

Publication Year	2016
Acceptance in OA@INAF	2020-06-09T17:12:11Z
Title	The Gaia-ESO Survey: Addressing Extinction and Reddening Towards NGC6530
Authors	PRISINZANO, Loredana; DAMIANI, Francesco; MICELA, Giuseppina
DOI	10.5281/zenodo.57746
Handle	http://hdl.handle.net/20.500.12386/25972

The Gaia-ESO Survey: addressing extinction and reddening towards NGC6530

Loredana Prisinzano,
Francesco Damiani, Giusi Micela
INAF-Osservatorio Astronomico di Palermo

OUTLINE

- NGC6530 properties and issues
- Reddening across NGC6530:
 - cluster member selection
 - field star selection: giants and MS
 - intrinsic colors and reddening of all targets
 - reddening and spatial distribution
- Reddening law R=A_v/E(B-V) across NGC6530
 - Red Clump (RC) giant selection & photometric reddening law
 - Very reddened MS field star selection & spectroscopic reddening law
- Conclusions and next steps

NGC6530

- properties
- a rich and young open cluster of few Myr old with several 0 type stars
- ~1250 pc from the Sun
- associated to the Lagoon Nebula-M8 a HII region of about 1.0 deg in diameter

- issues
- is the reddening uniform?
- is $R=A_v/E(B-V)$ standard?

Why reddening and reddening law?

Table 5.	Cluster	Parameters	of N	JGC 6530	
Table J.	Ciusici	raiameters	OLI	100 0000	

(Tothill+2008)

Table 5.	Clubtol I didiliot	013 01 110 0 055	•		
$Survey^a$	E(B-V) mag	R	Age/Myr	d.m./mag	Distance/kpc
Walker	0.33 - 0.37	/ - \	3^b	10.7 - 11.5	1.4 - 2.0
VAJ	0.35	/ - \	2^b	11.0 - 11.25	1.6 - 1.8
Kilambi	0.35 ± 0.01	3.0	$1 - 3^{b}$	10.7	1.4
SJ	0.35	_	$> 2^b$	11.3 ± 0.1	1.8 ± 0.1
CN	0.36 ± 0.09		_	11.4	1.9
MRV	0.17^{c}	4.6 ± 0.3	7	11.35 ± 0.08	1.86 ± 0.07
VdA	0.3	3.1	few ×10	_	1.8 ± 0.2
SCB	0.35	$> 3^d$	$1.5, 5^e$	11.25 ± 0.1	1.8 ± 0.1
KSSB	_	3.9 ± 0.05^{f}	_		_
Damiani		haa	$0.8, 4^e$	_	_
PDMS	\	100-0	$2,5^e$	10.5	1.3
ABMMR	$0.34, 0.30^g$	\ -	_	10.5	1.3
Mayne	0.33	\ - /	1–2	$10.50^{+0.10}_{-0.01}$	$1.26_{-0.01}^{+0.06}$

^a References as for Table 3; ^b probably anreliable — see section 3.4.

 $0.30 \le (B-V) \le 0.37$

3.0<R<4.6

 $^{^{}c}$ foreground extinction only; $^{\bar{d}}$ anomalous non-uniform

e median age and e spread, respectivel

f subtracting for pund reddening yields R

g foreground extraction towards Hourglass and mea. Stion towards early-type stars, respective

DATA

• 1948 UVES and Giraffe spectra from FLAMES/Giraffe multi- fibre spectrometer at the ESO VLT/UT2 telescope within the Gaia-ESO Survey (iDR4)

and from the literature:

- WFI@2.2m ESO BVI photometry (Prisinzano+ 2005)
- ACIS-I Chandra X-ray obs. (Damiani+ 2004)
- 2MASS JHK photometry (Skrutskie+ 2006)
- IRAC/Spitzer photometry (Kumar+ 2010)
- VPHAS+ Hα photometry (Kalari+ 2015)

NGC6530 Members

INCLUSIVE criteria:

- RV: -15.5 <RV/[km/s]<16.5 i.e. within 5 σ from the cluster mean <RV_{PDM07}>=0.5 km/s and σ _{PDM07}=3.2km/s (Prisinzano +2007)
- Li: EW(Li)>90 mÅ
- Chandra/ACIS-I X-ray detections
- Accretors: FWZI $(H\alpha) > 7\text{Å}$
- VPHAS+ $\mathrm{H}\,\alpha$ accretors selected by Kalari+ 2015 \blacktriangleright CTTS
- JHK OR Spitzer/IRAC IR excesses

\rightarrow 522 members

with AT LEAST 2 of the previous criteria fulfilled

281 are CTTS and 241 are WTTS

NGC6530 member selection

REDDENING LAW FIELD BACKGROUND GIANTS

by using the Gaia-ESO γ gravity index and Teff (Damiani+14) among non-members

REDDENING LAW

Red Clump giant selection

Reddening from $T_{\rm eff}$ and B-V

color-T_{eff} conversion:

- MS and PMS:

Kenyon & Hartmann 1995
and Stauffer+98

- Giants:

Bessel & Brett 1989

- Symbols
 proportional
 to E(B-V)
- Members &
 reddened background
 stars
 are spatially
 anticorrelated
- Toward East the least opaque region

3D Nebula structure from REDDENING

PHOTOMETRIC REDDENING LAW

- RC giants: same distance, similar luminosities, $\mathbf{T}_{ ext{eff}}$
- observed slopes give R_{λ} (De Marchi+14)

PHOTOMETRIC REDDENING LAW

The reddening law in the region around NGC6530 is standard!

SPECTROSCOPIC REDDENING LAW

PHOTOMETRIC/SPECTROSCOPIC

REDDENING LAW COMPARISON

THE SPECTROSCOPIC ratio E(V-I)/E(B-V) from reddened MS stars is in agreement with the ratio obtained photometrically by using RC giants

Summary and conclusions

- **522 members** of NGC6530 selected by using GES + literature data
- Field background giants selected from GES $T_{\rm eff}$ and γ (gravity index)
- Foreground and background MS field stars selected from E(B-V)
- 3D structure of the Nebula:
 - most of cluster members have E(B-V)<0.5
 - the cluster is in front of the Nebula
 - the least opaque region is around the cluster where very reddened background MS and giants are found!
 - behind the cluster very few background field stars
- The reddening law AROUND the cluster is standard Next steps:
- is the reddening law standard also within the cluster?
- ages and age spread in NGC6530

-Both CTTS and WTTS cluster member ages are between 1 and 10 Myrs -Few very reddened members (mostly CTTS) lie outside the cluster region. These few objects deserve further investigations