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The azimuthal asymmetry in the risetime of signals in Auger surface detector stations is a source of
information on shower development. The azimuthal asymmetry is due to a combination of the longitudinal
evolution of the shower and geometrical effects related to the angles of incidence of the particles into the
detectors. The magnitude of the effect depends upon the zenith angle and state of development of the
shower and thus provides a novel observable, ðsec θÞmax, sensitive to the mass composition of cosmic rays
above 3 × 1018 eV. By comparing measurements with predictions from shower simulations, we find for
both of our adopted models of hadronic physics (QGSJETII-04 and EPOS-LHC) an indication that the
mean cosmic-ray mass increases slowly with energy, as has been inferred from other studies. However, the
mass estimates are dependent on the shower model and on the range of distance from the shower core
selected. Thus the method has uncovered further deficiencies in our understanding of shower modeling that
must be resolved before the mass composition can be inferred from ðsec θÞmax.

DOI: 10.1103/PhysRevD.93.072006

I. INTRODUCTION

A detailed understanding of the properties and origin
of cosmic rays with energies greater than 1 Joule
(6.3 × 1018 eV) remains incomplete over 50 years since
their discovery [1]. An explanation for the origin of these
particles must account for the observations of their energy
spectrum, arrival direction distributions and mass composi-
tion. Determination of the mass composition from measure-
ments of extensive air showers is by far the greatest challenge
as it is necessary to make assumptions about the hadronic
physics in regions of phase space not covered by measure-
ments at accelerators: for example, the center-of-mass energy
thatwill ultimately be reached at the LHCcorresponds to that
reached in a collision of a proton of only 1017 eV with a
stationary nucleon. It follows that in the region of interest
here, from 1018 to 1020 eV, there is a serious lack of
knowledge of how key parameters such as the cross section,
the multiplicity and the inelasticity in collisions of protons
and nuclei on nuclei, and of charged pions on nuclei, depend
on energy. Furthermore, at the LHC, studies are restricted to
relatively small rapidities whereas at air-shower energies the
behavior at large Feynman x is of great significance.
Lack of knowledge of the hadronic processes is a less

serious issue when deriving the energy spectrum following
the successful demonstration of calorimetric estimates of
the energies of cosmic rays using the fluorescence tech-
nique [2,3]. In determining the energy account must be
taken of the “invisible energy” carried by neutrinos and by
muons taken into the earth beyond the reach of the
fluorescence detectors and the unknowns of mass compo-
sition and hadronic physics are important at about the 10%
level. Methods are also being developed to estimate the
invisible energy on an event-by-event basis [4]. In [2,3]
convincing evidence for a suppression of the spectrum flux
above ∼4 × 1019 eV was reported. However, to interpret
the shape of the spectrum in detail requires knowledge of
the mass composition at the highest energies.
The fluorescence technique can be used to get informa-

tion that relates to the mass composition. It has been used to
measure the average depth and spread of the distribution of

points at which the number of particles in the shower
maximizes, Xmax, as a function of energy. Measurements of
Xmax based on observations of nearly 20000 events above
6.3 × 1017 eV have recently been reported [5]. However
only 37 of these events have energies above 3.2 × 1019 eV,
a number constrained by the on-time of fluorescence
detectors which is < 13%. Detailed analyses of the dis-
tributions of Xmax in narrow energy bins, made using three
models of the hadronic interaction, Sibyll 2.1 [6],
QGSJETII-04 [7] and EPOS-LHC [8], lead to the con-
clusion that helium and nitrogen are the most abundant
elements above 3.2 × 1019 eV [9].
The lack of compositional information at the highest

energies is also a severe problem for the interpretation of
the distributions of arrival directions. For example the high
degree of isotropy observed in numerous tests of the small-
scale angular distributions of ultra-high energy cosmic rays
(UHECR) is remarkable, challenging earlier expectations
that assumed only a few cosmic-ray sources producing light
primaries at the highest energies. In fact the largest
departures from isotropy are observed for cosmic rays
above 5.8 × 1019 eV in sky-windows of about 20° [10],
while at energies above 8 EeV, there are indications of a
dipole in the distribution of arrival directions [11].
One way to increase the sample, and so to test the

interaction models, is to develop techniques using
the water-Cherenkov detectors of the surface array of the
Auger Observatory [12], which operate ∼100% of the time.
It has been shown that the depth of production of muons
(MPD) [13] contains relevant information on mass com-
position up to energies beyond 6 × 1019 eV. However the
variation of mass with energy, deduced when the depth of
maximum of muon production (Xmax

μ ) is compared to the
predictions of the QGSJETII-04 and EPOS-LHC hadronic
models, does not agree with what is found from the
fluorescence detector (FD) measurements suggesting that
the part of the hadronic development that relates to muon
creation is modeled incorrectly.
In this paper a further exploration of the model-mass

parameter space is described using an observable from the
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water-Cherenkov detectors that is related to the azimuthal
asymmetry found in the risetime of the signalswith respect to
the direction of the incoming air shower. The asymmetry is
due to a combination of the longitudinal development of the
shower and of geometrical effects and thus has the potential
to give alternative insights into the matching of data to mass
and hadronic models using a technique with quite different
systematic uncertainties to those of the MPD or FD
approaches. As both the muonic and electromagnetic com-
ponents contribute to the risetime, the technique explores the
region between the dominantly electromagnetic study of
Xmax and the MPD analysis which is muon-based.
The structure of the paper is as follows. In the following

section the Auger Observatory is briefly outlined with
emphasis on aspects that are important for this paper. In
Sec. III the concept of the asymmetry of the risetime is
described while in Sec. IV details of the analysis of this
asymmetry are presented. The results are shown in Sec. V
and discussed in Sec. VI where they are compared with
those from the fluorescence detector and the MPD
analyses.

II. THE OBSERVATORY AND EVENT
RECONSTRUCTION

The Pierre Auger Observatory is located in the Province
of Mendoza, Argentina (35.1°–35.5 °S, 69.0°–69.6 °W,
1400 m a.s.l.). It is a hybrid system, a combination of a
large surface-detector array (SD) and a FD which records
cosmic-ray events above 1017 eV. The work presented in
the following is based on data from the SD. As data from
the FD will also be referred to, we summarize here the main
characteristics of the two detectors as well as the principles
of the event reconstruction. More details on the detectors
and on the event reconstruction can be found in [12,14–16].
The surface detector array, covering an area of over

3000 km2, comprises 1600 units, which are arranged on a
triangular grid with 1500 m spacing. It samples the
electromagnetic and muonic components of extensive air
showers with a duty cycle of nearly 100%. Each water-
Cherenkov unit is a 1.2 m depth, 10 m2 area, detector
containing 12000 liters of ultra-pure water. The water
volume is viewed by three 9” photomultiplier tubes
(PMTs). Two signals (from the anode and from the
amplified dynode) from each of PMTs are digitized by
40 MHz 10-bit flash analog to digital converters (FADCs).
The recorded signals are calibrated in units of the signal
produced by a muon traversing the water vertically. The
unit is termed the “vertical equivalent muon” or VEM [17].
The shower-trigger requirement is based on a 3-fold
coincidence, satisfied when a triangle of neighboring
stations is triggered [18]. These triggers result in the
recording of 19.2 μs (in 768 bins) of data from each of
the six FADCs in each triggered station. In the present
analysis, that relies on the use of the risetime of the signals
(see Sec. IV), we use FADC traces from stations in events

that are well-confined within the array, that is, the largest
signal station is surrounded by 6 working stations, so that
an accurate reconstruction is ensured. For these events, we
determine the arrival directions of the primary cosmic rays
from the relative arrival times of the shower front in the
triggered stations. The angular resolution is 0.9° for
energies above 3 × 1018 eV [19]. The estimator of the
primary energy is the reconstructed signal at 1000 m from
the shower core, Sð1000Þ. This is determined, together with
the core position, through a fit of the recorded signals
(converted to units of VEM after integration of the FADC
traces) to a lateral distribution function that describes the
average rate fall-off of the signal as a function of the
distance from the shower core. For Sð1000Þ > 17 VEM
(corresponding to primary energy around 3 × 1018 eV) the
core location is determined with an uncertainty of 50 m,
which is independent of the shower geometry [12,20]. The
accuracy of the determination of Sð1000Þ is 12% (3%) at
3 × 1018 ð1019Þ eV [21].
The conversion from this estimator to energy is derived

through the use of a subset of showers that trigger the
fluorescence detector and the surface array independently
(“hybrid” events). The statistical uncertainty in the energy
determination is about 16% (12%) for energies above 3 ×
1018 ð1019Þ eV. The absolute energy scale, determined by
the FD, has a systematic uncertainty of 14% [22]. In the
following we use events for which the zenith angle is less
than 62° and the energy is above 3 × 1018 eV: the effi-
ciency of detection in such cases is 100%.
The fluorescence detector consists of 27 optical tele-

scopes that overlook the array [23,24]. On clear moonless
nights, these are used to observe the longitudinal develop-
ment of showers by detecting the fluorescence light
produced in the atmosphere by charged particles along
the shower trajectory. The duty cycle of the FD is ∼13%. In
hybrid events, by using the time constraint from the SD, the
shower geometry can be determined from the arrival times
at the FD and SD with an angular uncertainty of 0.6°. With
the help of information from atmospheric monitoring
devices [25] the light collected by the telescopes is
corrected for the atmospheric attenuation between the
shower and the detector. Finally, from the shower geometry
the longitudinal shower profile is reconstructed from the
light recorded by the FD [5,15,16]. The Xmax value and the
energy are determined by fitting the reconstructed longi-
tudinal profile with a Gaisser-Hillas function [26]. The
resolution of Xmax is around 20 g cm−2 in the energy range
of interest for this work.

III. CONCEPT OF AZIMUTHAL ASYMMETRY
IN THE RISETIME

The water-Cherenkov detectors are used to measure the
signal size and the spread in arrival times of the signals
produced by the different components of an extensive air
shower. An approach originally used to analyze the data of
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the Haverah Park detector [27] showed that observables
related to time-spread have sensitivity to the mass of the
primary particle. In composition studies, the risetime, t1=2,
is usually employed to characterize the recorded signal. It is
defined as the time of increase from 10% to 50% of the total
integrated signal. The average risetime is a function of the
distance to the axis of the shower and of the zenith angle of
that shower. In individual events it is necessary to take
account of the time at which each detector is struck. Note

that detectors that are hit later will register the shower after
it has passed through additional atmosphere, and the
particles detected, in particular the muons, will in general
come from a smaller angle to the shower axis. To describe
this we introduce the concept of “early” and “late” detectors
(see Fig. 1). We classify as “early” those detectors that
record the passage of the shower front first. With our
convention these correspond to detectors with polar angles
jζj < π=2 with respect to the direction of the shower axis
projected on to the ground. Detectors in the jζj > π=2
region are dubbed “late.”
The top two panels of Fig. 2 show the recorded

signals for a nearly vertical event in an early station (left)
and a late station (right) (the reconstructed zenith angle is
15.7°). The FADC traces can, to a good approximation, be
considered equal in amplitude and time-spread. The bottom
panels of Fig. 2 show two typical FADC signals recorded
for an event with a reconstructed energy of 7.7 EeV and a
zenith angle of 52° (early and late as above). In this event,
although both detectors are located at similar distances
from the shower core, the traces are strikingly different,
both in magnitude and time structure. We observed this
asymmetric behavior (in total signal and time-spread)
for the first time in the FADC traces recorded with the
detectors of the Engineering Array constructed for the
Observatory [28].

FIG. 1. Schematic view of the shower geometry. The incoming
direction of the primary particle defines two regions, “early”
(jζj < π=2) and “late” region (jζj > π=2). Note the different
amount of atmosphere traversed by the particles reaching the
detectors in each region.
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FIG. 2. Top: two stations in an event of 16.9 EeV and 15.7° in zenith. Bottom: two stations in an event of 7.7 EeV and 52° in zenith.
Left panels correspond to early stations while right panels correspond to late stations.
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To appreciate the origin of the asymmetries, we have to
understand the behavior of the copious number of muons
and electromagnetic particles that reach the ground. For a
vertical shower of 10 EeVa signal of ∼50 VEM is recorded
at 1000 m from the shower axis. About 50% of the total
signal is due to muons sufficiently energetic to traverse the
detector without stopping. Electrons are a factor 10, and
photons a factor 100, more numerous than muons. They
make up the other 50% of the total signal and, as they have
average energies of ∼10 MeV [29], are largely absorbed in
the 3.2 radiation lengths of water in the station. The ratio of
the muon to electromagnetic signal changes with distance
and zenith angle in a manner that is known from dedicated
measurements made at several of the early ground-detector
arrays. Greisen [30] was the first to point out that
attenuation of shower particles in the atmosphere would
lead to a loss of circular symmetry in the signal intensities
recorded by a detector at a single atmospheric depth.
Experimental evidence of this effect was obtained by
England [31] using data from Haverah Park. Regarding
the risetime of the signals, Linsley and Scarsi [32]
demonstrated that the thickness of the disc of particles
in the shower increased from a few meters near the axis to
several hundreds of meters at large distances. Using
Haverah Park data, a study showed that the spread of
the arrival time distribution was decreased by attenuation
across the array [33].
The observed azimuthal asymmetry is due to two effects.

On the one hand, a contribution comes from the quenching
of the electromagnetic signal. Since the particles that reach
late detectors traverse longer atmospheric paths, we expect
a bigger attenuation of electrons and photons as compared
to early detectors. On the other hand, there are also
contributions to the asymmetry from geometrical effects.
In this case, not only is the electromagnetic component
important, but muons also play a role. The cylindrical
design of the detectors affords longer possible paths within
the detector at larger zenith angles, thus increasing the
signal strength from muons and compensating somewhat
for the reduced numbers of electrons and photons. The
angular distributions of detected muons are different for
higher zenith angle showers, as late detectors record more
muons emitted closer to the shower axis. Geometrical
effects predominate at small zenith angles, while for
showers with θ > 30° attenuation effects are the main
contribution.
As already mentioned, it is known that the risetime has a

dependence with respect to the distance of the detector to
the core of the shower in the plane of the shower front, r
[27]. Figure 3 shows that t1=2 is an increasing function of
distance. For the range of distances selected in this work,
this function can be approximated to first order as a straight
line. But the risetime is not the only observable showing a
distance dependence. Based on the previous considerations
we expect that the asymmetry will also show a dependence

on core distance. For measurements close to the shower
axis, the path difference between late and early detectors is
not large and therefore we do not expect a sizeable
asymmetry. It becomes more evident as the distance
increases.
The azimuthal asymmetry of the risetime must also

depend on the zenith angle. As suggested earlier in Fig. 2,
no asymmetry is expected for vertical showers but it is
expected to grow as the zenith angle increases (and there-
fore differences in atmospheric paths become larger for a
given set of triggered detectors). However this trend
reaches a point where it does not hold for more horizontal
events. For these the electromagnetic signal is quenched
due to the longer atmospheric path traveled and the
particles in the showers are dominantly muons. This
translates into a reduction of the asymmetry as θ
approaches 90°. As discussed in [34,35], for a given energy
E, the azimuthal asymmetry dependence upon sec θ shows
a correlation with the average longitudinal development of
the shower. Hence the time asymmetry is sensitive to the
average mass of the primary cosmic ray.

IV. AZIMUTHAL ASYMMETRY
USING AUGER DATA

A. The analysis

The first step in the analysis is the measure of the t1=2
value in each detector. We use the events collected with the
surface array of the Pierre Auger Observatory from January
2004 to October 2014. We consider only the FADC traces
of the events that pass the selection criteria described in
Sec. II. Those traces allow us to compute the average of the
risetimes of active PMTs in every station. Quality cuts on
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FIG. 3. Example of risetime vs core distance for stations in
events between energies 1019.2–1019.6 eV and zenith angle 42°–
48°. Top: scatter distribution of the risetime values for individual
stations. Bottom: bin-by-bin averages of the risetime. Vertical
bars represent the root-mean-square of the corresponding dis-
tributions.
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data have been applied, based on core distance and total
recorded signal. We have required that the recorded signal
is larger than 10 VEM, above which level the probability of
single detector triggering is about 100% [18]. With respect
to core position, detectors used for the analysis were
required to be further than 500 m from the core of the
shower to avoid signal saturation effects that prevent an
accurate measurement of t1=2 (signals saturate at average
values of about 800 VEM depending on the PMT gains and
the risetime of the signal). The uncertainty of the measured
risetimes is estimated comparing measurements of the same
parameter from multiple observations: twins (stations
separated by 11 m) or stations belonging to the same event
with core distance difference smaller than 100 m [36,37]. It
is required that the water-Cherenkov detectors are within
2 km of the core: this is a fiducial cut to exclude stations
with high uncertainties in the reconstructed risetimes. After
application of the station selection criteria, a total of 191
534 FADC signals from 54 584 events remain.
The second step consists in measuring the azimuthal

asymmetry of the risetime distributions as a function of the
polar angle, for fixed energies and zenith angles. This
measurement cannot be done on a shower-by-shower basis
because it is not possible to sample the whole range of the
polar angle, from early to late regions, in a single event.
Thus, a statistical approach is applied to characterize the
azimuthal asymmetry of the risetime as a function of the
polar angle, using all the stations from the events at a given
energy and zenith angle.
The risetime grows with the core distance r, and in a first

approximation, follows a linear behavior in the range of
distances considered in the present analysis as was seen in
Fig. 3. The variable used to study the azimuthal asymmetry
is t1=2=r. This quantity is chosen since an average value
using all stations at different core distances, allowing an
increase in the number of events used, can be computed and
thus the asymmetry information from the whole r range can
be used in the analysis. To derive the behavior of the
asymmetry vs polar angle we thus use the value ht1=2=ri
averaged over all stations in all events that fulfill the criteria
described above in defined bins of energy and angle.
As an example, we show in Fig. 4 the values of ht1=2=ri

vs ζ for eight zenith angles and for a narrow interval of
energy centered on 4.2 × 1018 eV (top panel) and on 2.2 ×
1019 eV (bottom panel). For each zenith-angle band the
data are fitted to the function ht1=2=ri ¼ aþ b cos ζþ
c cos2 ζ. The asymmetry with respect to ζ is evident and
the ratio b=ðaþ cÞ, the so-called asymmetry factor, is used
to give a measure of the asymmetry. In Fig. 4 results for a
wide range of zenith angles are shown although the analysis
has been restricted to the interval 30°–62°.
As mentioned before the asymmetry depends on the

distance to the core position. To take that into account the
analysis has been carried out independently for two r-
intervals, i.e., 500–1000m and 1000–2000m. This selection

leads to a total of 102123FADCsignals fromstations passing
the cuts for the 500–1000 m interval, and 89 411 FADC
signals for the 1000–2000m interval. As an example in Fig. 5
ht1=2=ri vs ζ is displayed for both core distance intervals for
showers with logðE=eVÞ ¼ 19.1 and θ ¼ 51°. The smaller
asymmetry amplitude of the 500–1000 m is evident. This is
due to the fact that, close to the core there is a smaller
difference in the paths traveled by the particles.
The next step of the analysis is the study of the behavior

of the asymmetry factor as a function of atmospheric depth,
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measured by sec θ. In Figs. 6 and 7, b=ðaþ cÞ has been
plotted vs lnðsec θÞ for six energy bins and for both core
distance intervals. It is evident that for a given primary
energy, the azimuthal asymmetry depends on zenith angle
of the primary cosmic ray.
For each energy interval, the dependence of the asym-

metry parameter on lnðsec θÞ is fitted using a Gaussian
function. From this fit we can determine the value of
lnðsec θÞ for which the asymmetry parameter maximizes,
and the corresponding ðsec θÞmax value will be used as the
observable to describe the longitudinal evolution of the
shower and thus with capability for the analysis of the mass
composition.
The dependence of the asymmetry on the core distance

leads to a dependence of ðsec θÞmax on the r interval of the
station sample used in the analysis, as we can see in Figs. 6
and 7. Apart from geometrical effects this can be understood
as follows. Closer to the shower core (500–1000m) there are
electrons (and photons) with higher energies than those at
larger distances, thus the electromagnetic cascade dies out
deeper in the atmosphere than it does at larger distances.
Hence, the symmetric influence ofmuons shows up deeper in
the atmosphere for 500–1000 m than it does for 1000–
2000 m. Therefore, selecting stations close to the core leads
to systematically larger ðsec θÞmax values as expected since
closer to the core the asymmetry is smaller, and thus, the
zenith angle atwhich themuon component starts to dominate
(and the asymmetry starts to decrease) is higher.

B. Systematic uncertainties

The sources of systematic uncertainties related to the
precision with which the absolute value of ðsec θÞmax can be
measured are discussed in the following. Results are
presented in units of ðsec θÞmax which has a typical value
of ∼1.55, and summarized in Table I.
(1) Risetime uncertainties. A source of systematic un-

certainty is that from the determination of the

risetime itself. To evaluate the effect of this un-
certainty, the risetime has been shifted randomly
around a Gaussian distribution with standard
deviation σ given by the uncertainty in the meas-
urement of the risetime as mentioned in Sec. IVA. A
systematic uncertainty of þ0.0008= − 0.0063 is
obtained for the 500–1000 m interval and
þ0.0032= − 0.0076 for the 1000–2000 m interval.

(2) Risetime parametrization. The use of different para-
metrizations in the dependency of the risetime
with the distance to the core is another possible
source of uncertainty in ðsec θÞmax. The dependence
of the results on the particular choice of function has
been checked by replacing the linear function used
in the analysis by a quadratic function. This implies
a redefinition of the parameter, using then ht1=2=
ðaþ brþ cr2Þi instead of ht1=2=ri. The estimated
systematic uncertainties are þ0.0019= − 0.0012 for
the interval 500–1000 m andþ0.0031= − 0.0005 for
the interval 1000–2000 m.

(3) Selection efficiency. To evaluate a potential bias of the
results toward a particular nuclear composition, we
producedMonteCarlo samples ofmixed composition
(25%p–75%Fe, 50% p–50%Fe and 75% p–25%Fe)
with both hadronic models QGSJETII-04 and EPOS-
LHC. The sampleswere analyzed and the results were
compared with the known input composition. The
maximum deviations correspond to the 50%–50%
composition and are taken as a systematic uncertainty.
The values are of�0.010 units for both core distance
intervals and both hadronic models.

(4) Core position reconstruction. The systematic un-
certainty arising from the reconstruction of the
shower core was determined by shifting in the late
direction (see Sec. III) the position of the core by
50 m, corresponding to the typical shift to the early
regions in inclined showers due to the asymmetry in
the signal intensity. The whole chain of analysis
to obtain the new values of the position of the
maximum of the asymmetry was repeated. The
systematic uncertainty in units of ðsec θÞmax are
þ0.0005= − 0.0001 for the 500–1000 m interval
and þ0= − 0.0056 for the 1000–2000 m interval.

(5) Energy scale. The absolute energy calibration of the
Observatory is affected by a total systematic uncer-
tainty of 14% [22]. To study the corresponding effect
on ðsec θÞmax, the energy values assigned to each
event were shifted by the corresponding percentage
and the full chain of the analysis was repeated. The
shift leads to anuncertainty ofþ0.0078= − 0.0095 for
the 500–1000 m interval and þ0.0090= − 0.0030 in
units of ðsec θÞmax for the 1000–2000 m interval.

(6) Additional Cross-Checks. The systematic uncertain-
ties estimated above have been validated by perform-
ing numerous cross-checks on the stability of
the results. The most significant studies are: (i) a
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potential dependence on ðsec θÞmax due to the
selection cuts in the signal intensity was studied
by shifting the upper and lower cuts in the signal
size; (ii) the effect of the cuts on the angular intervals

of the sample was also studied by varying the
angular limits of the nominal interval; (iii) the lateral
width of the shower (in particular of the electro-
magnetic component) depends on pressure and
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temperature. A possible bias affecting the risetime
measurements and hence ðsec θÞmax was evaluated
splitting the data into “hot” (summer and spring) and
“cold” (winter and autumn) periods and repeating
the whole analysis chain for each case. (iv) possible
effect of aging [12,38] of the SD detectors on the
results were studied separating the data sample in
two equal sets, “old” (Jan.2004–Jan.2011) and
“new” (Jan.2011–Oct.2014). The first (i) and
(ii) studies yield a maximum variation of
ðsec θÞmax of 0.0044 which is well within the
systematic uncertainties. In the case of (iii) and
(iv) differences are compatible with zero within the
statistical uncertainties of each sample.

The overall systematic uncertainty (see Table I) in each
radial interval amounts to þ0.013= − 0.015 for the 500–
1000 m interval, and þ0.014= − 0.014 for the 1000–
2000 m range. These values can be compared with the
corresponding statistical uncertainties; for example, at a
mean energy of logðE=eVÞ ¼ 19.1 and 500–1000 m,
ðsec θÞmax ¼ 1.580� 0.008 (stat) þ0.013

−0.015 (sys), while for
the 1000–2000 m at the same energy the result is
ðsec θÞmax ¼ 1.533� 0.009 (stat) þ0.014

−0.014 (sys). Our analysis
is therefore dominated by systematic uncertainties.

V. RESULTS

Once the value of ðsec θÞmax for each energy bin has been
obtained in each core distance interval, we can perform the
final step of the asymmetry analysis, that is, the evaluation
of the dependence of ðsec θÞmax on the primary energy. In
Fig. 8 this result for both r intervals is shown.
To extract mass estimates from the measurements one

must rely on the comparison with predictions made using
current models of hadronic interactions extrapolated to
these energies. For this purpose, a library of Monte Carlo
events generated with the CORSIKA code [39] has been
produced using the EPOS-LHC and QGSJETII-04 had-
ronic interaction models for two different primary species:
proton and iron. A total of 77000 events (38500 of each
primary) have been produced for each interaction model.
The logðE=eVÞ values ranged from 18.00 to 20.25 in bins
of 0.25 with eleven discrete zenith angles between 18°
and 63°.

Note that, in principle, the dependence of the ðsec θÞmax
on E with the radial interval shown in Fig. 8 should not
limit the capability of the asymmetry method for mass
analysis provided Monte Carlo simulations are able to
correctly reproduce this dependence.
The comparison of the energy dependence of the

measured ðsec θÞmax with predictions for proton and iron
primaries, and for both hadronic models, is shown in Fig. 9.
The systematic uncertainty on the measured ðsec θÞmax is
16% (500–1000 m) and 21% (1000–2000 m) of the
predicted separation between proton-iron ðsec θÞmax for
both models. From this figure it is evident that the Auger
data are bracketed by proton and iron in both models,
independent of the core distance interval studied. However,
the dependence of ðsec θÞmax on energy is such that it is
difficult to draw strong conclusions as rather different
predictions come from the two models, particularly in
the larger distance interval. However, in both cases there is
an indication that the mean mass increases slowly with
energy in line with other Auger studies [5,13].

TABLE I. Contributions to systematic uncertainty of ðsec θÞmax for all sources in both core distance intervals.
Values are summed in quadrature to obtain the final systematic result.

Source of systematic 500–1000 m 1000–2000 m

Risetime uncertainties þ0.0008 −0.0063 þ0.0032 −0.0076
Risetime parametrization þ0.0019 −0.0012 þ0.0031 −0.0005
Selection efficiency þ0.010 −0.010 þ0.010 −0.010
Core position reconstruction þ0.0005 −0.0001 þ0 −0.0056
Energy scale þ0.0078 −0.0095 þ0.0090 −0.0030
Total systematic value þ0.013 −0.015 þ0.014 −0.014
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FIG. 8. Energy dependence of ðsec θÞmax for both intervals of
core distance 500–1000 m and 1000–2000 m. Brackets represent
the systematic uncertainty and the vertical lines the statistical
uncertainties. The number of stations used for the analysis are
indicated.
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It is also evident from these plots that the mass
predictions depend strongly on the hadronic model
adopted. To study these discrepancies further, we have
transformed the measurements of ðsec θÞmax (and their
corresponding uncertainties) into mass units.
For each interaction model, the value of hlnAi

derived from data has been computed using the following
relationships:

lnA ¼ ðsec θÞmax;p − ðsec θÞmax;data

ðsec θÞmax;p − ðsec θÞmax;Fe
· ln 56; ð1Þ

Δ lnA ¼ − Δðsec θÞmax;data

ðsec θÞmax;p − ðsec θÞmax;Fe
· ln 56: ð2Þ

The result of this transformation is shown in Fig. 10.
While for the EPOS-LHC model the mean mass is
independent of the radial interval used in the analysis, as
expected, this is much less evident for the QGSJETII-04
model. These results imply that the study of ðsec θÞmax can
also be used to probe the validity of hadronic interaction
models.
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FIG. 9. Comparison between ðsec θÞmax, for both data and
Monte Carlo predictions in the 500–1000 m interval (top) and in
the 1000–2000 m interval (bottom) using both hadronic models
EPOS-LHC (solid lines) and QGSJETII-04 (dashed lines), for
both primaries, proton (red) and iron (blue).
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VI. COMPARISON WITH PREVIOUS
MEASUREMENTS AND CONCLUSIONS

The azimuthal dependence of the t1=2 values obtained
from about 2 × 105 FADC traces registered by the SD
detector of the Pierre Auger Observatory has been used to
obtain a mass-sensitive parameter, ðsec θÞmax. The evolution
of this parameter as a function of energy, above 3 × 1018 eV,
has been studied in two ranges of core distance interval. The
comparison with predictions from the most up-to-date
hadronic models, EPOS-LHC and QGSJETII-04, although
hinting at a transition from lighter to heavier composition as
the energy increases, does not allow us to draw strong
conclusions on its absolute value. This is because the

predictions are at variance not only with the two models,
but even with the two distance ranges. In particular, the
comparison between data and predictions from QGSJETII-
04 suggests unphysical conclusions, with the mass seem-
ingly dependent upon the distance of the stations from the
core. This is a clear indication that further deficiencies in the
modeling of showers must be resolved before ðsec θÞmax can
be used to make inferences about mass composition. It also
shows that the reach of the ðsec θÞmax observable extends to
providing a test of hadronic interactions models.
We conclude by making a comparison in Fig. 11 of mass

values (in terms of hlnAi) obtained from the measurements
of ðsec θÞmax for the two distance ranges to previous mass
estimates from the Pierre Auger Observatory [5,13]. The
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three mass measurements have different systematic uncer-
tainties and are sensitive to very different types of hadronic
interactions since the importance of the muonic shower
component is different within each of them. In the direct
determination of Xmax [5], the dominant shower component
is the electromagnetic one and the proportion of muons in
the shower is of minor importance. As a consequence in
that case the dominant contribution comes from the very
first high energy hadronic interactions [40]. By contrast, the
muon production-depth [13] is dominated by the muon
component which is the result of a long cascade of lower
energy hadronic interactions (mostly pion-nucleus inter-
actions) [41]. The asymmetry in the risetime is associated
with a complex interplay between these two components.
As these three measurements lead to discordant estimates
of hlnAi, it is impossible to conclude which of the two
models considered here best describes the totality of the
data. While the EPOS model yields results that are
consistent at different distances (Fig. 10) for instance,
the mass values predicted from the muon production-depth
(Fig. 11) would imply that trans-uranic elements are
dominant above 20 EeV. The hXμ

maxi result, and a related
analysis of muons in very inclined showers made at the
Auger Observatory [42], suggest that the muon component
of showers is incorrectly modeled. In particular, the
measured pion-carbon cross-section for the production of
a forward ρ0 meson, which decays to two charge pions,
instead of π0 as leading particle exceeds what has been
included in the models [43] and work is underway to
evaluate the importance of this effect on muon production
and MPD. Moreover the lack of measurements of the
production of forward baryons in pion-nucleus interactions,
which also has a large effect on muon production [44] and
on hXμ

maxi [41], leads to large uncertainties in model
predictions. Additionally one must not overlook the pos-
sibility that a new phenomenon, such as described in
[45,46], could become important at the energies studied
here which explore the center-of-mass region well above
that studied directly at the LHC. Discriminating between
such possibilities is a target of the AugerPrime project [47]
which will have the ability to separate the muon and
electromagnetic signals.
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