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ABSTRACT

The secondary cosmic microwave background (CMB) B-modes stem from the post-decoupling distortion of the polarization E-modes due to
the gravitational lensing e↵ect of large-scale structures. These lensing-induced B-modes constitute both a valuable probe of the dark matter
distribution and an important contaminant for the extraction of the primary CMB B-modes from inflation. Planck provides accurate nearly all-sky
measurements of both the polarization E-modes and the integrated mass distribution via the reconstruction of the CMB lensing potential. By
combining these two data products, we have produced an all-sky template map of the lensing-induced B-modes using a real-space algorithm that
minimizes the impact of sky masks. The cross-correlation of this template with an observed (primordial and secondary) B-mode map can be used to
measure the lensing B-mode power spectrum at multipoles up to 2000. In particular, when cross-correlating with the B-mode contribution directly
derived from the Planck polarization maps, we obtain lensing-induced B-mode power spectrum measurement at a significance level of 12�, which
agrees with the theoretical expectation derived from the Planck best-fit ⇤ cold dark matter model. This unique nearly all-sky secondary B-mode
template, which includes the lensing-induced information from intermediate to small (10 <⇠ ` <⇠ 1000) angular scales, is delivered as part of the
Planck 2015 public data release. It will be particularly useful for experiments searching for primordial B-modes, such as BICEP2/Keck Array or
LiteBIRD, since it will enable an estimate to be made of the lensing-induced contribution to the measured total CMB B-modes.

Key words. cosmology: observations – cosmic background radiation – polarization – gravitational lensing: weak

1. Introduction

Cosmic microwave background (CMB) polarization anisotropies
can be decomposed into curl-free E-modes and gradient-
free B-modes. In contrast to primordial E-modes, primordial
B-modes are sourced only by tensor perturbations (Polnarev
1985; Spergel & Zaldarriaga 1997; Kamionkowski et al.
1997; Seljak & Zaldarriaga 1997) that can be formed in the
pre-decoupling Universe due to an early inflationary phase
(Grishchuk 1975; Starobinsky 1979, 1982). Thus, primordial
B-modes of the CMB polarization are a direct probe of cos-
mological inflation (see Guth 1981; Linde 1982, for details
on inflationary theory). The measurement of the primordial

? Corresponding author: L. Perotto,
laurence.perotto@lpsc.in2p3.fr

B-mode power spectrum, which peaks at degree angular scales,
is the main target of a plethora of ground-based experi-
ments and satellite proposals. There was great excitement in
early 2014 when B-modes at the relevant angular scales de-
tected by the BICEP2 experiment were interpreted as evi-
dence of inflationary gravitational waves (Ade et al. 2014a).
Investigating the polarized dust emission in the BICEP2 ob-
servation field using the 353-GHz data, Planck

1 revealed a

1
Planck (http://www.esa.int/Planck) is a project of the

European Space Agency (ESA) with instruments provided by two sci-
entific consortia funded by ESA member states and led by Principal
Investigators from France and Italy, telescope reflectors provided
through a collaboration between ESA and a scientific consortium led
and funded by Denmark, and additional contributions from NASA
(USA).
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higher dust contamination level than expected from pre-Planck

foreground models (Planck Collaboration Int. XXX 2016). In
BICEP2/Keck Array and Planck Collaborations (2015), a joint
analysis of the BICEP2/Keck Array data at 100 and 150 GHz and
the full-mission Planck data (particularly the 353-GHz polarized
data) has been conducted. This provides the state-of-the-art con-
straints on the tensor-to-scalar ratio, r, which is currently con-
sistent with no detection of a primordial B-mode signal. When
combined with the limit derived from the temperature data
(as discussed in Planck Collaboration XVI 2014 and Planck
Collaboration XIII 2016), the current 95% upper limit is r <
0.08, which already rules out some of the simplest inflation-
ary potentials (Planck Collaboration XX 2016). We stand at the
threshold of a particularly exciting epoch that is marked by sev-
eral ongoing or near-future ground-based experimental e↵orts,
based on technology that is sensitive and mature enough to probe
the primordial B-modes to theoretically interesting levels.

In addition to the primordial contribution, a secondary con-
tribution is expected from the post-decoupling distortion of the
CMB polarization due to the e↵ect of gravitational lensing (see
Lewis & Challinor 2006, for a review of CMB lensing). In
particular, the lensing of the primordial CMB polarization E-
modes leads to an additional B-mode contribution. The sec-
ondary B-mode contribution to the C

BB

` power spectrum domi-
nates over the primary one at ` >⇠ 150, even for large values of
the tensor-to-scalar ratio, (r ⇠ 1). Thus, it must be corrected for,
in order to measure the imprint of primordial tensor modes. This
correction is generally referred to as “delensing”.

The secondary B-mode power spectrum can be estimated by
cross-correlating the total observed B-mode map with a tem-
plate constructed by combining a tracer of the gravitational po-
tential and an estimate of the primordial E-modes. Using such
a cross-correlation approach, the SPTpol team (Hanson et al.
2013) reported the first estimate of the lensing B-mode power
spectrum, consisting of a roughly <⇠8� measurement in the mul-
tipole range 300 < ` < 2750 using Herschel-SPIRE data as the
mass tracer. The POLARBEAR collaboration detected the lens-
ing B-modes using CMB polarization data by fitting an ampli-
tude relative to the theoretical expectations to their CMB polar-
ization trispectrum measurements, and reported a 4.2� rejection
of the null-hypothesis (Ade et al. 2014b). Similarly, the ACTPol
team reported 3.2� evidence of the lensing B-mode signal within
its first season data, using the correlation of the lensing poten-
tial estimate and the cosmic infrared background fluctuations
measured by Planck (van Engelen et al. 2015). Finally, using
the full mission temperature and polarization data, Planck ob-
tained a template-based cross-correlation measurement of the
lensing B-mode power spectrum that covers the multipole range
100 < ` < 2000, at a significance level of approximately 10�, as
described in Planck Collaboration XV (2016).

Secondary B-modes dominate any potential primordial
B-modes at high multipoles, thus the high-` BB power spectrum
of the observed polarization maps can also be used to make a
lensing-induced B-mode measurement. The POLARBEAR col-
laboration reported the first BB measurement (at around 2�) of
the B-mode power spectrum in the multipole range 500 < ` <
2100 (The Polarbear Collaboration 2014). The SPTpol experi-
ment also made a BB estimate of the lensing B-modes in the
range 300 < ` < 2300, representing a >4� detection Keisler
et al. (2015). Moreover, a non-zero lensing B-mode signal has
been found in the BICEP2/Keck Array data with around 7� sig-
nificance, by fitting a freely-floating CMB lensing amplitude in
the joint analysis with Planck data (BICEP2/Keck Array and
Planck Collaborations 2015).

For current or future experiments targeting the detection of
primordial B-modes, a precise estimation of the secondary CMB
B-modes at large and intermediate angular scales is required in
order to separate the secondary contributions from potential pri-
mordial B-modes. On the one hand, large angular scale exper-
iments lack the high-resolution E-mode measurements that are
required to measure the lensing-induced B-mode signal. On the
other hand, for high-resolution experiments, partial sky coverage
limits their ability to extract the B-mode power spectrum and to
reconstruct the lensing potential at large angular scales. Thus,
such experiments would benefit from a pre-estimated secondary
B-mode template, covering angular scales from a few degrees
down to sub-degree scales and matching their sky coverage.

We present an all-sky secondary B-mode template spanning
from intermediate to large angular scales, synthesized using the
full mission Planck data. In Planck Collaboration XV (2016), the
lensing B-mode estimate was band-limited to ` > 100, in order to
conservatively alleviate any low-` systematic e↵ects. In contrast,
here the focus is on improving the reliability at intermediate an-
gular scales (10 < ` < 200). We also extend the lensing B-mode
results of Planck Collaboration XV (2016) by producing a lens-
ing B-mode map, by performing extensive characterization and
robustness tests of this template map and by discussing its utility
for B-mode oriented experiments. This B-mode map is delivered
as part of the Planck 2015 data release.

The outline of this paper is as follows. Section 2 describes the
data and simulations that we use. We detail the methodology for
the template synthesis in Sect. 3, and describe the construction
of the mask in Sect. 4. The lensing B-mode template reconstruc-
tion method is validated using simulations in Sect. 5. We present
the template we have obtained from Planck foreground-cleaned
data in Sect. 6, and assess its robustness against foreground con-
tamination and the choice of the data to cross-correlate with in
Sect. 7. Section 8 addresses the implications of the template for
external experiments targeting primordial B-mode searches. We
summarize and conclude in Sect. 9.

2. Data and simulations

Planck sky maps: we have used foreground-cleaned CMB
temperature and polarization maps derived from the Planck

satellite full mission frequency channel maps from 30 to
857 GHz in temperature and 30 to 353 GHz in polarization
(Planck Collaboration I 2016; Planck Collaboration II 2016;
Planck Collaboration III 2016; Planck Collaboration IV 2016;
Planck Collaboration V 2016; Planck Collaboration VI 2016;
Planck Collaboration VII 2016; Planck Collaboration VIII
2016). Our main results are based on Stokes I, Q, and U maps
constructed using the SMICA component-separation algorithm
(Delabrouille et al. 2003) in temperature and polarization simul-
taneously (Planck Collaboration IX 2016). The maps are at 50
resolution in Nside = 2048 HEALPix pixelization (Górski et al.
2005)2. For the sake of assessing the robustness of our results,
we have also utilized foreground-cleaned maps that are produced
using the other Planck component-separation methods, namely
Commander, NILC, and SEVEM (Planck Collaboration XII 2014;
Planck Collaboration IX 2016; Planck Collaboration X 2016).
The current publicly available Planck HFI polarization maps,
which are part of the Planck 2015 data release, are high-pass fil-
tered at ` <⇠ 30 because of residual systematic e↵ects on angular
scales greater than 10� (Planck Collaboration VII 2016; Planck
Collaboration VIII 2016). However, we have used polarization

2
http://healpix.jpl.nasa.gov
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maps covering all angular scale for our analysis, since the results
have proved not to be sensitive to CMB E-mode polarization at
large angular scales3.

Full Focal Plane simulations: for methodological validation
and for the bias correction of the lensing potential at the map
level (known as the “mean-field” correction), we have relied on
the eighth Planck Full Focal Plane (FFP8 hereafter) suite of
simulations, as described in Planck Collaboration XII (2016).
Specifically, we have used FFP8 Monte-Carlo realizations of the
Stokes I, Q, and U outputs of the SMICA component-separation
method. These have been obtained by processing through the
SMICA algorithm the simulated beam-convolved CMB and noise
realizations of the nine Planck frequency channels, as described
in Planck Collaboration IX (2016). As a result, both the noise
realizations and the beam transfer function are representative of
those of the SMICA foreground-cleaned maps. Finally, the cali-
bration of the Planck 2015 data has been taken into account by
rescaling the CMB realizations as in Planck Collaboration XV
(2016).

Fiducial cosmology: for normalizing the lensing potential
map estimate and computing the filter and transfer functions of
the B-mode template, we have used fiducial power spectra de-
rived from the 2015 Planck base ⇤CDM cosmological param-
eters that have been determined from the combination of the
2015 temperature and “lowP” likelihoods, as described in Planck
Collaboration XIII (2016).

3. B-mode map reconstruction

3.1. Formalism

The secondary B-modes of CMB polarization arise from a leak-
age of a fraction of the E-modes into B-modes due to the polar-
ization remapping induced by the CMB lensing e↵ect. In terms
of the polarization spin-two components ±2P ⌘ Q ± iU, and at
first order in the lensing potential �, the lensing-induced contri-
bution reads

±2P
lens(n̂ ) = r±2P

prim(n̂ ) · r�(n̂ ), (1)

where ±2P
prim(n̂ ) are the polarization fields that would be ob-

served in the absence of the lensing e↵ect (Zaldarriaga & Seljak
1998; Lewis & Challinor 2006). Rewriting the secondary polar-
ization fields in terms of the rotationally invariant E- and B-mode
fields, so that

±2P
lens(n̂ ) = r

2
666664
X

`0m0

⇣
E

prim
`0m0 ± iBprim

`0m0

⌘
±2Y`0m0

3
777775 · r�(n̂ ), (2)

and considering their spin-two spherical-harmonic coe�cients

±2P
lens
`m =

Z
dn̂ ±2P

lens(n̂ ) ±2Y
⇤
`m(n̂ ), (3)

one finds that the gradient-free B-mode polarization receives a
secondary contribution that depends on the primordial B-modes
and the unlensed curl-free E-modes, of the form

B
lens
`m =

1
2i

⇣
+2P

lens
`m ��2 P

lens
`m

⌘
. (4)

3 The E-mode polarization at ` < 30 contributes only at the sub-
percent level to the template-based lensing B-mode power spectrum at
` = 10, and has even lower contribution at higher multipoles.

3.2. Algorithm

First, we state the assumptions on which our algorithm is based.
Since the E-mode amplitude is at least an order of magnitude
greater than the primordial B-mode amplitude, the B

lens
`m contri-

bution that comes from the E-mode remapping largely domi-
nates over the one from the lensing perturbation of the primordial
B-modes. From now on, the latter can safely be neglected, con-
sistent with the assumptions in Planck Collaboration XV (2016).
We replace the primordial E-modes that appear in Eq. (2) with
the total E-modes, E = E

prim + �E. This amounts to neglecting
the second-order contribution to B

lens due to �E, that is to say the
lensing perturbation of the E-modes themselves.

We then consider pure E polarization fields:

±2P
E(n̂ ) ⌘ Q

E(n̂ ) + iU
E(n̂ ) ⌘

X

`m

E`m ±2Y`m(n̂ ), (5)

which define pure-E Stokes parameters Q
E , U

E .
Implementing the above assumptions into Eq. (3) and using

the definition given in Eq. (5), we build a secondary polarization
estimator that has the generic form

±2P̂
lens
`m = B�1

`

Z
dn̂ r±2

fPE(n̂ ) · re�(n̂ ) ±2Y
⇤
`m(n̂ ), (6)

where ±2
fPE and e� are the filtered versions of the pure-E polar-

ization and lensing potential fields, respectively, whereas B` is a
transfer function ensuring that the estimator is unbiased. These
quantities are defined below in Sect. 3.4. We finally define sec-
ondary CMB B-mode template Stokes maps (Qlens(n̂ ),U lens(n̂ ))
by preserving the B-mode contribution in Eq. (6) and transform-
ing back to real space.

In summary, we reconstruct the all-sky B-mode template us-
ing a dedicated pipeline that consists of:

(i) estimation of the deflection field using the filtered recon-
structed gravitational potential, re�(n̂ );

(ii) computation of the gradient of the filtered pure E-mode in-
put maps, r±2

fPE(n̂ );
(iii) calculation of the analytical transfer function;
(iv) construction of the polarization template using Eq. (6);
(v) formation of a secondary B-mode template using Eq. (4).

These steps are further detailed in the rest of this section.

3.3. All-sky lensing potential reconstruction

The paths of CMB photons are weakly deflected by the mat-
ter encountered along the way from the last-scattering surface.
As a result, the primary CMB observables are remapped ac-
cording to the gradient of the gravitational potential � integrated
along the line-of-sight (Blanchard & Schneider 1987). This in-
duces higher-order correlations within the CMB observables;
namely, a non-vanishing connected part of the four-point correla-
tion function, or equivalently in the spherical harmonic domain,
a trispectrum, in the CMB maps. These can be used, in turn, to
reconstruct the intervening mass distribution (Bernardeau 1997;
Zaldarriaga & Seljak 1999). Specifically, to first order in �,
the lensing induces a correlation between the observed (lensed)
CMB maps and the gradient of the primary (unlensed) maps.
Building upon this property, quadratic estimators have been pro-
posed to extract a lensing potential estimate from the observed
map (Hu 2001b,a; Hu & Okamoto 2002; Okamoto & Hu 2003).
We have reconstructed the lensing potential over a large por-
tion of the sky using the all-sky quadratic estimator described
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 0.5  0.5-
⇥10�5

Fig. 1. Wiener-filtered lensing potential estimated from the SMICA
foreground-cleaned temperature map using the fsky ' 80% lensing
mask. The lensing potential estimate, which is shown in Galactic co-
ordinates, is e↵ectively inpainted using a lensing extraction method that
relies on an inpainting of the input temperature map, as discussed in
Sect. 3.3.1.

in Okamoto & Hu (2003), which has been modified to deal with
cut skies.

3.3.1. Inpainting of the temperature map

In Planck Collaboration XV (2016), foreground-contaminated
regions have been masked out at the stage of the inverse-variance
filtering of the input CMB maps, by allocating infinite variance
to masked pixels. The reconstructed � is thus null-valued in the
pixels inside the analysis mask. For the sake of synthesizing
Stokes maps (Qlens(n̂ ),U lens(n̂ )), as described in Sect. 3.2, using
such a masked � estimate would induce prohibitive amounts of
mode mixing. Thus, we have used the METIS method, in which
the masked CMB maps are restored to a complete sky coverage,
before their ingestion into the quadratic estimator, by means of
an inpainting procedure based on the “sparsity” concept (Abrial
et al. 2007). More details are given in Perotto et al. (2010), where
this method has been first described and in Planck Collaboration
XVII (2014), where it has been used to perform consistency
tests. As a result of this procedure, the METIS method provides
a � estimate that is e↵ectively inpainted to cover the full sky. To
illustrate this property, Fig. 1 shows a Wiener-filtered version of
the � estimate reconstructed from the SMICA temperature map
using the baseline “L80” lensing mask that we describe below in
Sect. 4.

As well as o↵ering the advantage of mitigating the bias that
the mask induces in the �map, which is discussed in Sect. 3.3.2,
this allows us to construct the secondary polarization template
map using Eq. (6), alleviating the need for further processing
steps to deal with partial sky coverage.

3.3.2. Mean-field debiasing

The quadratic estimator is based on the fact that, for a fixed
lens distribution, the lensing breaks the statistical isotropy of
the CMB maps; specifically, it introduces o↵-diagonal terms of
the CMB covariance (Hu & Okamoto 2002). Therefore this is
also sensitive to any other source of statistical anisotropies in the
maps. For Planck data, the bias induced at the � map level by
any known sources of statistical anisotropies, which is referred
to as the “mean-field bias”, is dominated by the e↵ects of mask-
ing (Planck Collaboration XVII 2014). The mean-field bias can

be estimated from Monte-Carlo (MC) simulations that include
all the instrumental and observational e↵ects that can lead to a
sizeable mean-field (e.g. the mask, the spatial inhomogeneity in
the noise, which yields the first sub-dominant mean field, and
the beam asymmetry), by averaging the � estimates obtained on
MC realizations. We have used a set of 100 FFP8 realizations
to obtain an estimate h�̄LMiMC of the mean-field modes4 for the
non-normalized �modes, labelled �̄LM. This mean-field estimate
has then been subtracted from �̄ to obtain the unbiased estimate
�̂LM of � in the spherical harmonic domain, given by

�̂LM = AL
�
�̄LM � h�̄LMiMC

�
, (7)

where AL is the normalization function, which ensures that the
estimator is unbiased. This is related to the normalization A

↵
L

given in Okamoto & Hu (2003)5, viaAL = [L(L + 1)]�1
A
↵
L, and

has been analytically calculated using the fiducial cosmology de-
scribed in Sect. 2. To handle the slight di↵erence between FFP8
input cosmology and the fiducial cosmology considered here, the
mean-field h�̄LMiMC has been multiplied by the ratio of the nor-
malization functions derived from the input FFP8 and fiducial
cosmological models.

3.3.3. Mass tracer choice

In addition to the lensing potential quadratic estimate, other
tracers of the underlying lensing potential could be used to form
a lensing-induced B-mode template. The cosmic infrared back-
ground (CIB) emission is of particular interest for this purpose
since, in contrast to most of the large-scale structure tracers,
which probe only a limited range of redshifts; its redshift dis-
tribution has a broad overlap with the lensing potential ker-
nel (Song et al. 2003). Using the best-fit halo-based model of
Planck Collaboration XVIII (2011), Planck Collaboration XVIII
(2014) have reported a roughly 80% correlation of the CIB fluc-
tuations measured by Planck with the lensing potential, in agree-
ment with the model expectations. For the sake of the lens-
ing B-mode measurement, however, the uncertainties in the CIB
modelling will have a large impact on the signal estimate, unless
the CIB model parameters are marginalized within a joint anal-
ysis including lensing cross- and auto-power spectrum measure-
ments of the CIB (Sherwin & Schmittfull 2015). Moreover, the
foreground residuals are another concern for any lensing B-mode
template synthesized from the CIB, as also discussed in Sherwin
& Schmittfull (2015). The CIB signal is the most precisely mea-
sured at high frequencies, where the Galactic dust emission is
also important. Any Galactic dust residuals in the CIB template
map could be correlated either with the polarized dust residuals
or with the intensity-to-polarization leakage of the dust emission
in the CMB E- and B-mode maps.

Similarly, lensing potential estimates can also be extracted
by means of a quadratic estimator on the Planck polariza-
tion maps. This, combined with the temperature-based � esti-
mate, reduces the power spectrum of the � reconstruction noise
by roughly 25%. However, for measuring the lensing B-mode
power spectrum using a template-based approach, resorting to
a polarization-based � estimate would require us to correct for
a non-negligible Gaussian bias (Planck Collaboration XV 2016;
Namikawa & Nagata 2014).

4 We use multipole indices LM for the lensing potential in order to
di↵erentiate them from the `m indices used for the CMB fields.
5 It is also related to the response function of the quadratic estima-
tor for o↵-diagonal terms of the CMB covariance RL, as defined in
Eq. (A.16) of Planck Collaboration XV (2016), viaAL = R�1

L .
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Here we have chosen to employ only the lensing potential
estimate to produce a lensing B-mode template that is model-
independent and more robust to foreground residuals; and to
use the temperature data only for estimating the lensing poten-
tial, which ensures desirable properties for our template, as dis-
cussed in Sect. 5. Relying on the independent analysis presented
in Planck Collaboration XV (2016), we show in Sect. 7.4 that
these choices induce at worst a marginal increase in the statisti-
cal uncertainties of the lensing B-mode measurements.

3.4. Lensing-induced polarization fields

Using the lensing potential estimate discussed above and the ob-
served E-mode map, we have reconstructed the template of the
secondary polarization field as in Eq. (6). To reduce uncertain-
ties, we have used filtered versions of those maps that are de-
fined as

e�(n̂ ) =
Z

dn̂ f
�
L �̂LM Y

⇤
LM(n̂ ), (8)

and

±2
fPE(n̂ ) =

Z
dn̂ f

E

` E`m ±2Y
⇤
`m(n̂ ). (9)

The filter functions for � and E, f
�
L and f

E

` , are Wiener filters,
based on the optimality arguments developed in Smith et al.
(2009a). In Planck Collaboration XV (2016), the � estimates at
L < 8 have been discarded because of instability to the choice
of the method used to correct the mean-field. Consistently, we
have filtered the � estimate to L  10 in order to conservatively
avoid any mean-field related issues. We have used a tapering fil-
ter, labelled f10, that smoothly goes from zero at L = 5 to unity
at L = 15 by means of a power-of-cosine function centred in
L = 10. Using this filter, we still preserve 99% of the available
information for measuring the cross-correlation B-mode power
spectrum. The filtered pure-E polarization fields ±2

fPE have been
directly obtained from the full-sky observed Q and U maps by
transforming into the spin-weighted spherical harmonic basis,
filtering the E-modes, and reforming Stokes parameter fields
with a null B-mode component. No deconvolution of the beam
has been performed at this stage, which yields further filtering
of the E-modes at high multipoles. Our filtering functions are
defined by

f
�
L =

f10C
�,fid
L

C
�,fid
L + N

�
L

,

f
E

` =
C

E,fid
`

C
E,fid
` + N

E

L

, (10)

where C
�
L and C

E

` are the fiducial � and E-mode power spec-
tra; N

�
L is the � reconstruction noise power spectrum calculated

following Okamoto & Hu (2003); and N
E

L is the pixel- and beam-
deconvolved power spectrum of the E-mode noise.

These steps have been performed using the fast spin-
weighted spherical harmonic transform capability of the
HEALPix library to generate Q

E and U
E and compute their

derivatives. Thanks to this simple implementation, a B-mode
template map at a resolution of 50 can be reconstructed from
the � estimate and the observed Q and U maps in a reasonable
amount of computing time, which enables the use of Monte-
Carlo simulations. For example, the computing time is about

two minutes using eight cores of the Linux AMD64 machines
of the Institut National de Physique Nucléaire et de Physique
des Particules (IN2P3) Computing Center6.

Using a harmonic approach, as in Hu (2000), we compute the
transfer function that appears in Eq. (6) by imposing the condi-
tion that the secondary B-mode template B̂

lens ⌘ ( +2P̂
lens �

�2P̂
lens)/(2i) satisfies

hB⇤`mB̂
lens
`0m0 i = �``0�mm0 C

B,fid
` , (11)

where C
B,fid
` is the fiducial lensing-induced B-mode power spec-

trum (r = 0).
In terms of the fiducial power spectra C

X,fid
` , X = {E, B, �},

we obtain a transfer function

B` =
1

C
B,fid
`

X

L`0
f
�
L C
�,fid
L f

E

`0 B`0C
E,fid
`0 2F`L`0 , (12)

where B`0 is the beam function of the polarization maps, and
2F`L`0 is a geometrical term defined in Hu (2000).

3.5. B-mode template synthesis

Our secondary B-mode template is obtained as in Eq. (4) that is

B̂
lens
`m =

1
2i

⇣
+2P̂

lens
`m ��2 P̂

lens
`m

⌘
. (13)

This is computed from ±2P̂
lens
`m , the spin-weighted spherical har-

monic transforms of our real-space secondary polarization esti-
mates

⇣
Q

lens ± iU lens
⌘

that are corrected for the transfer function
given in Eq. (12).

3.6. Cross-correlation power spectrum of the template

We form the cross-correlation power spectrum between the tem-
plate B-modes given in Eq. (13) and the observed B-modes, B

obs
`m ,

using

Ĉ
BB

lens

` =
1

f
e↵
sky(2` + 1)

X̀

m=�`
B

obs ⇤
`m B̃

lens
`m , (14)

where the asterisk denotes complex conjugation; and B̃
lens
`m is

a shorthand notation for the template B-mode harmonic co-
e�cients obtained as in Eq. (12), but using an apodized and
masked version of the real-space secondary polarization esti-
mates

⇣
Q

lens ± iU lens
⌘
. This apodized mask, the construction of

which is described in Sect. 4, leaves an e↵ective available sky
fraction f

e↵
sky for analysis. The BB

lens cross-correlation power
spectrum represents an estimate of the lensing B-mode power
spectrum. Moreover, this does not require any noise term sub-
traction, as we verify in Sect. 5.

The BB
lens power spectrum variance is estimated to a good

approximation using

�2
⇣
Ĉ

BB
lens

`

⌘
=

1
f

e↵
sky(2` + 1)

h
(CB

` )2 + (ĈB
obs

` )(ĈB
lens

` )
i
, (15)

where Ĉ
B

obs

` is the auto-correlation power spectrum of the
observed B-modes and Ĉ

B
lens

` the one of the template.
Equation (15) consists of a Gaussian variance prescription

6
http://cc.in2p3.fr/?lang=en
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(see e.g. Knox 1995), which is not expected to rigorously ap-
ply to the lensing B-mode power spectrum estimate, because of
its “sub-structure” (since it is based on the sum of the TT EB

trispectrum of the observed CMB signal). However, for a tem-
plate map constructed on the Planck polarization maps, given
the polarization noise level, the higher-order terms that enter the
variance are sub-dominant, as is further discussed and tested in
Sect. 5.

4. Construction of the B-mode mask

In this section, we detail the methodology for constructing the
template mask. This has involved first preparing a series of fore-
ground masks targeted at specific foreground emission in tem-
perature. These foreground masks have been then combined to
construct an analysis mask for the lensing potential reconstruc-
tion. Finally, the lensing analysis mask has been modified to de-
fine a mask for the template map. These three steps are detailed
in Sects. 4.1–4.3 below.

4.1. Foreground masks

Galactic mask

We have masked the regions of the sky that are strongly
contaminated by the di↵use Galactic emission, the carbon-
monoxide (CO) transition line emission and the extended nearby
galaxy emission. This Galactic mask has been produced fol-
lowing the method described in Planck Collaboration XVI
(2014). It includes the di↵use Galactic mask described in Planck
Collaboration XII (2014), which is produced by thresholding
a combination of CMB-corrected temperature maps at 30 and
353 GHz until a desired sky fraction is preserved. For our base-
line analysis, we have used a di↵use Galactic mask that re-
tains about 80% of the sky. This di↵use Galactic mask dis-
cards mainly low latitude regions. To mask the CO lines con-
tamination at intermediate latitudes, we have used the CO mask
described in Appendix A of Planck Collaboration XI (2016),
which has been obtained by thresholding a smoothed version
of the Type 3 CO map (Planck Collaboration XIII 2014) at
1 KRJ km s�1. Furthermore, we have removed the emission from
the most extended nearby galaxies, including the two Magellanic
clouds (LMC, SMC) and M 31, by cutting a radius that cov-
ers each galaxy in the 857-GHz map, as described in Planck
Collaboration XI (2016). Our Galactic mask, which is the merge
of the di↵use Galactic, CO-line, and extended nearby galaxy
masks, consists of large cuts that extend over more than two de-
grees on the sky, and preserves 79% of the sky.

Extragalactic object masks

We have masked the infrared (IR) and radio point sources
that have been detected in the temperature maps in frequency
channels from 70 to 353 GHz using the Planck compact ob-
ject catalogues, as well as the sky areas contaminated by the
Sunyaev-Zeldovich (SZ) emission using both Planck SZ cluster
catalogues and Compton parameter maps. We started with the in-
dividual masks targeted at 100, 143, and 217 GHz that have been
used in Planck Collaboration XVII (2014). These masks have
been produced using the Planck Early Release Compact Source
Catalogue (ERSC; Planck Collaboration VII 2011), the Planck

Catalogue of Compact Sources (PCCS; Planck Collaboration
XXVIII 2014), and the Planck catalogue of Sunyaev-Zeldovich

sources (PSZ; Planck Collaboration XXIX 2014). These have
been merged with the conservative point-source masks pro-
duced using the 2015 catalogue (PCCS2; Planck Collaboration
XXVI 2016), which are presented in Planck Collaboration XI
(2016). The SZ emission hav been further removed using the
template Compton parameter y map for the detected galaxy
clusters of the 2015 SZ catalogue (PSZ2; Planck Collaboration
XXVII 2016) that is described in Planck Collaboration XXII
(2016). Individual SZ masks have been constructed for 100, 143,
and 217 GHz separately, by converting the template y-map into
CMB temperature using the corresponding conversion factors
listed in Planck Collaboration XXII (2016), and thresholding at
10 µK. Finally, we have masked several small nearby galaxies
including M 33, M 81, M 82, M 101, and CenA, as described in
Planck Collaboration XI (2016).

We have combined these individual masks to produce two
extragalactic object masks that di↵er in the maximum cut radius.
First, the “extended object mask” is made of holes the largest an-
gular size of which ranges from two degrees to 300. This includes
the extended SZ clusters and the small nearby galaxies. Second,
the “compact object mask” is a collection of small holes of cut
radius smaller than 300, and comprises the detected radio and
IR point sources and the point-like SZ clusters. The latter repre-
sents a conservative point source mask that includes all the point
sources detected above S/N = 5 in the 100-, 143-, and 217-GHz
maps, as well as the point sources detected above S/N = 10 in
the adjacent frequencies (including 70 and 353 GHz). This has
been used in Sect. 7.2 to test the robustness of our results againts
point source residuals in the SMICA map.

4.2. Lensing analysis mask

For the lensing potential reconstruction, we have prepared a
composite mask targeted at the SMICA temperature map. This
map comes along with a “confidence” mask that defines the
sky areas where the CMB solution is trusted. The SMICA con-
fidence mask, a thorough description of which is given in Planck
Collaboration IX (2016), has been produced by thresholding the
CMB power map that is obtained in squaring a band-pass fil-
tered and smoothed version of the SMICAmap. Our lensing mask
combines the Galactic, extended, and compact object masks af-
ter some changes driven by the SMICA confidence mask. Namely,
the LMC and three molecular clouds at medium latitudes have
been masked more conservatively in the SMICAmask than in our
initial Galactic mask. We have enlarged the latter accordingly.
In the compact object mask, IR and radio source holes that are
not also present in the SMICA confidence mask have been dis-
carded. They mainly corresponds to point sources detected in
the 353-GHz map, and are strongly weighted down in the SMICA
CMB map. The modified compact object mask removes 0.6%
of the sky in addition to the 21.4% Galactic and the 0.4% ex-
tended object cuts. The baseline lensing mask, which consists of
the combination of these three masks, retains 77.6% of the sky
and is labelled L80.

In Sect. 7.2, however, we test the stability of our results
against source contamination by using a mask accounting for
more point-like and extended sources. This has been constructed
as the union of the Galactic, extended, and compact objects and
SMICA confidence masks. This mask, in which the cut sky frac-
tion due to point sources is as large as 1.5%, preserves 76% of
the sky for analysis and is named L80s.
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4.3. Template analysis mask

4.3.1. Methodology for constructing the mask

Given the lensing mask, the construction of the template mask is
a trade-o↵ between preserving a large sky fraction for analysis
and alleviating the bias induced by the lensing reconstruction on
an incomplete sky. Inpainting the masked temperature map from
which the lensing potential is extracted, as described in Sect. 3.3,
strongly suppresses this e↵ect. The point-like holes induce neg-
ligible bias in the lensing potential reconstruction provided they
are treated by inpainting beforehand (Benoit-Lévy et al. 2013).
Therefore, the compact object mask does not need to be prop-
agated to the template map, as it is verified using Monte-Carlo
simulations in Sect. 5. However, larger sky cuts performed by
the lensing mask (e.g., those arising from the Galactic and ex-
tended object masks) have to be applied to the B-mode template.
Furthermore, some artefacts may be seen near the mask bound-
aries, which we refer to as the mask leakage, and which arises
from the convolution of the signal with the mask side-lobes when
transforming in spherical harmonic space (Plaszczynski et al.
2012). From these considerations, we have tailored a method
of constructing the mask template using Monte-Carlo simula-
tions: starting with the combination of the Galactic and the ex-
tended object masks, we progressively enlarged the mask beyond
the boundaries, until we observed a negligible residual bias in
the cross-correlation power spectrum of the template. This has
been obtained by extending the Galactic mask 3� beyond the
boundaries and the extended compact object mask 300 beyond.
In Sect. 5, we check that using a template mask that are con-
structed in this fashion allows no significant impact in the BB

lens

lensing B-mode power spectrum.

4.3.2. The baseline and test template masks

The baseline mask of the lensing B-mode template map has
been constructed from the lensing analysis L80 mask using the
method described above. Specifically, the Galactic mask has
been enlarged 3� beyond the boundaries, removing 30% of the
sky, and the extended object mask has been also slightly widened
by 300 beyond the boundaries, removing an additional 1.2% of
the sky. The baseline template mask preserves a sky fraction of
69% and is named B70.

In Sect. 7.2, however, we check that consistent results are
obtained using either the Galactic mask as it is, without enlarge-
ment, or a more conservative Galactic mask that removes 40%
of the sky. The most aggressive template mask, labelled B80,
leaves 77% of the sky for the analysis, and the most conservative
one, named B60, leaves 58%. We also test against extragalac-
tic contamination through using the lensing L80s mask for the
lensing potential reconstruction and the corresponding template
mask constructed using the method described in Sect. 4.3.1 and
labelled B70s. In addition to these masks that are targeted at the
temperature map, in Sect. 7.2, we also use a mask tailored for po-
larization in order to test against polarized foreground contami-
nation. For this purpose, the B70 mask has been combined with
the SMICA confidence mask for polarization, a detailed descrip-
tion of which is given in Planck Collaboration IX (2016). The
latter removes regions of the sky where the polarization power
(which is computed by squaring a low-pass filter-smoothed ver-
sion of the SMICA polarization map) exceeds 5 µK2. The com-
bined B70 and SMICA confidence mask for polarization is la-
belled B70p and retains 68% of the sky.

Table 1. Template analysis masks.

Mask label fsky f
e↵

sky

B60 . . . . . . . . . 0.58 0.54
B70 . . . . . . . . . 0.69 0.65
B70p . . . . . . . . . 0.68 0.64
B70s . . . . . . . . . 0.68 0.61
B80 . . . . . . . . . 0.77 0.69

Notes. The columns labelled fsky and f
e↵

sky give the sky fractions that are
preserved by the masks and their apodized versions, respectively.

When computing the lensing B-mode power spectrum, we
have employed apodized versions of the masks, using a cosine
taper of 2� width for the Galactic mask and 300 width for the
extended object mask. As a consequence, e↵ective sky fractions
available for the power spectrum are 5–10% lower than the sky
fraction of the template analysis masks. A list of the template
masks discussed here is given in Table 1, together with the cor-
responding sky fraction, both with and without apodization.

5. Validation on simulations

We now validate the pipeline described in Sect. 3 and test the
impact of masking as described in Sect. 4.3 using a Monte-Carlo
(MC) approach. We analyse our template by forming the BB

lens

power spectrum given in Eq. (14), which has two objectives:

(i) to assess that the template encloses the expected lensing
B-mode information, thus validating the assumptions on
which the synthesis method relies;

(ii) to demonstrate its utility for measuring the secondary
B-mode power spectrum.

We use two independent sets of 100 SMICA I, Q, and U simula-
tions, part of the FFP8 MC simulation set described in Sect. 2.

5.1. Full-range power spectrum estimate

We have applied the pipeline described above to the SMICA tem-
perature and Stokes parameter simulations to obtain a set of 100
B̂

lens estimates. For the lensing reconstruction on the temperature
simulations, we have used the baseline L80 lensing mask, and
employed the second simulation set for the mean-field bias cor-
rection. Then, lensing B-mode power spectrum estimates have
been formed by cross-correlating B̂

lens and the input B-modes as
in Eq. (14), and using the apodized version of the B70 mask.
We have estimated the lensing B-mode BB

lens band-powers by
multiplying Eq. (14) by `(`+1)/2⇡ and averaging the multipoles
over bins of width �` � 100 to further reduce the pseudo-C`
multipole mixing.

Figure 2 shows the averaged BB
lens band-powers obtained

using the apodized B70 mask. The error bars have been esti-
mated using the standard deviation of 100 estimates of the BB

lens

band-powers with the apodized B70 mask. The averaged BB
lens

band-power residuals, i.e. �C
BBlens
b

=
P
`2b C

BBlens
` � C

BB,fid
` , are

plotted in the lower panel of Fig. 2; this shows a negligible resid-
ual bias of <⇠0.1� up to multipoles of 2000. Relative to the in-
put lensing B-mode band-power, this corresponds to less than
a percent. To isolate the impact of the inpainting, we have also
extracted the lensing B-modes using the lensing potential recon-
structed from the full-sky temperature map, that is without using

A102, page 7 of 19



A&A 596, A102 (2016)
0.

00
0.

05
0.

10

0001        001         

¿GXFLDO�PRGHO
))3�EDQGSRZHUV

0.
00

0.
05

0.
10

0001        001         

`(
`
+
1)

C
B

B
le

n
s

`
/2

⇡
⇥ µ

K
2
⇤

`(
`
+
1)

C
B

B
le

n
s

`
/2

⇡
⇥ µ

K
2
⇤

-0
.4

 
0.

0
0.

4

0001        001         

-0
.4

 
0.

0
 

0001        001         

�
B

B
le

n
s

`
/�

�
B

B
le

n
s

`
/�

`̀

Fig. 2. Lensing B-mode power spectrum obtained by cross-correlating
the B

lens templates with the corresponding fiducial B-mode simulations
(top), and residuals with respect to the model (bottom). Top: averaged
BB

lens band-powers using the apodized B70 template mask, with mul-
tipole bins of �` � 100 (blue points). The error bars are the standard
deviation on the mean of the band-power estimate set. The dark blue
curve is the fiducial B-mode power spectrum of our simulations, which
assumes r = 0. Bottom: BB

lens band-power residual with respect to the
fiducial model, given in units of the 1� error of a single realization. For
comparison, we also show the band-power residuals obtained without
masking, as discussed in Sect. 5.1 (red points). Dashed lines show the
±1� range of 100 realizations, indicating the precision level to which
we are able to test against bias.

any mask. For comparison, the band-power residuals are also
plotted for full-sky case in Fig. 2.

We have further tested that the BB
lens band-powers constitute

an unbiased estimate of the fiducial lensing B-modes by fitting
an amplitude with respect to the fiducial model. The averaged
amplitude ABlens obtained on 100 estimates of the BB

lens band-
powers using the B70 mask is 0.989 ± 0.008, where the error
has been evaluated using the standard deviation of the ABlens es-
timates normalized by the square root of the number of realiza-
tions. We therefore conclude that our pipeline provides us with
an unbiased estimate of ABlens.

It is worth noting that the choice of extracting the lensing
potential from the temperature-only data ensures the absence of
Gaussian N

(0)
L -like bias, which must be corrected for in the case

of a lensing extraction using B-mode information. It also gives a
strong suppression of any higher-order bias terms.

5.2. Statistical error budget

First, we have quantified the statistical error associated with
our lensing B-mode band-power measure via simulations by
computing the standard deviation of our MC band-power es-
timates. Then, these MC error bars have been compared to
semi-analytical errors evaluated in taking the square root of
the Gaussian variance given in Eq. (15). The auto-correlation
B-mode power spectrum of the SMICA simulation has been mod-
elled using C

B
obs

` = C
B

` + B
�2
` N

B

` , where C
B

` and N
B

` are the MC
input signal and noise power spectra and B` is the beam function.
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Fig. 3. Error budget. We compare the MC derived uncertainties �MC
associated with the BB

lens measurements to the semi-analytical errors
�G obtained using Eq. (15). Top: averaged BB

lens band-powers using ei-
ther �MC (blue) or �G (red) as error estimates. For illustration, we also
show the expected sensitivity of the Planck SMICA CMB polarization
map to the BB band-powers (grey boxes), whose uncertainties are a fac-
tor of four larger than those of the BB

lens band-powers using the lensing
B-mode template. Bottom: relative di↵erence of�G with respect to�MC.
Dashed lines show a 15% di↵erence.

For the auto-correlation power spectrum of the template, we have
used the averaged estimate on our MC set. Furthermore, we have
used the �` � 100 binning function to average the variance over
multipoles. We note that these large multipole bins contribute
to drive our band-power estimates close to a normal distribution
by virtue of the central-limit theorem, which in turn, brings the
Gaussian variance of Eq. (15) closer to the true variance.

In Fig. 3, we plot the MC error bars and the semi-analytical
ones. For comparison purposes, we also show the errors one
would have obtained from a BB power spectrum measurement
by computing the auto-power spectrum of the fiducial B-mode
map.

The uncertainties in our BB
lens band-powers are well ap-

proximated by the semi-analytical errors at all multipoles. In the
lower panel of Fig. 3 we plot the relative di↵erence between the
semi-analytical errors using Eq. (15) and the error estimates ob-
tained by simulations. Using Eq. (15) leads to a 16% underes-
timate of the error in the first multipole bin and less than 10%
underestimation at higher multipoles. These results validate the
use of Eq. (15) to evaluate the template-based B-mode power
spectrum uncertainties. We also find that the uncertainties of
the BB

lens power spectrum using the template map are approxi-
mately four times lower than those of a total B-mode BB mea-
surement coming directly from the B-mode map.

Gathering the results of our MC analysis, we observe that,
when used in cross-correlation with the B-mode map, the lens-
ing B-mode template we compute provides a lensing C

B

` mea-
surement, which: (i) does not rely on any bias subtraction; (ii)
has nearly optimal uncertainty; and (iii) has four times lower un-
certainty than the BB measurement on the fiducial B-mode map.
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 5.1  5.1-
µ K

 5.1  5.1-
µ K

Fig. 4. SMICA lensing-induced Q and U templates that have been
convolved with a Gaussian beam of 600 FWHM to highlight the large
angular scales (corresponding to multipoles below 200). No spurious
patterns are observed at large angular scales.

6. Planck -derived secondary B-mode template

6.1. Template synthesis

We have produced the template map of the lensing B-modes by
applying the pipeline described in Sect. 3 to the foreground-
cleaned temperature and polarization maps obtained using the
SMICA component-separation method, as described in Sect. 2.
We have first obtained the Q̂

lens and Û
lens templates defined

in Sect. 3.2, filtered versions of which are plotted in Fig. 4.
Specifically, the maps have been smoothed using a Gaussian
beam of 1� FWHM to highlight any low-` systematic e↵ects,
such as those due to intensity-to-polarization leakage. This first
inspection indicates that these templates are not a↵ected by any
obvious low-` systematic e↵ects. More rigorous tests, however,
are performed in Sect. 7.3 using intensity-to-polarization leak-
age corrected maps.

Then we have used the SMICA Q̂
lens and Û

lens templates to
make our secondary B-mode template, as described in Sect. 3.5.
For illustration purposes, we have produced a B-mode template
map by inverting B̂

lens
`m back to pixel-space through an inverse

spherical harmonic transform. Although our B-mode template
contains information in the multipole range 10 < ` < 2000,
Fig. 5 shows two filtered versions of the B-mode map to high-
light di↵erent ranges of angular scale. The high-resolution map
(which is simply slightly smoothed using a Gaussian beam of
10 0 FWHM) should show any important foreground contami-
nation at small angular scales, whereas the low-resolution one
(which is smoothed using a 1� Gaussian beam and downgraded
to Nside = 256 HEALPix resolution) should reveal any large an-
gular scale systematic e↵ects. No evident systematic e↵ects are

 0.2  0.2-
µ K

 57.0  57.0-
µ K

Fig. 5. Planck-derived B-mode template map computed using the
SMICA foreground-cleaned CMB maps. For illustration, the map has
been convolved with a Gaussian beam of 100 (upper panel) and 600
(lower panel) FWHM. The grey area represents the L80 mask, which
was used at the lensing potential reconstruction stage. No obvious fore-
ground residuals are seen in the high-resolution map, nor any obvious
systematic e↵ects in the low-resolution one.

observed in the maps plotted in Fig. 5. In Sect. 7, we further as-
sess the template robustness against various systematic e↵ects
by means of a series of tests at the power spectrum level.

6.2. Variance contributions

In this section, we describe and quantify the various contribu-
tions that enter the template map variance. In particular, rank-
ing the sources of variance helps us in quantifying the template
variance dependence in the choice of the lensing potential esti-
mates discussed in Sect. 3.3. This also anticipates the discussion
that we develop in Sect. 8 on the utility of the Planck template
for other experiments that are attempting to measure the lens-
ing B-modes, compared to the use of a template that combines
the Planck lens reconstruction and the experiment’s E-mode
measurement.

Using the auto-power spectrum estimate Ĉ
B

lens

` computed on
the apodized masked template, the template variance is

�2
⇣
B

lens
⌘
=

1
f

e↵
sky(2` + 1)

Ĉ
B

lens

` , (16)

where f
e↵
sky is the e↵ective sky fraction that is preserved by the

apodized B70 mask. This receives three main contributions:
cosmic variance of both the CMB E-modes and the lenses; in-
strumental noise; and lens reconstruction noise. For the sake of
completeness, other sub-dominant contributions could include
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Fig. 6. Template map variance budget. The total variance of the tem-
plate, plotted in dark blue, is split into the contribution of the lens re-
construction noise (orange) and E-mode noise (green) cross-terms; and
the pure noise (yellow) and cosmic variance (light blue) terms defined
in Sect. 6.2.

foreground residuals, higher-order terms and secondary contrac-
tions of the CMB trispectrum (such as the so-called N

(1) bias of
the lens reconstruction). Within this model, C

B
lens

` can be analyt-
ically calculated using

C
B̂lens
` = B�2

`

X

L`0
( f
�
L )2(C�,fid

L + N
�
L) ( f

E

`0 B`0 )
2(CE,fid
`0 + N

E

`0 ) 2F`L`0 ,

(17)

where the notation is the same as in Eqs. (10) and (12). Although
the variance is evaluated using the template power spectrum es-
timate, Eq. (17) provides us with a useful tool for isolating the
relative contributions to the total variance of the template. It can
be decomposed into four terms: the “cosmic variance” contribu-
tion, which arises from the product of the � and E power spec-
tra; the “pure noise” contribution, which involves the product
of both noise spectra; and two cross-terms, namely the “�-noise
primed” contribution N

�
LC

E

` and the “E-noise primed” contribu-
tion C

�
LN

E

` . In Fig. 6, we plot the di↵erent contributions to the
total variance of the template. The template variance is dom-
inated by the �-noise primed cross-term, which contributes an
amount of about 60% to the total variance. To further quantify
the template variance dependence on the � estimate, we have
rescaled N

�
L by a factor of 0.75 in Eq. (17), which represents a

simple way to emulate the precision gain that could be obtained
by including the polarization-based � reconstruction and a more
precise � estimate at high multipoles (e.g. using the CIB as a
mass tracer). This has resulted in a 20% reduction of the tem-
plate variance. This, in turn, has been propagated to the variance
of the BB

lens measurement using Eq. (15), and has induced a 12%
improvement of the signal detection significance, in agreement
with the independent analysis reported in Planck Collaboration
XV (2016) and discussed in Sect. 7.4.

The E-mode noise power spectrum, which contributes
mainly through the pure noise term, provides less than 35% of
the variance up to ` = 800. As a consequence, very little leverage
is left for other experiments to improve on the template uncer-
tainties by producing a new template that combines each exper-
iment’s E-mode measurement with the Planck lensing potential
reconstruction. In Sect. 8, we see that the Planck template of-
fers other experiments a useful tool for measuring the lensing
B-modes.

7. Robustness tests of our template

We now perform a series of consistency tests to characterize
the B-mode template described in Sect. 6, with a view to us-
ing it for measuring the lensing C

B

` in cross-correlation with ob-
served polarization maps. In Sect. 7.2, we assess the template
robustness against foreground residuals, first in varying the mor-
phology and level of conservatism of the mask, and then in us-
ing foreground-cleaned CMB maps obtained with four indepen-
dent component-separation algorithms. In Sect. 7.3, we use the
Planck polarization maps in individual frequency channels to as-
sess the stability of the lensing C

B

` estimates with respect to the
observed map to which our template is correlated. In Sect. 7.4,
we discuss the consistency of the baseline lensing B-mode power
spectrum presented here with the independent determination in
Planck Collaboration XV (2016), which used various mass trac-
ers. Finally, in Sect. 7.5, the Planck lensing C

B

` measurements
obtained using the B-mode template is compared to external
measurements.

7.1. Template tests using B-mode band-power estimates

With the aim of testing the B-mode template, we have followed
the template-based cross-correlation power spectrum approach
that we developed to validate our pipeline via simulations, as de-
scribed in Sect. 5.1. The tests that have been performed there
also allow for an end-to-end assessment of the entire pipeline,
whose main specifications are recalled below. Using FPP8 MC
simulations for the SMICA method, together with the B70 tem-
plate mask, we found that: (i) unbiased lensing B-mode band-
power estimates are obtained by cross-correlating the B-mode
template estimate with the input B-mode map; and (ii) the semi-
analytical Gaussian variance given in Eq. (15) provides a good
approximation for the uncertainties. To test the consistency of
the band-power estimates with theoretical expectations, we fit-
ted an amplitude with respect to the fiducial C

B

` band-powers,
and found an average value of 0.989 ± 0.008, which indicates
that the lensing B-mode signal is accurately retrieved.

Here, we have used the B-mode template presented in Sect. 6
in cross-correlation with the SMICA foreground-cleaned polar-
ization maps, and have applied the B70 template mask to ob-
tain a baseline lensing B-mode band-power estimate, which is
compared below to various other estimates. We further check
the consistency between the baseline and alternative estimates
by comparing the measured amplitude di↵erence to the expected
variance of the di↵erence in Monte-Carlo simulations.

7.2. Robustness against foreground residuals

The robustness of the baseline measurements against the impact
of foregrounds is assessed by comparison with alternative esti-
mates that have di↵erent residuals. A first sequence of alternative
estimates have been obtained by employing masks of various
levels of conservatism with respect to the Galactic and extra-
galactic foregrounds in temperature and polarization. These are
detailed in Sects. 7.2.1 to 7.2.3. The corresponding fitted ABlens
amplitudes and di↵erences from the B70 estimate are listed in
Table 2. Secondly, we consider measurements obtained with
foreground-cleaned maps using di↵erent component-separation
methods and give the resulting amplitudes in Sect. 7.2.3.
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Table 2. Band-power amplitudes for various analysis masks, which are
listed in the first column.

Mask label f
e↵

sky ABlens S/N � ± ��

B70 . . . . . . . . . 0.65 0.96 ± 0.08 11.9 n. a.
B60 . . . . . . . . . 0.54 0.98 ± 0.09 11.1 �0.02 ± 0.04
B70p . . . . . . . . . 0.64 0.94 ± 0.08 11.3 0.02 ± 0.02
B70s . . . . . . . . . 0.61 0.97 ± 0.08 11.8 �0.01 ± 0.04
B80 . . . . . . . . . 0.69 1.00 ± 0.08 12.8 �0.04 ± 0.03

Notes. The column labelled f
e↵

sky give the e↵ective sky fraction preserved
by the apodized masks. The measured band-power amplitudes are given
in the column labelled ABlens, and the corresponding lensing B-mode
detection significance levels in the column labelled S/N. The di↵erence
between the test amplitudes and the baseline B70 amplitude is given,
where applicable, as �, together with the expected di↵erence �� esti-
mated using Monte-Carlo simulations.

7.2.1. Galactic contamination tests

We test for residual foreground contamination around the
Galactic plane by comparing the B70 lensing B-mode estimate
to estimates using the more conservative B60 mask and the
more aggressive B80 mask, discussed in Sect. 4. We recall that
B80 includes a Galactic mask that preserves 80% of the sky;
this Galactic mask has been extended by 3� beyond its bound-
aries for constructing B70, while B60 includes a larger di↵use
Galactic mask that retains about 60% of the sky. We have em-
ployed the apodized version of the masks using cosine tapers, as
described in Sect. 4. For B80, however, we have used slightly
larger apodization widths, namely 3� for the Galactic mask (in-
stead of 2�) and 1� for the extended compact object mask (in-
stead of 300).

The lensing C
B

` band-power estimates using the B60, B70,
and B80 masks are shown in Fig. 7, and the fitted amplitudes
are listed in Table 2. Both the B60 and B80 estimates are consis-
tent with the B70 estimate. In particular, the agreement between
the B60 and B70 lensing B-mode estimates indicates that any
impact of Galactic foreground residuals lies well below the un-
certainties. The consistency between the B70 and B80 estimates
further indicates that: (i) an 80% Galactic cut su�ces to avoid
any Galactic foreground residuals in the SMICA map; and (ii)
any leakage near the border of the mask (treated by inpainting)
has negligible impact.

7.2.2. Extragalactic object contamination tests

For extracting the lensing potential � map estimate that is used
for the B-mode template synthesis, we have employed the L80
lensing mask described in Sect. 4.2. This cuts out any point
sources included in the intersection of the conservative compact
object mask described in Sect. 4.1 and the SMICA confidence
mask. Here we test the stability of the B-mode estimate through
the use of a more conservative point source mask that involves
the union of these two masks. Namelly, we have produced an
alternative estimate that relies on a � reconstruction using the
L80s lensing mask, which includes the union of the compact
object and the SMICA masks (see Sect. 4.2). In L80s, the sky
area that is removed due to the expected point source contami-
nation is increased by a factor of 2.3 compared to the L80 case.
The extended object mask is also slightly enlarged by 25% due
to areas of radius between 300 and 1200 located at intermedi-
ate Galactic latitudes that are present in the SMICA confidence
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Fig. 7. Cross-correlation of our B-mode template with the SMICA po-
larization map using masks of di↵erent levels of conservatism. The
data points show the lensing C

B

` band-powers estimated using masks
that preserve a sky fraction of about 60% (labelled B60), 70% (“B70”),
and 80% (“B80”), and that are targeted to the foreground emission in
temperature (see Sect. 7.2.1); as well as using the 68% “B70s” mask,
which allows for a more conservative masking of the extragalactic ob-
jects (see Sect. 7.2.2), and the 68% polarization-targeted “B70p” mask
(see Sect. 7.2.3). The residuals with respect to the model in units of
the 1� band-power uncertainties are shown in the lower panel. The
good agreement of all cases within error-bars provides a robustness test
against foregrounds, as discussed in Sect. 7.2.

mask. The B-mode band-powers have then been estimated us-
ing the corresponding B70s mask for the template (which re-
moves 1% more sky fraction than the baseline B70 mask, in-
cluding about a hundred additional extragalactic objects). The
B70s band-power estimate, which is plotted in Fig. 7, is con-
sistent with the baseline B70 estimate within uncertainties. The
fitted amplitude di↵erence from the B70 estimate, which is given
in Table 2, is well within the expected di↵erence estimated from
simulations. This validates the choices we made to include the
expected point sources to our baseline mask, and indicates that
our analysis is free from any sizeable bias due to extragalactic
objects.

7.2.3. Polarized foreground emission tests

We test for the impact of polarized foreground residuals by com-
paring the B70 estimate to an estimate using the B70p mask tar-
geted at the SMICA polarization maps, as discussed in Sect. 4.3.
The B70p mask discards a sky fraction 2.5% larger than B70,
mainly because of extended areas at medium latitude that may
be contaminated by polarized foreground residuals. The lensing
B-mode band-power estimates using the B70 and B70p masks
are plotted in Fig. 7 and the corresponding amplitude fits are
given in Table 2. The B70p estimate well agrees with the B70
estimate. We therefore expect no significant bias related to po-
larized foreground residuals.

From the tests performed so far, the results of which are gath-
ered in Table 2, we have found all the band-power estimates,
from the most conservative fsky = 0.58 to the most optimistic
fsky = 0.77 analysis and whatever the morphology of the mask,
in good agreement with the baseline estimate. This provides an
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Fig. 8. Consistency of our results using the four Planck component-
separation algorithms. The data points shown in the upper panel repre-
sent the lensing B-mode band-power measurements obtained by cross-
correlating the lensing B-mode template estimates using the Commander
(red), NILC (orange), SEVEM (forest green), and SMICA (blue) cleaned
polarization map with the corresponding B-mode map. The residuals
with respect to the model in units of the 1� band-power uncertainties
are shown in the lower panel. The consistency of the four estimates
strongly indicates the robustness of our baseline template against polar-
ized foreground residuals, as discussed in Sect. 7.2.3.

indication that (i) the B-mode template is robust against any fore-
ground contamination or any impact of the sky-cut; and (ii) it
allows us to obtain reliable lensing C

B

` measurements for up to
70% of the sky.

We further test our template robustness against foreground
residuals by comparing results using the four Planck component-
separation methods, as described in Planck Collaboration IX
(2016). We have focused on the polarized foreground residu-
als; we have used di↵erent foreground-cleaned Stokes parame-
ter maps, but the same temperature map: specifically, the lensing
B-mode templates have been synthesized from the foreground-
cleaned Stokes Q and U maps using di↵erent codes and a fixed
lensing potential extraction obtained from the SMICA tempera-
ture map. For this specific test, we have produced a common
mask that combines the B80 mask and the union of the con-
fidence masks provided by each of the component-separation
methods described in Planck Collaboration IX (2016). The com-
mon mask retains a sky fraction of 75% for analysis, and its
apodized version preserves an e↵ective sky fraction of 62%.
Figure 8 shows the resulting lensing B-mode power spectra, ob-
tained through cross-correlation of the lensing B-mode templates
with the input Stokes Q and U maps from the corresponding
component-separation method.

The four Stokes Q and U foreground-cleaned solutions lead
to consistent lensing B-mode power spectrum measurements
(within 1�) over the entire multipole range probed. We measure
fits to the amplitude with respect to the fiducial model of:

ABlens = 1.01 ± 0.11 (Commander);
ABlens = 0.97 ± 0.09 (NILC);
ABlens = 1.00 ± 0.10 (SEVEM);
ABlens = 0.97 ± 0.08 (SMICA).
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Fig. 9. Stability to the change in the observed polarization map. Data
points shown in the upper panel are the BB

lens band-powers obtained
from the cross-correlation of our SMICA B-mode template with the
SMICA polarization map (red), and with single frequency polariza-
tion maps at 100 GHz (yellow), 143 GHz (green), and 217 GHz (blue),
which were corrected for foreground and intensity-to-polarization leak-
age. Residuals with respect to the model in units of the 1� band-power
uncertainties are shown in the lower panel.

These correspond to 9.5�, 11.3�, 9.7�, and 11.8� detections of
the lensing B-modes, respectively. The consistency of the lens-
ing C

B

` measurements based on four CMB solutions with di↵er-
ent foreground residuals indicates the immunity of our baseline
lensing B-mode template to polarized foreground emission.

7.3. Stability with respect to the observed polarization

So far, we have considered the cross-correlation of the B-mode
template synthesized from the Stokes I, Q, and U foreground-
cleaned maps, with the same Q, U maps. We now test the cross-
correlation of our baseline template with other CMB foreground-
cleaned polarization maps. In particular, we have used fore-
ground and intensity-to-polarization leakage-corrected Planck

channel maps at 100, 143, and 217 GHz, which also serve to
test the robustness of our template against low-` systematic ef-
fects. These single channel maps rely on the pre-launch ground-
based measurements of the detector bandpasses to correct for
the intensity-to-polarization leakage due to bandpass mismatch
between the detectors within a frequency channel, as described
in Planck Collaboration VIII (2016). The polarized emission of
the Galactic dust has been corrected for by using the 353-GHz
map as a dust template.

In Fig. 9, we compare the baseline BB
lens band-powers from

the B70 SMICA analysis to the band-powers obtained by cor-
relating our SMICA B-mode template with the B-mode maps
at 100, 143, and 217 GHz built out of the corresponding sin-
gle channel foreground-cleaned polarization maps and using the
same B70 mask. The band-power estimates are in good agree-
ment with each other within uncertainties, indicating the ro-
bustness of our template against polarization systematic e↵ects
(that mainly a↵ect the low multipoles). We find that our lens-
ing B-mode template provides stable measurements of the CMB
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lensing B-modes independent of the choice of the polarization
maps with which it is correlated.

7.4. Consistency with previous Planck results

First of all, we have checked that the baseline lensing B-mode
power spectrum presented here is consistent with the indepen-
dent determination of Planck Collaboration XV (2016) over the
100 < ` < 2000 multipole range, which provides us with further
validation of our methodology choices7.

In Planck Collaboration XV (2016), lensing-induced
B-mode power spectrum measurements have been obtained us-
ing various mass tracers: lensing potential reconstructions using
either both temperature and polarization data or temperature data
only; and CIB fluctuations measured by Planck in the 545-GHz
channel. The latter have relied on a model of the CIB emission
for calculating its cross-correlation with the lensing potential.
All cases have been consistent with theoretical expectations and
in good agreement with each other, which validates the stabil-
ity of the measurement with respect to the mass tracer choice.
The additional information brought by the polarization-based �
estimates yields a 10% improvement of the lensing B-mode de-
tection significance compared to the case using the temperature-
based � estimate, whereas the use of the CIB fluctuations as
a mass tracer lowers the detection significance by roughly the
same amount. Thus, including the polarization information for
reconstructing � or using the CIB as a mass tracer would not
have substantially improved the uncertainties of the B-mode
template that we have produced.

7.5. Consistency with external results

Our BB
lens band-power estimates are a measurement of the lens-

ing B-mode power spectrum that we now compare to measure-
ments reported by other experiments.

As stated in Sect. 1, the available B-mode measurements
come in two flavours: the BB power spectrum of the observed
polarization maps measures the total B-mode signal; whereas the
BB

lens power spectrum between a template and the observed po-
larization maps probes the secondary contribution only.

In Fig. 10, we gather the composite C
B

` measurements ob-
tained by BICEP2/Keck Array, POLARBEAR, SPTpol, and
the Planck mission, which represents the landscape of current
CMB B-mode band-power estimates. The BB power spectrum
measurements of BICEP2/Keck Array8, POLARBEAR (The
Polarbear Collaboration 2014) and SPTpol (Keisler et al.
2015) are collected by the brace labelled BB in Fig. 10. For
BICEP2/Keck Array, we plot the B-mode band-powers in the
multipole range 20 < ` < 335, obtained from the combination of
the BICEP2 and Keck Array maps reported in BICEP2 and Keck
Array Collaborations (2015a) and corrected for polarized dust
emission using Planck data, as described in BICEP2/Keck Array

7 In Planck Collaboration XV (2016), one of the null tests conducted
for checking the robustness of the lensing potential power spectrum has
showed mild evidence of a di↵erence from zero, specifically a non-zero
signal has been seen in the TT curl-mode power spectrum (which con-
tains the TTTT curl-mode trispectrum) with a significance above 2�.
This feature, however, has no real impact in the lensing-induced power
spectrum being tested here. First, it contains the TT EB trispectrum,
which di↵ers from the trispectrum a↵ected by the curl-mode null-test
failure. Additionally, any impact on the variance of the lensing-induced
B-mode power spectrum, via some TTTT trispectrum dependent terms,
would be totally overwhelmed by the dominant Gaussian noise term.
8
http://bicepkeck.org/keck_2015_release.html
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Fig. 10. Consistency with external B-mode power spectrum measure-
ments on the full multipole range (top) and at ` < 350 (bottom).
We compare our baseline BB

lens estimate (red points) to the SPTpol
template-based results (green points; Hanson et al. 2013); and to the BB

power spectrum measurements from BICEP2/Keck Array (blue boxes;
BICEP2 and Keck Array Collaborations 2015a), POLARBEAR (light
blue boxes; The Polarbear Collaboration 2014), and SPTpol (yellow
boxes; Keisler et al. 2015), as discussed in Sect. 7.5. The black line
shows the theoretical lensing B-mode power spectrum for the base
⇤CDM best-fit Planck model (with r = 0).

and Planck Collaborations (2015, which is referred to as BKP
hereafter). The BB

lens measurements of SPTpol (Hanson et al.
2013) and Planck (this analysis) are gathered by the brace la-
belled BB

lens. For Planck BB
lens band-powers, we select the B70

analysis whose robustness has been assessed in Sect. 7.2. The
4.2� lensing B-mode detection reported by the POLARBEAR
team (Ade et al. 2014b) and the 3.2� detection obtained by
ACTpol (van Engelen et al. 2015) are not shown in Fig. 10 for
clarity.

Our Planck-derived BB
lens band-powers are in good agree-

ment with other B-mode measurements, using both the BB

or the BB
lens power spectrum methods. Planck provides the

most precise measurement of the lensing-induced B-mode power
spectrum to date (as assessed in Planck Collaboration XV 2016).
Covering a wide multipole range 10 < ` < 2000, our band-
powers consists of lensing C

B

` measurements at a significance
level as high as 12�. It is also worth focusing on the low-`
range. The C

B

` measurements are expanded at ` > 350 in the
lower panel of Fig. 10, which illustrates the lensing B-mode
template utility for the primordial-to-secondary B-mode discrim-
ination. Using Planck data alone, which combines wide sky cov-
erage, necessary to probe low multipoles, and a good angu-
lar resolution, needed for the lensing potential extraction, the

A102, page 13 of 19

http://bicepkeck.org/keck_2015_release.html
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201527932&pdf_id=10


A&A 596, A102 (2016)

lensing B-mode template enables us to extend the measure of
the lensing-induced C

B

` into the low multipole range.

8. Implications for current and future B-mode
experiments

Here, we address the implications of the template for experi-
ments targeting primordial B-modes. A full joint analysis us-
ing external data is beyond the scope of this paper. However,
as examples we discuss two di↵erent aspects. First, we address
to what extent the template can help experiments in measur-
ing the lensing B-mode power spectrum, in particular over the
largest accessible angular scales. Secondly, we forecast the im-
provement of the lensing amplitude measurement when using the
Planck lensing B-mode template, and we discuss whether this
improvement can translate into a better sensitivity to the tensor-
to-scalar ratio.

8.1. Measurement of the lensing B-mode power spectrum

Since the Planck lensing B-mode template covers almost the en-
tire sky, polarization measurements from any B-mode experi-
ment can be cross-correlated with the template. This ensures a
valuable lensing B-mode power spectrum measurement, includ-
ing the intermediate angular scales, where the lensing signal is
of the same order of magnitude or sub-dominant with respect to
the polarized foreground emission (see Planck Collaboration Int.
XXX 2016, hereafter referred to as PIP-XXX).

For current ground-based experiments, the cross-correlation
with the Planck template is a promising method for measur-
ing the lensing B-mode signal at the largest accessible angu-
lar scales. In general, it leads to better results than a cross-
correlation with a lensing B-mode template built out of the
Planck lensing potential and each experiment’s E-mode map.
This can be understood from two di↵erent considerations. On
the one hand, a study of the lensing B-mode signal kernel (as
in Fabbian & Stompor 2013; Simard et al. 2015) reveals that
most of the signal at low and intermediate angular scales comes
from products of the lensing potential power at low multipoles
and the E-mode power at higher multipoles. For example, at
` = 100 (200), 80% (90%) of the lensing B-mode power arises
from E-mode power at ` > 335. For degree-scale experiments,
such as BICEP, it would be of little value to use its own E-mode
data to generate a new lensing B-mode template. On the other
hand, in Sect. 6.2, we have found the B-mode template vari-
ance to be dominated by the contribution arising from the noise
power spectrum of the reconstructed lensing potential N

�
L, even

for the Planck E-mode noise. For high-resolution experiments
covering a small fraction of the sky, we do not expect that a bet-
ter sensitivity in the E-modes compensates for the uncertainties
linked to the small sky coverage. We have quantified this e↵ect
in using Eqs. (16) and (17) to forecast the template uncertainties,
specifically for an ideal experiment providing noiseless E-mode
measurements for multipoles from 30 to 2000 with a resolution
of 10 and a sky coverage of 1%. We find the uncertainties of the
ideal experiment’s E-mode-based template to be about five times
larger than the Planck template uncertainties up to multipoles
of 700 (and still 50% larger than those of the Planck template
at ` = 2000). We conclude that, for experiments covering less
than a percent of the sky, such as SPTpol or POLARBEAR, the
synthesis of a lensing B-mode template that combines the ex-
periment’s E-mode data with Planck � estimate would degrade

the signal-to-noise for measuring the lensing B-mode power
spectrum.

8.1.1. Uncertainty forecasting method

We forecast the uncertainties of the lensing B-mode power spec-
trum measurement that current experiments can obtain from
cross-correlating their B-mode signal with the Planck lensing
B-mode template. As in Sect. 7.5, we consider the BICEP2/Keck
Array, POLARBEAR, and SPTpol examples. Error bars are
evaluated using Eq. (15). They include lensed cosmic variance
from the best-fit ⇤CDM model and the statistical error from the
template (the template auto-power spectrum Ĉ

Blens
` factor) and

from the experiment (the experiment auto-spectrum (CB

` + N
B

` )
factor). To estimate the template variance within the experi-
ment’s field, Ĉ

Blens
` is analytically calculated using the lensing

potential and E-mode noise power spectra, rescaled to the noise
spatial inhomogeneity within the experiment’s field. This rescal-
ing relies on the SMICA hit count map. We use a simplified model
for the BB auto-spectrum of the experiment that includes the
lensed CMB B-modes, polarized dust, white noise, and Gaussian
beam. The specific model and analysis choices are detailed be-
low.

The polarized dust emission has been parametrized by a sin-
gle free amplitude in power, Adust, which is defined at the ref-
erence frequency of 353 GHz and at a multipole of ` = 80.
Following PIP-XXX, the dust power spectrum has been mod-
elled as the power law C

dust
` / `�2.42, with a spatially uniform

frequency scaling according to a modified black-body law, as-
suming a fixed dust temperature Td = 19.6 K and spectral in-
dex �d = 1.6. For the BICEP2/Keck Array combination, we
have fixed the dust amplitude to the best-fit value obtained in the
joint BICEP2/Keck Array and Planck analysis described in BKP,
namely Adust = 3 µK2. In PIP-XXX, individual dust amplitudes
have been fitted for a series of sky patches, and their scaling with
the mean 353-GHz dust intensity was described using an empir-
ical relation. However, there was a warning about the di�culty
in deriving precise dust amplitude estimates from this empiri-
cal law. From Fig. 7 of PIP-XXX, we can see that, at the low
dust intensity values expected in the SPTpol and POLARBEAR
fields, the amplitudes range from 0.1 to 10 µK2. For simplicity,
we have assumed the level of dust emission in the POLARBEAR
and SPTpol fields to be the same as in the BICEP2 field, and so
have used the value Adust = 3 µK2. We checked that assuming
the more pessimistic Adust = 10 µK2 leads to a minor increase in
the forecast-ed BB

lens band-power uncertainties.

The BICEP2/Keck Array combination has been modelled
as reaching a noise level of 3.4 µK arcmin over 400 deg2,
and as having a Gaussian beam of 310 FWHM for both
BICEP2 and Keck Array experiments (BICEP2 and Keck Array
Collaborations 2015b,a). POLARBEAR has been modelled as
reaching a depth of 8 µK arcmin over an e↵ective sky area of
25 deg2 ( fsky = 0.06%) with 3.05 resolution at 150 GHz (The
Polarbear Collaboration 2014). For SPTpol, we have modelled
the noise spectrum from the characteristics reported in Hanson
et al. (2013), by considering the combination of the 95-GHz ob-
servation (1.083 resolution and 25 µK arcmin noise level) and the
150-GHz observation (1.006 resolution and 10 µK arcmin noise
level) over a sky area of 100 deg2 ( fsky = 0.24%). We have used
the same multipole binning as chosen by each experiment in ex-
isting publications, and have added a low-` bin including multi-
poles up to the largest accessible angular scales defined by the
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Fig. 11. Forecasts of lensing B-mode band-powers from cross-
correlating the Planck lensing B-mode template with external data from
B-mode targeted experiments. Blue circles show the BICEP2/Keck
Array band-powers forecasts using the same multipole binning as that
of BICEP2/Keck Array data points shown in Fig. 10. BB

lens band-power
measurements can be extended to an additional ` = 100–500 bin using
POLARBEAR (turquoise) and to an additional ` = 100–300 bin using
the SPTpol (dark orange) in cross-correlation with the template.

experiment’s sky coverage. For POLARBEAR and SPTpol, we
have considered the 100 < ` < 2000 multipole range.

8.1.2. Lensing B-mode band-power forecasts

Figure 11 shows the forecast-ed BB
lens band-powers over multi-

poles up to 500, for which the Planck template is the most use-
ful in helping other experiments to measure the lensing B-mode
power spectrum. We find that the BICEP2/Keck Array could be
used in combination with the Planck template to obtain BB

lens

band-powers in the multipole range ` = 20–335 measured at
a significance level of about 6� (sensitivity to ABlens of 0.17).
Therefore, our forecast-ed sensitivity to the lensing B-mode sig-
nal is comparable to that obtained in the BKP analysis, where
a lensing amplitude of Alens = 1.13 ± 0.18 has been measured.
However, we show in Sect. 8.3 that we could improve the sensi-
tivity to the lensing B-mode signal by adding the B-mode tem-
plate to a BICEP2/Keck Array and Planck joint analysis. The
Planck template could enables sub-degree angular scale experi-
ments, such as BICEP2/Keck Array, to probe the `-dependence
of the lensing B-mode signal over their full multipole range, in-
cluding multipoles at which the lensing-induced signal is sub-
dominant compared to other sources of B-mode signal (such as
polarized dust). Moreover, the cross-correlation with the tem-
plate should allow experiments targeting higher multipoles (such
as POLARBEAR or SPTpol) to measure the lensing B-mode
signal at intermediate angular scales (100 < ` < 300), extend-
ing their BB

lens estimates down to as low multipoles as their sky
coverage would permit.

8.2. Direct delensing capabilities

“Delensing” consists of subtracting the lensing B-mode tem-
plate from the B-mode map of an experiment in order to try
to highlight the primordial B-modes. Because of the noise level
of the template, poor e�ciency is expected from a direct de-
lensing approach (e.g. Marian & Bernstein 2007). We have
quantified the expected impact on the tensor-to-scalar ratio un-
certainty in calculating the improvement factor as defined in

Smith et al. (2009b) as

↵ =
C

B,lens
` + N

B

`

C
B,res
` + N

B

`

· (18)

Here C
B,lens
` and C

B,res
` are the lensing B-mode power spectrum,

and its residual after subtraction of the template from the external
data, while N

B

` is the noise power spectrum of the experiment.
We find a maximum improvement factor (corresponding to N

B

` =
0) of 5% at ` < 200, reaching a maximum of 10% around ` =
300, in agreement with the expectations derived in Smith et al.
(2009b).

8.3. Improvement of the parameter accuracies

We now go beyond the lensing B-mode power spectrum mea-
surement and quantify whether the use of the template as an ad-
ditional data set (together with other B-mode data and the Planck

dust template) can tighten cosmological parameter constraints,
and in particular, the amplitude of the lensing potential power
spectrum that scales the lensing-induced B-modes, Alens. We dis-
cuss whether more precise measurements of the lensing scaling
translate into tightened constraints on the tensor-to-scalar ratio.

We derive forecasts for particular experiments by perform-
ing a Fisher analysis9 (for a description of this method, see e.g.
Tegmark et al. 1997). We consider a three-parameter model,
{r, Alens, Adust}, consisting of the tensor-to-scalar ratio and the
amplitudes of the lensing potential and polarized dust power
spectra. We compare the parameter constraints obtained in two
cases: (1) the data sets consist of B

exp, the external data from the
B-mode targeted experiment, and B̂

dust, the Planck B-mode data
at 353 GHz, considered as a polarized dust template; and (2) the
Planck lensing B-mode template, B̂

lens, is used in combination
with the other two data sets. As examples of external experi-
ments, we consider the BICEP2/Keck Array combination, here-
after referred to as BK, described in BICEP2 and Keck Array
Collaborations (2015a); and a wide sky coverage experiment,
such as LiteBIRD (Matsumura et al. 2014). The rationale driving
these choices is twofold. Because of the lensing B-mode tem-
plate noise level in a 1% sky area and from the results obtained
above, we do not expect the inclusion of the template to bring a
large improvement of the sensitivity to r for BK. However, we
will be able to validate our simple fiducial analysis by comparing
“Case 1” to the floating lensing amplitude analysis described in
BKP. By contrast, a more substantial improvement is expected
for a large sky coverage B-mode experiment such as LiteBIRD.
For definiteness, we consider two di↵erent fiducial cosmologies
in what follows, which consist of a r = 0.05 model and r = 10�4

model.

8.3.1. Fisher analysis

We consider the Fisher information matrix of the form (see e.g.
Tegmark et al. 1997)

Fi j =
X

`

1
2

(2` + 1) fsky Tr[CC,iCC, j] (19)

9 We note that in this approach, the parameter likelihood is assumed to
be Gaussian close to its maximum, so that the parameter constraints can
be derived by calculating the distribution Hessian taken at the fiducial
values of the parameters. Owing to this assumption, parameter confi-
dence contours are ellipses.
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for a fiducial data covariance matrix C and its derivatives with
respect to the parameters labelled by i and j. Given the data
set {Bexp

`m , B̂
dust
`m , B̂

lens
`m }, we need to model the B-mode auto-power

spectra for the external data, C
exp
` , for the Planck 353-GHz map,

C
353
` , and for the Planck lensing B-mode template within the

experiment’s sky coverage, C
B̂lens
` , as well as the corresponding

cross-power spectra.
The fiducial model consists of an extension of the six-

parameter ⇤CDM model considered so far, including primor-
dial gravitational waves (GW) of amplitude r, a freely floating
amplitude of the lensing potential power spectrum, Alens, and a
free polarized dust amplitude in power Adust (defined at the ref-
erence frequency of 353 GHz and at a multipole of ` = 80). In
this fiducial framework, the B-mode auto-power spectrum of the
experiment under consideration is

C
exp
` =

r

rfid
C

GW,r=rfid
` + AlensC

lens
` + ↵AdustR(⌫, 353)2

C
dust
` + N

exp
` ,

(20)

where C
GW,r=rfid
` and C

lens
` are the gravitational wave and lensing

power spectra at the fiducial r = rfid and Alens = 1 values. We
have considered two di↵erent fiducial values for r, either rfid =
0.05 or rfid = 10�4. The dust power spectrum, C

dust
` , and its fre-

quency scaling with the reference 353-GHz frequency, R(⌫, 353)
have been modelled as in Sect. 8.1, following PIP-XXX. In addi-
tion, for multi-band experiments with foreground-cleaning capa-
bilities, the dust power spectrum has been assumed to be cleaned
up to a residual level defined by the ↵ factor (↵ = 1 for a single
frequency experiment). Finally, N

exp
` is the B-mode noise power

spectrum of each experiment.
The Planck 353-GHz B-mode auto-power spectrum in each

experiment’s sky coverage has been modelled as

C
353
` = AdustC

dust
` + N

353
` , (21)

where the full-sky noise power spectrum at 353 GHz has been
scaled to take the spatial inhomogeneity within the experimental
field into account. We have neglected the sub-dominant CMB
B-mode polarization signal.

Finally, the Planck lensing B-mode template auto-power
spectrum within the experimental field has been analytically cal-
culated using Eq. (17), in which the noise power spectra of the
lensing potential N

�
L and of the E-mode N

E

` have been scaled
to deal with the spatial inhomogeneity within the experimen-
tal field. The cross-correlation of the experiment’s data with
the 353-GHz dust template and lensing B-mode template are
(↵)0.5

AdustR(⌫, 353)Cdust
` and C

lens
` . Following the assumptions of

the model, we have neglected the sub-dominant cross-correlation
of the lensing B-mode and 353-GHz dust templates.

8.3.2. Examples of BK and LiteBIRD

For existing data, we have used a data-driven model. Both the
BK and the Planck 353-GHz noise power spectra in the BK
field have been extrapolated from the noise band-powers re-
leased along with the BKP likelihood10. For the future project
LiteBIRD, we have modelled the noise power spectrum from
the foreseen instrumental characteristics defined in Matsumura
et al. (2014). Only the 100- and 140-GHz bands have been con-
sidered, the two lowest and two highest bands being discarded,
assuming that they are used for foreground cleaning. Following

10
http://bicepkeck.org/bkp2_2015_release.html

Table 3. Fisher analysis inferred parameter uncertainties for the
BICEP2/Keck Array experiment and for the LiteBIRD project using
the r = 0.05 and r = 10�4 fiducial models.

BICEP2/Kecka LiteBIRDb

Parameter Case 1 Case 2 Case 1 Case 2

r = 0.05
�r . . . . . . 0.031 0.030 0.0021 0.0018
�Alens . . . 0.19 0.12 0.042 0.033
�Adust . . . 0.7 0.6 0.05 0.05

r = 10�4

�r . . . . . . 0.025 0.024 0.00036 0.00035
�Alens . . . 0.18 0.12 0.0205 0.0195
�Adust . . . 0.6 0.6 0.05 0.04

Notes. (a) See BICEP2 and Keck Array Collaborations (2015a). (b) See
Matsumura et al. (2014). Forecasts are given for two di↵erent data sets:
“Case 1” consists of the experiment’s data and the Planck 353-GHz
map; and “Case 2” consists of the same two ingredients plus the Planck

lensing B-mode template.

Matsumura et al. (2014), the 100-GHz band reaches a depth
of 3.7 µK arcmin and a resolution defined by a Gaussian beam
of 450 FWHM, while the 140-GHz band has a noise level of
4.7 µK arcmin and 320 FWHM. The polarized dust in each fre-
quency band has been assumed to be cleaned over an e↵ective
sky area of 63% up to the same residual level as in the BK
field. This corresponds to a mildly conservative (Dunkley et al.
2009) 17% residual level in the map domain (corresponding to
↵ = 2.9% in power) for the dust amplitude Adust = 104.5 µK2,
obtained in PIP-XXX via a power-law fit in the large retained
science region “LR63”.

With the fiducial model established and using the numerical
analysis method described, we can infer the sensitivity to the
parameters as �✓i =

p
(F�1)ii for ✓i 2 {r, Alens, Adust}. The results

for BK and LiteBIRD for the two fiducial values of r and in the
two cases considered, depending on whether the lensing B-mode
template is used or not, are presented in Table 3.

For the BK analysis in Case 1 (without the lensing template)
and using the r = 0.05 fiducial model, we find �r = 0.031,
�Alens = 0.186 and �Adust = 0.7, in agreement with results re-
ported in BKP: r = 0.048+0.035

�0.032, Alens = 1.13 ± 0.18 (from the
free lensing amplitude extended analysis) and Adust = 3.3+0.9

�0.8.
This indicates that our fiducial Fisher analysis yields reliable pa-
rameter uncertainty estimates despite the underlying simplifying
assumptions. The use of the lensing template translates into a
5% improvement of the r constraint, whereas the constraint on
Alens is tightened by 36%. Similar results are found using the
more pessimistic r = 10�4 fiducial model; Case 2 yields a 5%
improvement of the constraint on r and a 35% improvement of
the constraint on Alens, compared to Case 1. Over the multipole
range covered by BK, Alens is weakly correlated with both r and
Adust, as was noted in the BKP paper, so that the improvement
in the Alens constraint translates into modest improvement of the
r or Adust constraints. This is verified in Fig. 12, where the two-
dimensional contours at 68% and 95% are shown in the Alens–
r and Alens–Adust planes. However, Fig. 12 also shows that the
Alens–r correlation is further reduced when the lensing B-mode
template is used, leading to more robust constraints.

For large angular scale experiments whose multipole cover-
age is limited to ` <⇠ 200, such as LiteBIRD, the implication of
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Fig. 12. Constraints on the tensor-to-scalar ratio r and the amplitude of
the polarized dust power Adust within a model with free lensing potential
amplitude Alens. The two-dimensional likelihood contours at 68% and
95% are forecasted for BICEP2/Keck Array (BK, shades of blue) and
for LiteBIRD (LB, shades of red), in combination with the Planck 353-
GHz dust template only (line contours) and the Planck dust and lensing
B-mode templates (shaded contours). The lower panels show a zoom-in
on the LiteBIRD contours.

the template slightly di↵ers. For the r = 10�4 fiducial model,
the secondary B-modes, which fully dominate over the primary
B-modes, are precisely measured even without the help of the
template. In the r = 0.05 fiducial model, however, the lack of
measurement over a lensing B-mode dominated multipole range
increases the parameter degeneracy, in particular between Alens
and r, as seen in Fig. 12. As a result, the 20% improvement on
the Alens uncertainties, which arises from using the Planck lens-
ing B-mode template, translates into a 15% improvement on the
r uncertainties.

9. Conclusions

We have produced a nearly all-sky template of the
CMB secondary B-modes using the Planck full-mission
foreground-cleaned CMB temperature and Stokes parameter
maps. For this purpose, we have developed a dedicated pipeline
that has been verified via specific simulations. We show that the
constructed template includes the lensing B-mode contribution
at all angular scales covered by Planck and shows no con-
tamination from primordial B-modes. This template has been
used to compute the CMB lensing B-mode power spectrum by
cross-correlating it with the total foreground-cleaned Planck

polarization B-mode maps (via the publicly available Q and

U maps). We find that the resulting CMB lensing B-mode
power spectrum is insensitive to foreground contamination and
independent of the choice of the foreground-cleaned Planck

polarization B-mode map used for the cross-correlation analysis.
Furthermore, we find that the results are in good agreement with
the expected CMB lensing B-mode power spectrum computed
using the baseline Planck 2015 best-fitting ⇤-CDM model. We
obtain a 12� detection of the lensing B-modes, in agreement
with the results in the companion Planck Collaboration XV
(2016) paper.

Planck provides a unique nearly all-sky lensing B-mode tem-
plate, containing all the lens-induced information from interme-
diate to large angular scales. This template, which is included as
part of the Planck 2015 data release, will be a useful tool for cur-
rent and future ground-based experiments targeting the measure-
ment of the primordial CMB B-mode power spectrum. Indeed,
this template can be used to obtain a reliable measurement of
the lensing B-mode power spectrum with future experiments or
to improve the precision with which they can detect the lensing
B-modes in their own data, by tightening the constraints on the
lensing amplitude. This, in turn, can help in the more challenging
endeavour of constraining the tensor-to-scalar ratio.
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