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Abstract

Some interplanetary shocks are associated with short-term and sharp particle flux enhancements near the shock
front. Such intensity enhancements, known as shock-spike events (SSEs), represent a class of relatively energetic
phenomena as they may extend to energies of some tens of MeV or even beyond. Here we present an SSE case
study in order to shed light on the nature of the particle acceleration involved in this kind of event. Our
observations refer to an SSE registered on 2011 October 3 at 22:23 UT, by STEREO B instrumentation when, at a
heliocentric distance of 1.08au, the spacecraft was swept by a perpendicular shock moving away from the Sun.
The main finding from the data analysis is that a Weibull distribution represents a good fitting function to the
measured particle spectrum over the energy range from 0.1 to 30MeV. To interpret such an observational result,
we provide a theoretical derivation of the Weibull spectrum in the framework of the acceleration by “killed”
stochastic processes exhibiting power-law growth in time of the velocity expectation, such as the classical Fermi
process. We find an overall coherence between the experimental values of the Weibull spectrum parameters and
their physical meaning within the above scenario. Hence, our approach based on the Weibull distribution proves to
be useful for understanding SSEs. With regard to the present event, we also provide an alternative explanation of
the Weibull spectrum in terms of shock-surfing acceleration.

Key words: acceleration of particles – magnetohydrodynamics (MHD) – plasmas – shock waves – solar wind –

turbulence

1. Introduction

One of the most intriguing and unsolved problems of
astrophysics is the particle acceleration to high energies in
space plasmas. Fermi’s acceleration mechanism (Fermi 1949)
is a theoretical tool extensively used in astrophysical contexts
and also in other research fields such as plasma physics
(Michalek et al. 1999) and in the theory of dynamical systems
(Zaslavskii & Chirikov 1965; Lichtenberg & Lieberman 1991).
The first-order acceleration, a variant of the original Fermi
mechanism, constitutes the basics for the diffusive shock
acceleration (DSA) (e.g., Krymskii 1977; Blandford &
Ostriker 1978) wherein a particle, repeatedly scattered across
the shock front, gains energy through head-on collisions
against the converging downstream and upstream plasma
irregularities. The DSA naturally produces a power-law energy
spectrum that is accepted to explain the observed cosmic-ray
spectrum up to about 1015 eV (Blandford & Eichler 1987).
Moreover, in the inner heliosphere, many events of particle
acceleration at the shock have been reported in which the
slopes of the particle power-law spectra (in the range from a
few tens up to a few hundreds of keV) have values consistent
with those predicted by DSA (Giacalone 2012; Neergaard
Parker & Zank 2012). Hence, the DSA approach has received
the most attention to interpret particle acceleration at shock
waves, although it does not fully address several aspects of the
phenomenon. For instance, the expected relationship between
the power-law spectral index and the shock compression ratio
at interplanetary shocks can be loose when checked through
observations (van Nes et al. 1984; Fisk & Gloeckler 2012).
Moreover, observations of solar energetic particle (SEP) events
have shown that the predicted power law is valid on a
limited energy interval (e.g., Mewaldt et al. 2005) below a
characteristic energy where the spectrum has a rollover. An

exponential decay was only heuristically introduced to take into
account this feature (Ellison & Ramaty 1985), where the
rollover energy is supposed to depend on several parameters
related to the interplanetary shock (Lee et al. 2012). In addition,
DSA is conceptually difficult at quasi-perpendicular shocks,
due to the high particle energies requested for the injection in
the acceleration process and also to the insufficient upstream
wave energy density accountable for particle scattering (Zank
et al. 2006; Neergaard Parker et al. 2014). A combination of
DSA with magnetic-island-reconnection-related processes has
been recently proposed to overcome some inconsistencies
between the standard DSA predictions and observations of
particle acceleration at interplanetary shocks (Zank et al. 2015).
Shock-surfing and shock-drift acceleration (hereafter SSA

and SDA) are two non-Fermi mechanisms that can provide
particle pre-acceleration to reach the energy threshold required
to start DSA at quasi-perpendicular shocks. In SSA and DSA
particle energization is caused by electric fields. In SSA
(Sagdeev 1966; Ohsawa 1986; Lee et al. 1996) some particles
are trapped upstream of the shock (i.e., they surf the wave) and
accelerated, along the shock front and perpendicularly to the
magnetic field, through the combined action of the electrostatic
potential gradient (normal to the wavefront) and the Lorentz
force. Particles are de-trapped when reach enough energy to
breach the electrostatic barrier and escape downstream. Vice
versa, in SDA (Pesses et al. 1982; Decker & Vlahos 1985) the
gradient of the magnetic field at the shock ramp causes a drift
of particle guiding centers so that the particles can gain energy
experiencing a displacement along the direction of the
convective electric field as they proceed downstream.
Pump acceleration (e.g., Fisk & Gloeckler 2012, 2014) is a

further non-Fermi mechanism that may be invoked in disparate
plasma conditions into the heliosphere. According to the pump
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mechanism, in a volume plasma experiencing a sequence of
adiabatic compressions and expansions, the energy of particles
of the core population is pumped up to the suprathermal tail
within an overall process of the redistribution of the particle
energy content. The spectrum determined by the pump
acceleration is always the same, independently from the
particular physical conditions in which the mechanism is
considered. Such a spectrum, known as the “common
spectrum,” is characterized by a distribution function having,
at low speeds, a power-law part with spectral index −5 and an
exponential rollover at higher speeds. In the inner heliosphere
the common spectrum has been observed at quite low energies,
mostly below 100 keV nucleon, in many events of shock
acceleration recorded at the Lagrangian point L1 by the ACE
spacecraft during the year 2001 (Fisk & Gloeckler 2014).

On the other hand, stochastic acceleration (SA), also called
second-order acceleration and based on the original Fermi
mechanism, is characterized by an average energy gain due to
the particle interaction with randomly moving magnetized
clouds or turbulent fluctuations. The SA has been proposed to

play a dominant role in many other astrophysical environments
where particles can be accelerated in a bounded space region
such as radio galaxies (Eilek 1979), solar flares (Petrosian &
Liu 2004), the interstellar medium (Seo & Ptuskin 1994), and
supernova remnants (Scott & Chevalier 1975). A few
theoretical works suggested that SA could be important at
shock waves as well (Ostrowski & Schlickeiser 1993;
Schlickeiser & Achat 1993; Liu et al. 2008; Petrosian 2012;
Afanasiev et al. 2014; Pohl et al. 2015). In this regard,
Petrosian (2012) pointed out that some turbulence is usually
produced at the shock front, and therefore SA by turbulence
invariably plays a role in particle energization at the shock.
According to some theoretical and numerical investigations,
stochastic reacceleration behind the shock can account for the
marked deviation of energy spectra of ions and electrons from
the power law produced by the standard DSA (Afanasiev
et al. 2014; Pohl et al. 2015). Nevertheless, these suggestions
have not been tested against observations.
The heliosphere is the natural environment where accelera-

tion theories can be tested against in situ observations. In
particular, transients and corotating shocks are systems where
particles are assumed to be accelerated as energetic particle
enhancements are frequently associated with their passage
(e.g., Armstrong et al. 1970; Sarris et al. 1976; Gosling
et al. 1981; Pesses et al. 1982; Lario et al. 2003, and references
therein). In the inner heliosphere, shock enhancements of
protons are observed over a wide energy range from few tens of
keV to some tens of MeV or even 100 MeV (e.g.,
Kallenrode 1996, and references therein). Nevertheless, the
acceleration efficiency, i.e., the occurrence frequency of an
enhancement at a particular energy, is a decreasing function of
the energy (Tsurutani & Lin 1985; Lario et al. 2003; Dresing
et al. 2016). The energetic particle intensities tend to increase
with both the shock speed and the shock compression ratio.
However, the hallmarks of the particle enhancements are not
unequivocally determined by the shock parameters (Kallenrode
1996; Lario et al. 2005).
The particle enhancements at shock present a wide variety of

different types according to their duration and the features of
their time profiles (e.g., Lario et al. 2003). An interesting class
of events consists of the so-called shock-spike events (SSEs),
which are short-lived particle flux spikes observed at the
passage of some interplanetary shocks in the inner heliosphere
(e.g., Lanzerotti 1969; Sarris et al. 1976; Pesses et al. 1982).
They typically last few tens of minutes and peak near the
shock. SSEs may exhibit intensity enhancements up to energies
of several tens of MeV. Though the first observations of SSEs
date back almost half a century (e.g., Lanzerotti 1969), these
kinds of events still deserve investigation, as particle accelera-
tion in their high-energy range is not yet completely understood
(e.g., Kallenrode 1995, 1996).
Here we investigate an SSE observed near Earth’s orbit, on

2011 October 3 at 22: 23 UT, by the STEREO B spacecraft on
the occasion of an interplanetary quasi-perpendicular shock
passage. In Section 2 we show that the Weibull distribution
represents a good description of the measured spectrum of the
energetic particles, and in Section 3, we provide a theoretical
derivation of the Weibull spectrum from a leaky-box model
based on stochastic processes exhibiting anomalous diffusion
for velocity (namely, processes in which particle velocity
increases in time as a power law). In Section 4, we discuss how
the experimental values of the spectrum parameters for the

Figure 1. Time history of solar wind plasma parameters and energetic particle
fluxes as recorded by STEREO B s/c between 21:00 UT and 24:00 UT on 2011
October 3. From top to bottom: proton density np and temperature T, bulk
speed v, magnetic field magnitude, and the proton differential fluxes for a
selected number of energy channels (E ∼ 0.53, 1.05, 2.10, 4.74, 6.93, and
10.95 MeV from top to bottom).
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present SSE are coherent with the physical meaning they
assume within the proposed scenario. Finally, we show that an
alternative explanation of the observed Weibull spectrum can
be provided in terms of SSA.

2. STEREO B Observations

On 2011 October 3 at 22:23:20 UT, the STEREO B
spacecraft (located at 1.08 au, −98°.09 and 1°.08 heliographic
longitude and latitude, respectively) observed a quasi-perpend-
icular fast shock, with compression ratio and upstream Alfvénic
Mach number r 2.3sh  and Ma;11, respectively, moving
radially outward from Sun at the speed of vsh;700 km s−1

with respect to the spacecraft reference frame.
At the same time, a particle enhancement was recorded by

the Solar Electron Proton Telescope (SEPT; Müller-Mellin
et al. 2008), the Low Energy Telescope (LET; Mewaldt et al.
2008) and the High Energy Telescope (HET; von Rosenvinge
et al. 2008) in the energy range 0.1–30MeV. Figure 1 reports a
quick look of the main plasma and particle parameters along
with magnetic field intensity measurements. The shock can be
identified by the abrupt changes in the solar wind parameters.
The upstream and downstream shock regions are both
characterized by irregular magnetic fluctuations exhibiting
power spectral densities (PSDs) with a power-law behavior
P f f q= -( ) (roughly with a Kolmogorov slope of q 5 3@ )
over three decades in frequency f (0.001 0.1 Hz¸ ) (Figure 2).
This behavior is commonly interpreted as the signature of the
inertial range of an MHD turbulent cascade in the solar wind
(e.g., Tu & Marsch 1995; Bruno & Carbone 2013). The post-
shock power is an order of magnitude higher than the pre-shock
one, indicating the enhancement of the fluctuation amplitude as
a result of the shock passage.

Data used to study this event are 1-minute averaged proton
fluxes measured by the three instruments in 39 energy differential
channels. This event is characterized by spiky enhancements (up
to energies of ∼30MeV) with a time width of the order of tens of
minutes occurring on a quite low intensity background (i.e., a
background not associated with solar flare particles) and by a
proton peak found near the shock passage at 22:23:20 UT
(Figure 1). Such events associated with quasi-perpendicular
shocks, called SSEs (e.g., Sarris et al. 1976; Pesses et al. 1982),

are well-known phenomena in the vicinity of Earth’s orbit, and
their first observations date back to the end of the 1960s
(e.g., Lanzerotti 1969). We underline that it is interesting to study
SSEs because the acceleration in the MeV range and over is not
yet completely understood in the interplanetary space.
An average differential flux dJ/dE was calculated on the

time interval 22:14–22:32 UT (around the shock arrival)
covering the whole duration of the particle enhancement. Due
to the large deviation of the dJ/dE profile from a simple power
law (Figure 3), a best fit was performed by means of a function
derived from a Weibull spectrum (Laurenza et al. 2013, 2015,
2016):

N E A E E e 1E E1= t
b- - t

b( ) ( ) ( )( ) ( )

(A E, t , and β are constants), taking into account the conversion
from the particle spectrum to the differential flux, namely,
dJ dE C N E E1 2= ´ ´( ) . The resulting best-fit values for
parameters were C∼[3.05±0.35]∗105 cm−2 s−1 sr−1

MeV−1, β=[0.50± 0.01], and E 81 9 keV= t [ ] . The
corresponding chi-square goodness of fit is χ2=0.04. Hence,
as also shown in Figure 3, an excellent agreement exists
between the Weibull spectrum and the experimental data over
the wide energy range 0.1 30 MeV¸ (spanning around two
orders of magnitude) on which the best-fit procedure was
performed. We point out that the Weibull spectrum continues
to successfully fit (χ2< 0.1) the particle fluxes even when the
average spectrum is calculated over time intervals (as reported
in Figure 3) smaller than the one considered above.
As the Weibull spectrum is not expected within mostly

accepted acceleration theories in their standard formulation, it
is worthwhile to investigate the physical context in which such
a spectrum may arise. In the next section, we illustrate a
theoretical connection of the Weibull spectrum with accelera-
tion processes wherein the particle energy increases in time as a
power law.

3. Weibull Spectrum: A Theoretical Derivation

The Weibull distribution (Weibull 1951) is a lifetime
distribution that has application in many fields, such as
reliability engineering, clinic trials, human dynamics, and

Figure 2. PSDs of the magnetic field fluctuations in the upstream and
downstream regions of the shock observed on 2011 October 3 at 22:23:20 UT.
The PSDs were calculated over the time intervals indicated. The dashed straight
line f−5/3, corresponding to a Kolmogorov turbulent spectrum, is drawn for
reference.

Figure 3. Time-averaged energetic particle differential fluxes calculated around
the shock arrival on 2011 October 3 at 22:23:20 UT. The intervals over which
the time averages were performed are indicated in the figure. Dashed curves are
the best-fit Weibull functions. Data errors are within the marker size.
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economics (e.g., Rinne 2009; Fenner et al. 2015; Yannaros
1994, and references therein). The following derivation of the
Weibull spectrum of energetic particles is essentially based on
the connection between the Weibull distribution and “killed”
processes exhibiting a power-law growth. Let us consider, for
example, the simple case of the deterministic process
X t t= n( ) killed (viz., truncated) at a random time T
exponentially distributed according to the probability function
f T e T= -( ) . The killed state X T= n¯ has then a Weibull
probability density g X X e X1b= b- - b( ¯ ) ¯ ¯ ( 1b n= ) as straight
result of equating the probabilities g X dX f T dT=( ¯ ) ¯ ( ) . In the
case of stochastic processes with power-law growth in
expectation, the same basic idea can be applied. Nevertheless,
the Weibull statistics is recovered only if the self-similarity of
such processes is broken, as discussed below.

On the basis of the above argument, Fermi’s SA can be
directly related to the Weibull energy spectra since, in such
physical process, the particle velocity increases in time as a
power law. In fact, it is known that, in the framework of the
second-order Fermi mechanism of acceleration, anomalous
diffusion for particle velocity can arise (Bouchet et al. 2004;
Perri et al. 2007): v vt t0

2 2á - ñ ~ n∣ ( ) ∣ , where v0 is the initial
velocity (the terminology “anomalous diffusion” refers only to
the fact that the scaling exponents can differ from the standard
Brownian value ν= 1/2 although the random processes are
Gaussian). For instance, Bouchet et al. (2004) developed a two-
dimensional minimal stochastic model in which particles
absorb kinetic energy (accelerate) through collisions against
magnetic irregularities modeled as rigid, circular, randomly
moving scattering centers. They found for both particle velocity
and position the same anomalous superdiffusive behavior with
ν=1. However, those authors noted that, in other systems
with Fermi’s acceleration, the scaling exponents for position
and velocity diffusion could not be trivially related as in their
minimal model. Values 1 2 1n< are possible in billiards
with oscillating scatterers when noticeable displacements of
scatterers are allowed and the collision rate depends on the
particle(s) and scatterers’ velocity (Kargovsky et al. 2013).
More generally, Kargovsky et al. (2013) have shown that in the
Langevin equation with multiplicative noise

v t av v t t 22 1 x= +g g-˙ ( ) ( ) ( ) ( )

(where γ<1, a�0, and tx ( ) is a Gaussian white noise with
t 0x =( ) and t t D2x x t d t+ =( ) ( ) ( )) the statistical moments

of velocity grow in time according to the power law
M t tn

n~ n( ) with 1 2 2n g= -( ). Those authors have pointed
out that Equation (2) can describe, in the general case, a wide
class of different physical systems in which the acceleration is
due to both deterministic (first term on right-hand side) and
random sources (second term on right-hand side).

In order to derive the Weibull spectrum, we assume that a set
of noninteracting particles is accelerated by one of the
stochastic processes described by Equation (2). Here the
respective anomalous diffusion for velocity is expressed as

E t t , 3n n ntá ñ ~ n( ) ( ) ( )( )

where E(t) is the particle kinetic energy, n nn ( ) is a concave
function of n (i.e., its slope continually decreases), τ is a
characteristic time of duration of the acceleration, and •á ñ stands
for the average over a particle’s ensemble. The nonlinearity of
n nn ( ) indicates that the probability distribution function (PDF)

of particle velocity at different times is not self-similar, namely,
a PDF of the form v vP t t F t, = n n-(∣ ∣ ) (∣ ∣ ) cannot describe the
anomalous diffusion at all timescales by means of the same
value of ν. Actually, numerical studies on the motion of tracer
particles in sandpile (Carreras et al. 1999) and in plasma
turbulence (Carreras et al. 2001) show that system finite size
effects can determine a breakdown of PDF self-similarity
characterized by a nearly piecewise linear n nn ( ) function with
a smaller slope for high n than for low n. Therefore, we justify
the assumption of concavity for n nn ( ) as a way to account for
finite size effects on the velocity diffusion process (e.g., the
finite value of the probability per unit time 1t- for a particle to
exit from the acceleration process).
Let us start our derivation from the classical Fermi scheme in

which particles are stochastically accelerated in a spatial region
by interactions with randomly moving scatterers representing
magnetic irregularities or turbulent fluctuations. Moreover, let
us assume that scattering is effective in making the particles
distribution isotropic. The spatial region is homogeneous, and
consequently the spatial diffusion is not considered. The
number of particles per unit volume and per unit solid angle
having kinetic energies in the range E to E E+ D is then
expressed as N E t E4 ,1p D-( ) ( ) , that is, only as a function of
the time and energy. All of the particles are injected in the
acceleration process with the same energy Ein (henceforth we
refer all energies to Ein for notation convenience, thus Ein= 0)
at a constant rate of qin particles per unit volume and time.
Particle leakage from the acceleration region is taken into
account through a characteristic time of confinement τ
independent of the energy. Hence, the appropriate diffusion-
loss equation, expressing the conservation of the number of
particles in energy space, reads (e.g., Ginzburg & Syrovatskii
1964; Miller et al. 1990; Longair 1994)

N

t

b E N

E

d E N

E

N
q E

1

2
, 4

2

2 int
d

¶
¶

=
¶

¶
+

¶
¶

- +
( ( ) ) ( ( ) ) ( ) ( )

where b E d E

dt
= - á ñ( ) , d E d E

dt

2

= á D ñ( ) ( ) .
The four terms on the right-hand side account (left to right)

for (1) the mean “drift” of the particles in energy space (b(E)
represents the average acceleration rate), (2) the “broadening”
of the particle energy distribution (first and second right-hand-
side terms are connected with the stochastic nature of the
acceleration process), (3) particle leakage from the acceleration
region (term accounting for the truncation in time or killing of
the acceleration process), and (4) supply from sources of a
monoenergetic beam of fresh particles with energy Ein.
The relative weight of the second to the first term on the

right-hand side of Equation (4) can be easily estimated, through
dimensional considerations, by the ratio

R E
d E

b E E

E

E
, 5

2

2
á ñ =

á ñ
á ñ á ñ

~
á ñ
á ñ

( ) ( )
( )

( )

where we consider E E2 2á D ñ ~ á ñ( ) . Hence, using Equation (3)
in Equation (5) and dropping the bracket notation (hereafter no
longer necessary), we obtain the scaling law:

R S E S R E , 6F F
2= a-( ) ( ) ( )

where 1 2 1a n n= -[ ( ) ( )] and S 0F > is a scale factor.
Since α>0 due to the concavity of n nn ( ), Equation (6)

implies that R E 1( ) if E S E EF * *=  , where

4
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E E t= á ñt ( ) and 1 1 0b nº >( ) , with E* being approxi-
mately defined through R E 1* ( ) . Therefore, in energy
regime E E* , the second term on the right-hand side of
Equation (4) can be neglected and the steady-state spectrum
( N t 0¶ ¶ º ) can be obtained by solving Equation (4) reduced
to a simpler form:

N
E E N

E
, 7

1

b
= -

¶
¶

t
b b-( ) ( )

where E E t= á ñt ( ) and 1 1 0b nº >( ) . A straightforward
integration yields

N E A E E e , 8E E1= t
b- - t

b( ) ( ) ( )( ) ( )

where A is an integration constant. Therefore, the accelerated
particles are distributed according to the Weibull statistics for
energies sufficiently higher than E*. On the contrary, in the low
energy range from Ein to E*~ , the Weibull function is not
expected to be a good approximation to the solution of the
diffusion-loss equation, as the second term on the right-hand
side of Equation (4) can no longer be neglected.

The stationary solution to Equation (4) is the equilibrium
spectrum corresponding to the physical condition in which
there exists a balance among particle escape, acceleration, and
continuous injection from the source q Eind ( ) switched on at an
initial time t0 in the past. We specify that in the case of shock
acceleration, we consider our leaky box stuck on the shock
front and moving with it and t0, the time of shock formation.
Such equilibrium is asymptotically reached when the elapsed
time t t0- greatly exceeds the acceleration time for the
maximum observed energy.

We note that d E 0º( ) for a pure deterministic acceleration
process. In this case, if the systematic time increase of the
particle energy is a power law E t t 1t~ b( ) ( ) (as in the case
of SSA; Ohsawa 1987), Equation (4) automatically becomes
Equation (7) when a stationary state is considered, and
therefore the Weibull spectrum represents an exact equilibrium
solution to the diffusion-loss equation.

As we have just shown, SA in a homogeneous leaky box
with constant escape time determines a Weibull spectrum. In
what follows we investigate the more general leaky box in
which the spatial diffusion is taken into account, and we also
illustrate the conditions under which the resulting corrections to
the Weibull distribution of Equation (8) are negligible.

Spatial diffusion is introduced in the leaky box by adding the
term rE N E,2k ( ) ( ) on the right-hand side of Equation (4),
where Ek ( ) is the space diffusion coefficient. In turbulent
plasmas, where the magnetic field fluctuations have a power
density spectrum W k qµ - (k and q are the wavenumber and
the spectral index, respectively), the theoretical Ek ( ) is a power
law in energy (e.g., Miller et al. 1990; Fedorov et al. 2012),
which can be written as E E q

0k k= t
g( ) ( ) ( 0k is a constant

with dimensions l t2 1-[ ][ ]). The function qg ( ) depends on the
particular scattering model considered (e.g., Miller &
Ramaty 1989; Droege 1994; O’Sullivan et al. 2009). The
escape time Et due to the space diffusion r t t2 kt tá ñ = l( ) ( )
possesses a power-law dependence as well, as it holds the
relation L EAR

2 kt t t= l( ) between the typical size LAR of the
acceleration region and Et , with τ being an arbitrary constant.
The constant λ may differ from the classical value 1bml = of
the standard Brownian motion. In systems with stochastic
particle acceleration such as the present one, the scaling

exponent of the spatial diffusion λ could be not trivially related
to the scaling exponent of the diffusion in momentum space
(here 1b- ). The only general constraint is 21l b +- , and the
equality holds only in the presence of a very strong correlation
between the velocities at different times (Bouchet et al. 2004).
If we choose LAR

2
0t k= , the escape time can be expressed

as E EEt t= t
d-( ) , where d g l= . In this case, the

equilibrium spectrum is the solution of an equation analogous
to Equation (7):

N E E N

E
E N. 9

E

1
2

t bt
k= -

¶
¶

+ t
b b-( ) ( ) ( )

Equation (9) is solved through the method of the separation of
variables. The straightforward result is the following:

r r

r

N E N N E

N A E E e

,

, 10G E E E E

1 2

1
1 , , ,

=

= t
b b g l- - t t

b d+

( ) ( ) ( )
( ) ( ) ( )( ) ( )( )( )

where A is an integration constant, rN1( ) a solution of equation
N N c1 const1 0

2
1k-  = =( ) (c 1- is a typical diffusion time),

and G E E, , ,b g l =t( ) c1b b d t b d b g+ + + +( )[ ( ) ( )/

E Et
g d-( ) ]( ) .

In the case of particle spatial diffusion not much different
from the Brownian motion, i.e., bml l~ , we have d g .
Hence,

G c1 . 11b b d t+ + ( )( ) ( )

From Equations (11) and (10), provided that d b , an
approximate Weibull spectrum, with parameters β and
E E c1 1t¢ = +t t

b( ) , is found even when the spatial
diffusion by turbulence is accounted for in our leaky box.
On the other hand, for anomalous spatial diffusion, i.e.,

bml l¹ , if the condition d b is satisfied, a Weibull
spectrum is still recovered whenever the escape time is much
smaller than the typical diffusion time, that is, when c 1t 
holds.
Outside of the acceleration region, the particles are only

scattered by the magnetic field inhomogeneities, and their
energy is unchanged. The equilibrium spectrum is obtained by
solving the diffusion-loss equation, which, in this case,
describes a pure spatial diffusion out of the source:

E N 0, 12out
2k  =( ) ( )

where Eoutk ( ) is the spatial diffusion coefficient outside the
acceleration region.
The analytical form of the solution rN E,out ( ) of this

equation depends on the boundary conditions related to the
geometry of the particular problem studied. However, it is
possible to highlight a qualitative and general property of this
solution independent from the details of the specific physical
picture. In fact, at any space point r, the particle spectrum

rN E,out ( ) has to be such as to ensure the conservation of the
number of particles of energy E diffusing out from the spatial
source where they are produced. This constraint implies that

rN E,out ( ) is a decreasing function of the distance r from the
acceleration region.

4. Discussion

Theoretical considerations, numerical simulations, and
observations (e.g., McKenzie & Westphal 1968; Westphal &
McKenzie 1969; Kennel et al. 1982; Zank et al. 2006;
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Giacalone & Jokipii 2007; Lu et al. 2009; Guo et al. 2012; Hu
et al. 2012, 2013; Fraschetti 2013; Pohl et al. 2015) indicate
that shock waves produce substantial levels of turbulent
fluctuations and structures in their downstream regions.
Therefore, the two fundamental assumptions, on which our
derivation of the Weibull spectrum is based, are consistent with
physical conditions at interplanetary shocks. In fact, from the
theoretical point of view, turbulence can provide efficient
particle scattering (thus supporting our first basic assumption;
e.g., Tverskoǐ 1968; Blandford & Eichler 1987; Petrosian 2012;
Bykov et al. 2014) to account for the observed isotropy of the
distribution function of energetic particles (Gosling et al. 1981)
and the particle confinement in a volume close to the shock
front. In addition, turbulence can be responsible for momentum
diffusion (our second basic assumption; Tverskoǐ 1968;
Bouchet et al. 2004), so that the energy is transferred to
particles through a stochastic Fermi acceleration (e.g.,
Tverskoǐ 1968; Fedorov et al. 2012; Petrosian 2012) achieved
through adiabatic particle reflection from randomly moving
turbulent waves or eddies.

In the previous section, we have shown that in turbulent
plasmas the space diffusion leads to a particle spectrum that
could be approximated by Weibull’s functional form. As a
matter of fact, our observations indicate that all of the average
spectra calculated on different time intervals around the shock
are well described by a Weibull function in the energy range
0.1 30 MeV¸[ ] (Figure 3). In addition, we verified that the
goodness of our fits is not improved when the spectrum of
Equation (10) is chosen as the fitting function. Hence,
presumably the condition d b , which ensures negligible
corrections to the Weibull distribution, is satisfied. In
particular, as β is found to be ∼0.5 for all of the analyzed
spectra, δ is possibly close to zero. Therefore, in spite of
extreme simplicity, an energy-independent escape time (i.e.,

0d = ) proves to be (a posteriori) acceptable as a result of the
good agreement between the Weibull spectrum and exper-
imental data. In this regard, we also note that, in the past years,
a constant leaky-box lifetime has been extensively and
fruitfully applied in studies of the emission of solar flare
particles accelerated through the Fermi stochastic mechanism
(Miller et al. 1990, and references therein).

In our theoretical scheme τ, β, and Et are free parameters
that can assume, in principle, any value independently from
each other. We show that their observational estimates are
congruent with a physical picture of the event by discussing the
case of the average spectrum calculated on the interval
22:14–22:31 UT. However, the same conclusion is valid also
for all of the average spectra calculated on shorter intervals
around the peak. The value of 0.5b = (i.e., 1 2n =( ) ) implies
superdiffusion for velocity. In general, a high degree of
persistence of the anomalous diffusion is expected for an
efficient particle acceleration. Moreover, as already mentioned,
the same superdiffusive behavior spontaneously arises in a
minimal model of second-order Fermi acceleration proposed by
Bouchet et al. (2004). Thus, the above β value proves to be
fairly meaningful from a physical point of view.

In the case of efficient energization, the mean energy
Eτ gained in a characteristic time τ has to be much
higher than the typical injection energy. As a matter of fact,
E 81 keV=t considerably exceeds both typical bulk
flow E m V1 2 1 keVpbulk sw

2= ~ and thermal Eth =
K T 0.02 keVB p ~ energies of the upstream solar wind protons

(see Figure 1). Hence, it is consistent with the reasonable
hypothesis that the energetic particle population is accelerated
directly out of the ambient solar wind.
The confinement time τ cannot be directly obtained through

the best-fit procedure. Nevertheless, observations can provide
an upper limit for its value. In fact, taking into account 0.5b =
and E 81 keV=t , it is seen from Equation (3) that a particle
energy of 30 MeV~ (i.e., the highest energy in Figure 3) is
reached after an acceleration time T 18a t . The shock
traveling time, from the Sun to the spacecraft position
R 1.08 aus c = , is T R v 2.7 dayss cstt sh=  . Hence, as the
condition T Tastt  must be satisfied in order to observe the
Weibull equilibrium spectrum (see the discussion on this
question in Section 3), a reasonable upper limit is (assuming
the conservative constraint T T10 astt ~ ) 0.4 hrupt  . When
calculated from Equation (3) with the above values of β, Et,
and τ, the resulting acceleration timescales of our super-
diffusive model are comparable to DSA ones or even shorter.
For instance, Zhang & Lee (2013) estimate that DSA
accelerates a proton to an energy of 10 MeV~ in a time of

12 hr~ at1 au (see their Figure 1). In our case, the same energy
is reached after a time 10t~ , i.e., 4 hr~ . It is conceivable that a
second-order Fermi acceleration may be as efficient as the
DSA. For instance, Ostrowski (1994) has showed that, under
the hypothesis of negligible damping of very low frequency
Alfvén waves, statistical acceleration by high-amplitude MHD
turbulence can transfer the energy of a weak parallel shock to
the particles more efficiently than a first-order process.
Moreover, Schlickeiser & Achat (1993) proposed that, due to
efficient momentum diffusion of particles in the downstream
region of the shock, the acceleration can be dominated by the
second-order acceleration mechanism. As far as the time profile
of the energetic particle flux is concerned, we note a different
behavior between low- and high-energy channels. In particular,
for energies up to about 0.5 MeV, the profile stays nearly
constant in the downstream region after peaking at the shock,
as expected for DSA (e.g., Zank et al. 2006). On the other
hand, at higher energies the flux profile drops soon after the
shock arrival. Such a behavior could be qualitatively explained
through a steady spatial diffusion of energetic particles out of a
narrow acceleration region behind the shock as briefly
discussed in Section 3. Hence, as the space diffusion coefficient
due to scattering is an increasing function of the energy (e.g.,
Fedorov et al. 2012), the post-shock flux would show a time
decrease more pronounced going from the lowest to highest
energies when observed at a fixed spacecraft position. In this
regard, we point out that fast hydromagnetic waves could be
consistently taken into account within this physical picture. In
fact, strong turbulent forward- and backward-moving fast
modes are expected to be excited downstream of the shock in a
potentially thin layer of the order of the injection scale of the
fast turbulence driven at the shock. As a result of their high
phase speed, such fast modes can produce SA or reacceleration
(if DSA is effective at an early stage) until they are damped
away (Liu et al. 2008; Pohl et al. 2015, and references therein).
The above considerations suggest that SA plays a role in
particle acceleration and determines the form of the energetic
particle spectrum, possibly together with contribution of DSA
at low energies (of the order of Et). Nevertheless, this
speculation needs to be supported by further theoretical studies
to address the question of the driving of the turbulence at the
shock and how the microphysics of the turbulence affects the
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trapping and the acceleration time of energetic particles (e.g.,
Verkhoglyadova & Le Roux 2005; Liu et al. 2008; Pohl
et al. 2015). The experimental identification (through high-
resolution plasma data) of the type of the turbulent waves near
the shock front would be fundamental to understanding the
particle acceleration as well.

An alternative interpretation of the present observations is
provided by SSA. In fact, according to the SSA at nearly
perpendicular shocks, the particle energy augments as the
power law E t t2~( ) (Ohsawa 1987; Lee et al. 1996).
Consequently, as explained in the previous section under the
hypothesis of an acceleration time that is a random variable, the
expected particle spectrum is a Weibull one with 1 2b = ,
which is exactly the same value obtained from the best-fit
procedure for the average spectrum of Figure 3, corresponding
to the time interval covering the whole particle enhancement.
Moreover, taking into account the upstream values of the
Alfvén speed v 65 km sA

1- , Mach number M 11A  , and
proton-to-electron mass ratio m m 1836p e = , the estimate of
the theoretical maximum proton speed (Ohsawa 1987)
v v m m M 1A p e Amax

1 2 3 2- ( ) ( ) is v 88 10 km smax
3 1´ - ,

corresponding to a kinetic energy of E 38 MeVmax  , i.e., a
value close to 30 MeV~ of the higher energy observed in the
present event. Also, Emax is reached in a time
t m m Mp e p Amax

1 2 1 1w - - ( ) (Ohsawa 1987), which, in our
case, is 125 s (with the upstream proton cyclotron angular
frequency being 0.95 rad sp

1w = - ). Taking into account tmax,
Emax, and Et , an elementary calculation using Equation (3)
yields a characteristic acceleration time 6 st  , which, from
the physical viewpoint, is a reasonable value considering that
the proton gyroperiod is 2 7 spp w  . Therefore, SSA captures
some important aspects of the study reported here. Never-
theless, no definitive conclusions in this regard can be drawn
without further confirmations of the characteristic value

0.5b  from other events of particle acceleration at perpend-
icular shocks.

Because of the physical connection between the Weibull
spectrum and stochastic or SSA, the present event seems to
support the idea that in the MeV range and above, in which a
Weibull distribution well describes our SSE observations,
particle acceleration could be provided by different mechanism
(s) from those at work from a few tens up to a few hundreds of
keV (Kallenrode 1995, 1996). In fact, in the latter energy
range, many observational evidences point to an interpretation
of the shock enhancements in terms of DSA or pump
acceleration (Fisk & Gloeckler 2012; Giacalone 2012;
Neergaard Parker & Zank 2012).

5. Conclusions

With regard to the SSE of particle acceleration in the
interplanetary space presented here, our results can be
summarized as follows.

(1) A Weibull distribution successfully fits the spectrum of
energetic protons over the entire observed energy range
0.1 30 MeV¸ spanning two orders of magnitude.

(2) The Weibull spectrum can be theoretically derived from a
leaky-box model in the framework of stochastic processes
(including the classical Fermi second-order mechanism),
wherein the acceleration is mathematically represented as
an anomalous diffusion in momentum space. A well-

known Langevin equation with Gaussian multiplicative
white noise can describe a wide class of such processes.

(3) An overall coherence exists between the experimental
values of the Weibull spectrum free parameters and their
physical meaning within the proposed statistical mech-
anism. Moreover, we found that the timescales of the SA
could be competitive with those of the DSA.

(4) All of the deterministic acceleration processes, character-
ized by a time increase of the particle energy according to
a power law, lead to a Weibull spectrum in the case in
which the acceleration time is assumed to be a random
variable. In particular, the present SSE can be interpreted
in terms of SSA as well. Our results show that such a
description makes sense from the physical point of view.
Nevertheless, before suggesting SSA as a viable mech-
anism for acceleration at quasi-perpendicular shocks
connected with SSEs, we would need to ascertain
whether the characteristic SSA parameter 0.5b  of
the Weibull spectrum is routinely observed in space.

(5) The present results suggest a scenario in which different
mechanisms could account for particle acceleration in
different energy ranges at interplanetary shocks, namely,
stochastic or SSA effective in the MeV range and above,
whereas (as reported in past studies) diffusive, pump, or
shock-drift acceleration is at work for energies from few
tens up to few hundreds of keV.
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