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Abstract
This technical report describes the first implementation of a Fuzzy c-means (FCM) algorithm for the automatic
identification of structures on the Sun based on EUV images and photospheric magnetograms. Before the
applicationof FCM, theAIA 193Å imagesandHMILOSmagnetogramsacquiredbySDOhavebeenpre-processed,
and a geometrical approach to correct the limb brightening of EUV images is applied. Then, the images and
the magnetograms are analyzed pixel-by-pixel by determining the degree of membership of each pixel to one
of clusters, previously defined based on the analysis of a sample training dataset. The routines are written in
IDL programming language and will be inserted in the SWELTO pipeline. The work described here was the
subject of a Degree Thesis in Physics.

Keywords: Space Weather - Coronal Holes - Active Regions - Limb Brightening - Image Processing - Fuzzy
Clustering

1 Introduction
SpaceWeather is a branchof heliophysics and spacephysics dealingwith study of the interplanetary
magnetic field and phenomena like the solar wind and solar flares, placing a focus on the circum-
terrestrial zone: magnetosphere, ionosphere, thermosphere and exosphere. Transient phenomena
of solar origin can create electromagnetic disturbances to orbiting devices in the circumterrestrial
medium, as well as to electronic devices on Earth. Those disturbances take a variable time to reach
the Earth, in a range that goes from a few days to dozens of minutes.
Monitoring the Sun 24h could help us to identify in advance possible regions on the Sun that could
cause severe problems and predicting their impact: that’s one of the aim of Space Weather. So,
an accurate monitoring of coronal holes (CH), quiet sun (QS) and active regions (AR) is extremely
important for Space Weather predictions. For this purpose, considering the huge amount of data
being routinely acquired by current space- and ground-based observatories, it is becomingmore
andmore important today to develop routines able to automatically identify, track, andmonitor
solar features.
In this paper we present a series of routines based on the Fuzzy c-means (FCM) algorithm (Bezdek
1981) that allows to automatically identify and separate CH, QS and AR by analyzing EUV 193 Å
images and photospheric magnetograms. Clustering techniques are aimed at reducing the amount
of data by categorizing or grouping similar features in a data set. Similar techniques have not been
widely applied so far to solar data. Thanks to the availability of daily EUV observations provided for
the first time by the EIT instrument (Delaboudinière et al. 1995) on-board SOHOmission (Domingo,
Fleck, and Poland 1995), the possibility to automatically identify and track solar features based
on FCM-algo applied to EUV images was tested already a long time ago. A fractal-based fuzzy
technique was tested by Revathy, Lekshmi, and Nayar (2005), where the fractal dimension was
first computed to create segmented images with a fuzzy-based approach. A similar method was
applied also by Barra, Delouille, and Hochedez (2008) (further optimized by Barra et al. 2009) to EIT
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images acquired with both 171 Å and 195 Å images from 1997 to 2005 allowing the authors to study
with Wavelet analysis the rotation rates for AR, QS and CH. More recently, Aranda and Caballero
(2010) and Caballero and Aranda (2013) performed a comparative study of clustering methods for
detection of AR in EUV images and demonstrate that improved results can be obtained based on
region growing image segmentation followed by hierarchical clustering. Significant improvements
have been obtained by Verbeeck et al. (2013), who combined di�erent algos analyzing not only EUV
images, but also visible light images andmagnetograms, to identify not only AR, but also sunspots
and CH.
In this work we show for the first time that a FCM-algo can be implemented not only based on
the ingestion of EUV images, but also in combination with photospheric magnetograms. For this
purpose, first we apply a pre-processing to the data acquired by AIA and HMI instruments on-board
SDO satellite, to apply a simple geometrical limb brightening correctionmethod for EUV images,
and remove noisy regions in MDI images. In the second step, we defined for a sample training
dataset di�erent regions of interest corresponding to di�erent clusters, and characterize each of
them bymeasuring the average value of physical quantities such as the EUV intensity and photo-
spheric magnetic field intensity. Then, a FCM algorithm is applied to identify CH, QS and AR and
produce segmented images of the Sun. All the routines are written in IDL programming language
and have been organized in a pipeline ready to be automatically executed in the SWELTO project of
INAF-Turin Astrophysical Observatory.

2 Pre-processing of SDO data
The Solar Dynamic Observatory satellite (Pesnell, Thompson, and Chamberlin 2012) supplies rou-
tinely EUV images of the solar corona (10-124 nm) thanks to the AIA instrument (Lemen et al. 2012),
andphotosphericmagnetograms thanks to theHMI instrument (Scherrer et al. 2012). In ourworkwe
will focus on the 193 Å -plasma emissions at T ∼ 106 K- filter and LOS (Line of Sight) magnetograms:
an example of data analyzed is showed in Figure 1.
The AIA and HMI images are in fits format, and are 4096x4096 pixels images, accompanied by a
fits header which contains various keywords related to important physical quantities or technical
information about instruments and data, such as the projected size of the solar radius, the average
intensity (AIA), the average LOS magnetic field intensity (HMI), position of the center of the Sun
with respect to the center of the image, etc.
There are substantial di�erences between the two data: the projected solar disk dimensions aren
not the same, in fact each pixel has a di�erent length associated with it on the solar disk and the
HMI images are rotated by 180° with respect to AIA images. Hence, it is first necessary to coalign AIA
and HMI images.

Hence, for the above image processing we faced twomain problems:
• Coordinates Image Transformation: in order to optimize the identification of the regions of
interest for our algorithm, we have to use themore appropriate coordinates transformation. In
this work we choose a spherical transformation, in order to avoid detection of o�-limb features,
and take into account also projection e�ects due to the rotation of solar features. Figure 2
shows how the transformation works; the same transformation was applied to EUV images and
magnetograms. A�er coordinate transformation the analyzed images are reduced to (180x180)
pixels.

• LimbBrighteningCorrection: Figure 1(a) shows verywell a luminosity increase for pixels located
toward the solar limb, a physical phenomenon called Limb Brightening. This is a projection e�ect,
due to the fact that in the EUV range the intensity of radiation is proportional to the square of the
plasma electron density, andmoving out of the solar surface the density decades exponentially
as well as the intensity of radiation. Moreover, the coronal plasma is optically-thin: hence we can
assume that in each pixel the observed emission comes from a spherical shell with a (almost)
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(a) AIA 193 Å image. (06-25-2017 18:00:00) (b) HMI LOSmagnetogram. (06-25-2017 18:00:00)

Figure 1. Example of AIA and HMI data.

constant e�ective thickness. In the end, moving toward the borders of the solar disk, the LOS
integration length across the plasma increases, as well as the intensity.

(a) Cartesian coordinates image. (02-18-2013 09:21:30) (b) Spherical coordinates image. (02-18-2013 09:21:30)

Figure 2. Example of spherical transformation on AIA image.

A�er conversion of HMI images to spherical coordinates, we notice that a further correction is neces-
sary: the HMI aligned and transformed images present a noisy region located near the solar limb at
extreme latitudes and longitudes values, where pixels are characterized by values of magnetic field
B on the order of 108 Gauss. These few pixels in the spherical transformed image cover a significant
amount of pixels. In order to remove this problem, we defined a mask to identify pixels located in
this region, and set the magnetic field of each pixel associated with that noisy region equal to 0
(see Figure 3).

2.1 Limb Brightening Correction
Before describing the proposed correction, we shall see how the limb brightening a�ects the
intensity variation across the solar disk. In Figure 4 we show how the intensity varies longitudinally
along the solar equator a�er transformation of EUV image in spherical coordinates. The plot shows
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(a) Noisy region on HMI image (black/white pixels).
(03-02-2018 18:01:30)

(b) The same image a�er removal of the noisy regions.
(03-02-2018 18:01:30)

Figure 3. Correction of noisy region on HMI images.

that the intensity progressively increases going from the center of the solar disk to the solar limb,
with twomain peaks (corresponding to the location of the solar limb) located at about 500 and
3800 pixels, respectively.
In order to correct the images in spherical coordinates for this e�ect, we decide to test a simple

Figure 4. Example of limb brightening e�ect along the solar equator.

geometrical approach described below:
• we consider two spheres concentric on the Sun: the first one has a radius equal to R = RSun , the
other one with radius R ′ = RSun + ∆R (as shown in figure 5a);

• for each latitude and longitude (θ,ϕ), we consider the length d corresponding to the projection
of the radial segment∆R along the LOS;

• we obtain a geometrical limb function d (θ,ϕ) that we employ to create a virtual image repre-
senting the distribution of limb brightening;

• we divide the image to be analyzed in spherical coordinates by the virtual limb brightening image.
A similar geometrical method was recently described by Cora et al. (2019) based on the analysis
of data acquired by the UVCS spectrometer (Kohl et al. 1995) on-board SOHO. Deviations from a
circularly symmetric behaviour (mainly due to the presence of polar coronal holes; see Chargeishvili
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et al. 2019) were not considered in the first implementation described here. Looking at Figures 5,

(a) Spherical point of view. (b) Cilindrical point of view.

Figure 5. The representations of the limb function d (θ,ϕ).

we can see the problem from two points of view: spherical and cylindrical. We parametrize the
length L with latitude and longitude (θ,ϕ) and (because the problem is cylindrically symmetric)
introduce an angle γ (see Equation 1) in order to derive the relation between these angles (see
Equation 2). The length L and the angle γ are thus given by:


L =

√
[RSun cos(θ) cos(ϕ)]2 + R 2

Sun
sin2 (θ), θ ∈ [−π2 ,

π
2 ], ϕ ∈ [0, π]

L = RSun sin(γ), γ ∈ [−π2 ,
π
2 ]

(1)

γ = arcsin (
√
cos2 (θ) cos2 (ϕ) + sin2 (θ)) (2)

Working with cylindrical coordinates we find that:

d (γ) =
√
R 2
Sun

cos2 (γ) + ∆R (2RSun + ∆R ) − RSun cos(γ) (3)

But to work in spherical coordinates we have to consider that

cos[arcsin(x )] =
√
1 − x 2 , x ∈ [−1, 1] (4)

and thanks to relation 4 we can express the d (γ) function in spherical coordinates, finally obtaining
the limb function d (θ,ϕ):

d (θ,ϕ) =
√
[RSun cos(θ) sin(ϕ)]2 + ∆R (2RSun + ∆R ) − RSun cos(θ) sin(ϕ) (5)

The unknown value of∆R [RSun ] has been empirically optimized to obtain the best correspondence
between the geometric function and the observed limb brightening e�ect in the considered band-
pass filter. Fromour analysis we conclude that∆R = 0.7RSun is the best choice for the optimization,
as shown in Figure 6. With the obtained symmetric limb brightening function, we create a virtual
image whose pixels correspond to the values of the function at the corresponding latitude and
longitude. An example in Cartesian coordinates is shown in Figure 7. Then, we divide the EUV
normalized image with the virtual limb brightening image, obtaining the results shown in Figure 8.
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Figure 6. The geometric limb brightening function (red curve) in comparison with the observed intensity
trend along the solar equator (each curve has been previously normalized).

Figure 7. Virtual EUV limb brightening image in Cartesian coordinate.

3 Definition of Regions of Interest (ROIs)
A�er the above images processing, we study the intensity in EUV (from AIA data) and the intensity
of the magnetic field (from HMI data) by defining region of interest (ROIs) representative of coronal
holes (CH), active regions (AR) and quiet sun (QS). This step is of fundamental importance to derive
the starting values (centroids) of iteration for the FCM algorithm (see below). These are the steps
we followed for our study based on ROIs:
• we choose a EUV images training data sample to work with full resolution images showing well
defined CH and AR features;

• we manually proceed with the identification of the ROIs in the EUV images (by employing the IDL
routine DEFROI);

• we create arrays containing the coordinates of each pixel belonging to the ROIs previously identi-
fied;

• we employ the same ROIs defined from EUV images also for the HMI magnetograms.
Once the ROIs are defined for each image in the training dataset, for each ROI we take the average
value and the standard deviation of intensity in the EUV and the absolute value of the intensity of
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(a) AIA 193 Å image before limb brightening removal.
(06-25-2017 18:00:00)

(b) AIA 193 Å image a�er limb brightening removal.
(06-25-2017 18:00:00)

Figure 8. The result of the limb brightening correction.

(a) Example of AIA 193 Å ROI (blue region) identifying a
mid-latitude CH. (02-03-2012 18:00:00)

(b) The same ROI superposed onto HMI magnetogram.
(02-03-2012 18:00:00)

Figure 9. Example of ROI definition.

magnetic field. We do this for about ten images acquired over di�erent years and di�erent solar
activity periods, obtaining about 20 average values and standard deviations for each ROI.
During the analysis we defined with ROIs four di�erent kind regions: polar coronal hole (PCH),
mid-latitude coronal hole (MCH), active regions (AR) and quiet sun (QS). During the analysis we
notice that concerning variations of EUV intensity and photospheric magnetic field intensity, mid-
latitude coronal holes seems to have higher values than polar ones. In order to characterize each
region, we take the average value among all averages over all pixels belonging to the same kind
of ROIs, obtaining the results shown in Table 1. Once starting values for di�erent regions (that
will correspond to centroids of di�erent clusters) have beenmeasured, we can proceed with the
definition of the clustering algorithm.
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ROI I [units] |B| [G]

PCH 0.144 9.002
MCH 0.309 9.957
AR 6.955 94.573
QS 1.025 8.156

Table 1. Average values from di�erent regions of interest.

4 Fuzzy Clustering
4.1 Generalities

To automatically identify coronal regions we use a Fuzzy c-means (FCM) algorithm (as defined by
Bezdek 1981): each pixel is associated with a probability to belong to one class (or cluster) rather
than another (once the clusters have been defined). Doing so, we can subdivide a data set X into k
subsets (clusters) which are pairwise disjoint, non-empty and overall reproduce X.
Let us consider a set of N objects X = x1, x2, ..., xN , where each xi is a d-dimensional vector
(xi ∈ R d ). In our case, these N objects are the number of pixels of images (180x180).

Definition 1 (Fuzzy Clustering). Wedefine as fuzzy clusteringa collection of k clustersC1,C2, ...,Ck
andapartitionmatrix (FuzzyPartition)U = ui j withui j ∈ [0, 1], i = 1, ...,N e j = 1, ..., k (U ∈Òk×N )
where for each ui j we associate amembership functionwhich represents themembership degree
of the object i to the clusterCj .

The partition matrix has to satisfy the following properties:

k∑
j=1

ui j = 1 0 <
N∑
i=1

ui j < N (6)

For each cluster, we associate a centroid cj which defines the characteristics of certain cluster:
cj ∈ Òd (in our case, the centroids will be initialized with the values previously obtained from the
study of ROIs in Table 1).

Definition 2 (FCM Functional). Let be Jm :Mf c xÒk×N →Ò:

Jm (U , c) =
N∑
i=1

k∑
j=1

(ui j )m (di j )2 (7)

where:
• U ∈ Mf c is the fuzzy partition matrix;
• c = (c1, c2, ..., ck) ∈ Òk d con cj ∈ Òd is the set of clusters’ centroids;
• (di j )2 = | |xi − cj | |2 dove | | · | | is a norm induced by any inner productÒN ;
• m ∈ [1,∞) is aweight exponent.

An optimal fuzzy clusterings of X are defined as pairs of (Ũ , c̃) that locally minimize the fuzzy
C-mean functional Jm (Definition 2). Form > 1, (Ũ , c̃) may be locally optimal only if:

ũi ,j =
1∑k

z=1

[
di j
di z

] 2
m−1

(8)
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c̃j =
∑N
i=1 (ui j )mxi∑N
i=1 (ui j )m

(9)

Now, we have all the ingredients to show how the FCM algorithmworks. From a computational
point of view (by using the Bezdek algorithm) the steps are:
1. Choose the number of features d to characterize each data, the number of clusters c, and the
metrics;

2. Initialize the fuzzy partition matrixU (0) (where 0 indicates that we are at the first iteration);
3. Calculate the values of centroids to be assignedwith the formula 9, usingU (s) , where s indicates
the number of iterations;

4. Update the matrixU (s) with the formula 8 with the c̃j just calculated;
5. Given a threshold value ε and amatricial norm, if | |U (s+1) −U (s) | | > ε then we repeat steps 3
and 4, otherwise the algorithm stops.

4.2 Application to solar structures
Now, we can proceed to apply the FCM algo to identify solar structures. First of all, we consider
four clusters: polar coronal hole (PCH), mid-latitude coronal hole (MCH), quiet sun (QS) and active
region. A distinction between PCH and MCH is very important for Space Weather applications. In
fact, MCH are usually a source of high speed solar wind streams (HSS) propagating nearby the
ecliptic plane, and thus potentially directed towards the Earth as these streams are dragged by
solar rotation.
We characterize each points of our algorithm considering three features: EUV 193 Å intensity nor-
malized to themaximum value (to apply the algorithm on any period of the solar activity cycle),
absolute value of the photospheric magnetic field (normalized with the absolute value of the aver-
agemagnetic field of the image we are analyzing), and normalized latitude (with values varying
between -1 and 1) to separate among PCH and MCH.
Each point of our algorithm is a vector of this type: xi = (Ii , |Bi |, Li ) with i = 1, ...,N (N=number of
pixels). The same for centroids cj with j = 1, ..., 4 (1:PCH, 2:MCH, 3:AR, 4:QS).
Settingm = 1, ε = 0.01 and theU (0) matrix with values between 0 and 1, the FCM algorithm can
start. Once the algorithm stops, we obtainU (s) (where, generally s < 25): this matrix represent
the probability of each pixel to belong to a certain cluster (an example of probability distribution is
shown in Figure 10). Thanks to theU (s) we can create a segmentation of the input solar image.

5 Results
For the first test we analyzed AIA and HMI data acquired around the minimum of solar activity
cycle, where the sun is "quiet". The results are shown in Figure 11: the FCM converges, polar coronal
holes are identified as well as active regions, but the algorithm seems to have some di�iculties to
distinguish between mid-latidude coronal holes and quiet sun. This is probably due to the defined
latitude feature, which apparently seems to apply more restrictions than we expected, probably
due to the fact that, from data, the characterization values of this regions are too similar for FCM.
For the second test we selected a time period near the minimum of solar activity when a big mid-
latitude coronal hole was also present. The results from the algo are shown in Figure 12. In this
case the polar coronal holes have been identified, as well as active regions, but the most important
result is that the mid-latitude coronal hole has been identified as well; this is a good result. Also in
this case at certain latitude the FCM encountered some di�iculties to distinguish MCH from QS, the
probable reason has been said previously.
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(a) PCH probability distribution.

(b) MCH probability distribution.

(c) QS probability distribution.

(d) AR probability distribution.

Figure 10. Example of probability distribution obtained by the matrixU (s) : the images are in grey scale, black
pixels are associated to probability 0 and white ones to 1.

6 Conclusions and future developments
In this paper we describe a pipeline consisting of various routines (written in IDL), for:
1. spherical transformation of solar images;
2. co-alignement of AIA and HMI images;
3. geometrical correction of EUV limb brightening;
4. extraction of mean values by using di�erent ROIs;
5. use of fuzzy clustering algorithm to automatically identify coronal structures;
6. creation of segmented images of the Sun.
The FCM algorithm developed here needs more test. In fact, although it gives acceptable results for
images acquired at the minimum of solar activity cycle, for the maximum of solar cycle the results
are not yet acceptable, as shown in Figure 13.
This pipeline is part of the SWELTO - Space WEather Laboratory in Turin Observatory - a project
aimedat developing new tools for automatic data analysis and future applications of SpaceWeather
forecasting. A�er a first test at the Turin Observatory, these tools can be further developed and
put into execution at the nascent ASI SPace weather InfraStructure (ASPIS) (Plainaki et al. 2018)
coordinated by the Italian Space Agency (ASI).
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(a) AIA 193 Åminimum image in Cartesian coordinates.
(02-03-2018 18:00:04)

(b) FCM segmentation in Cartesian coordinates.

(c) AIA 193 Åminimum image in spherical coordinates.

(d) FCM segmentation in spherical coordinates.

Figure 11. The results of the first test of the FCM clustering on a minimum image: in black PCH, in purple MCH,
in green QS and in white AR.
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(a) AIA 193 Åminimum image in Cartesian coordinates.
(05-04-2018 18:00:00)

(b) FCM segmentation in Cartesian coordinates.

(c) AIA 193 Åminimum image in spherical coordinates.

(d) FCM segmentation in spherical coordinates.

Figure 12. The results of FCM clustering tested on a mid latitude coronal hole. The colors of the segmentation
are the same as Figure 11.
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(a) AIA 193 Åmaximum Cartesian image. (06-25-2014
18:00:00) (b) Cartesian segmentation.

Figure 13. Results of FCM for a maximum image: there’s a constraint induced (probably) by the latitude
parameter.
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