while ργ,0 is the present photon energy density. The
projection tensor Mi jkl( k̂) is given by the products of the spin-
± transverse-traceless tensors asMi jkl( k̂) ≡

∑
s=± e(s)

i j (k̂) e(s)∗
kl ( k̂),

normalized as Mi ji j = 4. This projection induces a tangled an-
gular dependence on ki in the primordial gravitational wave bis-
pectrum and the resultant CMB bispectrum is given by a non-
factorizable combination of `-modes (Shiraishi et al. 2011, 2012;
Shiraishi 2012). The resultant CMB temperature and E-mode
bispectra are almost uncorrelated with the usual scalar-mode bis-
pectra because of their different CMB transfer functions. To de-
rive constraints, we introduce an amplitude parameter propor-
tional to the amplitude of the magnetically-induced bispectrum,

AMAG
bis =

(
B1 Mpc

3 nG

)6 [
ln(τν/τB)
ln(1017)

]3

, (21)

where B1 Mpc and τB are treated as free parameters. The normal-
ization factors in the last equation are chosen to be comparable
to current upper bounds on B1 Mpc for a PMF created at the GUT
epoch, i.e., τν/τB = 1017. It can be seen that the magnetically-
induced bispectrum, which is proportional to (B1 Mpc)6, has a log-
arithmic dependence on τB. An analysis of the constraints from
WMAP data is presented by Shiraishi & Sekiguchi (2014), yield-
ing AData

bis = −1.5 ± 1.4 (68% CL).
In order to constrain the non-factorizable magnetically-

induced bispectrum, we use an optimal estimator derived within
the so-called separable modal methodology (see Fergusson et al.
2010, 2012; Shiraishi et al. 2014, 2015 for auto-bispectra; and
Fergusson 2014, and Liguori et al., in prep. for cross-bispectra),
where the theoretical bispectrum templates are decomposed in
finite subsets of the separable eigenbasis. Thus, the bispectrum
estimator remains factorizable like in the usual KSW approach
(Komatsu et al. 2005). Our tensor bispectrum template can be
reconstructed well in this modal decomposition with about 400
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eigenvectors composed of polynomials and a few special func-
tions modelling the CMB temperature transfer functions.

From the foreground-cleaned SMICA temperature map, we
obtain observational constraints on the amplitude of the passive-
tensor bispectrum. The observational data and the (Gaussian)
simulation maps used in the computation of the linear term and
the error bars are inpainted in the same manner as for the Planck
tensor non-Gaussianity analysis (Planck Collaboration XXIV
2014; Planck Collaboration XVII 2016), after including exper-
imental aspects (beam, mask, and anisotropic noise). Our final
result is AData

bis = −1.6 ± 1.3 (T only) at 68% CL, which gives no
evidence for a signal at the 2σ level. This Planck temperature
constraint is in good agreement with the WMAP one (Shiraishi
& Sekiguchi 2014). Analogous results have been derived for the
combination of T - and E−modes and the E-only case, but since
these results are still preliminary, we use the T -only mode for
the present analysis.

Assuming that the bispectrum is generated by PMFs, its am-
plitude is given by Eq. (21). The amplitude of the bispectrum
depends on the amplitude of the fields to the sixth power and
on the logarithm of the ratio τν/τB, which is greater than unity.
Therefore we have AMAG

bis ≥ 0. The result obtained in this analysis
therefore leads to an upper bound on the strength of GUT gener-
ated PMFs (ln(τν/τB) = 1017) of B1 Mpc < 2.8 nG (95% CL).

3.2. Magnetically-induced anisotropic passive scalar
bispectrum

Anisotropic stress from magnetic fields leads to curvature per-
turbations on super-horizon scales according to (Shaw & Lewis
2010)

ζk ≈ 0.9 ln
(
τν
τB

)
1

4πργ,0

×
∑

i j

(
k̂ik̂ j −

1
3
δi j

) ∫
d3k′

(2π)3 Bi(k′) B j(k − k′) .

Shiraishi (2012) showed that the three-point correlation of the
curvature perturbation ζk sourced by magnetic fields is

〈ζ(k1) ζ(k2) ζ(k3)〉 ∝

PB(k∗) PB(k1) PB(k2)
(

1
3
µ2

12 + µ2
23 + µ2

31 −
2
3
− µ12µ23µ31

)
−PB(k∗) PH(k1) PH(k2)

(
µ23µ31 −

1
3
µ12

)
+ cyclic permutations, (22)

where µab = k̂a · k̂b and k∗ denotes the pivot wavenumber. We
can investigate this primordial non-Gaussianity by estimating the
expansion coefficient cL (Shiraishi et al. 2013),

〈ζ(k1) ζ(k2) ζ(k3)〉 = (2π)3δ(3)(k1 + k2 + k3)

×
∑

L

cL

(
PL(k̂1 · k̂2) Pζ(k1) Pζ(k2) + 2 perm.

)
,

where c0 is related to the local-form fNL as c0 = 6/5 f local
NL and PL

is the Lth order Legendre polynomial.
If the magnetic field is generated at the GUT scale with a

nearly scale-invariant spectrum, the Legendre coefficients are

Table 4. Planck constraints on the amplitude of the non-helical mag-
netic field component, B1 Mpc [nG], from the SMICA, NILC, SEVEM, and
Commander foreground-cleaned maps at 95% CL.

SMICA NILC SEVEM Commander

B1 Mpc/nG . . . <4.5 <4.9 <5.0 <5.0

related to the field amplitude via

c0 ≈ −2 × 10−4
(

B1 Mpc

nG

)6

, (23)

c1 ≈ −0.9
(

B1 Mpc

nG

)2 (
B1 Mpc

nG

)4

, (24)

c2 ≈ −2.8 × 10−3
(

B1 Mpc

nG

)6

, (25)

where B1 Mpc and B1 Mpc are the amplitudes of the non-helical
and helical magnetic field components (smoothed on a scale of
1 Mpc), respectively. Estimating c2 allows us to constrain B1 Mpc,
but estimating c1 does not lead to a useful constraint owing to its
dependence on the helical component of the PMF, which is not
considered in this analysis (cf. Eq. (24)). By the central limit the-
orem, the estimated value of c2 follows a Gaussian distribution.
Therefore, the log-likelihood is given by

ln P(ĉ2(d)|B1 Mpc) ≈ −
x2

2σ2 − lnσ, (26)

where

x =

ĉ2(d) + 2.8 × 10−3
(

B1 Mpc

nG

)6 ,
with ĉ2(d) being the estimated value from the data d, and σ2 cor-
responding to the variance of its estimation, which includes cos-
mic variance and noise variance. In Eq. (26), we have dropped
an irrelevant constant term. We estimate c2 from SMICA, NILC,
SEVEM, and Commander foreground-cleaned maps. The vari-
ance is estimated from the realistic Planck simulations for each
foreground-cleaning method (Planck Collaboration IX 2016;
Planck Collaboration X 2016). To determine B1 Mpc and its con-
fidence region, we use the CosmoMC package (Lewis & Bridle
2002) as a generic sampler and obtain the posterior probability
of B1 Mpc, given the likelihood. This analysis yields upper bounds
on the amplitude of the non-helical magnetic field component,
B1 Mpc, which are presented in Table 4. Using the Planck data
constraint on the local-form fNL (Planck Collaboration XVII
2016) and c0 = 6/5 f local

NL , we impose an additional constraint
of B1 Mpc < 5.5 nG at 95% CL, which is weaker than the
c2 constraints.

The constraint from the passive-scalar bispectrum with
SMICA maps is B1 Mpc < 4.5 nG (95% CL). Thus, the addition
of the polarized bispectrum leads to an improved constraint with
respect to the previous limit, B1 Mpc < 5.2 nG, from the Planck
2013 analysis (Shiraishi et al. 2013; Planck Collaboration XXIV
2014).

3.3. Magnetically-induced compensated-scalar bispectrum

Now we derive the magnetically-induced scalar bispectrum on
large and intermediate angular scales using a semi-analytical
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method. We compute an effective fNL based on the compari-
son between the bispectrum and the power spectrum and de-
rive the constraints on the amplitude of the PMF using Planck
measurements.

We derive the magnetically-induced scalar bispectrum on
large angular scales for compensated initial conditions, basing
our analysis on the treatment presented by Caprini et al. (2009).
For simplicity we redefine the parameter describing the ampli-
tude of the PMF in this section. Instead of using the smoothed
amplitude we directly use the root mean square value of the field.
This quantity is finite thanks to the sharp cut-off inserted in the
PMF power spectrum to model the small-scale suppression of
the field. The mean square of the field is then defined as

〈B2(k)〉 =
AB

2π2

knB+3
D

nB + 3
· (27)

The magnetically-induced bispectrum on large angular scales
depends on the temperature anisotropy on large angular scales
and therefore on the Sachs-Wolfe signal induced by the PMFs
(Caprini et al. 2009; Bonvin & Caprini 2010). We use the expres-
sion derived by Paoletti et al. (2009) and Caprini et al. (2009),

Θ
(0)
`

(τ0, k)
2` + 1

≈ αΩB(k) j`(k(τ0 − τdec)), (28)

where Θ
(0)
`

is the temperature anisotropy, ΩB(k) = 〈B2(k)〉/ρrel,
and τ0 and τdec are the conformal time at present and at
decoupling, respectively. For simplicity we have used an ap-
proximated expression for the initial conditions instead of the
exact one, which also involves the Lorentz force Caprini et al.
(in prep.).We therefore introduce a correction factor, α = 0.5,
which numerically includes all the contributions that we do not
consider in the expression. The above relation holds for the com-
pensated mode initial conditions. The CMB bispectrum on large
scales can then be written as

〈a`1m1 a`2m2 a`3m3〉 =
(4π)3(−i)`1+`2+`3

(2`1 + 1)(2`2 + 1)(2`3 + 1)

×

∫
d3k d3q d3 p

(2π)9

Y∗`1m1
( k̂) Y∗`2m2

(q̂) Y∗`3m3
( p̂)

× 〈Θ
(0)
`1

(τ0, k) Θ
(0)
`2

(τ0, q) Θ
(0)
`3

(τ0, p)〉 . (29)

Substituting Eq. (28), we note that the bispectrum depends on
the 3-point correlation function of magnetic energy density,

〈ρB(k) ρB(q) ρB(p)〉 =
1

(64π)3

∫
d3k̃ d3q̃ d3 p̃

(2π)9

×〈Bi( k̃) Bi(k − k̃) B j(q̃) B j(q − q̃) Bl( p̃) Bl(p− p̃)〉 .

The characteristic feature of the magnetically-induced bispec-
trum, generated by compensated modes, is that, contrary to what
often happens for inflationary non-Gaussianities, it is not pos-
sible to identify an a priori dominant geometric configuration.
It is therefore necessary to analyse the bispectrum indepen-
dently of the geometric configuration. Caprini et al. (2009) de-
rive an approximate expression for the three-point correlation
function of magnetic energy density, which is independent of
the geometric configuration and is tested against the analytic re-
sults for the flattened case. Using this expression, we derive the

magnetically-induced bispectrum and specify a geometric con-
figuration only after integrating the magnetic energy density bis-
pectrum in k-space. We show the results for the case correspond-
ing to a local fNL. The magnetically-induced bispectrum for the
nearly scale-invariant case, nB = −2.9, is given by

f eff
NL ≈

3π9 α3

36A2

nB(nB + 3)2

2nB + 3
〈B2〉3

ρ3
rel

= 1851
nB(nB + 3)2

2nB + 3

(
〈B2〉

(10−9 G)2

)3

· (30)

For nB > −1, we find

f eff
NL ≈

π9 α3

288A2

(nB + 3)3

nB + 1
〈B2〉3

ρ3
rel

(
`max

`D

)4 1
log(`max/`min)

= 5.9 × 10−3 (nB + 3)3

nB + 1

(
〈B2〉

(10−9 G)2

)3

· (31)

For the specific case nB = −2 it is

f eff
NL ≈

5π10 α3

288A2

〈B2〉3

ρ3
rel

(
`max

`D

)3 log(`D/`max)
log(`max/`min)

= 5.19
(
〈B2〉

(10−9 G)2

)3

, (32)

where we assumeA = 18.98 × 10−9 as the amplitude of the pri-
mordial gravitational potential power spectrum (`2C` = A/π).
In all numerical estimates we have taken `D = kD τ0 = 3000,
`max = 750, and `min = 10. The Planck limit on local fNL
is given in Planck Collaboration XVII (2016). We use the re-
sult of the SMICA KSW T+E ISW-lensing-subtracted analysis,
namely fNL < 5.8 at 68% CL. This limit on fNL translates
into constraints on the PMF amplitude of

√
〈B2〉 < 1.8 nG for

nB = −2.9,
√
〈B2〉 < 1.0 nG for nB = −2, and

√
〈B2〉 < 1.7 nG

for nB = 2. The constraints on the smoothed amplitude of the
field are B1 Mpc < 3 nG for nB = −2.9, B1 Mpc < 0.07 nG for
nB = −2, and B1 Mpc < 0.04 nG for nB = 2. These results show
how the constraints are competitive with, in addition to being
complementary to, the ones given by the CMB angular power
spectrum.

4. Faraday rotation

4.1. Constraints on PMFs from the Faraday rotation power
spectrum

The presence of a PMF at the last scattering surface induces a ro-
tation of the polarization plane of the CMB photons (Kosowsky
& Loeb 1996). This effect is known as Faraday rotation (here-
after FR). The Faraday depth Φ is proportional to the integral
along the line of sight of the magnetic field component along
this direction, B‖, and the thermal electron density, ne, i.e.,

Φ = K
∫

ne(x, n̂) B‖(x, n̂) dx. (33)

The constant is K = 0.81 rad m−2 pc−1 cm3 µG−1 = 2.6 ×
10−26 rad nG−1. The unit of the Faraday depth Φ is rad m−2. In
this equation, n̂ is the unit vector in the line-of-sight direction.

Here we analyse the impact of FR on the polarized CMB
power spectra. We assume that the magnetic field is generated
at some pre-decoupling epoch. We do not consider the genera-
tion mechanism itself, but only investigate the observable effects
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caused at recombination. Several works have derived the modi-
fication of the Boltzmann equation for the Stokes parameters in
the presence of a homogeneous PMF (see, e.g., Scóccola et al.
2004) and for a stochastic distribution (see, e.g., Kosowsky et al.
2005). Here we explore the case of a stochastic distribution.

As discussed above, a PMF may induce scalar, vector, and
tensor perturbations. At recombination, FR mixes the signatures
of different perturbations. Some previous attempts to constrain
FR signatures in the WMAP power spectrum are presented by
Kahniashvili et al. (2009) and Pogosian et al. (2011). Both as-
sume that E-modes are converted into B-modes via FR. They
obtain magnetic field strength limits of B1 Mpc <∼ 100 nG and
suggest an almost scale-invariant spectrum, i.e., nB ≈ −2.9 for a
power-law distribution.

As in previous works, we assume a PMF distribution de-
scribed by a power law as in Eq. (2). Note that any helical part of
the field does not contribute to the Faraday rotation (Campanelli
et al. 2004). The generation of magnetically-induced B-modes
through FR of E-modes is described by (Kosowsky et al. 2005)

C′BB
` = N2

`

∑
`1`2

(2`1 + 1)(2`2 + 1)
4π(2` + 1)

×N2
`2

K(`, `1, `2)2 CEE
`2

Cα
`1

(
C`0
`10`20

)2
(34)

and the rotation of primordial B-modes into magnetically-
induced E-modes by

C′EE
` = N2

`

∑
`1`2

(2`1 + 1)(2`2 + 1)
4π(2` + 1)

×N2
`2

K(`, `1, `2)2 CBB
`2

Cα
`1

(
C`0
`10`20

)2
, (35)

where N` = (2(` − 2)!/(` + 2)!)1/2 is a normalization factor,
K(`, `1, `2) = −1/2 (L2 +L2

1 +L2
2−2L1L2−2L1L+2L1−2L2−2L)

with L ≡ `(`+1), L1 ≡ `1(`1 +1), L2 ≡ `2(`2 +1), and C`0
`10`20 is a

Clebsch-Gordan coefficient. The power spectrum of the rotation
angle is related to the one of the Faraday depth through

Cα
` = ν−4

0 CΦ
` , (36)

where ν0 is the observed frequency, and

CΦ
` ≈

9`(` + 1)
(4π)3e2

B2
1 Mpc

Γ(nB + 3/2)

(
λ

τ0

)nB+3 ∫ xD

0
dx xnB j2` (x). (37)

Here, xD = τ kD, where τ is the conformal time and kD is given
by Eq. (3).

In Eqs. (34) and (35), CEE
` and CBB

` are the primordial power
spectra, whereas C′EE

` and C′BB
` are the ones including the effect

of Faraday rotation, i.e., the observed ones. We use the observed
E-mode spectrum C′EE

` at 70 GHz as a proxy for the primordial
one, CEE

` , in Eq. (34) to calculate predicted B-mode spectra to
be compared with the observed one.

The 70 GHz observations give B1 Mpc < (1040, 1380) nG
(68%, 95% CL). The reduced χ2 is 1.35. The magnetic field
spectral index for the stochastic distribution remains uncon-
strained. In Fig. 12, we show the probability contours derived
from the 70 GHz data for the magnetic field strength B1 Mpc and
the spectral index of the PMF power spectrum, nB. The upper
bounds obtained from the FR analysis are very high compared to
the other methods. They are also slightly weaker than those pre-
viously obtained from FR analyses with WMAP-5 (Kahniashvili
et al. 2009), WMAP-7 (Pogosian et al. 2011), and WMAP-9
data.

Fig. 12. Probability contours of PMF strength vs. spectral index of the
PMF power spectrum as constrained by the 70 GHz observations.

4.2. Robustness of the results in the presence of foregrounds

The magnetic fields of the Milky Way contribute to the net
Faraday rotation. Although the precise geometry of these mag-
netic fields remains uncertain (see, e.g., Ruiz-Granados et al.
2010; Jansson & Farrar 2012), the Galactic Faraday depth could
be a foreground for the primordial Faraday depth, at least on
large scales.

To quantify the impact of the Galactic FR on the detection
of primordial magnetic fields, we use Galactic observations of
polarized synchrotron emission at 1.4 GHz and 23 GHz and the
synthesized all-sky Faraday rotation map derived from extra-
galactic radio source emission provided by Oppermann et al.
(2015). In addition, we use simulations of the Galactic Faraday
rotation obtained by using an axisymmetric Galactic magnetic
field model for the halo field described by Ruiz-Granados et al.
(2010). Maps of Stokes Q and U are provided by Wolleben
et al. (2006) at 1.4 GHz and by Bennett et al. (2013) at 23 GHz.
Both frequencies are dominated by polarized synchrotron emis-
sion from within the Milky Way and are used to obtain the
Galactic Faraday depth. For computing the power spectrum of
the FR coming from simulations and observations at 1.4 and
23 GHz, we use the polarization processing mask provided by
WMAP-911.

In Fig. 13, we show the power spectra of Galactic Φ de-
rived from polarized measurements at 1.4 GHz and 23 GHz,
simulations, and for the all-sky Faraday rotation map provided
by Oppermann et al. (2015)12. The fluctuations in the Galactic
Faraday sky are not isotropic. Therefore, their statistics are not
completely described by a power spectrum. Oppermann et al.
(2015) model the Galactic Faraday depth as the product of an
isotropic Gaussian random field and a latitude-dependent func-
tion. In Fig. 13, we show two angular power spectra derived from
the results of Oppermann et al. (2015). For the first one, we
generate Gaussian realizations from their angular power spec-
trum, multiply them with their latitude profile, and pass them
through the anafast routine of HEALPix. Averaging the result
over 1000 realizations gives the blue dashed line in Fig. 13.

11 http://lambda.gsfc.nasa.gov/product/map/dr5/m_
products.cfm
12 http://www.mpa-garching.mpg.de/ift/faraday
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Primordial Φ for 10 nG
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Galactic Φ from Oppermann et al. (2014)
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Galactic Φ from 1.4 and 23 GHz

Simulated Galactic Φ

Fig. 13. Power spectra of the primordial Faraday depth Φ for mag-
netic field strengths of 100 (solid line), 10 (dotted line), and 1 nG
(dashed line), the Galactic Faraday depth from the all-sky Faraday map
of Oppermann et al. (2015) (blue dashed line), the Galactic Faraday
depth from Oppermann et al. (2015) at 45◦ latitude (green dashed line),
the Galactic Faraday depth derived from Galactic emission at 1.4 and
23 GHz (red circles), and the Galactic Faraday depth for a Galactic mag-
netic field model (black crosses).

For comparison, we also show the angular power spectrum of
Oppermann et al. (2015) multiplied with the square of their pro-
file function at a latitude of |b| = 45◦, which gives the strength
of the foreground Faraday rotation at a typical latitude used for
CMB analysis. We also plot the power spectrum of the primor-
dial Faraday rotation for PMFs of strength 1, 10, and 100 nG,
respectively, and a spectral index of nB = −2.9.

Our main conclusion, as indicated by Fig. 13, is that ob-
servations of the Galactic Faraday depth show that primordial
magnetic field strengths lower than 10 nG would require a de-
tailed knowledge of the Galactic FR, at least at multipoles lower
than ` ≈ 50, where the foreground rotation would be dominant.
The exact detection limit for PMFs achievable through a study of
Faraday rotation depends on Galactic latitude and on the extent
to which the correction for foreground rotation is possible.

The upper limit found from the FR analysis is B1 Mpc <
1380 nG and no restriction can be obtained for the spectral in-
dex nB. In any case, our FR constraint on PMFs is well above
the expected contamination level by Galactic FR, and therefore
this contamination is currently not an issue. This is consistent
with the prediction by De et al. (2013) that the Galactic Faraday
depth would not be measurable with Planck.

5. Constraints on PMFs from Alfvén waves

Here we investigate the signature statistical anisotropy induced
by Alfvén waves, which delivers yet another constraint on PMFs.
In Planck Collaboration XXIV (2014) we constrained the Alfvén
waves in the early Universe, where some arbitrary origin (in-
cluding stochastic PMFs) was assumed for primordial vector
perturbations. Given no evidence for Alfvén waves from that
analysis, we now consider stochastic PMFs as the source of
primordial vector perturbations and constrain an average back-
ground magnetic field and the energy density of stochastic

PMFs13. PMFs may produce Alfvén waves in the early Universe,
which leave observable imprints on the CMB via the Doppler
and integrated Sachs-Wolfe effects. Durrer et al. (1998) show
that Alfvén waves in the early Universe generate a fractional
CMB anisotropy

∆T
T0

(n̂, k) ≈ n ·Ω(k, τlast) = n ·Ω0(k) 3A k τlast n̂0 · k, (38)

where k denotes a Fourier mode vector, n̂ a sky direction, n̂0
the unit vector in the direction of the homogeneous background
magnetic field B̄, and T0 is taken again as 2.7255 K (Fixsen
2009). HereΩ(k, τlast) andΩ0(k) denote the gauge invariant lin-
ear combination of vector perturbations at last scattering and at
an initial time, respectively. In this analysis, we assume a non-
helical stochastic PMF, B, to be the sole source of initial vector
fluctuations,Ω0 = 3A/B̄ B (Durrer et al. 1998; Kahniashvili et al.
2008). The Alfvén wave velocity, 3A, is given by (Durrer et al.
1998)

3A =
B̄

2
√
π(ρr + pr)

≈ 2.2 × 105 m s−1 B̄
1 nG

, (39)

where ρr and pr are the co-moving density and pressure of the
photons.

Kahniashvili et al. (2008) show that Alfvén waves in the
early Universe produce correlations between harmonic modes
separated by ∆` = 0,±2, and ∆m = 0,±1,±2. We give the ex-
plicit form of the correlations in Appendix B. Investigating these
imprints, we impose a constraint on the Alfvén waves in the
early Universe. In the weak Alfvén wave limit, the CMB data
log-likelihood L can be expanded as

L ≈ L|h = 0 +
∂L

∂h

∣∣∣∣∣
h = 0

h +
1
2
∂2L

∂h2

∣∣∣∣∣∣
h = 0

h2 + O(h3),

where h = B2
1 Mpc 3

4
A/B̄2. The first term on the right-hand side

is simply equal to the likelihood of the standard cosmological
model and the first and second derivatives of the likelihood are
obtained by

∂L

∂h
= H − 〈H〉,

∂2L

∂h2 = −〈H2〉 + 〈H〉〈H〉, (40)

where 〈. . .〉 denotes the ensemble average of signal and noise.
The HessianH is given by

H =
1
2

[
C−1a

]† ∂C
∂h

[
C−1a

]
, (41)

where a is the vector consisting of the spherical harmonic coef-
ficients, a`m, of the CMB anisotropy data, and C is their covari-
ance matrix.

In our analysis, we consider the foreground-cleaned SMICA
map, where we apply the common mask (Planck Collaboration
X 2016). We assume the fiducial Planck cosmological model
and use realistic Planck simulations to estimate the ensemble
average values for signal and noise, as required in Eq. (40). The
quantity C−1a, required in Eq. (41), is determined via the mes-
senger field method (Elsner & Wandelt 2013). Some of the pa-
rameters (nB, θB, φB) influence the signature correlation nonlin-
early. Owing to these nonlinear parameters, we use the CosmoMC

13 For this analysis we follow the approximation of considering the
stochastic background of PMFs as split into an average background
field, which emulates the average effect of the stochastic fields, and the
stochastic fields at the perturbative level.
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Table 5. Planck constraints on the Alfvén wave amplitude
B2

1 Mpc/B̄2 34A.

Confidence Level 68% 95%

B2
1 Mpc/B̄2 34A . . . . . <3.4 × 10−7 <1.7 × 10−5

Notes. The Alfvén wave velocity 3A is normalized to the speed of light.

package (Lewis & Bridle 2002) as a generic sampler for the log-
likelihood in Eq. (40) and obtain the posterior probability for the
Alfvén wave parameters {B2

1 Mpc/B̄2 34A, nB, θB, φB}. As discussed
previously, we assume the initial vector fluctuations to be en-
tirely sourced by a non-helical stochastic PMF, B. In Table 5,
we show upper bounds on this combination of parameters at 68%
and 95% CL, after marginalizing over the spectral index nB and
the direction θB, φB.

Other theoretical models with correlations across multipoles
with ∆` = ±1,±2 are investigated in Planck Collaboration XVI
(2016) and Planck Collaboration XX (2016). The Planck data
show no evidence in favour of these models.

6. Conclusions

6.1. Methodology

In this paper, we have presented the constraints on a stochas-
tic background of primordial magnetic fields using Planck data.
PMFs may have left different types of imprints on the CMB.
This is why the CMB can be regarded as one of the best labo-
ratories for investigating and constraining PMFs. The richness
of Planck data, which provide several different probes based on
the statistics of CMB anisotropies, allows us to constrain PMFs
using different methods, deriving constraints that are comple-
mentary to each other. Aiming for a broad perspective on PMFs,
we have taken advantage of these different possibilities offered
by Planck. In particular, we have exploited the impact of PMFs
on the CMB anisotropy angular power spectra in temperature
and polarization, both through the magnetically-induced modes
and their effect on the ionization history of the Universe. In addi-
tion we have considered the Faraday rotation induced by them on
the CMB polarization. Beyond the two-point statistics probed by
the angular power spectrum, we have investigated higher-order
statistical moments of the CMB imprinted by PMFs. In particu-
lar, we have analysed the CMB bispectrum for the presence of
magnetically-induced passive and compensated modes. Finally,
we have considered the correlations between harmonic modes
induced by PMFs.

6.2. Constraints for non-helical fields from the angular power
spectra

The constraints based on the CMB angular power spectra have
been derived using the Planck likelihood. The general analy-
sis, which only considers the contributions from compensated
modes, provides the constraint B1 Mpc < 4.4 nG at 95% CL, with
positive spectral indices constrained to lower amplitudes of the
fields, which we have shown to be robust under the inclusion
of high-` polarization data. In fact, the impact of PMFs on the
EE and T E polarization spectra is negligible compared to the
dominant contribution given by the magnetically-induced vec-
tor modes on the TT spectra on small angular scales. The in-

clusion of the passive tensor contribution does not improve the
constraints on the amplitude but affects the posterior distribution
for the PMF spectral index. The results confirm that CMB data
constrain PMFs with positive spectral indices to have smaller
amplitudes. The inclusion of the contribution of passive modes,
thanks to their sensitivity to the slope of the PMF spectrum,
strongly disfavours nearly scale-invariant magnetic spectra for
amplitudes greater than very few nanoGauss (see Fig. 8). This
is due to the large contribution that magnetically-induced pas-
sive tensor modes with nearly scale-invariant spectra give to the
CMB anisotropies on large angular scales.

We have also performed an analysis using both the Planck
2015 data and the BICEP2/Keck-Planck cross-correlation. The
results are fully compatible with the analysis based on Planck
data alone, with only a slightly higher upper limit on the PMF
amplitude.

Our likelihood analysis for PMF properties is sensitive to
CMB foreground residuals in the data, since these contribute to
small angular scales in the CMB spectra as well. In our anal-
ysis we have used the foreground residual treatment provided
by the Planck likelihood. Since some of the foreground mod-
els assume an angular power spectrum with a shape similar to
the one given by magnetically-induced perturbations, we have
investigated the issue of possible degeneracies between PMFs
and foreground residuals. In particular, we have noticed that
there is a degeneracy with the Poissonian terms modelling un-
resolved point sources at 100, 143, 143 × 217 and 217 GHz.
Fortunately, other foreground contributions do not show any de-
generacy thanks to their different spectral shapes. We have fur-
ther tested how severely foreground residuals might affect the
obtained constraints on PMF amplitudes. Since PMFs that are
consistent with the data do not significantly affect other cosmo-
logical parameters, we have fixed the amplitudes of foreground
residuals to the values obtained under the Planck ΛCDM cos-
mology. The limit in this case, B1 Mpc < 3.0 nG at 95% CL, is
slightly tighter than the limit obtained without fixing the fore-
ground residual amplitudes, B1 Mpc < 4.4 nG at 95% CL. This
test has no statistical significance in the constraints on PMFs
but illustrates the impact foreground residuals can have on con-
straints on the PMF amplitude.

Our new constraints are compatible with previous constraints
from other experiments and from the previous Planck release
(Planck Collaboration XVI 2014). The slightly higher upper lim-
its with respect to the 2013 Planck release are due to changes in
the 2015 data. In particular, the changed calibration and slightly
different slope of the power spectrum of cosmological perturba-
tions allow for stronger PMFs, with possible contributions from
the different foreground residual treatment.

6.3. Constraints on maximally helical PMFs

We also constrain maximally helical PMFs. We restrict our anal-
ysis to the maximally helical case because of the absence of
T B and EB information in the Planck 2015 high-` likelihood.
Maximal helicity decreases the amplitude of the magnetically
generated CMB fluctuations and, as a consequence, we obtain
B1 Mpc < 5.6 nG at 95% CL in this case.

6.4. Selected scenarios

We have further investigated two specific PMF models of inter-
est: causally generated fields with a spectral index of nB = 2
and fields with an almost scale-invariant power spectrum with
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nB = −2.9. The constraints for these extreme cases are BnB=2
1 Mpc <

0.011 nG and BnB=−2.9
1 Mpc < 2.1 nG at 95% CL, respectively.

The impact of PMFs on the ionization history of the Universe
directly affects the CMB temperature and polarization power
spectra. In particular, we have also considered the main dissi-
pative effects operating during and after recombination, namely
ambipolar diffusion and energy cascading in MHD turbulence,
in the prediction for the CMB spectra in temperature and polar-
ization. These modify the primary CMB power spectra in ad-
dition to the gravitational contributions of the magnetic modes.
For the nearly scale-invariant case we have obtained the con-
straint BnB=−2.9

1 Mpc < 0.9 nG at 95% CL. This limit is tighter than
when neglecting the effect on the ionization history. However,
uncertainties related to the modelling of the heating mechanism
(see discussion by Chluba et al. 2015) suggests that further in-
vestigation of this promising avenue is needed.

6.5. Non-Gaussianity-based constraints

For the non-Gaussianity analyses we have focused on the passive
modes with a nearly scale-invariant power spectrum, nB = −2.9,
and the compensated scalar modes. These are the dominant con-
tributions on large angular scales, where the non-Gaussianity
analyses are performed.

In our first CMB non-Gaussianity analysis, we have consid-
ered passive tensor modes for PMFs with nearly scale-invariant
spectra. These contribute predominantly to the CMB fluctuations
on large angular scales. For this case, we have calculated the re-
sulting CMB bispectrum and compared it with the observational
limit. We have used a bimodal decomposition to estimate the
amplitude of the Planck bispectrum in the squeezed configu-
ration, in which the observational limit on the amplitude of
the bispectrum can be translated into a constraint on the am-
plitude of PMFs. Using the temperature bispectrum we obtain
BnB=−2.9

1 Mpc < 2.8 nG for fields that were generated at the GUT
phase transition.

For our second non-Gaussianity analysis we have used a
different approach to the magnetically-induced bispectrum. We
have considered the passive contributions by tensor and scalar
modes for nearly scale-invariant fields, but instead of using
the bispectrum amplitude we have used the local type of non-
Gaussianity induced by PMFs, considering only the non-helical
part. The local bispectrum from multipoles with Σ3

n=1`n = even
(where `n stands for the multipoles `1, `2, `3 normally used to
express the bispectrum, see for example Eq. (29)) has been de-
composed with coefficients determined by the amplitude of the
PMF. A likelihood estimation allows us to constrain the PMF
amplitude with CMB foreground-cleaned maps. We have ap-
plied this method to all four component separation methods used
by Planck. The SMICA map, which is expected to contain the
least foreground residuals (Planck Collaboration IX 2016), gives
the constraint BnB=−2.9

1 Mpc < 4.5 nG, improving previous constraints
derived from the scalar bispectrum for WMAP data.

Our third non-Gaussianity analysis focuses on the compen-
sated scalar modes. In this case, we have used an analytic esti-
mate of the bispectrum on large angular scales. We have used
an improved estimate of the source term Caprini, et al. (in prep.)
with respect to previous results (Caprini et al. 2009). This ana-
lytic estimate can be compared with the observed local fNL from
Planck, giving BnB=−2.9

1 Mpc < 3.0 nG.
The results from the different non-Gaussianity analyses (al-

though coming from different methods) are all consistent and at

the level of those derived with the likelihood analysis using only
the CMB angular power spectra.

6.6. Constraints from Faraday rotation

We have further considered the effects of Faraday rotation on
the primary CMB polarization anisotropies. In this context, we
have used the EE- and BB-polarization power spectra. We have
derived the constraints on the PMF amplitude using a χ2 analy-
sis based on the LFI 70 GHz low-` (` < 30) polarization power
spectra. The resulting constraint is B1 Mpc < 1380 nG. The upper
limits from Faraday rotation are larger than those derived from
magnetically-induced perturbations, thermal effects, and non-
Gaussianity. On one hand, the Faraday rotation signal rapidly
vanishes with increasing frequency (see Eq. (36)) and thus is
strong only for lower frequencies. On the other hand, since the
BB spectrum is the result of the rotation of the EE spectrum, it
has a stronger contribution on smaller angular scales. Our anal-
ysis includes only the low multipoles of the 70 GHz data, where
the signal is lower owing to its spectral shape. The combina-
tion of data sets and type of signal results in less stringent con-
straints. However, even with the restricted subset of Planck data
available, the constraints are only slightly weaker than derived
in previous analyses performed with WMAP (Kahniashvili et al.
2009; Pogosian et al. 2011).

To estimate the impact of Galactic Faraday rotation on the
results, we have analysed synthetic Galactic Faraday maps as
well as radio synchrotron data at 1.4 GHz and 23 GHz. We have
accounted for the fact that the signal is not isotropic on the sky
but depends on the latitude of the observations. We have derived
an estimate of the power spectrum for the Faraday depth, shown
in Fig. 13, and compared it with the predictions for different val-
ues of the PMF amplitude. Our results show that the threshold
for which the Galactic contamination may become relevant is
around 10 nG. This amplitude is much below our current con-
straints, which can therefore be considered clean from Galactic
contamination.

6.7. Constraints on Alfvén waves

To complete the round of different types of analyses involving
different probes, we have investigated the correlation induced
between different modes in harmonic space by Alfvén waves
produced by the presence of PMFs (Kahniashvili et al. 2008).
This correlation has not been used to constrain the PMF ampli-
tude directly, but the Alfvén wave parameter, which is a com-
bination of the stochastic background amplitude, the Alfvén ve-
locity, and the assumed mean background field. We have again
used the SMICA foreground-cleaned map to derive the upper
limit B2

1 Mpc 3
4
A/B̄2 < 1.7 × 10−5. From this constraint we de-

duce that the data do not show any evidence of Alfvén waves, a
conclusion that was also reached in previous analyses (Planck
Collaboration XXIV 2014) carried out with more generic as-
sumptions on the origin of the Alfvén waves. The absence of
Alfvén waves is also compatible with the results from other mod-
els for the harmonic space correlations that are not related to the
PMFs (Planck Collaboration XVI 2016; Planck Collaboration
XX 2016).

6.8. Concluding summary

The results presented show that CMB anisotropies are one of
the best probes for investigating the nature of PMFs. The Planck
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2015 data offer the possibility to use the PMFs signatures either
in the angular power spectra in temperature and polarization or in
higher-order statistics, where both measurements can be tackled
by different methodologies. All the independent constraints we
obtain are consistent with each other.

The Planck 2015 data constrain the PMF amplitude at the
nanoGauss level. Different signatures are sensitive to different
contributions and may be optimal for specific types of PMF.
In particular, the analysis that uses the gravitational impact of
PMFs on the CMB angular power spectra is dominated by the
compensated vector contribution on small angular scales and
therefore is able to constrain PMFs without any assumptions on
their generation mechanism. On the contrary, two of the three
analyses of non-Gaussianities are dominated by passive tensor
modes, which can provide significant constraints only for nearly
scale-invariant PMFs.

The future of both classes of methods, the angular power
spectra and the non-Gaussianities, is bright, but three avenues are
particularly promising. The helicity of PMFs will be constrained
by T B and EB cross-correlations, which will be included in the
next Planck release. The study of the PMF’s impact on the ion-
ization history is expected to further improve with future Planck
polarization data. Non-Gaussianities are a distinctive signature
of PMFs and further studies may provide more and more re-
fined predictions of the magnetically-induced passive and com-
pensated CMB bispectra and trispectra, which will improve the
future Planck analyses.
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Fig. A.1. Probability contours for the PMF amplitude and the fore-
ground parameters for the Planck 2013 likelihood.

Appendix A: Impact of foregrounds on PMF
constraints from the angular power spectra

In Fig. A.1 we present the two-dimensional proability distri-
butions of PMF amplitude and foreground parameters for the
Planck 2013 likelihood, which show only a mild degeneracy
with the Poissonian amplitude for the 143 GHz channel.

In Fig. A.2, we plot the two-dimensional probability distribu-
tions of the PMF amplitude and the foreground parameters (for
their description see Planck Collaboration XI 2016), except for
the Poissonian terms, which have been discussed in Sect. 2.4.4.
These plots do not show any degeneracy.
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Fig. A.2. Probability contours for the PMF amplitude and the fore-
ground parameters.
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Appendix B: Statistical anisotropy induced
by Alfvén waves

It has been shown that the presence of Alfvén waves in the early
Universe leads to specific correlations of the CMB in harmonic
space (Kahniashvili et al. 2008). The signature correlations in-
duced by Alfvén waves are as follows:

〈a`m a∗`m〉 = C` +
`(` + 1)

(2` − 1)(2` + 3)

{
(`2 + ` − 3) cos2 θB
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×
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Here C` is the power spectrum in the absence of Alfvén waves,
θB and φB are the spherical angles of the direction of the back-
ground magnetic field B̄, and I``

′

d is given by

I``
′

d = 2T 2
0
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)2
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where kD is the co-moving wave number of the dissipation scale
owing to photon viscosity and given approximately by 10/(cτlast)
(Durrer et al. 1998). The dissipative damping effect becomes sig-
nificant at multipoles ` & 500 (Durrer et al. 1998). We note that
the damping scale considered in this context is different from
the one considered in Sect. 2. The damping effects considered
in each case are related to two different aspects and are spe-
cific to the two topics treated; in the study of the impact of
PMFs on CMB anisotropies, the damping scale considered is
due to the dissipation of the PMFs themselves as investigated by
Subramanian & Barrow (1998a), in this section instead, we con-
sider a damping scale derived from the damping of the vector
perturbations generated by the PMFs, not the PMFs themselves.
The latter damping scale is derived by Durrer et al. (1998). In
Eq. (B.1), B2

λ denotes the total power of the non-helical PMF
smoothed at the spatial scale of λ. There are general cases for
dipole and quadrupole coupling, where cosmological parame-
ters are assumed to vary with position (Moss et al. 2011). If we
allow a position-dependent parameter to be a vector and treat the
PMF as a position-dependent parameter, the correlation induced
by Alfvén waves may be incorporated into the framework of this
approach.
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