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ABSTRACT

Aims. Following our past study of the distribution of warm gas in the G327.3-0.6 massive star-forming region, we aim here at
characterizing the large-scale distribution of water in this active region of massive star formation made of individual objects in
different evolutionary phases. We investigate possible variations of the water abundance as a function of evolution.

Methods. We present Herschel/PACS (4’ x 4’) continuum maps at 89 and179 um encompassing the whole region (HII region and
the infrared dark cloud, IRDC) and an APEX/SABOCA (2’ x 2’) map at 350 um of the IRDC. New spectral Herschel/HIFI maps
toward the IRDC region covering the low-energy water lines at 987 and 1113 GHz (and their H,'®O counterparts) are also presented
and combined with HIFI pointed observations toward the G327 hot core region. We infer the physical properties of the gas through
optical depth analysis and radiative transfer modeling of the HIFI lines.

Results. The distribution of the continuum emission at 89 and 179 um follows the thermal continuum emission observed at longer
wavelengths, with a peak at the position of the hot core and a secondary peak in the Hi region, and an arch-like layer of hot gas
west of this Hu region. The same morphology is observed in the p-H,O 1,,—-0¢ line, in absorption toward all submillimeter dust
condensations. Optical depths of approximately 80 and 15 are estimated and correspond to column densities of 10'* and 2 x 10'* cm™>
, respectively, for the hot core and IRDC position. These values indicate an abundance of water relative to H, of 3x107% toward the
hot core, while the abundance of water does not change along the IRDC with values close to some 1078, Infall (over at least 20”) is
detected toward the hot core position with a rate of 1 — 1.3 x 1072 M, /yr, high enough to overcome the radiation pressure that is due
to the stellar luminosity. The source structure of the hot core region appears complex, with a cold outer gas envelope in expansion,
situated between the outflow and the observer, extending over 0.32 pc. The outflow is seen face-on and rather centered away from the
hot core.

Conclusions. The distribution of water along the IRDC is roughly constant with an abundance peak in the more evolved object, that

is, in the hot core. These water abundances are in agreement with previous studies in other massive objects and chemical models.

Key words. Stars: formation — ISM: Hu regions — ISM: individual objects: G327.36-0.6

1. Introduction

In the past years, several studies have focused on the character-
ization of water, a crucial molecule in modeling the chemistry
and the physics of molecular clouds (van Dishoeck et al.,[2014),
in different environments of star formation. In particular, the key
program Water In Star-forming regions with Herschel (WISH)
(van Dishoeck et al.l [2011])) targeted different phases of star and
planet formation to understand the evolution of water in these
sources, while other Herschel projects also investigated water
in selected sources (e.g., Emprechtinger et al., 2013} |Santangelo
et al., 2014} Leurini et al., [2014; |Goicoechea et al., [2015). Most
of these studies focus on observations of single sources and do
not contain much spatial information on the distribution of water
in the environment surrounding the source. Exceptions are the

* Herschel is an ESA space observatory with science instruments
provided by European-led Principal Investigator consortia and with im-
portant participation from NASA.

work of Jacq et al.| (2016)), which covered the clouds surrounding
the mini-starburst W43 MM 1, or studies of large-scale molecu-
lar outflows (e.g., Nisini et al.| [2013; Santangelo et al., [2014),
but in these cases, only the immediate surrounding of low-mass
young stellar objects was investigated.

As part of the WISH project, six nearby cluster-forming
clouds were mapped in multiple water transitions; the data were
complemented with mid- and high-J CO and '3*CO observations
with the APEX telescope and Herschel to better characterize the
warm gas in the (proto-) clusters. In this paper, we present ob-
servations of water of the star-forming region G327.3-0.6 at a
distance of 3.1 kpc (Wienen et al., 2015). Different evolutionary
phases of massive star formation coexist in a small (~3pc) re-
gion (Wyrowski et al.,|2006): a bright Hi region (Goss & Shaver,
1970) associated with a luminous photon-dominated region seen
in CO (hereafter Paper, |Leurini et al| [2013)), and a chemically
extremely rich hot core (Nummelin et al., |1998} |Gibb et al.,
2000) in a cold infrared dark cloud hosting several other dust
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Table 1. Herschel/HIFI observed water line transitions (toward the hot core region in pointing mode). Frequencies are from |Pearson:

et al. (1991). The rms is the noise in §v = 1.1MHz.

Water species Frequency = Wavelength E, HIFI Beam 7y Tiys rms obsid
[GHz] [em] [K] band [”] [K] [mK]
0-HPBO 1,p-19)*  547.6764 5474 60.5 la 37.8  0.62 80 78 1342205525
0-H)’O 119-1os 552.0209 543.1 61.0 la 37.8. 062 70 40 1342191554-5
p-HIBO 20511, 994.6751 301.4 100.6  4a 21.1  0.63 290 44 1342203171
0-HI30 3,,-30; 1095.6274 273.8 248.7  4b 199 0.63 380 59 1342214424
p-HIFO 11,000 1101.6982 272.1 529 4b 199  0.63 390 38 1342214422-3,1342214425-6
p-HI7O 1,,-0g 1107.1669 272.1 52.9 4b 199 0.63 380 59 1342214424
0-H§7O 21510 1662.4644 180.3 113.6  6b 127 058 1410 232 1342192585
0-H,O 1;0-101¢ 556.9361 538.3 61.0 la 37.1  0.62 80 78 1342205525
p-H,0 2412, 752.0332 398.6 1369  2b 28,0 0.64 90 50 1342205844
p-HO 55445 970.3150 309.0 598.8  4a 21.8  0.63 620 40 1342227539
p-H,0 2051, 987.9268 303.5 100.8  4a 21.3  0.63 340 65 1342203169-1342203170
0-H,0 315303 1097.3651 273.2 2494  4b 199 0.63 380 59 1342214424
p-H,0 1,000  1113.3430 269.0 534 4b 19.7  0.63 395 38 1342214421-3,1342214425-6
0-H,0 25,2, 1661.0076 180.5 194.1 6b 127 058 1410 232 1342192585
0-H,0 2)5—-1¢; 1669.9048 179.5 1144  6b 126  0.58 1410 232 1342192585

Notes. ¢ This line was mapped in OTF mode (small map). ® This line was mapped in OTF mode (large map).

condensations (Minier et al., [2009), one of which has signs of
active star formation (Cyganowski et al., [2008). The region was
studied in mid-J CO and “CO lines in PaperI: emission is de-
tected over the whole extent of the maps (3x4 pc) with excitation
temperatures ranging from 20 K up to 80 K in the gas around the
Hu region, and H; column densities from a few 102 cm™2 in
the interclump gas to 3 x 10?> cm™2 toward the hot core. The
warm gas is only a small percentage (~10%) of the total gas in
the infrared dark cloud, while it reaches values of up to ~35%
of the total gas in the ring surrounding the Hm region. The goal
of our current study is to characterize the large-scale distribution
of water in an active region of massive star formation that shows
different evolutionary phases to verify whether its abundances
varies as a function of evolution.

2. Observations and data reduction

We present mapping observations of the G327.3-0.6 massive
star-forming region collected with the HIFI (de Graauw et al.,
2010) and PACS (Poglitsch et al.l [2010) spectroscopic instru-
ments on board Hersche (Pilbratt et al.,)2010) in the framework
of the WISH program. Additional APEX observations with the
SABOCA camera (Sect. [2.3) are also discussed.

2.1. HIFI pointed observations and maps

Three water lines as well as the '2CO(10-9) (Leurini et al., 2013)
and C'80(9-8) lines have been observed with HIFI in August
2010 (OD 461) and February 2011 (OD 645) using the on-the-
fly observing mode with Nyquist sampling. The center of the
map is @ j72000= 15h53m0548s, 5]2000 =-54°36’06.2”. The ref-
erence position was 5 arcmin offset north in declination for all
observations.

The HIFI observations were made in bands 4B and 4A. The
sideband separation of 8 GHz and IF bandwidth of 4 GHz al-
low a local oscillator (LO) setting where the 0-H,O and H,'80
111 — Ogo transitions at 1113.343 GHz and 1101.698 GHz, re-
spectively, and the 3CO(10-9) transition at 1101.350 GHz can

! Data can be retrieved from the Herschel Archive System, http:
//archives.esac.esa.int/hsa/whsa

be observed simultaneously. The same holds for the p-H,O and
C'"0 (9-8) transitions at 987.927 GHz and 987.560 GHz, re-
spectively. The 1113 GHz water map consists of 19 OTF rows
made of 26 independent points covering 3.5'%2.7’ (one map cov-
erage), while the 987 water map consists of 8 OTF rows made of
10 independent points covering 1.2’ x 1.2 (with two map cover-
ages).

As with all massive protostars observed by the WISH GT-
KP, 14 water lines (see Table were observed with HIFI in
the pointed mode at frequencies between 547 and 1670 GHz
in 2010 and 2011 (list of observation identification numbers,
obsids, are given in Table |1)) toward the G327 hot core region
(RA=15h53m08.8s, DEC= -54°37°01"), between SMM2 and
the hot core position (see Sect. [3.3) because of a confusion be-
tween different references (e.g.,|Bergman, [1992). An additional
high-energy water line at 970.3150 GHz was also observed. We
used the double beam-switch observing mode with a throw of
3’. The off positions were inspected and did not show any emis-
sion. The frequencies, energy of the upper levels, system temper-
atures, integration times, and rms noise level at a given spectral
resolution for each of the lines are provided in Table

Data were taken simultaneously in H and V polarizations
using both the acousto-optical Wide-Band Spectrometer (WBS)
with 1.1 MHz resolution and the digital auto-correlator or High-
Resolution Spectrometer (HRS), which provides higher spectral
resolution. Calibration of the raw data into the T4 scale was per-
formed by the in-orbit system (Roelfsema et al.,|2012)); conver-
sion to T,,, was made using the latest beam efficiency estimate
from October 2014E] given in Table and a forward efficiency of
0.96. HIFI receivers are double sideband with a sideband ratio
close to unity (Roelfsema et al., [2012)). The flux scale accuracy
is estimated to be between 10% for bands 1 and 2, 15% for bands
3 and 4, and 20% in bands 6 and 7'. The frequency calibration
accuracy is 20 kHz and 100 kHz (i.e., better than 0.06 km s~1) for
HRS and WBS observations, respectively. Data calibration was
performed in the Herschel Interactive Processing Environment
(HIPE, Ott, |2010) version 12. Further analysis was made within
the CLAS package (Dec. 2015 version). These lines are not
expected to be polarized, therefore data from the two polariza-

2 http://www.cosmos.esa.int/web/herschel/home
3 http://www.iram.fr/IRAMFR/GILDAS/
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Table 2. Summary of the PACS Herschel and SABOCA APEX
observations.

Transition A E, R r.m.s.
[um]  [K] ["] Jy/beam
PACS
0-H,02, -1 179.53 1144 123 1467 1
0-H,03p3 -2, 17463 196.8 12.0 1409 1
Continuum observations
SABOCA 350 7.8 - 2
PACS 89.8 9.1 - 2
PACS 179.5 12.3 - 4

tions were averaged together after inspection. For all observa-
tions, eventual contamination from lines in the image sideband
of the receiver was checked and none was found. Some unidenti-
fied features (not due to water species) are nevertheless detected
but not blended with the water lines. Because HIFI is operating
in double-sideband, the measured continuum level was divided
by a factor of 2 (in the figures and tables) to be directly compared
to the single-sideband line profiles (this is justified because the
sideband gain ratio is close to 1).

2.2. PACS maps

PACS is an integral field unit with a 5 X 5 array of spatial pixels
(hereafter spaxels). Each spaxel covers 974 x 9”4, providing a
total field of view of ~ 47" x 47", The observations (see Table
2} obsid 1342192145) were performed using the PACS chopped
line spectroscopic mode (see Poglitsch et al., |2010). The area
mapped with PACS is shown in Fig. [I] This mode achieves a
spectral resolution of ~ 0.12 um (corresponding to a velocity
resolution of ~ 210 km/s). Two nod positions were used that
chopped 6’ on each side of the source. The two positions were
compared to assess the influence of the off-source flux of ob-
served species from the off-source positions. The typical point-
ing accuracy is better than 2”.

We performed the basic data reduction with the Herschel
Interactive Processing Environment v.12 (HIPE, Ott 2010). The
flux was normalized to the telescope background and calibrated
using Neptune observations. Spectral flatfielding within HIPE
was used to increase the signal-to-noise ratio (for details, see
Herczeg et al., 2012;|Green et al.,|2016). In order to account for
the substantial flux leakage between the spaxels surrounding the
true source position and to improve the continuum stability, cus-
tom IDL routines were used to further process the datacubes for
the wavelength-dependent loss of radiation for a point source
(see PACS Observers Manual). The overall flux calibration is
accurate to ~ 20% based on the flux repeatability for multi-
ple observations of the same target in different programs, cross-
calibrations with HIFI and ISO, and continuum photometry. The
continuum (and line) rms are given in Table@

2.3. SABOCA map

The IRDC in G327.36-0.6 was observed with the APEXF
telescope in the continuum emission at 350 ym with the
Submillimeter APEX Bolometer Camera (SABOCA, |Siringo
et al.| 2010). The observations were performed in 2010, on May
11 (see Table [2). The pointing was checked on B13134 (also

4 APEX is a collaboration between the Max-Planck-Institut fiir
Radioastronomie, the European Southern Observatory, and the Onsala
Space Observatory.

Dec. (j2000)

R.A. (J2000)

Fig. 1. Large-scale Spitzer image at 3.6 um of G327.36-0.6. The
boxes show the areas mapped with PACS at 89 and 179 um (solid
white line), with HIFT at 1113 GHz (white dashed line), and at
987 GHz (red line). The white crosses and triangle mark the po-
sitions discussed in Paper 1.

Table 3. Overview of the sources in the G327.3-0.6 massive
star-forming region (positions corrected by the shift as explained

in Sect.[3.1).

source 12000 612000
SMMI (hot core)*®  15h53m07.8s -54°37°06.5”
SMM2? 15h53m09.3s  -54°37°01.0”
SMM3¢ 15h53m04.0s  -54°35°34.0”
SMM4?* 15h53m10.7s  -54°36’47.2”
SMM5¢ 15h53m01.4s  -54°35°20.0”
SMM6? 15h53m00.2s  -54°37°34.4”
SMM7?4 15h53m12.3s  -54°36’12.9”
SMMS8§? 15h53ml12.1s  -54°36’31.0”
SMM9? 15h53m03.3s  -54°34°58.0”
SMM10? 15h52m59.1s  -54°37°52.0”
EGO¢ 15h53m11.2s -54°36°48.0”
Hn® 15h53m03.0s  -54°35’25.6”

? based on the SABOCA map

b the ATCA 3 mm position of [Wyrowski et al.| (2008) is @y =
15"53™07°.8, 852000 = —54°37°064.

¢ Minzier et al.| (2009)

4 |Cyganowski et al.| (2008)

peak of the centimeter continuum emission from ATCA archival

data at 2.3 GHz, project number C772

used as flux calibrator) and on the bright hot core hosted in the
IRDC, on the peak of the 3 mm continuum emission obtained
by Wyrowski et al.| (2008) with the ATCA array. Skydips (fast
scans in elevation at constant azimuthal angle) were performed
to estimate the atmospheric opacity. The weather conditions at
the time of the observations were good, with a median precip-
itable water vapor level of 0.24 mm. The data were reduced with
the BOA software (Schuller, 2012).
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Fig. 2. Color scale and white contours are the PACS continuum
image of G327.36-0.6 at 89 (top panel, resolution is 9.1”") and
179 um (bottom panel, resolution is 12.3””). Contours are from
5% of the peak flux in steps of 10%. The triangles mark the posi-
tions of the submillimeter continuum peaks reported in Table 3]
The red box outlines the area plotted in Fig.

3. Observational results
3.1. Continuum emission

Figure [2] shows the distribution of the continuum emission of
G327.3-0.6 at 89 and 179 um observed with PACS. The mor-
phology follows the thermal continuum emission observed at
larger wavelengths (Schuller et al.| |2009; Minier et al., 2009),
with a peak at the position of the hot core and a secondary peak
in the Hm region toward SMM3. Additionally, the 179 um map
also shows weak emission along an arch-like layer of hot gas
west of the Hu region seen in Fig. [I|at 3.6 um but also in '>CO
and '3CO (Paper I). The SABOCA map of the IRDC in the
G327.3-0.6 massive star-forming region is shown in Fig. 3] The
map shows a shift toward the east with respect to the continuum
map at 450 um published by Minier et al.| (2009). However, the
peak of the 350 um continuum emission coincides with the po-
sition derived for the hot core in Paper I and with the position

—54°36'00"

—54°36'30"

Jy/beam

200

—54°37'00"

& [42000]

100

—54°37'30"

53700"

53™10"

15"53™15°
a [12000]

Fig. 3. Distribution of the SABOCA continuum emission at 350
pm along the infrared dark cloud in G327.3-0.6. Contours are
from 5% of the peak flux in steps of 10%. The triangles mark
the positions of the submillimeter continuum peaks reported in
Table[3] The red cross marks the position observed for the single
pointing HIFI observations. The white circle in the bottom left
corner shows the beam of the SABOCA observations.

inferred with interferometric measurements at 3 mm (Wyrowski
et al., [2008) within ~1”3, while the peak of the 450 um con-
tinuum map is shifted of (7”,-2.6”) from the ATCA position.
Therefore the difference between the two continuum maps is
probably due to a pointing error in the 450 um data (larger than
their pointing accuracy), which then have been shifted.

We used the Gauss-clump program (Stutzki & Giistenl [1990;
Kramer et al., [1998) to derive the positions of the dust conden-
sations discussed by |[Minier et al.|(2009). Their new coordinates
are reported in Table [3|together with other sources in the region
discussed in Paper I and in this study. The largest offset is for
SMMB6, whose SABOCA position is (-6”1, -576) from the previ-
ous reported one, although the source is well isolated. The other
sources (SMM1, SMM2, SMM4, SMM7, and SMMS) have a
shift (compared to Minier et al., 2009) between -4’3 and -70 in
right ascension, and between -1”9 and 2”5 in declination from
the corresponding 450 um sources. For the region not covered
by our SABOCA map, the coordinates listed in Table |3|are from
Minier et al.|(2009).

3.2. Large-scale distribution of water

The distribution of the absorption in the p-H,O 1;1—0¢ line is
shown in Fig. @] and closely follows the distribution of the con-
tinuum emission at 179 um. The detailed distribution of water in
the IRDC and the HII regions are discussed in Sects. [3.2.1 and

[3.2.2] respectively.

3.2.1. IRDC

The IRDC hosting the hot core G327.3-0.6 was mapped in two
different transitions of water (at 987 and 1113 GHz) with HIFL.
Absorption is detected in the 1113 GHz line toward all submil-
limeter dust condensations (see Fig. E]) but because it is satu-
rated toward most positions, any quantitative analysis is difficult
(see Sect.[d.T). The 29, — 1y; line at 987 GHz (see Fig. [f) is seen
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Fig. 5. Spectral HIFI map of the line-to-continuum ratio of the
111 — Ogo p-H2O line toward the IRDC region overlaid on the
B3CO(6-5) integrated emission (color image). The temperature
axis ranges from -1 to 1.5 K, the velocity axis ranges from -65 to
-35 km s~!. The 3CO(6-5) data are smoothed to the resolution
of the H,O map. The black triangles mark the positions of the
peaks of the 450 um continuum emission.

in emission except at the positions of the hot core and of SMM?2,
where a combination of emission and absorption is detected.
The ground-state para line shows a broad saturated absorption
toward the hot core position, and its line-width narrows along
the IRDC. On the other hand, the 987 GHz line shows broad
blue- and redshifted non-Gaussian wings. The integrated inten-
sity maps of the red- (visg = [-35,-15] km s~1) and blueshifted
(Visr = [-60,-50] km s~') 987 GHz line show a bipolar mor-

Dec. [§2000]
Tys A v [K km s7']

15"53™15" 10° 05
RA. [J2000]

Fig. 6. Integrated HIFI intensity map of the p-H,O 2¢,-1;; line
([-50,-38]km s™!) toward the IRDC region (color image). The
black contours show the SABOCA continuum emission at 350
pum from 5% of the peak flux in steps of 10%. The triangles
mark the positions of the submillimeter continuum peaks re-
ported in Table E[ Beams of the observations of the p-H,O 2;-
111 line (white circle) and of the 350 um continuum (red circle)
are shown in the bottom left corner.

phology along the north-south direction centered to the east of
the hot core near SMM2 (see Fig. [7). This shift is not due to
a pointing error in the HIFI observations as the C'80(9-8) line
(vcis0,. = 987560.3822 MHz, observed simultaneously to the
987 GHz water line) peaks on the hot core. The outflow is un-
resolved, and the blue- and redshifted emission is detected only
in a few spectra centered approximately on (-10”,-7"") from the
hot core. Figure 8] shows the P-V diagrams of the CO(6-5) line
(from Paper I, top panels) and of the 987 GHz water transition
(bottom panels) along two cuts in the north-south direction pass-
ing through the center of the outflow (left panels) and through
the hot core (right panels). No obvious difference is seen in the
CO(6-5) transition in the two P-V diagrams, while the 987 GHz
transition shows broader profiles (extending approximately up to
-15 km s7! ) along the axis of the outflow than in the north-south
cut through the hot core. This is also seen in Fig.[9] where we
show the 987 GHz and CO(6-5) (averaged over the HIFI beam)
spectra at the peak of the redshifted emission: the water profile
has a clear non-Gaussian redshifted wing and is self-absorbed,
while CO(6-5) is not and has a broad non-Gaussian profile but
no redshifted asymmetry. That the line-profile is broader in water
than in CO (generally not seen in other sources using the CO(3—
2) line, see |van der Tak et al., [2013) could point to a molecular
outflow in an earlier evolutionary phase of SMM2 than of the hot
core. Recent observations of low-mass YSOs (Kristensen et al.}
2012; Mottram et al.| [2017) found that molecular outflows from
class 0 YSOs have more prominent wings in water than those of
class I sources.

The 1113 GHz spectra show additional absorption features
that are due to foreground clouds (van der Tak et al., 2013). From
single-pointing deep integration observations of the 1113 GHz
line toward the hot core (see Sect. @) at least four features are
detected at about —16.6,—12.8, —11.4, and —3.6 km s~!. When
averaging on several pixels, the —16.6 km s~! absorption is
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Fig.7. Integrated intensity map of the p-H,O 2p;-1;; line in
the blue- ([-60,-50] kms~!, blue contours from 30% of the peak
emission in steps of 10%) and redshifted ([-35,-15]kms™', red
contours from 30% of the peak emission in steps of 10%) ve-
locity ranges toward the IRDC region. The gray contours rep-
resent the integrated intensity of C'30(9-8) ([-48,-42]kms™!,
from 50% of the peak emission in steps of 10%). The white tri-
angles mark SMM1 and SMM2, the green cross the position ob-
served in the single-pointing HIFI observations (labeled as out-
flow in Fig.[8]) The dotted lines outline the cuts used to derive
the P-V diagrams discussed in Sect.[3.2.1).

detected toward SMMS8 (and the other positions). The —12.8
and —11.4 km s~ absorptions are detected at SMM1, SMM2,
SMM4, SMM7, and SMMS, while the —3.6 km s~! component
is not at SMM7 and SMMS. Estimating the exact size of the
foreground clouds is impossible with our data: the line-of-sight
clouds are mostly seen in absorption only toward the hot core
and the other main dust condensations and therefore only toward
the continuum emission. We can nevertheless indicate a lower
limit of their extent: 20", 35", 55", and 55" for the foreground
clouds at -3.6,-16.6,—12.8, and —11.4 km s~!, respectively.

In addition to these HIFI maps, the 21, — 1¢; line at 179.5 um
is detected with PACS in absorption over the entire extent of the
IRDC. However, the line is spectroscopically unresolved and no
further kinematical information can be derived from the PACS
data, whereas the line is spectrally resolved by the HIFI pointed
observation toward the hot core. Finally, the 393 -2, transition at
174.6 um, thus involving excited states, is detected in absorption
toward the hot core, then revealing high gas density (see Sect.
[M.2). Baseline instabilities prevent us from detecting the line at
other positions.

3.2.2. Huregion

The distribution of the 1113 GHz transition in the G327.3-0.5
Hu region is shown in Fig. where its spectral map is
overlaid on the integrated intensity of the '*CO(6-5) line from
Paper 1. The line profile is complex and shows a combination of
emission and absorption. Two features are detected in absorp-
tion at ~ —50 and ~ —38 km s~!. Interestingly, the emission
detected in H,O is always redshifted compared to the 3CO(10-
9) line (Fig. [[1(b)), which was observed simultaneously to the

1113 GHz line (presented in|Leurini et al.,[2013)). The BCo(10-
9) seems to be associated with the absorption at ~ —50 km s~!
and peaked at the same velocity as the CO lines observed in
Leurini et al.|(2013). In Fig. (10| we compare the (r-v) diagrams
of water and '?CO(6-5). These diagrams suggest that the emis-
sion feature at 1113 GHz traces the peak of the '2CO(6-5) emis-
sion. In Paper I we speculated that the CO emission is associated
with an expanding shell. The two absorption features detected
toward the center of the Hir region could be interpreted as due
to the back and the front of the expanding shell. Their separa-
tion in km s~ would be equal to twice the expansion velocity of
the shell. The emission feature would be in the direction of the
bright borders and would represent the mean velocity of the Hit
region. However, the absolute velocities of water do not seem
to fit those of CO (see Fig. [I0): the velocity of the Hm region
would be around —45 km~! and not around —50 km~' , as orig-
inally suggested from the analysis of the CO isotopologs, and
the expanding velocity would be slightly higher (6.5 instead of
5kms™).

In the PACS data (see Fig[A.T)), the 179.5 um line is detected
in absorption toward all positions where continuum emission is
seen, while the 174.6 ym line is not detected. Additionally, the
CH™* (2-1) transition at 1669.281 GHz is also clearly detected in
emission at several positions around the Hi region where CH*
traces a photon-dominated region.

3.3. Pointed observations of the hot core

The pointed observations were not performed toward the exact
hot core position of G327 (see Sect. @]) but we nevertheless
refer to this position as hot core hereafter. The observed posi-
tion is 7.5” west of SMM2 and 16” northeast of SMMI1. As a
consequence, the 0-H,O 2;,-2, and 21, — 1¢; (and the 0—H§7O
212—1p1) line observations are missing most of the water around
SMM1, while for the other lines both SMM2 and SMMI1 are
covered by the beam.

The spectra including continuum emission are shown in
Fig for the rare isotopologs (the H)’O, H,*0) and H)°O.
Spectra of the HyO 111-0go (and HI30), 25-111, and 215-1¢; lines
have previously been presented by jvan der Tak et al.[(2013). We
show the HRS spectra, but for several lines (most of the ground-
state lines) we used WBS spectra because the velocity range cov-
ered by the HRS was insufficient. For each transition, we derived
the peak (emission or absorption dip) main-beam and contin-
uum temperatures, half-power line widths for the different line
components from multi-component Gaussian fits, made with the
CLASS software, and opacities for lines in absorption (line pa-
rameters are given in Table ).

Several foreground clouds (van der Tak et al., |2013)) con-
tribute to the spectra in terms of water absorption at V. (-3.7,
-11.4, -13, -16.6 kms™') shifted with respect to the source ve-
IOCity in the 0'H20 110—101, p-HzO 1]1—000, 0-H20 212—101 and
p-HéSO 111—0gp line spectra.

The velocity components are attributed to cavity shocks and
envelope component as for low-mass (LM) protostars (Mottram
et al., 2014) or for other high-mass studies (see Herpin et al.,
2016). The broad (FWHM=20-35 kms~!) velocity component
arises in cavity shocks (i.e., shocks along the cavity walls) as
its narrower version, the medium component (FWHM=5-10
kms™!), coming from a thin layer (1- 30 AU) along the outflow
cavity where non-dissociative shocks occur. The envelope com-
ponent (narrow component with FWHM <5 kms™') is charac-
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Fig. 8. Top: Color scale and contours show the P-V diagram of the CO(6-5) transition computed along a vertical cut passing through
the outflow (a) and the hot core position (b). Bottom: Color scale and contours show the P-V diagram of the 29, — 1;; H,O line
computed along a vertical cut passing through the outflow (c) and the hot core position (d). The cut through the outflow position
is from ajggp = 15h53m083.8,5]2000 = =54°36’30" to a0 = 15h53m085.8, Op000 = —54°37'27”, the cut through the hot core
from a0 = 157530758, 632000 = —54°36/30" to ayp00 = 157530758, 52000 = —54°37°27". Offset positions increase along the
direction of the cuts. Contours are from 30 in steps of 30~ for H,O, and in steps of 50 for CO.

terised by small FWHM and offset, that is, emission from the
quiescent envelope.

In the following we refer to the commonly assumed hot core
velocity of ~ —45km s~!(Bisschop et al.,|2013), but (APEX) ob-
servations of rare CO isotopolos instead point to lower veloci-
ties: -43.7,-44.3, and -44.7 km s~! for C'30 J=8-7 (and '3CO 10-
9), 6-5, and 1*CO 6-5, respectively (Rolffs et al., 2011} Leurinil
2013). Interestingly, the higher excitation lines tend to be
more blueshifted.

3.3.1. Rare isotopologs

The para ground-state line of the H)’O and H®O (see Fig.
is detected and exhibits the same line profile in absorption,
made of an envelope component (FWHM~3 kms™!) slightly
blueshifted (less than 1 kms™!) from the APEX V,sg, one
narrow or medium redshifted component in absorption, and a
broader absorption that is more redshifted (by <10 kms~"). This
broad absorption is discussed in Sect. A similar profile is
observed for the 0—H§7O 215—1o1 line. While the 0—H§7O 10—
1oy line is not detected, the 0-H}*O 1,9—1¢; line is tentatively

detected with a weak and narrow absorption at -49.8 kms™!.
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Table 4. Observed line emission parameters for the detected lines with HIFI toward G327-0.6 hot core pointed position. v is the
Gaussian component peak velocity. Av is the velocity full width at half-maximum (FWHM) of the narrow, medium, and broad

components. The opacity 7 is from absorption lines.

Line Tmb Tcont Unar Avnar Umed Avmed Upr Aubr T
K] K] [kms™'] [kms™'] [kms™'] [kms™'] [kms™!] [kms™']
0-HI*O 1,0—1os 0.88 1.1 -49.8+0.3¢ 2.4+0.4 0.22+0.05
p-HI2O 20,1, 395 36 -51.0+0.3¢ 44+04 -42.4+0.3  6.4+0.7
0-HI*O 31,-3¢3 4.67 4.29 -41.7£0.3  5.4+0.7
p-HPFO 1;,-000” 3.50 4.17 -43.2/-49.4£0.2* 3.0/2.2£0.3/0.5 -54+1¢ 20+1 0.17+0.06
p-HYO 100" 3.95 4.17 -44.1+0.2¢ 3.2+0.4 -49.1+0.6 5+1 -53+1¢ 20+2 0.05+0.02
O-Hyo 21-1¢ 495 56 -43.2+0.2¢ 3.1+0.4 -40.1+0.9¢ 10+2 -54+3¢ 21+2 0.12+0.05
0-H,0 19-1¢; 0.04 1.1 -45.7+0.2¢  8.3+04  -43.7+0.7 30+2 3.3+0.7
p-H,0 2,120, 6.52 2.19 -43.3+0.1¢ 3.1+0.1 -44.8+0.1  6.4+0.2 -42.8+0.2 18.4+0.6
p-H,0 53443, 4.0 3.6 -42.1+0.2 10.+£0.5
p-H20 205144 771 3.96 -43.3+0.1¢ 4.0+0.1 -44.5+0.1  8.8+0.2 -42.2+04 33+1
0-H,0 31,303 645 429 -43.0+0.1¢ 3.4+0.1 -43.9+0.1 5.6+0.2 -42.1+0.2 15.9+0.3
p-H,0 1,,-0y” 0.06 4.17 -43.2+0.2¢ 4.9+0.2 -48.2+0.2¢4  5.4+0.2 -41.5+2 23.7+0.6 4.+1
0-H,0 2;,-2,” 2.1 5.6 -43.1+£0.2¢ 3.4+0.1 1.0£0.4
0-H,021-1o;> 001 56 -42.5+0.2¢ 4.8+0.2 -48.1£0.2¢  5.8+0.2 6+1
Notes. ¢ in absorption, > WBS data
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Fig. 9. Spectra of the 987 GHz water line (bottom panel) and
of CO(6-5) (top panel) at the peak of the red-shifted integrated
intensity of the 987 GHz transition. The CO(6-5) spectrum is
averaged over the 987 GHz beam.

In contrast, a relatively strong signal is observed for the p-
H}30 20—1; and 0-H}*O 3,-33 transitions (see Fig. show-
ing the same cavity shock blueshifted component in emission. In
addition, the p-H%SO 20—11; line exhibits an absorption at -51
km s~!similar to the one observed for the ground-state lines. We
note that the 0-H}*O 3,-3; line is blended with a CH3OH line.

The absorption that is either narrow (0-H}*O 1y0—1o1, p-
HéSO 202—111, p-HéSO 1]1—000), medium (p-Hé7O 111—0()0), or
broad (p-H;SO 111—000, p-HyO 111—000, o—H;7O 212—101) ob-
served at velocities between -49.1 and -54 kms~' is most likely
the broad absorption component seen in the NHj; line profile (at
-49.62 kms~! with Av ~ 11.1 kms™!) by Wyrowski et al.|(2016)

and could be due to absorption by foreground material (see Sect
[5:2] for a detailed discussion).

Fig. 10. (r-v) diagrams of the Hm region G327.3-0.5 obtained
from the '2CO(6-5) (left) and from the 1;; — Ogo-p H,O (right)
data cubes. The radius axis is the distance to the shell expansion
center, chosen to be the peak of the cm continuum emission. The
black solid half-ellipse represents an ideal shell in (r-v) diagram
with an expansion velocity of 5 km s™! centered on -50 km s~!,
the dashed white half-ellipse an ideal shell with an expansion

velocity of 6.5 km s~! centered on -45 km s~

3.3.2. Water lines

All targeted HéGO lines have been detected in absorption for the
ground-state and the 2,-2, lines, while other transitions exhibit
a line profile in emission with some self-absorption at the source
velocity. One line, p-H,O 5,443, is in pure emission (cavity
shock component), but is blended with a methanol line.

An envelope component in absorption is seen in all lines but
the p-H,O 5,4—43; and 0-H,O 19p—1¢;transitions, centered at ~-
43 kms~!. The medium cavity shock component is observed in
absorption for the ground-state lines, redshifted by 2-4 kms™!,
while it is seen in emission for the other water line and roughly
at the source velocity. In addition, a broad component (up to 30
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Fig. 11. Left: HIFI map of the 1;; — 0y p-H,O line toward the Hu region overlaid on the BCO(6-5) integrated emission (see
Paper I). The temperature axis ranges from -1 to 1.5 K. The spectra are continuum subtracted. The '*CO(6-5) data are smoothed to
the resolution of the H,O map. Right: Spectral maps of the 1;; — 0g p-HO line (black) and of the '*CO(10-9) transition (red). In

both panels, the velocity axis ranges from -65 to -35 km s,

kms™!) is seen in emission in most of the lines (Sect. and is
blueshifted.

All Hé60 lines in absorption are optically thick based on
line/continuum ratios (with opacities between 1 and 6, see Table
F_f[). The optically thick p-H,O 20,111, p-H,O 24,205, and o-
H,0 31,33 lines are strongly blue asymmetric, that is to say,
they exhibit inverse P-Cygni profiles, hence they probably indi-
cate infalling material.

3.3.3. Carbon species

In addition to the water lines, a few lines from carbon species
have been observed and are shown in Fig 13CO J=10-9,
C!80 J=9-8, and CS J=11-10. These three lines are in emission
and centered at —44.8 kms™', hence at a slightly redshifted ve-
locity compared to what derived [Rolffs et al.| (2011) and [Leurini
(2013) from ground observations. Line profiles exhibit a
cavity shock component of 5.3-6.5 kms~!, but a broader compo-
nent (FWHM~11 kms™!) is also observed for the 3CO J=10-9
line.

4. Analysis
4.1. Water abundance from the HIFI data

The opacity of a spectrally resolved unsaturated absorption line
can be determined by

D

where T /T is the line-to-continuum ratio. In this case, the col-
umn density of the absorbing species can be derived by (for
ground-state lines, assuming negligible excitation)

N = 22 At @)

In the case of the 1113 GHz transition, the absorption is sat-
urated toward all positions in the IRDC. In addition, the cor-
responding HégO line (observed in the same setup as the main
isotopolog line) is not detected in the HIFI maps. Therefore, the
opacity of the 1113 GHz line cannot be computed analytically
from Eq. [I] In this case, the optical depth can be derived from
a curve-of-growth analysis, once the equivalent width, W, of the
transition is computed. We have

W= f k(V)dv,

where k(v is the absorption coefficient. We solved it graph-
ically with a normal curve-of-growth analysis (log(W) vs
log(tau)).

The distribution of W in the IRDC is shown in Fig. [T4]
Results toward the Hm region are not reliable given the complex
line profile of the 1113 GHz transition in this part of the source
(see Fig. . In the IRDC, W decreases steeply from a value
of ~ 10 km s~! toward the hot core down to a value of 5 km s~!
at the edge of the IRDC.

To derive the opacity of a transition from a curve-of-growth
analysis, the line profile must be known. Line profile and line
width of the 1113 GHz transition cannot be inferred from our
data as the line is highly saturated. As first approximation, we
can assume that the 1113 GHz line has the same profile and line
width as the C'80(3-2) transition, which has a low opacity and
a low energy (E, ~ 32 K) and therefore is likely to trace the
same cold component that absorbs water. We note that the width
of H,'®0 cannot be used because the rare isotopolog line is not
detected out of the central region. C'80(3-2) was observed by
Wyrowski et al.| (2000), and it has Gaussian profiles and typical
widths of 4 kms™! at the IRDC position and of 6 kms™" at the hot
core. For comparison, the width of the narrow component of the
H,'80 1, — Oy line is around 3 kms~'at the hot core position,
but the line profile also exhibits a broad component in absorp-
tion in the blue part that is due to the outflow. At the hot core
position, the equivalent width of the 1113 GHz line is ~ 10. This

3
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smoothed to 0.2 kms~!, and the continuum is divided by a factor of two.

value corresponds to an optical depth of 80 for Av = 6 kms™!

However, for this value of W, the results are strongly dependent
on the adopted line width and vary between 70 and 130 for Av
in the range 5-7 kms~! , with higher opacities corresponding
to narrower line widths. At the IRDC position, W ~ 5 corre-
sponds to an optical depth of ~ 15, and it does not substantially
change with the line width. The validity of these estimates can

10

be cross-checked on the hot core, where the deeper single-point
observations of the 1113 GHz line allow us to detect the H)*O

and HyO isotopologs of the line. From Eq. 1, we derive an op-
tical depth of ~0.16 for the 1;; — Ogg p-H%SO line, and of ~0.05

for the 11 — Ogp p-H4’O line. These values translate into lower
limits of 62-87 for the optical depth of the main isotopolog line,
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in agreement with the result from the curve-of-growth method,
assuming '°0/'80=390 and '80/'70=4.5, respectively (Wilson
& Rood, |[1994).

Equation 2] translates (assuming an o/p ratio of 3) into a to-
tal column density of water of 1 x 10" cm™ for the hot core
for an optical depth of 80 and a line width of 6kms~!. At the
IRDC position, the column density of H,O is 2 x 10" cm~2 for
T=15and Av = 5kms~!. In Paper I, we derived the distribution
of the H, column density over the whole region from CO and
BCO(6-5) maps. We can assume that CO and BCO(6-5) trace
the same gas that is absorbing the 1113 GHz transition and de-
rive the abundance of water in the region. Toward the hot core,
the H, column density is 3.0x10%2 cm™2, while it decreases to
1.0 x 10?> cm~2 at the IRDC position®| These values correspond
to abundances of water relative to H, of 3x10~8 toward the hot
core, and 2 x 1078 at the IRDC position. However, the uncertain-
ties on these values are large, especially at the hot core position,

3 In Paper I we used an averaged value of 60 for the '>CO/'3CO abun-
dance, while here we adopt a value of 53 for a galactocentric distance
of 6 kpc
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Fig. 14. Distribution of the equivalent width of the 1;; —
0oo p—H>O line in the IRDC. The black contours show the
SABOCA continuum emission at 350 ym from 5% of the peak
flux in steps of 10%.

where the strong saturation in the 1113 GHz line does not al-
low a precise determination of Ny,o. Given the inferred range
of opacities of the 1113 GHz line at this position, the abundance
of water could vary between 3x107% (for Av = 4kms™') and
8x1078 (for A, = 7Tkms™).

Our observations suggest that the abundance of water does
not change along the IRDC with values close to a few times 1075,
This abundance is consistent with results from several studies
toward the outer part of envelopes around massive YSOs and in
the foreground clouds (e.g., [Snell et al.l [2000; Bergin & Snell,
2002; [Emprechtinger et al.l [2013)), and with chemical models
(e.g.,Doty et al., 2002).

4.2. Kinetic temperature from PACS data

The PACS data suffer from two problems that make their analy-
sis difficult: low spectral resolution and flux leakage. The lat-
ter arises because the PACS spaxels have a projected size of
9/4x9’4 on the sky, while the point-spread function of the
Herschel telescope at 179.5um is approximately 1276. For a
point-like source that is perfectly centered on one spaxel, 44%
of the flux is recovered at 179 um (Fig. 7 of the PACS spec-
troscopy performance and calibration document’)). However, the
flux loss depends on the source structure for extended sources.
In this case, the fraction of flux seen by PACS can be inferred
only by deconvolving a source model image by the PACS point-
spread function and comparing the flux seen in this synthetic
observations with the original one in the model. This procedure
should be performed for the continuum emission and for the ab-
sorption/emission of each transition separately, as the fraction
of the flux recovered by PACS depends on the structure of the
source in that particular tracer. Unfortunately, for G327.3-0.6
we do not have any continuum image at higher angular resolu-
tion than that of the PACS data to input as source model, nor
we have any detailed knowledge of the distribution of water.
Moreover, the approach described by Herczeg et al.|(2012) and

6 http://herschel.esac.esa.int/twiki/pub/Public/PacsCalibrationWeb/
PacsSpectroscopyPerformance AndCalibration_v2_4.pdf

11
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Karska et al.| (2013) of summing up fluxes from adjacent spax-
els is impractical in our case as different spaxels most likely see
different sources given the complexity and the distance of the
region.

Since the 179.5 ym and the 174.6 ym water lines are seen in
absorption, the line-to-continuum ratio would not be affected by
flux leakage if the two transitions had the same distribution of the
continuum emission at the corresponding wavelength. We could
test this assumption at 179.5 um toward the position observed
with HIFI in the 0-H,O 2;;, — 1¢; line. This coincides with the
position reported by Bergman| (1992), shifted by approximately
(877,5"5) from the current hot core position. The comparison
between the PACS and the HIFI 179.5 um line at this position
infer a difference of about 10% between the equivalent width of
the water line obtained in the same velocity range, which value is
indeed comparable to the relative calibration error between the
two instruments. This test confirms that the PACS continuum
and spectral observations at 179.5 um are affected by flux loss in
a similar way, but it is impossible to quantify this.

Assuming that there is no flux leakage, from the absorption
of 0-H,0 393 — 2, line at 174.6 um, we can estimate an upper
limit to the excitation temperature of the line, as this must be
lower than the continuum temperature at 174.6 ym. The contin-
uum level toward the hot core is approximately 1300 Jy/spaxel,
which corresponds to a brightness temperature of 3.6 K, using
a beam size of 1273. At these wavelengths, and for typical tem-
peratures of star-forming regions, the Rayleigh-Jeans approxi-
mation is not valid anymore, and the (exact) Planck brightness
temperature is 21 K, implying a lower excitation temperature for
the 0-H,O 3¢3 — 215 line. Since the critical density of this tran-
sition is very high, its excitation temperature depends mostly on
the kinetic temperature of the medium and on the column den-
sity of ortho water. According to the RADEX online radiative
transfer code (van der Tak et al. 2007), for a column density
of 10" ¢cm2 and a line-width of 6 km s™" (see Sect. [4.1)), an
upper limit of 20 K for the excitation temperature of 3p3 — 21>
line implies an upper limit to the kinetic temperature of 40 K, in
agreement with the excitation temperature of 30-35 K for the hot
core inferred in Paper I from CO(6-5) observations. The upper
limit to the kinetic temperature of the gas increases with column
density, and corresponds to 30 K for N,_p,0 = 10'3 cm~2 and to
150 K for Ny_pg,0 = 5 X 10" cm™2.

5. Modeling of the HIFI lines

This section intends to model the full line profiles in a single
spherically symmetric model with different kinematical compo-
nents that are due to turbulence, infall and outflow.

5.1. Method

The envelope temperature and density structure for the hot core
from |van der Tak et al.| (2013)) is used as input to the 1D radia-
tive transfer code RATRAN (Hogerheijde & van der Tak| 2000)
in order to simultaneously reproduce all the water line profiles,
following the method of Herpin et al.| (2012). The H,O colli-
sional rate coeflicients are from |Daniel et al.|(2011). We assume
a single source within the HIFI beam throughout our analyis,
but we know that this source consists of two objects (SMM1,
~ 3770Mg, and SMM2, ~200M,, see Minier et al.|[2009| and
Sect., separated by ~ 23", and that our observations are
pointing between these two objects (see Sect. [2.1). The insuf-
ficient knowledge of the SED for each of these subsources and
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the lack of spectral information prevent any more detailed mod-
eling of the structure. Since SMM1 is ~ 20 times more massive
than SMM?2, we may assume that the emission is dominated by
SMM1.

Adopting here a single-source structure that encompasses
the substructure within the HIFI beam, the source model has
two gas components: an outflow and the protostellar envelope.
The outflow parameters, intensity, and width come from the
Gaussian fitting presented in Sect. [3.3] for the broad compo-
nent. The envelope contribution is parametrized with three in-
put variables: water abundance (y,0), turbulent velocity (Vy,),
and infall velocity (Vi,r). The width of the line is adjusted by
varying V.. The line asymmetry is reproduced by the infall
velocity. The line intensity is best fit by adjusting a combina-
tion of the abundance, turbulence, and outflow parameters. We
adopt the following standard abundance ratios (same ratios for
all the lines): 4.5 for HégO /the H’O (Thomas & Fuller, [2008),
and 3 for ortho/para-H,O. Based onWilson & Rood|(1994), the
HI°O/HI0O abundance ratio is assumed to be 390. The model
assumes a jump in the abundance in the inner envelope at 100 K
because the ice mantles evaporate. All details about the method
are given in|Herpin et al.|(2012).

5.2. Abundance and kinematics results

The analysis presented in Sect[3.3 has shown that the width of
the velocity components is not the same for all lines (e.g., half-
power line widths from 2.4 to 4.9 kms™! for the narrow com-
ponent, see Table f). As a consequence, a model with equal
velocity parameters for all lines does not fit the data well. A
turbulent velocity of 1.5 and 2.1 kms™" for the the H)’O and

H,O ground-state lines in absorption also gives a good result
for the HéﬁO lines in absorption. In contrast, a higher turbulent

velocity of 2.6-3 kms~! is needed for the lines in emission. We
note that from RATRAN modeling of the NH; 3,, — 2,_ line,
Wyrowski et al.|(2016) derived a turbulent velocity of 2.3 kms™.
We then ran a model with a constant turbulence of 2.6 kms™!
for all lines (the best compromise we obtained after exploring
a range of values). We also tested two other options that do not
improve the fit significantly (see Fig.[T2): the first option is a tur-
bulence varying with radius following Herpin et al.|(2012) and
Herpin et al.| (2016)), the second option adjusts the turbulence
line by line based on what is observed. The limiting factor rather
seems to be the assumed spherical symmetry.

All modeled lines are centered at roughly —43 + 0.5 kms™!.
The infall velocity is estimated to be -3.2 kms™! (at ~1500 AU).
A foreground absorption was included at —48 + 0.5 kms™' with
a width of 7.5 kms™! for the ground-state water lines, but this
component has no effect on the water abundance, very likely be-
cause it is sufficiently far from the source velocity. What we see
is the absorption of the blue part of the outflow. This broad ab-
sorption has been observed and described in|Herpin et al.[(2016)
for high-mass protostellar sources NGC6334IN and DR21(OH).
Interestingly, this absorption is at a similar velocity to one of the
absorption features observed in the Hu region (see Sect. [3.2.2))
and could be the same cloud over the whole region (see discus-
sion in the next section). We did not try to reproduce the outflow
absorption seen in p-H}*O 111—0¢9 and p-H}’O 1;,-0g lines.

The water abundance is constrained by the modeling of the
entire set of observed lines. Only a few lines (O—HéSO 312—303,
p-H>O 554—43; and 0-H,O 3,-33) are optically thin enough to
probe the inner part of the envelope, part of all water line pro-
files is produced by water excited in the inner part and is re-
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Fig. 15. Spectra of p-H}®O 1;;-0¢p (6.2, in red) and p-H}’O
111000 (%21, in blue) lines overplotted on the p-H,O 1;,—
0go spectrum (in black). The spectra have been smoothed to 0.3
kms™' (1.4 kms™'for the the H)’O spectrum).

vealed by the high spectral resolution of these observations. The
H,°0 abundances relative to H, are 5.2 x 107 in the inner part
where T > 100 K, while the outer abundance (where T < 100K)
is 4 x 1078 (we estimate the uncertainty to 30%), consistent with
what we found in Sect. [f.1] for this position. No deviation from
the standard o/ p ratio of 3 is found.

6. Discussion
6.1. Source structure and dynamics of the hot core region

The broad absorption observed on the blue part of the H;sO and

the HyO para and ortho ground-state line profiles can give us
some interesting information concerning the outer source struc-
ture. When we overplot these lines on the line of the main iso-
topolog (see Fig and , it first appears that the HyO and
H,®O line profiles are identical (within the noise): the broad ab-
sorption seems to be present only in the blue part; this is what
we assumed in Sect[3.3]for the Gaussian fitting. Conversely, the
H,°0 profile differs with (weak) emission throughout most of
the blue velocity interval (~ -72 to -53 kms~!). From these ob-
servations we can first infer that this the H§7O and HéSO mate-
rial is dense and cold enough to absorb the warmer outflowing
gas and that it is situated between the outflow and us. In ad-
ddition, the fact that the outflow is preferentially absorbed in its
blue part most likely reveals a cold outer gas envelope in expan-
sion. Figure |17 shows the Gaussian fitting for the p-HéSO 1-
0go line when we assume that the absorption is rather centered on
the source velocity: we obtain a component at -45 km s~! whose
FWHM is 34 kms™".

Assuming the peak intensity ratio (~6.2) of the
H,°0/H,®0 main narrow absorption features at -43.2 km s~ (see
Table [4) is valid for this broad absorption as well, we extrap-
olated the corresponding absorption in the p-H,O 1;,-0g line
profile. We then tried to remove this Gaussian absorption. The
resulting water line profile is shown on Fig[I§] and reveals a
strong outflow centered at -44 kms~' whose FWHM is 39
km s~!, broader than the first estimate we made in Sect

This cold absorbing material most likely corresponds to the
cold clump found by [Wyrowski et al.| (2006) in NoH* and lo-

0.1 1

Tyg (K)

! . . . . ! . . . . !
-100 -50 0
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Fig. 16. Spectra of 0-H}’O 21,10 (x0.3, in blue) line overplot-
ted on the p-H)’O 1,;—0gy spectrum (in red). The spectra have
been smoothed to 1.4 kms™!.
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Fig.17. Spectra of p-H)®0 1;,-0g line (in black) showing
the different Gaussian components used to fit the line (red=
green+blue+purple).

cated 30” (0.4 pc) northeast of the hot core, but extending well
over our HIFI pointed observed area (see Fig[I9). The velocity of
this cloud is -45.9 km s~ , comparable to what we deduce here.
Of course the line width in N,H* is narrower than in water as
a result of excitation mechanisms. This cold absorbing material
could also be compatible with an expanding shell on the HII re-
gion (see Fig. centered at -45 kms~'. When we consider the
distance between the HII region and SMM1 (110 arcsec=1.65
pc), the time needed to cross this distance from the center of the
expanding HII to SMM1 (at a velocity of 6.5 kms~!, see Sect.
would be 2.6 10 yr.

We used RADEX onlinto investigate the excitation condi-
tions for the derived Hé60 broad absorption. In perfect agree-
ment with Wyrowski et al.| (2006), we deduce Ty;, = 18 K,
ng, = 10° cm™, and Ny, = 10** cm™2 for the cold cloud
(Ymo = 4 x 1078 is assumed). If the density is constant over
the cloud, the absorbing material should extend over 6.7 X 10*
AU. Because the absorption is stronger for the blue part of the

7 http://home.strw.leidenuniv.nl/~moldata/radex.html
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Fig. 18. Resulting line profile (in red) of the p-H,O 1,;-0qg line
corrected from the absorption shown in green and derived from
the p-H}®O 1;;-09 Gaussian line fitting. The original spectra
are shown in black. The blue curve is the Gaussian fitting of the
outflow.
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Fig. 19. APEX images from Wyrowski et al. (2006) in the N,H*
(3-2) and the CH3OH lines (red and black contours) overlaid
on the 8 um GLIMPSE emission. Embedded GLIMPSE point
sources with massive YSO characteristics are marked with tri-
angles. The Herschel 1113 GHz beam is indicated by the white
circle centered on the HIFI observed position.

spectra, we propose that the outflow is seen face-on behind a
cold envelope in expansion, as shown in Fig[20]

As explained in Sect[3.3] the HIFI observed position is cen-
tered between SMM2 and SMM 1, and so are maybe some of the
physical components derived from our model. Interestingly, Fig.
[7] shows that the outflow is indeed rather centered away from
the hot core, closer to the peak of the thermal CH3OH emission

detected by Wyrowski et al. (2006) (see Fig. [I9) and might be
associated to the class I methanol masers detected by

(2014) between SMM1 and SMM2.
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Diameter: 1.3 x 105 AU Cold Cloud ‘
Te=18K

n(H) = 106 cm-3
X(H0) =4 x 108

L

expansion?

Diameter: 1.6 x 105 AU
Tk =20-100 K

n(Hz) = 1.1 x 105-5.3 x 10° cm™
X(H0)=4x 108

M(H20) =5.1 x 104 Me

Diameter: 6 x 103 AU
Tk =100-1130 K
n(Hz) = 6.3 x 10° - 3.80 x 108 cm™
Z(H:0) =52 x 10

M(H20) = 2.1 x 10 Me

Fig. 20. Sketch of the G327 hot core source (arbitrary scale). See
details in Sect.

6.2. Accretion rate and water content

From the infall velocity estimated from our model (-3.2
kms~! as revealed by the 752 GHz Hé60 line), using ny, = 107

cm™3, we deduce a mass infall rate of 1 — 1.3 x 1072 My, /yr.
When we consider a mass of 20 M, within a radius of 100 R,
this implies an accretion luminosity L,.. ~ 10* Ly , which is
high enough to overcome the radiation pressure that is due to the
stellar luminosity (i.e., ~ 3. X 10™* Mg, /yr). Nevertheless, it is
important to stress that this accretion luminosity is very sensitive
to the assumed density and radius, and as a consequence, this
comparison has to be cautiously considered. The accretion rate
is roughly three times greater than the rate derived by
from the NHj3 35, —2,_ line, but twice lower than the
free-fall accretion (if we assume that the entire envelope mass is
collapsing). We tried to estimate the size of the infall region as
revealed by p-H,O 2¢,—1;; line emission, but the line quickly
vanishes out of the central source in the corresponding map. We
derived a minimum size of the infall region of 20 ” to be com-
pared with the size of the cool (T; = 20 — 100K) envelope, that
is, 80”. Moreover, we did not find any evidence of rotation.

The inner water abundance (5.2 x 107°) derived in Sect.
for the hot core is slightly higher than what has been found for
mid-IR-quiet massive protostars by Herpin et al.| (2016). When
we consider the high infall velocity we estimated for this source
(-3.2 kms™"), this value agrees with the scenario proposed by
Herpin and collaborators that higher inner abundance are ob-
served for higher infall or expansion velocities in the protostel-
lar envelope. We also estimate the amount of water in the inner
(T>100 K) and outer regions to be 2.1 X 1073 and 5.1 x 107*
My, respectively. This inner region that holds 80% of the water

corresponds to the compact area of 2" where |Gibb et al.| (2000)

and Bisschop et al.| (2013) situated most of the organic species
they observed, coming from the grain mantle evaporation.

7. Conclusions

We have presented new Herschel/PACS continuum maps at 89
and 179 pm that encompass the whole region (HII region and
IRDC) and APEX/SABOCA map at 350 um of the IRDC. These
maps were combined with new spectral Herschel/HIFI maps to-
ward the IRDC region at 987 and 1113 GHz. In addition, we
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analyzed and modeled HIFI pointed observations of 15 water
lines toward the G327 hot core region.

Our data show that the distribution of the continuum emis-
sion at 89 and 179 um follows the thermal continuum emission
observed at larger wavelengths, with a peak at the position of the
hot core and a secondary peak in the Hm region, and an arch-like
layer of hot gas west of this Hu region. The same morphology
is observed in the p-H,O 1;1—0g line, in absorption toward all
submillimeter dust condensations, while the 2, — 11 line is seen
in emission except at the positions of the hot core and of SMM2.
We estimated column densities of 10" and 2 x 10'* cm™2 at the
hot core and IRDC position, respectively, corresponding to water
abundances of 3x1078 in the outer envelope toward the hot core,
while the abundance of water does not change along the IRDC
with values close to 1078, The water abundance is observed to
be slightly larger in the more evolved object, that is, in the hot
core, than in the IRDC, where no variation is seen. These values
are also higher than what [van der Tak et al.| (2010) derived in
the DR21 region. The inner water abundance is estimated to be
5.2 x 107 for the hot core, in agreement with the higher inner
abundance for higher infall or expansion velocities in the proto-
stellar envelope (Herpin et al., 2016).

The map analysis combined with the radiative transfer mod-
eling of the pointed spectral lines reveals a complex source struc-
ture of the hot core region. An outflow is detected, most likely
seen face-on instead of centered away from the hot core, closer
to the peak of the thermal CH3OH emission, and it might be
associated with the class I methanol masers between SMM1
and SMM2. A strong infall associated with supersonic tur-
bulence is also detected toward the hot core position at -3.2
kms™! (at ~1500 AU), leading to an estimated mass infall rate of
1-1.3x 1072 Mg /yr, which is high enough to overcome the ra-
diation pressure that is due to the stellar luminosity. We derived
a minimum size of the infall region of 20 ”. No velocity gradient
in the envelope can be inferred from the data, in contrast to what
has been observed for the mini-starburst region W43-MM1 by
Jacq et al.{(2016).

Moreover, we infer that a cold outer gas envelope in ex-
pansion is situated between the outflow and the observer, lo-
cated 30” (0.4 pc) northeast of the hot core, but extending over
6.7 x 10* AU, hence somewhat comparable to W43-MM1. This
cold absorbing material most likely corresponds to the cold
clump found by [Wyrowski et al.|(2006) in N,H* , but it extends
well beyond our HIFI pointed observed area.
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Fig. A.1. Spectral map of the 0-H,O 2, — 1 (left panel) and 0-H,O 303 — 21, (right panel) lines overlaid on the PACS continuum
emission at 179 um. The spectra are displayed in the velocity range [-350,250] km s~ as line-to-continuum ratio. In the left panel,
the red rectangle outlines the region where the CH* (2-1) line is detected (emission at redshifted velocities compared to the o-H,O

212 — 1p; transition).
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