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ABSTRACT 

ERIS is the new AO instrument for VLT-UT4 led by a Consortium of Max-Planck Institut fuer Extraterrestrische Physik, 
UK-ATC, ETH-Zurich, ESO and INAF. The ERIS AO system provides NGS mode to deliver high contrast correction 
and LGS mode to extend high Strehl performance to large sky coverage. The AO module includes NGS and LGS 
wavefront sensors and, with VLT-AOF Deformable Secondary Mirror and Laser Facility, will provide AO correction to 
the high resolution imager NIX (1-5um) and the IFU spectrograph SPIFFIER (1-2.5um). In this paper we present the 
preliminary design of the ERIS AO system and the estimated correction performance. 

Keywords: ERIS, VLT, Wavefront Sensing, Deformable Secondary Mirror, Adaptive Optics System, SPARTA, 
CCD220, Laser Guide Star 
 

1. INTRODUCTION  
ERIS, the Enhanced Resolution Imager and Spectrograph, is a new 1-5 μm instrument for the Cassegrain focus of the 
UT4/VLT telescope that is equipped with the Adaptive Optics Facility (AOF)[1]. The instrument is led by a Consortium 
of Max-Planck Institut für Extraterrestrische Physik (MPE, leading institute), UK Astronomy Technology Centre (UK-
ATC), Swiss Federal Institute of Technology (ETH-Zurich), European Southern Observatory (ESO) and Istituto 
Nazionale di Astrofisica (INAF-Arcetri, Teramo and Padova). The ERIS Consortium have taken the lead of the project 
in early 2015 and successfully passed the Preliminary Design Review (PDR) in February 2016. The project is currently 
in Final Design phase and the related review is foreseen in March 2017. The present paper reports the design of the ERIS 
AO system as result of the PDR. 

The instrument is made of the following sub-systems (see Figure 1): 

• two science instruments, which receive their light via a IR/VIS dichroic beam-splitter located in the AO 
module.  

o NIX[4] provides diffraction limited imaging, sparse aperture masking (SAM) and pupil plane 
coronagraphy capabilities from 1-5 μm (i.e. J-M’), either in “standard” observing mode or with “pupil 
tracking” and “burst” (or “cube”) readout mode. NIX is a cryogenic instrument and it is equipped with 
a 2048 × 2048 detector providing a field of view of 53” x 53”  

o SPIFFIER[5] is an upgraded version of SPIFFI, the 1-2.5 μm integral field unit used on-board 
SINFONI, that will be modified to be integrated into ERIS. Its observing modes are identical to those 
of SINFONI, possibly adding a high-resolution mode as a goal. 

o The two science instruments do not operate simultaneously, an insertable mirror behind the IR/VIS 
dichroic allows to select the instrument. 

• the AO module has wavefront sensing and real-time computing capabilities. It interfaces to the AOF 
infrastructure and it is required to provide the following observing modes: 
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a) the pupil position loop to keep pupil registered 
with the related SH arrays; b) the DSM averaged 
position loop to offload integrated focus/coma 
and higher orders to M2 hexapod and M1 active 
optics respectively; c) the k-mirror and ADC 
angles following the updating of the telescope 
elevation and instrument rotation angles; d) the 
image motion compensation loop updating an 
offset of the NGS WFS stages and periscope to 
compensate – with a pre-calibrated LUT as a 
function of elevation, instrument rotator angle 
and temperature – for the differential flexure 
between NGS WFS and the instrument, the NGS 
WFS k-mirror and periscope PSF induced 
wobble and the differential atmospheric 
refraction (NGS vs science target). When 
SPIFFIER is used, its internal metrology system 
can be used for computing an additional term in 
the differential flexure offset. 

5.2 Control loops in NGS mode 

Figure 6-right summarizes the system of control 
loops and LUTs in NGS mode. The scheme is 
similar to the LGS one disabling the loops that 
are LGS dependent. 

6. AO SYSTEM PERFORMANCE 
The ERIS AO system performance is computed 
in terms of Strehl ratio (SR) as a function of the 
NGS magnitude and it is shown in Figure 7 for 
the Ks band in comparison with the top-level 
requirements for both LGS and NGS modes. The 
curves have been obtained adding to the end-to-
end numerical simulation results the wavefront 
error budget components that have not been 
directly included in the simulation. The 
numerical simulations have been provided by the 
PASSATA code developed at INAF-Arcetri[11]. 

The parameters of the numerical simulation are 
shown in Table 1 and the additional terms of the wavefront error (WFE) budget are the following: 

• figuring error of DSM and M1 (after removing DSM correctable component) 
• correction residual of Non Common Path Aberrations (NCPA) 
• pupil registration loop residual 
• interaction matrix calibration noise 
• truth sensing residual error 
• residual vibration compensation 

The total contributions of the budget for the NGS and LGS modes are 110 nm and 150 nm rms WFE respectively. They 
are dominated by an extremely conservative contribution of the residual vibration compensation of 83 nm and 113 nm 
rms, based on vibration data in a different focal station (VLTI) and without considering the effect of the Active Vibration 
Cancellation algorithm developed and successfully tested by ESO. 

Table 1. Main simulation parameters 

Parameter Value 
Seeing 0.87 arcsec (at z=30°) 

Outer scale  22 m 
Atmospheric layers 10 (std. Paranal profile) 
Wind speed 12 m/s 
NGS star type G2 (spectra from Pickles) 
Telescope entrance pupil D = 8.12 m, 15.9% obs. 

H = 90 m below M1 
Laser 1.2as WFHM including upward prop. 

Sodium profile “Single Peak” from 
Prommer&Hickson 
Simulated elongation and downward 
propagation 

DSM 1170 influence functions from FEA 
WFS camera (CCD220) 
    RON 
    Excess noise 
    Dark 

EMCCD 240x240 pix 
80e- rms/G   (G=EM gain, 1≤G≤400)
proper avalange statistics 
3.6 e-/pixel/s (fs≥900) 
1.8 e-/pixel/s (900>fs≥500) 
1.4 e-/pixel/s (500>fs≥360) 
1.08 e-/pixel/s (360>fs≥180) 

LGS WFS 
    subap FoV 
    wavelength 
    Pix/subap 
    tranmission 

SH 40x40 subap 
5 arcsec 
λeff = 589 nm (BW=40nm) 
6x6 
0.48 (including CCD QE) 

HO/LO NGS WFS 
    subap FoV 
    wavelength 
    Pix/subap 
    tranmission 

SH; HO:4x4 subap; LO:4x4 subap 
2.5 arcsec 
λeff = 768 nm (BW=600-1000nm) 
HO: 6x6; LO: 12x12 
0.34 (including CCD QE) 
107 detected ph/arcsec2/m2/s 

RTC (SPARTA) 
    Max frame frequency 
    Centroid algorithm 
    Control base 
 
    Total effective delay 
        (in frame units) 

 
HO: 1kHz; LO: 500Hz 
Weighted CoG, gaussian weight map 
Karhunen–Loève modes fitted on the 
DSM influence functions 
1 for f < 334 Hz 
2 for 334 Hz < f < 667 Hz 
3 for 667 Hz < f < 1000 Hz 
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The PWFS can produce the same results with seeing above 1as. 

The high contrast applications show even more interesting results, because of the well-known ability of the PWFS in a 
better rejection of the aliasing error. Figure 12-left shows the radial profile of the speckle noise computed from rms of 
difference of uncorrelated pairs of L’-band PSFs with 1.6s exposure time each, during AO bright-end on-axis correction. 
No coronagraphy is used in the simulation and the PSF binning has been set to 0.1x0.1as2. The PWFS speckle noise is 
about 3 times less than SH in the TLR requirement area between 3 to 7 λ/D. The curves, of course, superimpose beyond 
the AO control radius. The speckle noise is the dominant term below 3 λ/D in the SNR of detection of a faint companion 
for a simulated ADI observation, while the background noise dominates for larger radial distance. We assumed a 
background brightness mL’=3.9 mag/arcsec2[13] in the simulation. Figure 12-right reports the detection SNR in 1h of a 
ΔmL’=10 (TLR requirement) and ΔmL’=12 companion for both Pyramid and SH WFS without coronagrafy. The SNR 
threshold required by TLR is SNR=5 in 1h showing that the PWFS pushes the performance in a closer region (around 2 
λ/D) with fainter companion (ΔmL’=12) with respect to the minimal TLR requirements. 

8. CONCLUSIONS
The ERIS Consortium has taken the lead of the 1-5μm ERIS instrument development beginning 2015. The Preliminary 
Design Review has been successfully met in February 2016 and now the project is in the Final Design Phase. 

The ERIS AO system design makes a large re-use of AOF technology to save development and implementation time: the 
Deformable Secondary Mirror, the 4LGS Facility, the WFS Cameras (EMCCD) and the SPARTA RTC. 

The pre-optics design, based on flat or almost-flat optics, has driven by providing high stability of NCPA and alignment 
decoupling with respect to the science instruments NIX and SPIFFIER. 

The required observing modes (LGS, NGS and Seeing Enhanced) are implemented with the use of two SH WFSs units. 
The on-axis LGS-only WFS board implements the 40x40 SH with 5as FoV and is located on a linear stage for Na layer 
tracking. The NGS-only WFS is able to switch between a HO (40x40 SH, 2.5as FoV) and a LO (4x4 SH, 2.5as FoV) 
configuration for the NGS and the LGS mode respectively. The LO configuration provides also the truth sensing 
function for the LGS WFS focus and slope offset tuning. The NGS WFS board is located on a dual-axis stage to patrol 
the R=1arcmin acquisition field (together with the on-board periscope) and the compensation of the differential focus 
with respect to the science instruments. 

The numerical simulations and analysis show that the SR requirements required by the TLRs are met with a contingency 
of 150nm and 100nm rms WFE in the bright end of the NGS (mR=8) and LGS (mR=12) mode, respectively. 

In order to push the performance of the ERIS AO, especially in the high-contrast regime, an upgrade of the NGS WFS to 
the Pyramid WFS has been proposed. The PWFS unit has been designed to have the same opto-mechanical interfaces as 
the SH WFS with sensitive better SR performance of SH WFS, especially at short wavelengths (J and H bands). In the 

Figure 12 Left: Radial profile of the speckle noise (see text). Right: detection SNR vs distance from central star (see text). 

high contrast applications allows to push the faint companion detection performance for inner angles (2 λ/D) with fainter 
companions (ΔmL’=12). 
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