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ABSTRACT
We have derived the global mass functions of a sample of 35 Galactic globular clusters (GCs)
by comparing deep Hubble Space Telescope photometry from the globular clusters treasury
project (Sarajedini et al. 2007) with suitable multimass dynamical models. For a subset of 29
clusters with available radial velocity information, we were also able to determine dynamical
parameters, mass-to-light ratios and the mass fraction of dark remnants. The derived global
mass functions are well described by single power laws in the mass range 0.2 < m/ M� < 0.8
with mass function slopes α > −1. Less-evolved clusters show deviations from a single-power
law, indicating that the original shape of their mass distribution was not a power law. We find a
tight anticorrelation between the present-day mass function slopes and the half-mass relaxation
times, which can be understood if clusters started from the same universal initial mass function
(IMF) and internal dynamical evolution is the main driver in shaping the present-day mass
functions. Alternatively, IMF differences correlated with the present-day half-mass relaxation
time are needed to explain the observed correlation. The large range of mass function slopes
seen for our clusters implies that most GCs are dynamically highly evolved, a fact that seems
difficult to reconcile with standard estimates for the dynamical evolution of clusters. The
mass function slopes also correlate with the dark remnant fractions indicating a preferential
retention of massive remnants in clusters subject to high mass-loss rates.

Key words: methods: numerical – techniques: photometric – techniques: radial velocities –
stars: kinematics and dynamics – stars: luminosity function, mass function – globular clusters:
general.

1 IN T RO D U C T I O N

One of the long-standing issues of stellar astrophysics is the un-
derstanding of the mechanisms determining the mass distribution
of stars. This topic represents one of the central questions in the
theory of star formation and has strong relevance for many areas of
astrophysics. The original distribution of stellar masses, commonly
referred to as the initial mass function (IMF), is indeed a key ingre-
dient in models of stellar population synthesis, chemical evolution
of clusters and galaxies, dynamical evolution of stellar systems and,
in general, in any topic involving the role of baryons.

In this regard, the universality of the IMF, its shape and the param-
eters driving its hypothetical variation are questions still far from
being completely understood from both a theoretical and an obser-
vational point of view. Indeed, many complex processes affect the
efficiency of fragmentation of a molecular cloud (dependence of the
Jeans mass from thermodynamical parameters, competitive accre-
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tion, metal line-driven cooling, etc., Silk 1977; Fleck 1982; Bonnell
et al. 1997; Nakamura & Umemura 2001). A practical difficulty in
observationally constraining the IMF resides in its temporal evolu-
tion, which strongly depends on the characteristics of the considered
stellar population and on its environment. An ideal class of astro-
physical objects where to perform an analysis of the IMF should
be young, dynamically unevolved stellar populations containing a
large number of coeval and chemically homogeneous stars covering
a wide range of masses. None of the known star-forming complexes
satisfy all the above requirements so, from the pioneering study by
Salpeter (1955), many studies concentrated on the determination of
the IMF shape in the Galactic field, in OB associations (Miller &
Scalo 1979; Kroupa 2001; Chabrier 2003) and, more recently, in
dwarf galaxies (Geha et al. 2013). Despite the huge observational
effort made during the last 60 yr, there is still no clear evidence for
systematic variations of the IMF and conflicting results have been
reported in the past (see Bastian, Covey & Meyer 2010, for a recent
review).

Globular clusters (GCs) are in principle among the best places to
investigate the distribution of stellar masses at the low-mass end of
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the MF (0.1 < M/M� < 1). They are composed out of hundreds
of thousands to millions of stars, located at the same distance and
formed in a short time interval from a chemically relatively homo-
geneous cloud covering a wide range of masses. Moreover, there
is a significant number of GCs at distances <20 kpc for which it is
possible to perform a statistically meaningful sampling of their stel-
lar population down to the hydrogen-burning limit with a good level
of completeness. On the other hand, the relaxation times of GCs are
often smaller than their ages so that the large number of interactions
among their stars produces a mass-dependent distribution of kinetic
properties (energies and angular momenta). This reflects into the
time evolution of the MF, since low-mass stars progressively gain
energy, being more prone to evaporation. As mass loss proceeds
independently, the MF tends to flatten on time-scales depending on
both the internal structure of the cluster and the strength of the ex-
ternal tidal field (Baumgardt & Makino 2003 ; Lamers, Baumgardt
& Gieles 2013). Moreover, the tendency towards energy equiparti-
tion leads to a radial segregation of different mass groups with the
most massive stars moving on less energetic orbits preferentially
confined to the innermost cluster regions, while low-mass stars dif-
fuse into an extended halo. For all these reasons, the present-day
MF measured in a particular region of a GC neither reflects its
IMF nor its global MF. The derivation of the present-day global
MF is however still possible by correcting the locally estimated
MF by the mass-segregation effects predicted by some suitable dy-
namical model (see e.g. McClure et al. 1986; Paust et al. 2010).
Such corrections depend on the cluster concentration, MF and dis-
tance from the cluster centre, but they appear to be generally small
close to the half-mass radius (Baumgardt & Makino 2003). So, an
alternative approach is to estimate the MF in this region of the clus-
ter and assume it as a good representation of the global MF (e.g.
Piotto & Zoccali 1999). On the theoretical side, many surveys of N-
body simulations have been performed to investigate the evolution
of the MF in GC-like objects (Vesperini & Heggie 1997; Baum-
gardt & Makino 2003; Lamers, Baumgardt & Gieles 2013; Webb &
Vesperini 2016). In particular, Leigh et al. (2012) used a set of
N-body runs assuming different masses, concentrations, orbital ec-
centricities and tidal environments to reproduce the MFs of a sample
of 27 Galactic GCs and showed that the natural evolution of a uni-
versal IMF could actually produce the observed cluster-to-cluster
differences.

Observationally, since the early 1980s many studies focused on
the determination of the MF in individual GCs (without correct-
ing for incompleteness, e.g. Da Costa 1982; Richer et al. 1990;
Santiago, Elson & Gilmore 1996; Chabrier & Mera 1997; Paresce
& De Marchi 2000; Pulone et al. 2003; Paust, Wilson & van
Belle 2014). The first comprehensive studies of the MFs in a number
of GCs large enough to explore possible correlations with various
cluster parameters have been those by Capaccioli, Piotto & Stiavelli
(1993) and Djorgovski, Piotto & Capaccioli (1993), who collected
the MFs measured by different authors for a sample of 17 Galactic
GCs and reported a dependence of their slopes (measured using
stars with masses m > 0.5 M�) with the cluster position in the
Galaxy. Piotto & Zoccali (1999) analysed in a homogeneous way
deep Hubble Space Telescope (HST) images taken near the half-
mass radii of seven GCs reaching a limiting mass of m ∼ 0.3 M�.
They found that the MF slopes correlate with the orbital destruc-
tion rates of the clusters in the Galaxy and anticorrelate with their
half-mass relaxation times although their small sample hampered
any firm conclusion on the significance of these correlations. De
Marchi, Paresce & Pulone (2007), used a sample of HST and Very
Large Telescope (VLT) data for a sample of 20 GCs and found a

well-defined correlation between the slope of their MFs and their
King model concentration parameter c. Finally, Paust et al. (2010)
derived the central and global present-day MFs of 17 GCs as part of
the Advanced Camera for Surveys (ACS) Galactic Globular Clus-
ters treasury project (Sarajedini et al. 2007) by comparing ACS/HST
photometric data with multimass dynamical models. They found a
significant correlation between the MF slope and the central density
(or equivalently the central surface brightness), while detecting only
marginal statistical significance of the previously reported correla-
tions with other parameters.

In this paper, we use the ACS treasury project data base to extend
the census of GC MFs to a sample of 35 clusters, more than doubling
the sample already analysed by Paust et al. (2010). By means of a
comparison with multimass analytical models we derive the global
MFs of the analysed clusters and investigate possible correlations
with their structural and dynamical parameters. In Section 2, we
present the data base used in this work. The adopted dynamical
models are described in Section 3. Section 4 is devoted to the
description of the algorithm adopted to determine global MFs and
other structural parameters. The obtained MFs and the analysis of
their shapes are presented in Section 5. In Section 6, we search for
correlations with various cluster parameters. We finally discuss our
results in Section 7.

2 O B S E RVAT I O NA L M AT E R I A L

The derivation of the global MFs and the cluster parameters has
been performed through the analysis of three different kinds of data
sets: photometry, surface brightness profiles and individual stellar
radial velocities.

The photometric data consist of high-resolution HST observations
of a sample of 66 Galactic GCs obtained as part of the Globular
Cluster ACS Treasury Project (Sarajedini et al. 2007). The data have
been obtained using deep images obtained with the ACS Wide Field
Channel through the F606W and F814W filters. The field of view
of the camera (202 arcsec × 202 arcsec) was centred on the cluster
centres with a dithering pattern to cover the gap between the two
chips, allowing a full coverage of the core of all the GCs consid-
ered in our analysis. This survey provides deep colour–magnitude
diagrams (CMDs) providing photometry of main-sequence (MS)
stars down to the hydrogen-burning limit (at MV ∼ 10.7) with a
signal-to-noise ratio S/N > 10 for all target clusters. The results of
artificial star experiments are also available to allow an accurate es-
timate of the completeness level and photometric errors. A detailed
description of the photometric reduction, astrometry and artificial
star experiments can be found in Anderson et al. (2008). Within
this data base, we excluded from our analysis all GCs with (i) ev-
idence of large (�Y > 0.1) helium variation (ω Cen, NGC 2808,
NGC 6388 and NGC 6441), (ii) significant contamination by either
bulge (NGC 6624 and NGC 6637) or Sagittarius dwarf galaxy stars
(M54), or (iii) a completeness level estimated in the innermost ar-
cminute at the hydrogen-burning limit smaller than ψ < 10 per cent.
Thirty-five GCs passed the above selection criteria (see
Table 1).

The surface brightness profiles for most GCs of our sample were
taken from Trager, King & Djorgovski (1995). They were con-
structed from generally inhomogeneous data based mainly on the
Berkeley Globular Cluster Survey (Djorgovski & King 1984). The
surface brightness profile of each cluster has been derived by match-
ing several sets of data obtained with different techniques (aperture
photometry on CCD images and photographic plates, photoelectric
observations, star counts, etc.). Moreover, the profiles of the more
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3670 A. Sollima and H. Baumgardt

Table 1. Parameters of the best-fitting models.

NGC α log(Mlum/ M�) log(Mdyn/ M�) rh fremn log (trh/yr) Mdyn/LV logρ0 logρh

(pc) (M�/L�) (M�/pc3) (M�/pc3)

288 −0.66 ± 0.04 4.67 ± 0.04 4.96 ± 0.03 9.12 0.50 ± 0.05 9.60 1.89 ± 0.49 1.92 1.16
1261 −0.65 ± 0.03 4.93 ± 0.10 5.23 ± 0.05 5.70 0.50 ± 0.11 9.39 1.51 ± 0.53 3.26 2.04
1851 −0.69 ± 0.03 5.14 ± 0.07 5.51 ± 0.04 5.14 0.57 ± 0.08 9.43 1.64 ± 0.49 4.49 2.45
2298 0.11 ± 0.03 4.18 ± 0.12 3.19
3201 −1.26 ± 0.09 4.81 ± 0.03 5.08 ± 0.03 6.41 0.47 ± 0.05 9.46 1.95 ± 0.50 3.05 1.74
4147 0.03 ± 0.05 4.21 ± 0.13 4.81 ± 0.22 5.22 0.75 ± 0.26 9.12 2.13 ± 1.36 3.83 1.73
4590 −1.27 ± 0.07 4.87 ± 0.06 5.29 ± 0.06 8.60 0.62 ± 0.09 9.74 2.91 ± 0.89 3.12 1.56
4833 −0.69 ± 0.08 5.10 ± 0.03 5.35 ± 0.07 8.60 0.43 ± 0.08 9.71 1.32 ± 0.39 3.21 1.62
5024 −1.41 ± 0.11 5.53 ± 0.05 5.82 ± 0.06 15.12 0.49 ± 0.08 10.34 1.95 ± 0.56 3.09 1.36
5053 −1.29 ± 0.03 4.62 ± 0.03 4.78 ± 0.11 19.30 0.32 ± 0.11 10.11 1.64 ± 0.57 0.59 0.00
5272 −0.95 ± 0.08 5.35 ± 0.05 5.61 ± 0.04 7.29 0.45 ± 0.07 9.73 1.68 ± 0.46 3.76 2.10
5286 −0.61 ± 0.03 5.29 ± 0.07 5.71 ± 0.08 4.43 0.61 ± 0.11 9.43 1.30 ± 0.45 4.28 2.85
5466 −1.68 ± 0.09 4.82 ± 0.03 4.77 ± 0.11 24.64 −0.12 ± 0.12 10.25 1.25 ± 0.45 0.98 −0.33
5904 −0.88 ± 0.10 5.27 ± 0.04 5.58 ± 0.04 7.66 0.51 ± 0.06 9.73 1.99 ± 0.53 3.86 2.00
5986 −0.65 ± 0.07 5.20 ± 0.07 5.48 ± 0.05 5.47 0.48 ± 0.09 9.46 1.43 ± 0.44 3.53 2.34
6093 −0.14 ± 0.04 5.10 ± 0.08 5.58 ± 0.07 3.39 0.67 ± 0.11 9.16 1.54 ± 0.52 4.97 3.07
6101 −1.60 ± 0.15 5.11 ± 0.03 18.75
6144 −0.15 ± 0.06 4.42 ± 0.06 5.82
6205 −0.60 ± 0.08 5.34 ± 0.04 5.77 ± 0.03 6.87 0.63 ± 0.06 9.71 2.01 ± 0.53 3.43 2.34
6218 −0.32 ± 0.04 4.60 ± 0.06 4.95 ± 0.03 4.09 0.55 ± 0.06 9.01 1.50 ± 0.41 3.38 2.19
6254 −0.48 ± 0.09 4.94 ± 0.05 5.33 ± 0.05 5.21 0.59 ± 0.07 9.34 1.93 ± 0.55 3.79 2.26
6304 −1.89 ± 0.19 5.17 ± 0.05 5.27 ± 0.05 5.69 0.20 ± 0.07 9.57 3.05 ± 0.86 4.13 2.08
6341 −0.75 ± 0.05 5.15 ± 0.06 5.48 ± 0.03 5.39 0.53 ± 0.07 9.47 1.56 ± 0.44 4.47 2.36
6397 −0.40 ± 0.03 4.61 ± 0.02 4.96 ± 0.02 4.60 0.56 ± 0.03 9.14 1.09 ± 0.26 5.65 2.05
6541 −0.49 ± 0.05 5.09 ± 0.06 5.41 ± 0.05 4.64 0.53 ± 0.08 9.32 1.64 ± 0.49 4.85 2.49
6584 −0.53 ± 0.02 4.62 ± 0.13 4.67
6656 −0.98 ± 0.13 5.42 ± 0.02 5.69 ± 0.03 6.25 0.46 ± 0.04 9.70 1.86 ± 0.46 3.88 2.38
6723 −0.24 ± 0.05 4.84 ± 0.07 5.23 ± 0.11 5.04 0.59 ± 0.13 9.28 1.91 ± 0.71 3.37 2.20
6752 −0.49 ± 0.07 4.97 ± 0.03 5.38 ± 0.02 5.68 0.60 ± 0.04 9.44 1.94 ± 0.48 5.03 2.19
6779 −0.55 ± 0.03 4.79 ± 0.09 4.92
6809 −0.89 ± 0.05 4.90 ± 0.03 5.29 ± 0.03 6.31 0.59 ± 0.04 9.50 1.83 ± 0.45 2.81 1.97
6934 −0.77 ± 0.04 4.84 ± 0.10 5.98
7078 −1.16 ± 0.07 5.54 ± 0.05 5.81 ± 0.03 7.71 0.47 ± 0.06 9.89 1.79 ± 0.48 4.16 2.23
7089 −0.83 ± 0.07 5.53 ± 0.05 5.89 ± 0.06 7.87 0.56 ± 0.08 9.88 1.98 ± 0.57 4.11 2.28
7099 −0.72 ± 0.02 4.82 ± 0.07 5.16 ± 0.05 5.53 0.54 ± 0.08 9.37 1.48 ± 0.44 5.04 2.01

distant and/or faint GCs are often noisy and do not extend beyond
a few core radii. For this reason we adopted, where available, the
number density profiles calculated by Miocchi et al. (2013) from
wide-field photometry. Finally, the density profile calculated by
Melbourne et al. (2000) and Alonso-Garcı́a et al. (2012) have been
adopted for NGC 4833 and NGC 6144, respectively. Because of
the better angular resolution of HST data, ACS observations sample
the innermost portion of our clusters much more accurately than
any other previous ground-based analysis. For this reason, the sur-
face brightness profile of the innermost 1.6 arcmin has been calcu-
lated directly from ACS data by summing completeness-corrected
F606W fluxes

μ = −2.5log

(∑
i

10−0.4 F606Wi

ci

)

in annuli of 0.1 arcmin width and matched to the adopted external
profile using the overlap region. The completeness factors ci have
been calculated for all stars as the fraction of recovered objects1

in the artificial star catalogue among all stars within 0.05 arcmin

1 An artificial star has been considered recovered if its input and output
magnitudes differ by less than 2.5 log(2) (∼0.75) mag in both F606W and
F814W magnitudes.

from the position of each individual star and within 0.25 mag of the
F606W and F814W magnitudes of each individual star.

Among the 35 GCs of our sample, we found large sets (>50)
of available radial velocities in the literature for 29 of them (see
table A1 of Baumgardt 2017 for the references for each cluster).
Radial velocities from different sources were corrected for system-
atic shifts using the stars in common. Additional radial velocities
for clusters NGC 1261, NGC 5986, NGC 6304 and NGC 6541 were
derived from archival FLAMES@VLT spectra collected under the
observing programmes 193.D-0232 (PI: Ferraro) and 093.D-0628
(PI: Zocchi). For this task, pipeline-reduced spectra were cross-
correlated with the solar spectrum observed with the same setups
as the science observations using the task fxcor within the IRAF

package.2

3 MO D E L S

As explained in Section 1, in dynamically evolved stellar systems
like GCs, the distribution of stars depends on their mass. Hence,

2 IRAF is distributed by the National Optical Astronomy Observatories, which
are operated by the Association of Universities for Research in Astronomy,
Inc., under cooperative agreement with the National Science Foundation.
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in order to derive the global MF of our target clusters, their MFs
measured in the ACS field of view need to be corrected using the
prescriptions of a dynamical model. The structure and kinematics
of our clusters have been modelled with a set of isotropic multi-
mass King–Michie models (Gunn & Griffin 1979). According to
this model, the distribution function is given by the sum of the
contribution of several mass groups

f (E, L) =
H∑

j=1

kj

[
exp

(
−AjE

σ 2
K

)
− 1

]

H∑
j=1

fj (mj, r, v) =
H∑

i=1

kj

[
exp

(
−Aj (v2 + 2ψ)

2σ 2
K

)
− 1

]
(1)

where E is the energy per unit mass, mj is the mass of the stars
in the jth component, H is the number of mass components, kj are
coefficients determining the relative fraction of stars in the jth mass
group, σ 2

K is an energy normalization constant, r and v are the 3D
distance from the cluster centre and velocity and Ai are coefficients
governing the kinetic energy balance among different mass groups.
In the original formulation by Gunn & Griffin (1979), Aj ∝ mj.
Although this last assumption is arbitrary, it has been shown that
it reproduces the structure and the degree of mass segregation of
both N-body simulations during most of their evolution and real
GCs (Sollima et al. 2015, 2017). In principle, a degree of radial
anisotropy can be included by multiplying the distribution function
of equation (1) by a term dependent on the angular momentum.
However, because of the lack of accurate proper motion determi-
nations for the GCs analysed here, no stringent constraints on the
degree of anisotropy can be put. Moreover, the recent analysis by
Watkins et al. (2015) based on accurate HST proper motions in
22 Galactic GCs showed that they appear to be isotropic across
the field of view analysed by these authors. For the above reasons,
we prefer to consider only isotropic models to limit the number of
free parameters. We adopted 23 mass groups: 8 evenly spaced bins
comprised between 0.1 M� and the mass at the tip of the red giant
branch (RGB, Mtip) and 15 evenly spaced bins between Mtip and
2.6 M� (i.e. the largest mass allowed in our synthetic population;
see Section 4).

The distribution function in equation (1) can be integrated over
the velocity domain to obtain the 3D density and velocity dispersion
of each mass group.

νj (r) =
∫ √−2ψ(r)

0
4πv2kjfj (v, r,mj )dv

σ 2
v,j (r) =

∫ √−2ψ(r)
0 4πkj v

4fj (v, r,mj )dv

νj (r)
(2)

while the potential at any radius is determined by the Poisson equa-
tion

∇2ψ = 4πGρ (3)

where

ρ(r) =
H∑

j=1

mjνj (r)

equations (1)–(3) have been integrated after assuming, as a boundary
condition, a value of the potential and its derivative at the centre
(ψ0; dψ/dr(0) = 0) outward till the radius rt at which both density
and potential vanish.

Observational quantities (global MF, surface brightness and line-
of-sight velocity dispersion profiles) can be obtained through the

relations

Nj = 4π

∫ rt

0
r2νjdr

μ(R) = −2.5log

⎛
⎝ H∑

j=1


jϒj

⎞
⎠

σ 2
LOS,j (R) = 2

3
j (R)

∫ rt

R

νjσ
2
v,j r√

r2 − R2
dr (4)

where


j (R) = 2
∫ rt

R

νj r√
r2 − R2

dr

is the projected number density and ϒ j is the average V-band flux
of stars in the jth component.

These models are completely defined by the free parameters
W0 ≡ −ψ0/σ

2
K, kj (unequivocally defining the shape of all profiles),

rc ≡
√

9σ 2
K/4πGρ(0) (defining the size of the model) and σ 2

K (de-
termining the normalization in mass and velocity dispersion). The
total mass and luminosity of the model can finally be calculated as

M =
H∑

j=1

Njmj

LV =
H∑

j=1

Njϒj

4 M E T H O D

The algorithm adopted to determine the global MF of each GC is
similar to that described in Sollima, Bellazzini & Lee (2012) and
Sollima et al. (2017) and can be schematically described as follows:

(i) As a first step, a synthetic stellar population has been con-
structed by randomly extracting N = 106 stars from a Kroupa (2001)
IMF between 0.1 and 8 M�. A fraction fb of binaries has also been
simulated by randomly pairing Nb = 2Nfb synthetic stars. All single
stars and stars in binaries with masses m > Mtip have been turned
into compact remnants following the prescription

mWD = 0.109 m + 0.428 (Kalirai et al. 2009)

Due to the adopted upper limit of the IMF, only white dwarfs are
created in this process. This is consistent with the assumption that
all neutron stars and black holes are ejected in the early stage of
cluster evolution because of the effect of natal kicks and/or Spitzer
instability (Kruijssen 2009).

(ii) The corresponding synthetic CMD has been constructed by
interpolating the masses of visible stars with the mass–luminosity
relation of a suitable isochrone from the Dotter et al. (2007)
data base. For each cluster, the isochrone metallicity, age and α-
enhancement as well as the reddening and distance modulus listed
in Dotter et al. (2010), providing an excellent fit to the ACS data,
have been adopted A synthetic horizontal branch (HB) has been
simulated for each cluster using the tracks by Dotter et al. (2007),
tuning the mean mass and mass dispersion along the HB to repro-
duce the observed HB morphology. The magnitude and colours of
binary systems have been calculated by summing the fluxes of the
two components in both passbands. We do not account for the neg-
ligible contamination of fore/background Galactic field interlopers
possibly present in the ACS field of view. Indeed, the Galactic model
of Robin et al. (2003) predicts <50 field stars, corresponding to a
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3672 A. Sollima and H. Baumgardt

Figure 1. Selection boxes adopted for the population of single stars (m1–
m8) and binaries (bin) of NGC 288. The observed CMD is overplotted. The
50 per cent completeness limit is marked by the dashed line.

fraction <0.1 per cent, contained in the selection box (see below)
and within the innermost 1.6 arcmin even in the low-latitude GCs
of our sample;

(iii) The synthetic stars (singles, binaries and remnants) have
been binned in mass (see Section 3) and for each bin a fraction
1 − Xj of particles has been randomly rejected. The average F606W
fluxes (ϒ j) of the remaining stars in each mass group have also been
calculated;

(iv) A dynamical model is constructed tuning the parameters W0

and rc in order to obtain the best fit of the surface brightness profile
and the kj coefficients are modified to reproduce the MF of the mock
catalogue (see equation 4);

(v) The distribution in phase space (3D position and velocity)
of synthetic stars was then extracted from the modelled distribution
function using the von Neumann rejection technique: for each star, a
random position in phase space (r, v) is extracted and assigned to the
star only if a random number between 0 and 1 turns out to be smaller
than f(mi, r, v)/f(mi, 0, 0). Projected distance and LOS velocities
have then been calculated assuming an isotropic distribution;

(vi) For each synthetic star, a particle from the artificial star cat-
alogue with distance from the cluster centre within 0.05 arcmin
and magnitudes within 0.25 mag with respect to the same quan-
tities of the given star, has been extracted and, if recovered, the
magnitude and colour shift with respect to its input quantities have
been added to those of the corresponding star. In this way, a mock
CMD accounting for photometric errors and incompleteness has
been obtained;

(vii) The number of stars within 1.6 arcmin from the cluster cen-
tre (i.e. the extent of the ACS field of view) and contained in nine
regions of both the observed and the mock CMD have been counted
(see Fig. 1). In particular, we defined

(a) eight F606W magnitude intervals corresponding to the first
eight mass intervals and including all stars with colours within three
times the photometric error corresponding to their magnitudes;

(b) a region including the bulk of the binary population with high-
mass ratios (q > 0.5). This last region is delimited in magnitude by
the loci of binaries with primary star mass m1 = 0.45 M� (faint
boundary) and m1 = 0.75M� (bright boundary), and in colour
by the MS ridge line (blue boundary) and the equal-mass binary
sequence (red boundary), both redshifted by three times the photo-
metric error.

(viii) The retention fractions (Xj) of stars in the eight mass bins
and the global binary fraction fb are adjusted by multiplying them
for corrective terms which are proportional to the ratio between the
relative number counts in each bin of the observed sample and the
corresponding model prediction

X′
j = Xj

(
Qobs

j Qmock
8

Qobs
8 Qmock

j

)η

f ′
b = fb

(
Qobs

bin

Qmock
bin

∑8
j=1 Qmock

j∑8
j=1 Qobs

j

)η

where Qj and Qbin are the number of stars observed in the jth single
and in the binary selection boxes, respectively, the superscripts obs
and mock indicate counts measured either in the observed or in the
mock catalogues, respectively, and η is a softening parameter, set
to 0.5, used to avoid divergence. All the coefficients Xj with j > 8
have been set equal to 1.

Steps from (iii) to (viii) have been repeated until convengerce.
For the first step, we adopted Xj = 1 for all j and fb = 5 per cent.

The above-described procedure converged after ∼20 iterations for
all the considered clusters. The global MF of single stars can there-
fore be calculated directly from the mock catalogue simulated in
the last iteration.

A final step is constituted by the mass normalization of the model.
This can be done by best-fitting two independent quantities: (i) the
actual number of stars in the observed (Qobs) and in the mock (Qmock)
CMDs, and (ii) the amplitude of the velocity dispersion profile. The
former way allows us to estimate the mass in luminous stars as

Mlum = Qobs

Qmock

Nsin+Nbin∑
i=1

mi

where the sum is extended to all single and binary stars in the final
mock catalogue excluding remnants. For clusters with available ra-
dial velocities, the latter way provides an estimate of the dynamical
mass (Mdyn). The best-fitting value of Mdyn has been chosen as the
one minimizing the penalty function

L =
N∑

i=1

(
(vi − v)2

σ 2
LOS,8(Ri) + ε2

i

+ ln(σ 2
LOS,8(Ri) + ε2

i )

)

where vi is the radial velocity of the ith star, v is the systemic velocity
of the cluster, εi is the individual uncertainty on the radial velocity
and σ LOS, 8(Ri) is the line-of-sight velocity dispersion predicted by
the best-fitting model at the projected distance Ri of the ith star
for the eighth mass group. The choice of the eighth mass bin is
because radial velocities are available only for stars along the RGB
which cover a restricted range of masses. Because of the dependence
of kinematics on mass, it is therefore necessary to compare the
observed velocity dispersion profile with that of the corresponding
mass bin to avoid bias in the mass estimate.
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The mass function of 35 Galactic GCs 3673

Figure 2. Comparison between three observables of NGC 288 and the corresponding model prediction (red lines; grey in the printed version of the paper).
Bottom-left panels: surface brightness profile; bottom-right panel: velocity dispersion profile; upper-left panels: CMDs and upper-right panels: F606W
luminosity function. The predicted ±σLOS range is indicated in the bottom-right panel.

Once luminous and dynamical masses are determined the fraction
of dark mass can be calculated as

fremn = 1 − Mlum

Mdyn

Finally, the central density ρ0, the half-mass radius rh, the
Mdyn/LV ratio of the best-fitting model are computed as well as
the half-mass relaxation time as

trh = 0.138
M

1/2
dynr

3/2
h

G1/2mln(γMdyn/m)
(Spitzer 1987) (5)

with γ = 0.11 (Giersz & Heggie 1996). The outcome of the appli-
cation of the above the technique for NGC 288 is shown in Fig. 2,
as an example.

5 R ESULTS

The global MFs of the 35 GCs analysed in this work are shown in
Figs 3–7 and the derived dynamical parameters are listed in Table 1.
Among the various parameters, the power-law index α of the MF
has been calculated for stars more massive than 0.2 M�, since stars
below this limit often show relatively low levels of completeness
(ψ < 50 per cent) and their relative fraction is subject to large errors.
For testing purpose, we also calculate α adopting a high-mass cut
at m > 0.3 M�. In the scale adopted here, a Salpeter (1955) MF

Figure 3. Global MFs of NGC 288, NGC 1261, NGC 1851, NGC 2298,
NGC 3201, NGC 4147 and NGC 4590. An arbitrary shift has been added to
each MF for clarity.
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3674 A. Sollima and H. Baumgardt

Figure 4. Same as Fig. 3, but for NGC 4833, NGC 5024, NGC 5053, NGC
5272, NGC 5286, NGC 5466 and NGC 5904.

Figure 5. Same as Fig. 3 but for NGC 5986, NGC 6093, NGC 6101, NGC
6144, NGC 6205, NGC 6218 and NGC 6254.

has α = −2.35 and a Kroupa (2001) MF would have a best-fitting
slope of α ∼ −1.64.

The estimated slopes cover a wide range from α = −1.89
(NGC 6304) to 0.11 (NGC 2298). Thirteen GCs are in common
with the work by Paust et al. (2010), who estimated MFs using
the same photometric data set and also used multimass dynami-
cal models. We show the comparison between the two works in
Fig. 8. The mean difference between the two studies is �α(this
work − Paust) = 0.16 ± 0.13 consistent with only a small (if any)
systematic shift. However, the dispersion about the mean (σ = 0.47)

Figure 6. Same as Fig. 3, but for NGC 6304, NGC 6341, NGC 6397, NGC
6541, NGC 6584, NGC 6656 and NGC 6723.

Figure 7. Same as Fig. 3, but for NGC 6752, NGC 6779, NGC 6809, NGC
6934, NGC 7078, NGC 7089 and NGC 7099.

is not compatible with the combined errors of the two works. In this
context, it should be noted that the formal error quoted by Paust
et al. (2010) as well as those listed in Table 1 are errors on the
MF fit and do not reflect the actual error budget (due to incom-
plete radial sampling, errors of the estimated completeness factor,
isochrone/dynamical model inadequacy, etc.). Given the above con-
siderations, we believe that a more realistic uncertainty of the MF
slopes of both works is of the order of σα ∼ 0.3. It is worth noting
that for NGC 6093, the difference between the two estimates ex-
ceeds �α > 1.2. Moreover, for NGC 5466, we find an unphysical
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The mass function of 35 Galactic GCs 3675

Figure 8. Comparison between the MF slopes derived in this work and
those determined by Paust et al. (2010) for the 13 GCs in common. The
one-to-one relation is marked by the dashed line. The location of NGC5466
and NGC6093 is shown.

solution with Mlum > Mdyn. Among the GCs in common, these are
those with the smallest fraction of stars contained within the ACS
field of view. In this situation, even a small difference in the fitting
process can produce large extrapolation errors. For comparison, a
similar analysis of NGC 5466 performed in Sollima et al. (2017)
using MF constraints in the outer portion of this cluster leads to a
significantly flatter MF slope (α = −0.97). The mean difference
between the MF slopes derived adopting different low-mass cuts is
�α0.3 − 0.2 = −0.05 ± 0.01, indicating only a small dependence of
the estimated MF slopes on the adopted lower mass limit.

An inspection of the MFs reveals that while some of them are
well fitted by single power laws, others show strong deviations from
a power-law MF. To investigate this issue further, we correlated the
χ2 value of the power law fitted with various cluster parameters.

A single significant correlation has been found with the MF slope
itself, in the sense that flatter MFs present better power-law fits. To
highlight this result, we plot in Fig. 9, the residuals of the power-law
fit for clusters with α ≷ − 1. It is apparent that while clusters with
a relatively flat MF (α > −1) show no significant deviation from
the best-fitting power law, clusters with steep MFs have a convex
shape. In particular, a point of maximum curvature is apparent at
log(m/M�) ∼ −0.4 (corresponding to a mass m ∼ 0.4 M�). The
same evidence remains apparent even using the α values calculated
adopting a high-mass cut at m > 0.3 M�, indicating a negligible
effect of the uncertainties of the MF estimate at very low masses.

6 A NA LY S I S O F C O R R E L AT I O N S

The MF slopes derived here constitute the largest available data
base and can be therefore used to search for correlations with
other structural and general parameters. We considered the fol-
lowing parameters to look for possible correlations with the MF
slope: Position in the Galaxy (RGC, Z from the Harris catalogue;
Harris 1996, 2010 edition), destruction rates (ν; from Allen, Moreno
& Pichardo 2006, 2008), concentration (c; from McLaughlin &
van der Marel 2005), age and metallicity (t9, [Fe/H]; from Dotter
et al. 2010), central V-band surface brightness, mass-to-light (M/L)
ratio, central and half-mass density, half-mass relaxation time and
remnant mass fraction (μV, 0, Mdyn/LV, ρ0, ρh, trh, fremn; from the
best-fitting multimass model adopted in this analysis).

As a first step, we analysed univariate correlations between α

and the other parameters. For this purpose, a Monte Carlo proce-
dure has been applied to estimate the significance of the obtained
correlations. For each of the considered parameters, we performed
an error-weighted least-squares fit and calculated the χ2 values.
Then, the same analysis has been performed on 1000 realizations
simulated by randomly swapping the values of the independent
variable among the GCs of the sample. The probability that the
observed correlation is significant is therefore given by the frac-
tion of realizations with a χ2 larger than the observed value. From
this approach, we found three significant (P > 99.7 per cent) cor-
relations with logtrh, fremn and logρh, and a marginally significant
correlation (95 per cent < P < 99.7 per cent) with the central den-
sity, while no significant correlations have been found with other
parameters suggested by previous works (see Section 1). The entire

Figure 9. Residuals of the power-law fit for clusters with α < −1 (left-hand panel) and α > −1 (right-hand panel). The average residuals and their standard
deviations for all mass bins are marked with red dots and error bars (grey in the printed version of the paper). The Kroupa (2001; blue line) and Chabrier (2003;
green line) IMFs are also marked with dotted lines.
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3676 A. Sollima and H. Baumgardt

Figure 10. Univariate correlations between the global MF slope α and various parameters. The statistical significance (P) of each correlation is indicated.

set of correlations and their associated probabilities are shown in
Fig. 10.

We note that, the correlation between α and logtrh has a surpris-
ingly small dispersion (σ = 0.29 i.e. compatible with the actual
α uncertainties; see Section 5). The only cluster straying from the
observed trend is NGC 6304 with an MF slope α = −1.89 ± 0.19
steeper than those of the other GCs of our sample. It should be
noted however that this cluster is close to the Galactic bulge whose
MF is known to be bottom heavy (Zoccali et al. 2000; Calamida
et al. 2015). We therefore cannot exclude the possibility that the pe-
culiar MF measured in this GC is due to a significant contamination
from the bulge. Another way to visualize the above correlation is
shown in Fig. 11, where the MF slope α is plotted against the ratio
of age to present-day half-mass relaxation time tage/trh. Again, GCs
define a very tight correlation in this plot, indicating an evolutionary
sequence. In other words, after the same number of present-day half-
mass relaxation times clusters have similar MF slopes regardless of
their orbits and chemical compositions. Another investigation can
be made based on the location of clusters in the tage/trh–α plane
as shown in Fig. 11: while GCs with tage/trh < 1 have MF slopes
α ∼ −1.5 similar to that of a Kroupa (2001) MF, the mean MF slope
increases by ∼0.5 dex at tage/trh ∼ 3.

We also extended our analysis to bivariate correlations. The χ2 of
a bilinear fit of all the possible pairs of parameters has been calcu-
lated and compared. The smallest χ2 are all those found by assuming

Figure 11. MF slope α as a function of the ratio between cluster age and
present-day half-mass relaxation time for the 29 GCs of our sample.

MNRAS 471, 3668–3679 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/471/3/3668/4002693 by IN
AF –IASF Bologna user on 10 July 2020



The mass function of 35 Galactic GCs 3677

Figure 12. Bottom panels: distribution of the accepted trials of the Markov Chain Monte Carlo in the logtrh–α (left), fremn–α (middle) and logρh–α (right)
planes. Top panels: distribution of the 29 analysed clusters in the logtrh–α (left), fremn–α (middle) and logρh–α (right) planes. The orientation of the biases are
indicated by arrows.

logtrh as the independent variable. To estimate how significant the
improvement with respect to an univariate fit is, we applied the same
Monte Carlo approach described above: we compared the χ2 of the
bivariate fit (assuming logtrh as the first independent variable) with
those obtained by randomly swapping the values of the adopted
second independent variable. We found a marginally significant (P
= 97.7 per cent) improvement with respect to the univariate fit only
by assuming as second independent variable fremn.

Unfortunately, trh, fremn, ρh and α are all output parameters of the
best-fitting multimass model adopted in this work. It is therefore
possible that covariances between the uncertainties in these param-
eters conspire to spuriously create the quoted correlations. To test
this hypothesis, we run a Markov Chain Monte Carlo analysis on
our target GCs. This algorithm samples the parameter space in the
neighbourhood of the best-fitting parameters, providing a distribu-
tion of accepted trials which reflect the actual probability distri-
bution. The distribution of accepted trial values in the logtrh − α,
fremn − α and logρh–α planes for the cluster NGC 288 are shown in
Fig. 12, as an example. The covariance between α and logtrh is ap-
parent with a tendency of solutions with longer trh to have shallower
MFs, while no significant slope with logρh or fremn is noticeable.
A similar behaviour has been noticed in the other clusters with no
significant dependence of the bias orientation and strength on the
position in these planes. Note that the direction of such a bias in
the logtrh–α plane is similar to that of the observed correlation.

However, the shift in α along the bias direction needed to erase any
significant correlation with logtrh would be as large as �α ∼ 0.8
at the extreme of this plot i.e. ∼3 times larger than typical uncer-
tainties. To further check that the observed correlation is not driven
by the covariance spuriously introduced by the adopted fitting pro-
cedure, we correlated the derived MF slopes with the logtrh values
derived independently by McLaughlin & van der Marel (2005) fit-
ting single-mass King (1966) models. Also in this case, we found a
confidence level >99.9 per cent that the two variables are correlated.
So, while it is conceivable that the observed logtrh–α correlation is
sharpened by the covariance between errors, it cannot be completely
produced by this bias.

Another source of bias could be linked to an overestimate of the
level of completeness. This could indeed spuriously deplete the MF
at its low-mass end, in particular for dense GCs characterized by
short relaxation times. While we cannot completely exclude this
occurrence, it is unlikely that a significant bias in the estimated
completeness is present above the magnitude limit corresponding
to stellar masses m > 0.2 M�, in the portion of the CMD used to
estimate the MF slope. To check the possible effect of uncertainties
in the completeness correction, we repeated the analysis by using
the MF slope α calculated assuming a high m > 0.3 M� cut and
excluding all those clusters with completeness levels <50 per cent
within their core radii at masses <0.25 M� (see Leigh et al. 2012).
Although only 15 GCs survive to this severe criterion, the
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3678 A. Sollima and H. Baumgardt

correlation between α and logtrh remains significant at 99.9 per cent,
while the significance levels of the other correlations drop below
75 per cent. On the basis of the above test, we conclude that the
logtrh–α correlation we observe among the GCs of our sample is
robust and real.

7 D ISCUSSION

Through a comparison of the deepest available HST photometric
data with multimass King–Michie models, we derived the MFs of
35 Galactic GCs just above the hydrogen-burning limit as well as
structural parameters, masses, M/L ratios and fraction of remnants
for a subset of 29 GCs with available radial velocity information.

The MFs of GCs are generally well described by power laws, in
particular when clusters with relatively shallow MF slopes (α > −1)
are analysed. Noticeable deviations from power laws are evident in
clusters whose MFs are steeper than α = −1. In particular, in these
cases a bend in the MF is appreciable at masses m ∼ 0.4 M� with
a significant depletion of low-mass stars. This evidence has been
previously reported by De Marchi & Paresce (1997) and De Marchi,
Paresce & Portegies-Zwart (2010), who also defined a relation link-
ing the position of the bend with the dissolution time-scale. These
GCs have half-mass relaxation times of trh > 6 Gyr, and it is possi-
ble that their MFs have not been significantly altered by dynamical
evolution effects. We will discuss these deviations in greater detail
in a second paper (Baumgardt & Sollima 2017), where we com-
pare the MF slopes derived in this work with the results of N-body
simulations. In this interpretation, the convex shape of their MFs
might resemble the original shape of the IMF, in agreement with
the prediction of Kroupa (2001) and Chabrier (2003).

By correlating the derived MF slopes with different structural
and orbital cluster parameters, we found significant and tight cor-
relations with the half-mass relaxation time. Although covariance
between uncertainties can spuriously enhance the strength of the
logtrh–α correlation, we believe that it is real since (i) its extent
exceeds the range over which the above-mentioned bias would pro-
duce a sizeable effect, and (ii) it is significant using independent
estimates of trh. This correlation is expected as a result of the natural
evolution of collisional stellar systems. Indeed, two-body relaxation
is the main mechanism leading to the segregation of low-mass stars
to the outer cluster parts, where they can be easily lost by tidal strip-
ping (Vesperini & Heggie 1997; Baumgardt & Makino 2003; Leigh
et al. 2012). So, the shorter the time-scale of internal dynamical
evolution the more efficient is the depletion of the MF. However,
the location of N-body simulations in the logtrh–α plane is highly
sensitive to the original slope of the IMF, with clusters starting
with a steeper IMF reaching also steeper present-day MFs after a
given number of elapsed relaxation times than clusters starting with
flatter IMFs (Webb & Vesperini 2016). Thus, a significant spread
in this relation would be apparent if cluster-to-cluster variations of
the IMF were present at the epoch of their formation. On the other
hand, all surveys of N-body simulations performed so far, showed
that two-body relaxation is expected to produce a slow variation
of the MF slope. In particular, simulations starting with a Kroupa
(2001) IMF take ∼13 half-mass relaxation times to flatten their MF
up to a slope of α = −1 and reach a flat α = 0 slope only close to
dissolution (Baumgardt & Makino 2003; Webb & Vesperini 2016;
Lamers et al. 2013). In such a picture, it is hard to explain the large
range in α covered by the GCs of our sample, in particular in the
less-evolved tage/trh < 5 regime, without any primordial spread in
their IMFs. In this last case, however, a correlation between the

IMF slope and the present-day half-mass relaxation time would be
necessary to reproduce the observed logtrh–α correlation.

The universality of the IMF of Milky Way GCs has important
implications for the thermodynamics of the gas clouds from which
GCs formed at high redshift. Theoretical arguments indeed sug-
gest a dependence of the IMF on the metal content and the initial
density of the cluster because of their effect on the Jeans mass
and on the efficiency of radiative feedback (Silk 1977; Adams &
Fatuzzo 1996; Larson 1998; Klessen, Spaans & Jappsen 2007), al-
though the actual impact of these processes is uncertain. Whether
Milky Way GCs were born with a universal IMF or not, provides
insight on the efficiency of these mechanisms in the environmental
conditions of GCs at their birth. It is interesting to consider the
evidence found in stellar systems populating regions of the MV–
reff plane contiguous to GCs. In this regard, while Grillmair et al.
(1998) and Wyse et al. (2002) derived MFs for Draco and Ursa
Minor dwarf spheroidals which are consistent with a Salpeter (1955)
IMF, Geha et al. (2013) found evidence of MF variations correlated
with the mean metallicity in a sample of ultrafaint dwarf galaxies.
Since these systems are dynamically unevolved, these variations
can be only interpreted as primordial. This study has been however
questioned by El-Badry, Weisz & Quataert (2017), who found that
significant MF differences cannot be detected unless the photomet-
ric data used are significantly deeper than that currently available.
On the other hand, Weisz et al. (2013) analysed a large sample of
young clusters and associations whose MFs are available in the lit-
erature. In spite of the large cluster-to-cluster differences, a careful
revision of the associated errors indicates that the hypothesis that
they are consistent with a single IMF slope cannot be ruled out.
Hence, due to the above conflicting results, it is not clear if a com-
mon mechanism of star formation was at work for GCs and less
massive and dense stellar systems.

Interestingly, Baumgardt & Makino (2003), Lamers et al (2013)
and Webb & Leigh (2015) found a unique relation linking the
present-day MF slope and the fraction of mass lost by their simu-
lated GCs. Such a relation, which is valid only if a universal IMF is
assumed, appears to be almost insensitive to the strength of the tidal
field, the type of cluster orbit, and to the initial mass and size of
the cluster. The MFs derived here have slopes which imply a huge
amount of mass lost (>70 per cent) by the majority of GCs in our
sample. By inverting equation (14) of Baumgardt & Makino (2003)
and adopting the present-day masses listed in Table 1, we estimated
the amount of mass lost by each cluster during its evolution. As-
suming that our sample covers ∼20 per cent of the GC system of the
Milky Way, a global mass of ∼2 × 108 M�, mainly in low-mass
stars, could have been released in the Galactic halo by GCs. In spite
of the large uncertainties in the Galactic halo mass (Morrison 1993;
Bell et al. 2008; Deason, Belokurov & Evans 2011), this could con-
stitute a significant contribution to the total mass budget of the halo.
This is in agreement with the prediction by Martell & Grebel (2010)
based on the fraction of halo stars showing the chemical signature
of GCs stars. In this picture, one would expect a significant excess
of low-mass stars in the MF of halo stars. Such a prediction could
be probably verified by the incoming data provided by the Gaia
survey.

Another significant correlation has been found between the
present-day MF slopes and the fraction of dark mass. The natu-
ral interpretation of this correlation is that dark remnants (mainly
constituted by white dwarfs) have masses larger than the average
cluster stars and are being more efficiently retained. Moreover, the
fraction of white dwarfs steadily increase with time as less massive
(and more abundant) stars approach this late stage of their evolution.
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Studies based on N-body simulations have shown that, because of
the two above-mentioned processes, the fraction of mass contained
in remnants increases as two-body relaxation proceeds (Baumgardt
& Makino 2003; Contenta, Varri & Heggie 2015). Such a corre-
lation becomes less significant when dense GCs, subject to low
completeness at low masses are excluded.

Significant correlations with the half-mass and (marginally) with
the central density (obviously related to trh) have also been found,
in agreement with previous finding by Paust et al. (2010). All the
correlations with orbital parameters and position in the Galaxy sug-
gested by previous studies based on the analysis of small samples
of GCs (Capaccioli et al. 1993; Djorgovski et al. 1993; Piotto &
Zoccali 1999), have been found to be less significant although they
cannot be completely ruled out. No significant correlation has been
found with the cluster concentration, as previously suggested by De
Marchi et al. (2007). Note that, while the uncertainties on the indi-
vidual MF slopes do not allow us to exclude the presence of such
a correlation, for most GCs studied by De Marchi et al. (2007),
the slope of the global MF has been assumed to be that measured
in an external region close to the half-mass radius. However, in
high-concentration clusters, the analysed fields are often located
well beyond the half-mass radii estimated here, a region where the
MF is expected to be steeper because of mass-segregation effects.
In particular, there are three high-concentration GCs out of 6 in
their sample where the MF is calculated between 3 and 7 half-mass
radii. This could create a spurious correlation between MF slope
and concentration.

It is worth stressing that our results are based on an analysis
conducted in the central region of GCs where mass-segregation
effects are particularly strong. As a consequence, the derived global
MFs are sensitive to the recipe of mass segregation of the adopted
multimass models. In Sollima et al. (2015), we showed that such
an assumption can potentially lead to biases in the estimated MF
slopes as large as �α ∼ 0.2, i.e. comparable with the estimated
random uncertainties (see Section 5). Although the magnitude of
such a bias cannot alter the conclusions of this paper, the present
analysis would greatly benefit from constraints on the MF measured
in the outer regions of these clusters (see e.g. Sollima et al. 2017).
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