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Abstract. We study induced gravity dark energy models coupled with a simple monomial
potential ∝ σn and a positive exponent n. These simple potentials lead to viable dark energy
models with a weak dependence on the exponent, which characterizes the accelerated expan-
sion of the cosmological model in the asymptotic attractor, when ordinary matter becomes
negligible. We use recent cosmological data to constrain the coupling γ to the Ricci curvature,
under the assumptions that the scalar field starts at rest deep in the radiation era and that
the gravitational constant in the Einstein equations is compatible with the one measured in a
Cavendish-like experiment. By using Planck 2015 data only, we obtain the 95 % CL bound
γ < 0.0017 for n = 4, which is further tightened to γ < 0.00075 by adding Baryonic Acoustic
Oscillations (BAO) data. This latter bound improves by ∼ 30% the limit obtained with the
Planck 2013 data and the same compilation of BAO data. We discuss the dependence of the
γ and ĠN/GN (z = 0) on n.ar
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1 Introduction

The most recent data from Planck [1, 2] are consistent with a cosmological constant and cold
dark matter (CDM) as the dark components which contribute to the 96 % of the energy budget
of our Universe. Several dark energy/modified gravity models alternative to ΛCDM model
have been compared extensively to the most recent Planck data [3]. The predictions for CMB
anisotropies and for other cosmological observabels for these modified gravity scenarios can
be studied either in a model-dependent way or by more general parametrized deviations from
Einstein gravity in the metric perturbations [4]. By using both approaches, no compelling
evidence in favour of alternative models to ΛCDM have been found in [3], in particular
when Planck lensing is included [5]. Other parametrized deviations from Einstein gravity in
extended cosmological models have been studied in [6].

In this paper we study the simplest scalar-tensor dark energy models based on induced
gravity (IG) [7] - or Brans-Dicke-like models [8] by a redefinition of the scalar field - with a
monomial potential, extending previous works based on a quartic potential [9–12] (see also
[13–18] for important works on scalar-tensor dark energy). By assuming a monomial potential
with a positive exponent n - i.e. V (σ) ∝ σn - mimicking an effective cosmological constant
at recent times, the scalar field is frozen during the radiation era and is driven by the non-
relativistic components after the matter-radiation equality to higher values: in these models
the effective Planck mass therefore increase in time. Such monomial potentials with a positive
power are easily motivated at fundamental level or within particle physics, as happens for the
analogous case of a non-minimally coupled scalar field [19].

We extend our self-consistent approach in which we solve simultaneously the background
and the linear perturbation dynamics in IG previously applied to a quartic potential [12]. This
approach is complementary to the study of parametrized deviations from Einstein gravity in
metric perturbations, since it allows to accurately study modified gravity theoretical models
which are arbitrary close to the flat ΛCDM, without any approximation in the background
or in the perturbations. We then use recent cosmological data to constrain these IG models
with a monomial potential. In a previous study we obtained a 95 % CL bound γ < 0.0012
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for a quartic potential by the Planck nominal mission temperature data in combination with
a BAO compilation [12].

Our paper is organized as follows. In the next section we discuss the background dy-
namics and the dependence of the self-accelerating solutions on the exponent of the monomial
potential. In section 3 we discuss the evolution of linear fluctuations and we test our numeri-
cal treatment against the analytic approximations in the quasi-static regime, as done for the
quartic potential in [12]. We show the dependence of the CMB anisotropies power spectra in
temperature and polarization on the power of the monomial potential in section 4. We then
use the Planck 2015 [5, 20] and BAO [21–23] data to constrain these models in section 5 and
6. We draw our conclusions in section 7.

2 Dark Energy with a monomial potential within Induced Gravity

The model we consider is described by the following Lagrangian:

S =

∫
d4x
√−g

[γσ2R

2
− gµν

2
∂µσ∂νσ − V (σ) + Lm

]
(2.1)

with
V (σ) = λnσ

n . (2.2)

The Friedmann and the Klein-Gordon equations for IG in a flat Robertson-Walker metric
are respectively:

H2 + 2H
σ̇

σ
=

∑
i ρi + V (σ)

3γσ2
+

σ̇2

6γσ2
(2.3)

σ̈ + 3Hσ̇ +
σ̇2

σ
+

1

(1 + 6γ)

(
V,σ −

4V

σ

)
=

1

(1 + 6γ)

∑
i(ρi − 3pi)

σ
(2.4)

once the Einstein trace equation:

− γσ2R = T − (1 + 6γ)∂µσ∂
µσ − 4V − 6γσ�σ (2.5)

is used. In the above V,σ denotes the derivative of the potential V (σ) with respect to σ, the
index i runs over all fluid components, i.e. baryons, cold dark matter (CDM), photons and
neutrinos, and we use a dot for the derivative with respect to the cosmic time. The effective
potential in Eq. 2.4 vanishes for n = 4.

In absence of matter, exact solutions with an accelerated expansion exist for this class
of monomial potentials in Eq. 2.2 within induced gravity [24] (for earlier works see Ref. [25]).
Solutions with a(t) ∼ tp (with t > 0 and p > 1) exist:

p = 2
1 + (n+ 2)γ

(n− 4)(n− 2)γ
, σ(t) =

c0

t
2

(n−2)

, (2.6)

with 4 < n < 4 +
√

2(6 + 1/γ) or 4 −
√

2(6 + 1/γ) < n < 2 and c0 is an integration
constant. The special cases with n = 2 , 4 (which correspond to poles in the above equations)
correspond to a de Sitter solution having a(t) ∝ eHt. However for these two special cases,
the time evolution for the scalar field are different, being σ time dependent for n = 2 and
constant in time for n = 4.

As in [12], we consider the case in which the scalar field σ at rest deep in the radiation
era, since an initial non-vanishing time derivative would be rapidly dissipated [11]. For values
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for the parameters of the potential leading to viable models of dark energy, the scalar is
effectively massless during the radiation and most of the matter era. The scalar field σ starts
evolving form its initial value σi due the presence of non-relativistic matter:

σ(τ) = σi

(
1 +

3

2
γωτ +O(τ2)

)
, (2.7)

where the parameter ω depends on the relativistic and non-relativistic energy density at
present:

ω =
ρm 0√

3γρr 0(1 + 6γ)σi
. (2.8)

At the same next-to-leading order in ωτ for a Universe filled by radiation and matter, the
scale factor is:

a(τ) =
ρr 0√
3γσi

τ

(
1 +

ω

4
τ − 5γ

16
ω2τ2 +O(τ3)

)
. (2.9)

IG therefore induces at next-to-leading order a correction to the evolution of the scale factor
similar to the case of a negative curvature [26].

As in [12], we consider the present value for the scalar field value consistent with the
Solar System constraints:

γσ2
0 =

1

8πG

1 + 8γ

1 + 6γ
, (2.10)

where G = 6.67 × 10−8 cm3 g−1 s−2 is the gravitational constant measured in laboratory
Cavendish-type.

In figure 1 several quantities are plotted versus the scale factor a for γ = 10−3 and for
different values of n, within the assumption of Eq. 2.10. In the upper left panel, the evolution
of σ/σ0 is plotted up to a = 10 in order to show the dependence on n of the future single
field attractor of Eq. 2.6. In the upper right panel we show the parameter of state wDE of the
effective dark energy component corresponding to Einstein gravity with a Newton’s constant
given by the current value of the scalar field, i.e. 8πGN = (γσ2

0)−1 as introduced in [18]:
also in this case we extend the plot up to a = 10 to show that wDE ' −1 for values of γ
compatible with observations [12]. In the lower left panel we show the evolution of the critical
densities Ωi, always corresponding to an Einstein gravity system with a Newton’s constant
given by the current value of the scalar field defined in [12]. In the lower right panel, we
show explicitly the evolution of GN(a)/G ≡ σ2

0/σ
2; it is clear that in this class of models the

effective Newton’s constant (the effective Planck massM2
pl(a) = γσ2(a)) decreases (increases)

with time.

3 Linear fluctuations and predictions for cosmological observables

As in our previous paper for the]]++ quartic potential [12], we consider scalar fluctuations in
the longitudinal gauge. We refer to [12] for the Einstein equations in the longitudinal gauge
with the substitution of the quartic potential with a generic monomial one where necessary.
The equation for the field fluctuations in the longitudinal gauge for a generic potential is:

δ̈σ + ˙δσ
(

3H + 2
σ̇

σ

)
+
[k2

a2
+

(
Vσσ + 4

V

σ2
− 4

Vσ
σ

)
− σ̇2

σ2
+

∑
i(ρi − 3pi)

(1 + 6γ)σ2

]
δσ

=
2Ψ
∑

i(ρi − 3pi)

(1 + 6γ)σ
+

∑
i(δρi − 3δpi)

(1 + 6γ)σ
+ σ̇

(
3Φ̇ + Ψ̇

)
.

(3.1)
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Figure 1. Evolution of σ/σ0 (upper left panel), wDE (upper right panel) and GN(a)/G ≡ σ2
0/σ

2

(lower right panel) as function of the scale factor a for γ = 10−3 and different values of n. In the
lower left panel we show the critical densities Ωi: radiation in red, matter in green and effective dark
energy in blue. See text for more details.

We note that the terms in the potential and its derivatives in the effective mass of δσ vanish
only for n = 4. We therefore expect a non-trivial dependence of δσ on large scales since the
onset of accelerated expansion.

We have extended our previous modification [12] of the publicly available Einstein-
Boltzmann code CLASS 1 [27, 28] to a generic potential. We therefore test our numerical
results obtained by initializing fluctuations in the adiabatic initial conditions deep in the
radiation era to the quasi-static approximation beyond the case of a quartic potential, which
was studied previously [12]. We consider the parameters µ(k, a) and δ(k, a):

k2Ψ = −4πGa2µ(k, a) [∆ + 3(ρ+ p)σ̄] , (3.2)
k2[Φ− δ(k, a)Ψ] = 12πGa2µ(k, a)(ρ+ p)σ̄ , (3.3)

where Φ ,Ψ are the Newtonian potentials in the longitudinal gauge, ∆ is the total comoving
energy perturbation (excluding the contribution from σ) and σ̄ is the anisotropic stress [12].

1www.class-code.net
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Figure 2. Comparison of the theoretical quasi-static approximations for µ(k, a) and δ(k, a) param-
eters (black lines) with our exact numerical results for k = 0.005 Mpc−1 and γ = 10−2 when n is
varied.

In the quasi-static approximation, for generic n, the two parameters are approximated as:

µ(k, a) =
σ2

0

σ2

1 + 6γ

1 + 8γ

1 + 8γ − 2m2
eff/k

2

1 + 6γ − 2m2
eff/k

2

(3.4)

δ(k, a) =
1 + 4γ − 2m2

eff/k
2

1 + 8γ − 2m2
eff/k

2

(3.5)

where

m2
eff =

d

dσ

(
σ4 d

dσ

(
V

σ4

))
. (3.6)

Our exact numerical results are compared with the quasi-static approximation in figure 2
for k = 0.005 Mpc−1 and γ = 10−2 when n is varied. As already established for the quartic
potential [12], the quasi-static approximation for µ(k, a) is quite accurate only for sub-Hubble
scales also in the general case, i.e. n 6= 4. The parameter δ(k, a) depends on time when n 6= 4,
but depends on n weakly compared to µ(k, a).

4 Predictions for CMB anisotropies and Matter Power spectrum

The power spectra of the CMB temperature anisotropies for different values of γ are shown
in the left panel of figure 3. The relative differences for CMB temperature anisotropies with
respect to a ΛCDM reference model are shown in the right panel of figure 3 for γ = 10−3,
γ = 10−4 and in figure 4 for different n and γ = 10−2.

Analogous plots for the E-mode polarization, lensing and linear matter power spectrum
(at z = 0) are shown in figures 5, 6, 7 for different n and γ = 10−2. From these plots is clear
that the impact of different n is mainly relegated to ` . 30 in the autocorrelator spectra of
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Figure 3. To the left, from the upper to the lower panel respectively, CMB TT, EE and TE power
spectra for γ = 10−3 , 10−4 and n = 4. In the upper and middle right panels, we show the relative
differences for TT and EE spectra with respect to a reference ΛCDM model. In the lower right panel
we show the differences for CTE

` normalized to
√
CTT

` CEE
` .

CMB temperature and polarization. The impact of different potentials is not negligible at
smaller scales. Instead, is not the case for CMB lensing (figure 6) and the linear matter power
spectrum (figure 7).

5 Updated Planck 2015 results for the quartic potential

In this and the following section we constrain this simple class of dark energy models with
the Planck [1, 5, 20] and a compilation of BAO [21–23] data.

We performed the Markov Chain Monte Carlo (MCMC) analysis by using the publicly
available code Monte Python 2 [29] connected to our modified version of the code CLASS.
We varied the six cosmological parameters for a flat ΛCDM model, i.e. ωb, ωc, H0, τ ,
ln
(
1010 As

)
, ns, plus one extra parameter related to the coupling with the Ricci curvature in

Eq. (2.1). We sampled on the quantity ζ, according to [12, 30], defined as:

ζ ≡ ln (1 + 4γ) = ln

(
1 +

1

ωBD

)
(5.1)

with the prior [0, 0.039]. In the analysis we assumed 3 massless neutrino and marginalized
over foreground and calibration nuisance parameters which are also varied together with the
cosmology.

2https://github.com/baudren/montepython_public
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Figure 4. Relative differences for the CMB temperature anisotropies power spectrum with respect
to a reference ΛCDM for γ = 10−2 and different values of n are shown for ` < 300 (left panel) and
for ` > 200 (right panel).
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Figure 5. Relative differences for the CMB polarization E-mode anisotropies power spectrum with
respect to a reference ΛCDM for γ = 10−2 and different values of n are shown for ` < 300 (left panel)
and for ` > 200 (right panel).

As CMB data we use the Planck 2015 release [20] based on the two-point function as
provided by 1. an exact pixel based likelihood at low resolution, which covers temperature
and polarization data from ` = 2 to 29 (the polarization part of this likelihood is denoted as
"lowP" in the following), 2. a high-` likelihood based on a Gaussian approximation available
as temperature only or temperature plus polarization. We will refer in the following to Planck
TT (TT,TE,EE) as the combination of the TT (TT,TE,EE) likelihood at multipoles ` ≥ 30
and the low-` temperature-only likelihood. We also use the Planck 2015 lensing likelihood [5],
in particular the version obtained from temperature and polarization data, with the multipole
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Figure 7. In the left panel, we show the linear matter power spectrum for γ = 10−2 and different
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with respect to a reference ΛCDM.

range 40 ≤ ` ≤ 400.
In combination with CMB data we use measurments of DV /rdrag by 6dFGRS at zeff =

0.106 [21], SDSS-MGS at zeff = 0.15 [22], SDSS-DR11 CMASS and LOWZ at zeff = 0.57
and zeff = 0.32 respectively [23]. Moreover, in section 5.1 we consider the impact of the
local measurements on the Hubble’s constant, i.e. H0 = 73.8 ± 2.4 km s−1 Mpc−1 [32] and
H0 = 70.6± 3.0 km s−1 Mpc−1 [33].

The constraints obtained from CMB and BAO data with n = 4, for different combi-
nations of data sets are summarized in table 1. These results update those presented in
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Ref. [12] based on the Planck nominal mission temperature data, and use the same compi-
lation of BAO data. See also [30, 34, 35] for other works studying Planck 2013 constraints
on Brans-Dicke-like models. In combination the same BAO data, the full mission tempera-
ture data improve the 95% CL constraint on the coupling to the Ricci curvature γ by 25%
compared to the nominal mission data (see also figure 8) to:

γ < 0.00089 (95 % CL, Planck TT + lowP + BAO) . (5.2)

We now discuss the impact of the Planck lensing data [5]. One of the effects of the CMB
lensing is to slightly favour smaller values of the amplitude of fluctuations As and therefore of
the optical depth thanks to the accurate determination of Ase

−2τ by the CMB temperature
power spectrum measured by Planck. We show in figure 9 how the addition of Planck
lensing improves either the determination of τ and the constraint on γ.
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Planck 2013 Planck TT + lowP Planck TT + lowP
+ BAO + BAO + lensing + BAO

105Ωbh
2 2203± 25 2224± 21 2224+20

−21

104Ωch2 1207+18
−22 1198+16

−17 1191± 14

H0 [km s−1 Mpc−1] 69.5+0.9
−1.2 69.4+0.8

−1.0 69.4+0.7
−0.9

τ 0.088+0.012
−0.013 0.076+0.019

−0.018 0.063+0.012
−0.014

ln
(
1010As

)
3.090+0.024

−0.026 3.087± 0.036 3.059+0.022
−0.026

ns 0.9611± 0.0053 0.9665± 0.0046 0.9669−0.0042
−0.0047

ζ < 0.0047 (95% CL) < 0.0036 (95% CL) < 0.0031 (95% CL)
103γ < 1.2 (95% CL) < 0.89 (95% CL) < 0.75 (95% CL)
γPN > 0.9953 (95% CL) > 0.9965 (95% CL) > 0.9970 (95% CL)
Ωm 0.295± 0.009 0.295± 0.008 0.294± 0.008

δGN/GN −0.015+0.013
−0.006 −0.011+0.010

−0.004 −0.009+0.003
−0.009

1013ĠN(z = 0)/GN [yr−1] −0.61+0.55
−0.25 −0.45+0.43

−0.16 −0.37+0.34
−0.12

1023G̈N(z = 0)/GN [yr−2] 0.86+0.33
−0.78 0.63+0.22

−0.58 0.52+0.17
−0.50

Table 1. Constraints on main and derived parameters for Planck TT + lowP + BAO (at 68% CL
if not otherwise stated). In the first column we report the results obtained with the previous Planck
2013 data from Ref. [12]

Planck TT,TE,EE Planck TT,TE,EE Planck TT,TE,EE
+ lowP + lensing + lowP + BAO + lowP + lensing + BAO

105Ωbh
2 2234± 17 2231± 14 2223± 20

104Ωch2 1189± 14 1194± 12 1191+15
−14

H0 [km s−1 Mpc−1] 71.0+1.4
−3.0 69.4+0.6

−1.1 69.4+0.5
−1.0

τ 0.066+0.012
−0.013 0.079+0.017

−0.016 0.063+0.012
−0.014

ln
(
1010As

)
3.066+0.024

−0.028 3.095+0.031
−0.033 3.059+0.021

−0.026

ns 0.9695± 0.0056 0.9675± 0.0041 0.9669−0.0043
−0.0048

ζ < 0.0068 (95% CL) < 0.0030 (95% CL) < 0.0030 (95% CL)
103γ < 1.7 (95% CL) < 0.76 (95% CL) < 0.75 (95% CL)
γPN > 0.9933 (95% CL) > 0.9970 (95% CL) > 9970 (95% CL)
Ωm 0.281± 0.009 0.295± 0.015 0.294± 0.008

δGN/GN −0.020+0.019
−0.005 −0.010+0.004

−0.009 −0.009+0.003
−0.009

1013ĠN(z = 0)/GN [yr−1] −0.77+0.43
−0.27 −0.39+0.35

−0.15 −0.37+0.34
−0.12

1023G̈N(z = 0)/GN [yr−2] 1.2+0.4
−1.1 0.56+0.21

−0.50 0.52+0.17
−0.50

Table 2. Constraints on main and derived parameters for Planck TT,TE,EE + lowP with different
combination of other datasets (at 68% CL if not otherwise stated).

In table 2 we show the results with the inclusion of Planck high-` polarization data.
The IG dark energy model with a quartic potential provide a better fit of the data compared
to ΛCDM, but not at a statistically significant level - ∆χ2 ' −1.2 for Planck TT + lowP
+ BAO and ∆χ2 ' −2.3 for Planck TT,TE,EE + lowP + lensing. It is important to note
that the full information of Planck alone, i.e. temperature, polarization and lensing, is now
capable to constrain γ:

γ < 0.0017 (95 % CL, Planck TT,TE,EE + lowP + lensing) . (5.3)

We quote the following Planck TT,TE,EE + lowP + lensing + BAO at the 95% CL constraint
on the coupling to the Ricci curvature:

γ < 0.00075 (95 % CL, Planck TT,TE,EE + lowP + lensing + BAO) . (5.4)

We quote also the derived constraints on the change of the effective Newton’s constant
between the radiation era and the present time δGN/GN ≡ (σ2

i − σ2
0)/σ2

0:

δGN

GN
= −0.002+0.002

−0.037 (95 % CL, Planck TT,TE,EE + lowP + BAO) (5.5)
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and the constraint on its derivatives (ĠN/GN ≡ −2σ̇0/σ0) at present time:

ĠN

GN
(z = 0) = −0.08+0.08

−0.55 [×10−13 yr−1] (95 % CL, Planck TT,TE,EE + lowP + BAO) ,

(5.6)

G̈N

GN
(z = 0) = 0.36+0.26

−0.36 [×10−23 yr−1] (95 % CL, Planck TT,TE,EE + lowP + BAO) .

(5.7)

The constraints derived here are the tighter obtained from cosmological observations for
similar scalar-tensor models (for a comparison, the 95% CL constraint from pulsar timing is
ĠN/GN = −0.6± 1.1× 10−12 yr−1 [31]).

5.1 Combination with local measurements

As in [12] we analyze the combination of the local measurements of the Hubble constant with
Planck TT + lowP by considering the impact of two different local estimates of H0, such as:
H0 = 73.8± 2.4 km s−1 Mpc−1 [32], denoted as H∗0 , and H0 = 70.6± 3.0 km s−1 Mpc−1 [33],
denoted as H†0 . We find:

H0 = 73.1+2.1
−2.3 [km s−1 Mpc−1] (68 % CL, Planck TT + lowP + H∗0) (5.8)

γ = 0.0011± 0.0010 (95 % CL, Planck TT + lowP + H∗0) , (5.9)

and

H0 = 71.3+1.8
−2.8 [km s−1 Mpc−1] (68 % CL, Planck TT + lowP + H†0) (5.10)

γ < 0.0017 (95 % CL, Planck TT + lowP + H†0) . (5.11)

We note that the degeneracy of H0 with higher value of γ has been reduced with the improved
accuracy of the Planck full mission temperature data, compared to the nominal mission data
[12].

In combination with BAO, we find:

H0 = 69.4+0.8
−1.0 [km s−1 Mpc−1] (68 % CL, Planck TT + lowP + BAO) , (5.12)

which is larger than the value obtained for the ΛCDM model with three massless neutrinos,
i.e. 67.8± 0.6 km s−1 Mpc−1, for the same combination of datasets.

5.2 BBN consistency relation on GN

The value of the effective gravitational constant determines the expansion rate in the radiation
era and therefore can affect the cosmological abundances of the light elements during Big Bang
Nucleosynthesis (BBN). Therefore, BBN was used to provide limits to the variation of the
effective Newton’s constant [36, 37].

In the following we investigate the impact of the modification of the BBN consistency
condition implemented in the public code PArthENoPE [38] due to the different value of
the effective Newton’s constant during nucleosynthesis. We consider the effect of a different
gravitational constant as a source of extra radiation in Y BBN

P (ωb, Neff), [39]. It is interesting
to note that with this improved BBN consistency condition the posterior probabilities for the
primary cosmological parameters are unaffected, and we just observe a small shift for the
primordial Helium abundance towards higher values.
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n = 0 n = 2 n = 4 n = 6 n = 8
δGN/GN > −0.028 > −0.027 > −0.026 > −0.026 > −0.025

1013ĠN(z = 0)/GN [yr−1] > −3.9 > −2.5 > −0.11 < 0.4 < 1.9

1023G̈N(z = 0)/GN [yr−2] < 0.077 < 0.78 < 1.5 < 2.3 < 3.0

Table 3. Constraints on the variation of the gravitational constant and its time derivatives (at 95%
CL) for different values of n with Planck TT + lowP + BAO

6 Cosmological constraints for n 6= 4

In this section we explore the impact of different n on the cosmological parameters. Current
data cannot discriminate at a statistical significant level between different values of n and
we therefore fix n to representative values (n = 0, 2, 6, 8) and we vary the seven primary
cosmological parameters (as well as the other foreground/nuisance parameters) as done in
the previous section. Figure 10 shows that the posterior probabilities for the seven primary
cosmological parameters hardly change for these different values of n: these results are com-
patible with the dependence of CMB anisotropies on n shown in figures 3, 5. Therefore, this
class of scalar-tensor models is compatible with current cosmological data for a larger value
of H0 and a slightly smaller value for Ωm.

On the opposite, we note that the posterior probabilities for ĠN/GN and G̈N/GN at
present time depend on n. The dependence of the bounds ĠN/GN on n can be easily under-
stood from Eq. 3: for n = 6 and n = 8, the derivative of the scalar field becomes negative
at the onset of the accelerated stage. This dependence on n must be kept in mind when
comparing cosmological bounds on ĠN/GN(z = 0) and G̈N/GN(z = 0) (which depend on the
form of the potential) with Solar System constraints on the same time variations (which are
obtained extrapolating from the massless case since the effect of the potential is considered
negligible on such smaller scales detached from the cosmological expansion).

The bound on the shift of the scalar field between today and the radiation era is the
same however it’s evolution show a strong dependence from the choice of the potential as
summarized in table 3.

7 Conclusions

We have studied a simple class of modified gravity models alternative to ΛCDM, based on
IG - or a Brans-Dicke-like - with a monomial potential. We have limited ourselves to positive
values of the exponent, extending the case of a quartic potential previously studied in [12]. In
this class of models the scalar field increases from the constant value during the radiation era
and therefore the effective Planck mass therefore increase in time during the matter dominated
era.

Despite its semplicity, this class of models leads to distinct effects compared to ΛCDM
for values of the coupling γ compatible with observations, such as a slightly larger value of
H0 because of the modification of the expansion history due to the coupling of the scalar
field to the Ricci curvature γ. We have shown that the latter effect causes a shift of the
CMB peaks similar to an open Universe. The dependence on the potential which drives the
Universe in acceleration instead reveals itself in the Integrated Sachs-Wolfe effect, i.e. at
` . 20, for CMB and in general at low redshifts for other cosmological probes, although
to a much smaller extent. We have shown that the posterior probabilities for the standard
cosmological parameters obtained with the most recent cosmological data are unchanged for
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Figure 10. 1-dimentional likelihoods for the cosmological parameters for IG with different index of
the monomial potential with Planck TT + BAO, i.e. n = 0 (orange), 2 (red), 4 (purple), 6 (blue)
and 8 (cyan). We show the comparison w.r.t. the ΛCDM cosmologigy plotted in black.

different powers of the monomial potential. On the opposite, current values of Ġ/G and G̈/G
(on cosmological scales) depend on the type of the potential: this dependence must be taken
in mind when comparing the cosmological constraints with the Solar System constraints.
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The full information of Planck alone, i.e. temperature, polarization and lensing, is now
capable to constrain γ < 0.0017 at 95 % CL for n = 4; by adding a compilation of BAO data
this 95 % CL constrant is further tightened to γ < 0.00075. With the increasing precision of
cosmological observations the cosmological bounds on the variation of G are fully consistent
and closer to the Solar System constraints [40].

Future accurate measurments from the Euclid ESA mission [41, 42] will further constrain
γ and will provide insights on the form of the potential in these induced gravity - or Brans-
Dicke-like - dark energy models.
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