

| Publication Year          | 2016                                                                                                                                                                                              |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acceptance in OA          | 2020-07-13T09:42:50Z                                                                                                                                                                              |
| Title                     | Probing AGN Accretion History Through X-Ray Variability                                                                                                                                           |
| Authors                   | Paolillo, Maurizio, Papadakis, I., Brandt, W. N., Xue, Y. Q., Luo, B., TOZZI, Paolo, Shemmer, O., Allevato, V., Bauer, F., Koekemoer, A., Vignali, C., Vito, F., Yang, G., Wang, J. X., Zheng, X. |
| Publisher's version (DOI) | 10.5281/zenodo.163795                                                                                                                                                                             |
| Handle                    | http://hdl.handle.net/20.500.12386/26425                                                                                                                                                          |



XII Congresso Nazionale sui Nuclei Galattici Attivi

# Probing AGN accretion history through X-ray variability

#### Maurizio Paolillo & the CDFS collaboration (University Federico II of Naples)

#### Variability properties of AGNs



High frequency break seems to scale with BH mass and accretion rate (Uttley & McHardy 2005, Markowitz & Uttley 2005, McHardy 2006)

 $t_{B^{\alpha}} M_{BH}^{\alpha}/L_{bol}^{\beta}$ 

#### Accretion dependence challenged by XMM studies.

Gonzales-Martin & Vaughan (2012) study 104 nearby AGN f r o m X M M - N e w t o n observations. They test different scenarios:

- Break timescale depends only on BH mass
- Break timescale depends on BH mass and accretion rate.

The coefficient B is consistent with zero, i.e. weak or no dependence on accretion rate.



#### Variability in poor statistics data

AGN variability is anti-correlated with L<sub>X</sub> (Barr & Mushotzky 1986, Lawrence & Papadakis 1993, Nandra et al. 1997)



Can use 'excess-variance' to estimate mass (e.g. O'Neill et al., Gierlinski et al. 2007) **but** should take accretion rate into account!

#### Variability in poor statistics data

AGN variability is anti-correlated with L<sub>X</sub> (Barr & Mushotzky 1986, Lawrence & Papadakis 1993, Nandra et al. 1997)



Does the normalization depend on accretion rate as well? Best sampled on long timescales!

#### Increased variability at high z? (Almaini et al. 2000)

- A similar  $L_X$ -variability anticorrelation was found in Rosat data.
- They anticorrelation is valid only for moderate luminosity AGNs ( $L_X < 10^{45}$ )
- At hight luminosities there is an "upturn" in the correlation: luminosity or redshift effect?

The evolution of the  $L_X$ -var. relation could be produced by increase of the accretion rates or a decrease of the X-ray emitting region with look-back time.



#### Increased variability evidence from the IMs CDFS (Paolillo et al. 2004)



• Larger variability for high-z AGNs?

z=0.5
 z=1.0
 z=2.0
 z=3.0

1000

## Increased variability in the Lockman Hole? (Papadakis et al. 2008)

- Fitting a more physically motivated model yields:
- $v_{bf}$  =0.029 $\eta \dot{m}_{Edd}$ (M<sub>BH</sub>/10M<sub>o</sub>)
- $L_{bol} = 1.3 \eta \dot{m}_{Edd} 10^{39} (M_{BH}/M_{\odot}) \text{ erg/s}$

(N.B. assumes constant PSD amplitude)

- Fitting the Lx-σ<sup>2</sup> anticorrelation requires higher accretion at high redshift.
- Variability-LX relation can be used in principle to probe both accretion rate and BH mass



#### XMM and Swift serendipitous samples

(Vagnetti, Turriziani & Trevese, 2011; Vagnetti et al. 2016)

XMM-Newton and Swift, with redshift between ~0.2 and ~4.5, and X-ray luminosities, in the 0.5–4.5 keV band, between ~ $10^{43-46}$  erg/s.

- Ensemble analysis through Structure Function analysis (SF): a power law SF  $\propto \tau^{0.1}$ .
- No evidence of the break in the SF, at variance with PSD of lower luminosity AGNs [but SF may be less sensitive than PSD, see Emmanoulopoulos et al. 2010]
- Strong anti-correlation of the variability with X-ray luminosity, accompanied by a change of the slope of the SF.
- No average increase of X-ray variability with redshift.



#### XMM and Swift serendipitous samples

(Vagnetti, Turriziani & Trevese, 2011; Vagnetti et al. 2016)

XMM-Newton and Swift, with redshift between ~0.2 and ~4.5, and X-ray luminosities, in the 0.5–4.5 keV band, between ~ $10^{43-46}$  erg/s.

- Ensemble analysis through Structure Function analysis (SF): a power law SF  $\propto \tau^{0.1}$ .
- No evidence of the break in the SF, at variance with PSD of lower luminosity AGNs [but SF may be less sensitive than PSD, see Emmanoulopoulos et al. 2010]
- Strong anti-correlation of the variability with X-ray luminosity, accompanied by a change of the slope of the SF.
- No average increase of X-ray variability with redshift.



#### Null result for the XMM Lockmann Hole bright sample (Mateos 2007)

- Variability on time scales from months to 2 years, of the I23 brightest objects detected with XMM-Newton in the Lockman Hole field.
- No dependence on redshift, X-ray luminosity or AGN type.

But....if complex dependence on redshift, luminosity and variability we need to <u>take</u> <u>all of them into account simultaneously</u>!



#### Null result for the Chandra-SDSS sample: (Gibson & Brandt 2012)

- 264 SDSS spectroscopic quasars in the Chandra archive (z<5) and with rest-frame timescales  $<\Delta t_{sys} \approx 2000$  days,
- Significant (>3 $\sigma$ ) variation in  $\approx$ 30% of the quasars overall( $\approx$ 70% for sources with >1000 counts per epoch).
- No evidence in our sample that quasars are more variable at higher redshifts (z > 2)
- X-ray spectra steepen as they brighten, with evidence for a constant, hard spectral component that is more prominent in fainter stages.



## Constraining the relevant parameters: COSMOS field

(Lanzuisi et al. 2014)



Dependence on mass, but no dependence on accretion!

#### Constraining the relevant parameters: the CAIXA sample (Ponti et al. 2011)

XMM-Newton sample of 161 radio quiet, X-ray un-obscured AGN studied on time scales less than a day. Mostly local (z<0.3) AGNs.

Tight (~ 0.7 dex) correlation between  $\sigma^2$  and  $M_{BH,}$  but variable PSD amplitude





AGN12 - Napoli, 26-29 Sept. 2016



## 4Ms CDFS lightcurves (Chandra data)

The 4Ms data allow to sample AGN variability on different timescales, from a few days up to II yrs.

A proxy to a proper PSD analysis

#### Need for proper statistical sample

The CDFS allows to work with a complete and unbiased (in terms of variability) sample.



# Lx-variability correlation holds for high-z sources as well

High-z AGN do follow the  $L_X$ -variability relation but ....

AGNs at different redshift sample different timescales, so need to correct or model this effect!



AGN12 - Napoli, 26-29 Sept. 2016



## 4Ms CDFS lightcurves (Chandra data)

The 4Ms data allow to sample AGN variability on different timescales, from a few days up to 11 yrs.

A proxy to a proper PSD analysis

## What PSD for high-z AGNs?

- A single flat (σ<sub>NXV</sub>=V<sup>-1</sup>) powerlaw PSD only fits long timescales and low redshift sources (independent of z).
- Steeper PSD slopes  $(\sigma_{NXV}=v^{-1.5})$  provide poor fits to some timescales
- A bending power-law seems the best fit for high-z AGNs, reproducing both the high frequency cutoff and the redshift dependence:

$$PSD(\nu) = A\nu^{-1} \left(1 + \frac{\nu}{\nu_b}\right)^{-1}$$



## What PSD for high-z AGNs?

- A single flat (O<sub>NXV</sub>=V<sup>-1</sup>) powerlaw PSD only fits long timescales and low redshift sources (independent of z).
- Steeper PSD slopes  $(\sigma_{NXV}=v^{-1.5})$  provide poor fits to some timescales
- A bending power-law seems the best fit for high-z AGNs, reproducing both the high frequency cutoff and the redshift dependence:

$$PSD(\nu) = A\nu^{-1} \left(1 + \frac{\nu}{\nu_b}\right)^{-1}$$



## What PSD for high-z AGNs?

- A single flat (σ<sub>NXV</sub>=V<sup>-1</sup>) powerlaw PSD only fits long timescales and low redshift sources (independent of z).
- Steeper PSD slopes  $(\sigma_{NXV}=v^{-1.5})$  provide poor fits to some timescales
- A bending power-law seems the best fit for high-z AGNs, reproducing both the high frequency cutoff and the redshift dependence:

$$PSD(\nu) = A\nu^{-1} \left(1 + \frac{\nu}{\nu_b}\right)^{-1}$$





Model I: bending frequency depends only on BH mass as V<sub>b</sub>«M<sup>-1</sup> (Gonzales-Martin & Vaughan, 2012) with fixed PSD normalization (Papadakis et al. 2004, 2008)
Model is rejected P<sub>null</sub><10<sup>-2</sup> level when λ<sub>Edd</sub>>0.03.



<u>Model 2:</u> bending frequency depends on BH mass and acc.rate through ν<sub>b</sub>∝L/M<sup>2</sup> (McHardy et al. 2006), fixed PSD normalization (Papadakis et al. 2004, 2008) Model is consistent with the data: P<sub>null</sub>~0.23



Model 3: bending frequency depends only on BH mass as Vb<sub>x</sub>M<sup>-1</sup> (Gonzales-Martin & Vaughan, 2012), PSD normalization depends on acc.rate (Ponti et al. 2011) Model disfavored with P<sub>null</sub><0.013



Model 4: bending frequency depends on BH mass and acc.rate through  $v_{b^{\alpha}}L/M^2$  (McHardy et al. 2006), PSD normalization depends on acc.rate (Ponti et al. 2011) Model is consistent with the data:  $P_{null} \sim 0.16$ 

#### Accretion history results

- A constant  $\lambda_{Edd} \leq 0.1$  is consistent with the data, although some models indicate a possible increase of  $\lambda_{Edd}(z)$  peaking at  $z \sim 2 \div 3$ .
- The low redshift data are consistent with variability of local AGNs (Zhang et al. resuls).



#### The future? (La Franca et al. 2014)

Calibrated variability correlations can provide cosmological constraints. But what about other parameters (e.g. accretion rates)?









# Conclusions

- Multi-epoch surveys offer the opportunity to investigate the timing properties of distant AGN populations.
- Luminosity-variability anticorrelation verified over large redshift range.
- High-z AGNs share similar PSD of local AGNs
- Variability dependence on both mass and accretion is favored
- With correct statistical approach and accounting for biases we can constrain the best physical model
- Variability allows to constrain the average accretion rate over cosmic time

Wide-field multi-epoch surveys may allow constrain the evolution of the AGN population.