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ABSTRACT
We present a family of self-consistent axisymmetric rotating globular cluster models which
are fitted to spectroscopic data for NGC 362, NGC 1851, NGC 2808, NGC 4372, NGC 5927
and NGC 6752 to provide constraints on their physical and kinematic properties, including
their rotation signals. They are constructed by flattening Modified Plummer profiles, which
have the same asymptotic behaviour as classical Plummer models, but can provide better
fits to young clusters due to a slower turnover in the density profile. The models are in
dynamical equilibrium as they depend solely on the action variables. We employ a fully
Bayesian scheme to investigate the uncertainty in our model parameters (including mass-to-
light ratios and inclination angles) and evaluate the Bayesian evidence ratio for rotating to
non-rotating models. We find convincing levels of rotation only in NGC 2808. In the other
clusters, there is just a hint of rotation (in particular, NGC 4372 and NGC 5927), as the data
quality does not allow us to draw strong conclusions. Where rotation is present, we find that
it is confined to the central regions, within radii of R ≤ 2rh. As part of this work, we have
developed a novel q-Gaussian basis expansion of the line-of-sight velocity distributions, from
which general models can be constructed via interpolation on the basis coefficients.

Key words: methods: numerical – stars: kinematics and dynamics – globular clusters: gen-
eral – galaxies: star clusters: general.

1 IN T RO D U C T I O N

Once believed to be among the simplest of astrophysical systems,
the complexity of globular clusters is becoming increasingly appar-
ent, as detailed observations reveal clues to their rich evolutionary
history. Many globular clusters exhibit a non-negligible degree of

� E-mail: s.jeffreson@uni-heidelberg.de (SMRJ); jls@ast.cam.ac.uk (JLS)

flattening (White & Shawl 1987; Chen & Chen 2010) which ap-
pears to vary with radius from the cluster centre (Geyer, Nelles &
Hopp 1983) and which displays a correlation with internal rotation
(Bellazzini et al. 2012; Bianchini, Varri & Bertin 2013; Fabricius,
Noyola & Rukdee 2014; Kacharov et al. 2014). Multiple stellar
populations have been identified, first as chemically distinct fea-
tures in the spectroscopic light abundance patterns (e.g. Na–O
anticorrelations, Gratton, Sneden & Carretta 2004; Carretta et al.
2010; Gratton, Carretta & Bragaglia 2012) and later as distinct
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photometric features (Piotto 2009) in the main sequence (e.g. Pi-
otto et al. 2007; Milone et al. 2010; Simioni et al. 2016), the sub-
giant branch (e.g. Milone et al. 2008) or horizontal branch (e.g.
Dalessandro et al. 2011). Recently, Cordero et al. (2017) has cal-
culated a 98.4 per cent probability that differential rotation exists
between chemically distinct subpopulations in M13, while analyses
of proper motion data for the stellar subpopulations in NGC 2808
(Bellini et al. 2015) and 47 Tuc (Richer et al. 2013) have found
that the subpopulations closest to the blue main sequence have a
significantly higher degree of radial anisotropy than do the subpop-
ulations closest to the red main sequence. These results demonstrate
the possibility that multiple populations are also dynamically dis-
tinguishable.

The use of dynamics in grappling with the origin and evolution
of multiple populations is explored in detail in Hénault-Brunet et al.
(2015). In this work, the rotational signature after a Hubble time
is shown to distinguish between the two most prominent scenarios
of subpopulation formation, namely the asymptotic giant branch
scenario (Decressin et al. 2007; D’Ercole et al. 2008; Conroy 2012;
Krause et al. 2013) and the early disc accretion scenario (Bastian
et al. 2013). Although a large number of discrepancies exist between
the predictions of current models and observations (Hénault-Brunet
et al. 2015; Bastian 2015), the potential power of combining chem-
istry and dynamics to explore current and future models of cluster
formation and evolution is clear. Additionally, the correlation be-
tween rotation and flattening (Bekki 2010; Mastrobuono-Battisti
& Perets 2013, 2016), as seen in high-quality spectroscopic ob-
servations of Galactic globular clusters (Lane et al. 2009, 2010;
Bellazzini et al. 2012; Bianchini et al. 2013; Fabricius et al. 2014;
Kacharov et al. 2014), could provide dynamical clues concerning
cluster formation and evolution in the Milky Way and other galaxies.

In order to extract the maximum possible information from these
increasingly precise measurements of internal rotation, along with
proper motion measurements (Bellini et al. 2014; Watkins et al.
2015) and integral-field spectroscopy measurements (Lützgendorf
et al. 2012; Bacon et al. 2014; Kamann et al. 2016), flexible
dynamical models of rotating, flattened globular clusters are re-
quired. A number of suitable models have been proposed, includ-
ing the construction of distribution functions (DFs) via a modified
Schwarzschild orbit superposition method, pioneered by van de Ven
et al. (2006) for ω Cen and subsequently applied to M15 by van den
Bosch et al. (2006). This approach allows the degree of solid-body
rotation and the inclination angle of the cluster to be simultaneously
constrained. Two classes of self-consistent rotating dynamical equi-
libria are also presented by Varri & Bertin (2012), which control
rotation via a set of three parameters within modified King (1966),
Wilson (1975) and Prendergast & Tomer (1970) models. Further rel-
evant models include non-parametric fits of ω Cen (Merritt, Meylan
& Mayor 1997), truncated Maxwellian models of M13 with solid-
body rotation (Lupton, Gunn & Griffin 1987), 2D Fokker–Planck
time-evolving models with initial conditions tailored to observations
of individual globular clusters (Fiestas, Spurzem & Kim 2006) and
the application of Wilson (1975) models to ω Cen by Sollima et al.
(2009).

The construction of DFs which depend only upon the canonical
set of adiabatically invariant integrals of motion (action variables)
presents an opportunity to increase the flexibility of previous dy-
namical models (Binney 1987). A spherical isotropic action-based,
self-consistent, equilibrium DF can be constructed via the method
of Williams & Evans (2015a) and Posti et al. (2015) to reproduce a
density profile suitable for globular clusters. These models can be
generalized to axisymmetry (or possibly triaxiality) through the use
of approximate action estimation schemes (Sanders & Binney 2016)

to produce flattened equilibria. Rotation can be included using the
procedure described in Binney (2014), whereby internal rotation
is independent of the density profile and may be straightforwardly
manipulated subsequent to the computation of density isophotes.
As discussed in Binney (2014), the linearity of action-based DFs
allows multiple rotational components to simply be added together
without altering the overall density profile, such that these models
could feasibly be extended to account for multiple populations with
differential rotation. In this paper, we present and apply a family of
self-consistent dynamical equilibrium models for rotating, flattened
globular clusters, noting that these models represent simple building
blocks from which multicomponent models can trivially be con-
structed. We argue that the flexibility of these models makes them
ideally suited to explore the wide range of phenomena observed
in globular clusters today, and ultimately to distinguish between
possible scenarios for their formation.

To demonstrate the capability of our action-based dynamical
models in constraining the physical properties of globular clusters,
we fit the line-of-sight (l.o.s.) velocity kinematics of six globu-
lar clusters from the Gaia–ESO survey (GES), complemented by
other archival data. We introduce a novel expansion method to
parametrize the model l.o.s. velocity distributions, enabling us to
rapidly evaluate the probability of the data for a given set of model
parameters. For our six globular clusters, we fit the rotation signal as
well as the mass-to-light ratio, inclination angle and systemic veloc-
ities and discuss the link between the rotation signal and ellipticity
for our sample.

The paper is organized as follows. In Section 2, we describe the
globular cluster data we will use for our modelling. Section 3 out-
lines how the self-consistent flattened rotating action-based models
are constructed and the adopted functional form for our models.
In Section 4, we introduce a novel approach to fit a suite of self-
consistent models to spectroscopic data. The results of the analysis
are discussed in Section 5 before we present our conclusions in
Section 6. We also provide two useful appendices. The first gives
a number of formulae for the introduced Modified Plummer model
and the second details the q-Gaussian basis expansion for l.o.s.
velocity profiles, which is employed in the data analysis.

2 DATA

We opt to work with spectroscopic and photometric data for the six
globular clusters listed in Table 1. In this section, we describe in
turn the sources of the data used and any preliminary processing we
have performed.

2.1 Spectroscopic data

Our primary source of spectroscopic data is the GES ( Gilmore
et al. 2012; Randich, Gilmore & Gaia-ESO Consortium 2013).
GES is a public spectroscopic survey using the mid-resolution
(R ∼ 17000) FLAMES–GIRAFFE and the higher resolution
(R ∼ 47000) FLAMES-UVES spectrographs on the Very Large
Telescope (VLT). For most clusters, the bulk of the spectra use the
combination of the HR10 (534–562 nm) and HR21 (848–900 nm)
setups on GIRAFFE although ∼60 per cent of the GIRAFFE data
for NGC 6752 and ∼40 per cent for NGC 362 use the HR15N setup
(647–679 nm). There are a small number of spectra using the UVES
U580 (480–680 nm) setup (and 3 for NGC 6752 using the U520
setup, 420–620 nm): 6 for NGC 362, 26 for NGC 1851, 19 for
NGC 2808, 1 for NGC 4372, 6 for NGC 5927 and 21 for NGC
6752. We use the metallicities and radial velocities given in the
fourth internal data release. We have combined this data with data
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Table 1. Summary of properties of globular clusters used in this work. Column (1) gives the total number of spectroscopic targets N. Columns (2)–(4) give the
number from each of the three sources. Columns (5) and (6) give the 5th and 95th percentiles for the overall radial spread of the data, in units of the half-light
radius rh from Harris (1996). Column (7) gives the distance to each cluster d. Column (8) gives the ellipticity measured by (White & Shawl 1987) with the
fraction of the half-light radius at which the ellipticity was measured in brackets, while column (9) gives the PA measurement from the same source. Columns
(10) and (11) give the PA and rotation amplitude, assuming the major axis is perpendicular to the rotation axis determined using the method described in
Section 2.1.1.

Name N NGES NLardo NOther R5th/rh R95th/rh d εW&S PAW&S PArot A0

[kpc] [◦] [◦] [km s−1]
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

NGC 362 122 122 0 0 1.14 8.02 8.6 0.01 (2.15) 25 ± 4 131 ± 12 1.3 ± 0.5
NGC 1851 221 64 157 0 1.64 14.21 12.1 0.05 (2.42) 86 ± 1 116 ± 8 1.0 ± 0.2
NGC 2808 117 42 75 0 0.96 10.65 9.6 0.12 (2.83) 31 ± 0 3 ± 5 4.0 ± 0.6
NGC 4372a 196 45 111 40 0.30 2.02 5.8 0.15 (0.64) 38 ± 6 48 ± 19 0.6 ± 0.3
NGC 5927 87 33 54 0 0.70 6.92 7.7 0.04 (1.15) 63 ± 2 132 ± 9 1.9 ± 0.4
NGC 6752 884 209 503 172 0.45 5.85 4.0 0.04 (1.24) 147 ± 7 125 ± 17 0.3 ± 0.1

Notes. aFor NGC 4372, we use the ellipticity (ε = 0.08) and PA (48◦) measured by Kacharov et al. (2014).

from Lardo et al. (2015),1 Lane et al. (2011) (for NGC 6752) and
Kacharov et al. (2014) (for NGC 4372). The spectroscopic sample
was formed by combining the stars from each of these sources and
removing duplicates (defined as a star within an on-sky distance of
2′′ from another star in our sample – we preferentially retain the star
with the lower radial velocity uncertainty). 3σ outliers in metallicity
were removed from the Gaia–ESO sample, as metallicity was un-
available for the other data sets (but the authors do provide flags for
likely membership which we use instead). Additionally, we remove
all stars outside 12 scale radii of our models (defined later) as these
fall outside our model grids, and all stars outside vr ± 4σ v, where
vr and σ v are the mean velocity and velocity dispersion reported
in Harris (1996, 2010 edition). For NGC 4372 and NGC 5927, we
use a default value of σ v = 5 km s−1 as no value is provided by
Harris (1996, 2010 edition). The presence of binaries (or other mul-
tiple systems) may affect our results, but only in NGC 6752 has a
single spectroscopic binary been detected from the Gaia–ESO data
(Merle et al., in preparation), so binarity is not important for our
sample. Furthermore, Milone et al. (2012) has measured the binary
fraction in NGC 362, NGC 1851, NGC 5927 and NGC 6752 using
photometry and found that the binary fraction is approximately less
than 5per cent for these clusters (although for a core sample in NGC
5927, the binary fraction was found to be 10 per cent).

We transform our entire sample to on-sky coordinates aligned
with the major axis of the cluster (x, y) by first converting the on-
sky angular positions to a local Cartesian basis (using equation (1)
from van de Ven et al. 2006) and then rotating by the position angle
(PA). We primarily use the PA measurements of the major axis
from White & Shawl (1987, see the following subsection), except
for NGC 4372, where we use the value reported by Kacharov et al.
(2014), and NGC 362, where we choose the PA according to the
rotation axis which maximizes the rotation signal, via the procedure
implemented by the same authors (and described in the following
subsection). We opt to use this technique for NGC 362 due to
its near-sphericity and the consequent ambiguity of its PA. This
ambiguity is reflected in the large disparity between the values
reported in White & Shawl (1987) and Chen & Chen (2010), which
are 25◦ ± 4◦ and 61◦ ± 7◦, respectively.

1 These authors use GES data combined with archival ESO data, so when
we use the term ‘Lardo data’, we mean all data used by Lardo et al. (2015)
but not in GES.

For visualization purposes only, the mean velocities and total ve-
locity dispersions are fitted using a Gaussian mixture model (GMM)
to prevent skewing of the distribution by any further outliers.

2.1.1 The case for rotation

Several of the clusters in our sample display evidence for internal
rotation. To obtain a preliminary indication of whether rotation is
present, we follow the procedure outlined in Bellazzini et al. (2012)
and Kacharov et al. (2014). The rotation axis is determined by mea-
suring the difference in mean l.o.s. velocities, �〈v||〉, on either side
of a given axis orientated at 18 PAs, φ, separated by 20◦ and their
corresponding Poisson errors. The resulting run of �〈v||〉 with φ is
fitted with a sinusoid −A0 cos (φ − PA0) to find the PA of the rotation
axis, PA0, for which the rotation signal is maximized.2 For an ax-
isymmetric model, the major axis is orthogonal to the rotation axis,
and we then denote the PA of the major axis as PArot = PA0 − π/2.
We use the Markov Chain Monte Carlo (MCMC) package EMCEE

(Foreman-Mackey et al. 2013) to sample the posteriors on the pa-
rameters A0 and PArot (assuming, incorrectly, that the uncertainties
in �〈v||〉 are uncorrelated) and give the results in Table 1. In Fig. 1,
we show the rotation curves for NGC 2808 and NGC 4372, the two
most convincing cases. The data points have again been computed
using a GMM, with bins along the axis on the sky perpendicular
to the rotation axis. We have used both overlapping (red) and non-
overlapping (black) bins. The overlapping bins are of width 2′ and
only include the innermost 90 per cent of the data in b. The non-
overlapping bins are equally populated, and we have used four bins
on either side of the axis, after removal of the outermost 5 per cent
of data on each side. Later in the paper, we will identify rotation by
fitting full dynamical models to the data.

2.2 Ellipticity measurements

There are two studies of the flattening of globular clusters from
White & Shawl (1987) and Chen & Chen (2010). While Chen &
Chen (2010) use infrared data, so are less susceptible to extinction,
they consider the flattening at significantly larger radii than White

2 The sinusoidal amplitude A0 should not be confused with Arot, which
is simply the maximum amplitude of the projected mean velocity profile,
independent of the procedure described here. In Section 5.1, we compute
the value of Arot predicted by our models.
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Figure 1. Rotation curves for NGC 2808 and NGC 4372 obtained from the
spectroscopic data using the procedure described in Section 2.1.1. The red
points show the mean velocity in overlapping bins along the axis on the sky
that maximizes the rotation signal, whilst the black points show the result
for non-overlapping bins.

& Shawl (1987) in all cases, where Poisson noise and tidal effects
begin to dominate. This is emphasized by the disagreement in the
PAs reported by the two sets of authors. We opt to work with the
data from White & Shawl (1987) in all cases but two. For NGC
4372, we use the ellipticity ε = 0.08 and position angle, PA = 48 ◦

derived by Kacharov et al. (2014). For NGC 362, we choose to
use the PA that maximizes the rotation signal (PArot = 131◦) and
use the White & Shawl (1987) value for the ellipticity. As we do

not have full ellipticity profiles for each globular cluster, and since
we primarily use the data from White & Shawl (1987), we use our
models to reproduce only the flattening near the scale radius, rather
than fitting the ellipticity at all radii.

2.3 Photometric data

We determine the mass and length-scales of the globular clusters
NGC 362, NGC 1851, NGC 2808, NGC 5927 and NGC 6752 by
fitting spherical density profiles to the surface density profiles from
Trager, King & Djorgovski (1995). For NGC 4372, these data are
poorly constrained and so we use instead the deeper resolved data
provided by Kacharov et al. (2014). A surface brightness profile for
NGC 4372 is constructed by binning the Kacharov et al. (2014) data
in 50 equally populated circular bins. For each surface brightness
profile, we fit the surface density profile

�(R) = �model(R) + nf , (1)

where �model(R) is the model surface density profile and nf is the
contribution from background stars (only important for NGC 4372).
Although Plummer profiles provide reasonable fits to the surface
density profiles of old globular clusters, they are not as well suited
to the clusters in our sample, four of which are classified as ‘young’
clusters, based on the positions of their main-sequence turn-offs and
age–metallicity relations (Marı́n-Franch et al. 2009).

Fig. 2 shows the photometric data, together with Plummer fits
as dashed lines. A significantly better fit for the clusters NGC 362,

Figure 2. Fits of the projected density for our models to the photometric data from Kacharov et al. (2014) for NGC 4372 and the surface brightness profiles
from Trager et al. (1995) for the other five clusters. Note the improved fits of the transition region given by the Modified Plummer model (solid black lines)
relative to the Plummer model (dashed black lines) for the clusters NGC 362, NGC 1851, NGC 2808 and NGC 6752.
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Table 2. Surface density fitting results: the results of fitting the projected
density profile of the Modified Plummer model (2) to the surface density
profiles of the globular clusters. Column (1) gives the fitted luminosity
in solar luminosities, while column (2) gives the central density in solar
luminosities per cubic parsec, calculated using the mass within a sphere of
radius 0.5rs. Column (3) gives the fitted scale radius in arcminutes, while
column (4) gives the physical 2D projected half-light radius in units of
parsec (related to rs by Rh = 1.2038rs).

NGC L ρ0 rs Rh

[105L	] [log10(L	 pc−3)] [arcmin] [pc]
(1) (2) (3) (4)

362 1.57 4.75 0.55 1.66
1851 1.68 4.73 0.41 1.74
2808 2.04 4.57 0.62 2.08
4372 1.19 2.74 3.40 6.91
5927 0.30 3.53 0.89 2.40
6752 0.83 4.45 1.17 1.64

NGC 1851, NGC 2808 and NGC 6752 is provided by a profile
with Plummer-like behaviour at large and small radii, but with a
slower turnover. A simple model that possesses this property has
mass density

ρ(r) = 3M

πr3
s

(
1 + r

rs

)−5

. (2)

We will call this the Modified Plummer model. In Appendix A, we
provide the analytic expression for the surface density of this model.
This model has a 3D half-light radius of rh = 1.5925rs and a 2D
projected half-light radius of Rh = 1.2038rs. The surface brightness
profile of this model is shown as solid lines in Fig. 2. We provide
the computed normalization and scale radius using a least-squares
approach (not accounting for the uncertainties as we assume we
are systematic dominated) in Table 2. The remaining two ‘older’
clusters NGC 4372 and NGC 5927 (Kacharov et al. 2014; Marı́n-
Franch et al. 2009) are equally well fitted by either the modified or
traditional Plummer profile, thus we opt to use the former to model
all clusters in the sample.

3 MO D E L L I N G F R A M E WO R K

In this section, we lay out the modelling framework used to analyse
the globular cluster data. The core and half-mass relaxation times
of globular clusters are both significantly shorter than the Hubble
time (i.e. the lifetime of the cluster), such that the evolution of
globular clusters is shaped by collisional processes. However, the
present state should be well modelled by collisionless dynamics,
as the orbital time-scale is still much shorter than the relaxation
time. We assume that the globular clusters are optically thin with no
dark matter component, and for simplicity, we restrict the models
to axisymmetry.

Collisionless dynamical equilibria follow a DF f (x, v) that must
obey the collisionless Boltzmann equation

df

dt
= 0. (3)

By Jeans’ theorem, the collisionless Boltzmann equation is satisfied
if the DF is solely a function of integrals of motion. One reasonable
choice for the integrals of motion are the action variables J . Along
with the angle variables θ , the action variables form a canonical set
of coordinates. Therefore, they represent a very simple way of de-
scribing the orbital motion. Additionally, their use is advantageous
for our application as the actions are adiabatic invariants and form

a Cartesian basis for describing the space of orbits, i.e. the range of
possible values of one of the actions is independent of the other two
(see Binney & Tremaine 2008, for more discussion of the merits of
working with action variables).

In axisymmetric potentials, the action variables are usually writ-
ten as (JR, Jφ , Jz) where Jφ = Lz is the component of angular mo-
mentum about the symmetry axis, JR describes the extent of radial
motion and Jz the extent of vertical motion. These actions are the
natural extension of the actions (Jr, Lz, L − |Lz|) in a spherical poten-
tial for an orbit with angular momentum L. In general axisymmetric
potentials, numerical integrations of orbits produce regular surfaces
of section for large regions of phase space indicating that the ac-
tion variables exist. However, the most general potential in which
the Hamilton–Jacobi equations are separable and thus integrable
are the Stäckel potentials. Numerous algorithms for estimating the
actions in general potentials have been proposed (see Sanders &
Binney 2016, for a summary) with the most rapid being based on
the equations of motion in a Stäckel potential (e.g. Sanders 2012;
Binney 2012; Sanders & Binney 2015). In brief, these algorithms
construct a Stäckel potential that closely represents the true poten-
tial and the actions are estimated as those in the Stäckel potential.
This approach also offers the possibility of significant speed-ups,
as we also have access to an approximate third integral I3 which
can be used to find the actions via interpolation (see the appendix
of Binney 2014). Throughout this paper, we use the axisymmetric
action estimation scheme from Binney (2012) with the � estimation
scheme from Binney (2014).

With the advances in action estimation, there have also been
advances in the construction of appropriate action-based DFs.
Williams & Evans (2015a) and Posti et al. (2015) have recently
proposed similar spherical action-based DFs for dynamically hot
galactic components such as the Galactic halo (Williams & Evans
2015b; Das & Binney 2016), the Galactic dark matter halo (Piffl,
Penoyre & Binney 2015) or the stellar distribution in giant el-
lipticals (Posti et al. 2016). Beyond the spherical regime, Binney
(2014) has demonstrated how the isotropic isochrone DF can be
deformed to produce flattened isochrone models with tangential or
radial anisotropy by re-weighting the DF on surfaces of constant
energy. In a similar vein, Sanders & Evans (2015) have constructed
triaxial models by rescaling the actions in a spherical DF.

With an action-based DF, the self-consistent solution must be
constructed through an iterative procedure. An initial guess of the
potential 
0(x) is made and the density of the model is computed
on a grid in this potential. For an action-based DF, the density is
simply computed as

ρ(x) =
∫

dv f (x, v) =
∫

dv f ( J(x, v)). (4)

Poisson’s equation is solved for the corresponding potential 
1(x)
via a multipole expansion (see Sanders & Evans 2015, for details
on the exact implementation) and the density is computed in this
new potential. This process is repeated until the difference between
consecutive potential iterations is smaller than some threshold.

3.1 Construction of suitable DF

Given a density profile, the procedure outlined by Williams &
Evans (2015a) can now be used to construct an appropriate action-
based DF f ( J) that is approximately isotropic and recovers the
required density profile. As touched upon by Williams & Evans
(section 4.1.2), the procedure appears to break down for cored mod-
els with intermediate outer slopes. In general, cored density profiles
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Figure 3. The numerically constructed action-based DF. Panel (a) shows the numerically constructed DF at a series of JR and L as blue dots with the grey line
showing the analytic fit and the black lines showing the asymptotic limits. The middle panel (b) shows the density profile for this model with three values of
the anisotropy scale Jb, corresponding to different anisotropy profiles shown in the right-hand panel (c), where β = 1 − σ 2

tt /2σ 2
rr.

receive significant contributions in the core from orbits that have
actions greater than the scale action, in contrast to cuspy density
profiles where larger action orbits only weakly contribute to the cen-
tral cusp. Thus, for cored models with intermediate outer slopes, the
assumption that the central regions can be treated independently to
the outer regions is no longer valid. The algorithm needs refinement
for cored profiles. Here, we adopt a purely numerical approach to
constructing the DF (Binney 1987).

We begin by using Eddington inversion to construct the f(E)
model corresponding to the density profile ρ(r) of the Modified
Plummer model,

f (E) ∝ d

dE

∫ −E

0

d
√

 − E

dρ

d

. (5)

Given a density profile, we compute the potential, 
(r), on a log-
arithmically spaced grid between rmin = 10−3rs to rmax = 103rs

using equation (2.28) from Binney & Tremaine (2008, extrapola-
tion for r < rmin is performed using a quadratic fit to the three
innermost grid points and extrapolation for r > rmax is performed
using a Keplerian fall-off assuming all the mass is contained within
rmax). We perform the differentiation under the integral sign of
equation (5) as given in equation (4.46b) of Binney & Tremaine
(2008). f(E) is computed on a linearly spaced grid in energy between

(rmin) and 
(rmax). The density and potential are interpolated on a
logarithmically spaced grid in radius (between 1

2 rmin and 2rmax) us-
ing cubic splines (Galassi et al. 2009, for which the first and second
derivatives are simply computed). Derivatives of the density with
respect to the potential are transformed to derivatives with respect
to radius and the integrals are computed using an adaptive Gauss–
Kronrod algorithm (Galassi et al. 2009) via a change of variables
x = 2

√

 − E.

We then numerically construct the Hamiltonian as a function of
the actions (JR, L) by interpolating on a grid of JR(E, L) and L. For a
logarithmically spaced grid in the radius r between rmin and rmax, we
compute the angular momentum L and energy Ec of a circular orbit
at each radial grid point. At each radial grid point, we construct a
grid in energy as E = Ec(1 − I)2 where I is a linearly spaced grid in
the interval zero to one. For each r and E, we store the radial action
as

JR = 1

π

∫ ra

rp

dr

√
2E − 2
(r) − L2

r2
, (6)

where r = rp, ra are the roots of the integrand and the integral is com-
puted using Gauss–Legendre quadrature (Galassi et al. 2009). Now,
given an angular momentum L and radial action JR, we compute
the Hamiltonian H(JR, L) by linear interpolation in log JR and log L.

Combining this function with f (E) gives us the exact isotropic f ( J).
This corresponds to a value β = 0 of the anisotropy parameter

β = 1 − σ 2
tt

2σ 2
rr

, (7)

where σ rr and σ tt are the radial and tangential velocity dispersions,
respectively.

Naturally, it is awkward to work with this purely numerically
constructed f ( J) so we seek a more compact representation by
finding a fitting function that well describes the model. We know
that the Hamiltonian tends to that of a harmonic oscillator in the
centre and the Keplerian limit at large radii. Therefore, the isotropic
DF is a function of (2JR + L) in the centre and (JR + L) at large
radii. Similar to Williams & Evans (2015a), we suppose that our
DF is a function of the variable L = D( J)JR + L where

D( J) = 2 + J/Jb

1 + J/Jb
. (8)

This approximation is obviously poorest around the action Jb and a
prudent choice of Jb will reduce the degree of anisotropy.

In Fig. 3, we show the distribution of f as a function of L. We
see that it is well represented by a double power law with an inner
slope of λ = 1 and outer slope of μ = 7. Therefore, we propose the
fitting function

f ( J) ∝ L−1
(
J ν

0 + Lν
)−(μ−λ)/ν

, (9)

where we have introduced the additional two variables J0 and ν. By
minimizing the sum of the square of the differences in the logarithm
of f and our model, we find that J0 ≈ 1.2

√
GMrs and ν ≈ 1.6. For

this minimization, we set Jb = J0 for which the model is tangentially
biased (see right-hand panel of Fig. 3). We therefore have a simple
action-based DF that reproduces our required density profile (see
the comparison in the central panel of Fig. 3).

Watkins et al. (2015) provide anisotropy profiles from Hubble
Space Telescope (HST) proper motion data for five of the globu-
lar clusters studied here. These authors find generically that glob-
ular clusters have near isotropic cores and are weakly radially
anisotropic near the half-mass radius. We therefore opt to work
with near isotropic models. Fig. 3 shows that setting Jb/J0 = 1

4
produces an equally good fit to our numerical f ( J), whilst pro-
ducing a nearly isotropic model with small (radially biased) fluc-
tuations in the anisotropy near the scale radius. In Fig. 4, we show
the anisotropy profiles from Watkins et al. (2015) for the five glob-
ular clusters in common with our study, along with the anisotropy
of our fiducial spherical model. The match is very satisfactory. It
would be simple to extend our approach to account for differing
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Figure 4. Left: intrinsic radial and tangential velocity dispersions produced by the spherical model, along with the value of the anisotropy parameter
β = 1 − σ 2

tt /2σ 2
rr. Note that the anisotropy has a maximum magnitude of around 0.1. Right: projected velocity dispersions produced by the models of most

extreme flattening parameter (qz = 0.6) and least extreme flattening parameter (qz = 0.98) used in this work. Bottom: comparison of the intrinsic anisotropy
to the observed values of anisotropy measured in Watkins et al. (2015), where these values are available. Note that our anisotropy provides a good fit to these
values, in particular it is nowhere larger than the observed anisotropy, such that our spherical model is near-isotropic.

anisotropy profiles. However, we have found that more radially
anisotropic models can develop undesirable prolate cores which we
will discuss later.

3.2 Flattening

The presented model is spherical as the DF depends only on
the angular momentum and the radial action. For our purposes,
we require the models to be weakly flattened so we must make the
DF a function of the vertical action Jz. We do this by making the
replacement

L → |Jφ | + Jz

qz

where qz < 1. (10)

This naturally reduces the weight of high Jz orbits, causing the
density profile to flatten whilst retaining the approximate radial
profile of the model. qz = 1 recovers the spherical DF. In Fig. 5,
we plot the axial ratio q of ellipses fitted to the density isophotes
of our models close to the scale radius rs against the value of the
flattening parameter qz, in the (R, z) plane. As anticipated, there is a
linear relationship between the two quantities although the gradient
is not unity but better approximated by q ≈ 1

2 (1 + qz). This gives us
a simple way of relating our model parameter qz to the observable
quantity q.

In Fig. 6, we show the density contours of the model for the
spherical qz = 1 and most flattened qz = 0.6 cases used in this
work. We calculate the density contours on a logarithmic grid in the
spherical polar coordinate r and over 13 angles θ from the z-axis,
ranging from θ = 0 to π/2 − 0.1. We do not calculate density values
at the north or south poles due to the singularity in the radial action

Figure 5. Linear fit to the relationship between parameter qz controlling
the scale of the longitudinal action in our models, and actual flattening
of the model q, estimated by fitting 100 ellipses on a logarithmic scale
between the radii of R = 1

2 rs and 3rs. The error bars represent the standard
deviation in the axial ratios of the fitted ellipses. Inset: the change in q with
average distance from the cluster centre m, for five values of qz. Note that
the ellipticity is maximal about the scale radius and the models gradually
become more spherical at larger radii.
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Figure 6. Logarithmically spaced density contours for the spherical case
qz = 1 (top) and the most flattened case we have used in this work, qz = 0.6
(bottom). Solid black lines represent the density contours, while dotted black
lines show a sample of ellipses fitted on a log scale about the scale radius.
Each plot is an axisymmetric plane, where the z-axis is vertical.

at these points. In our models, we generically see a weak pinching
in the density contours near the poles.

As an aside, we note that our simplistic procedure for flattening
the specific Modified Plummer model seems to produce physically
reasonable models. However, we have found that more radially
biased initial spherical models can produce prolate cores when flat-
tened in the way described. A similar effect was also found by
Binney (2014) when studying flattened isochrone models. There
appears to be a subtle interplay between the vertical and radial ac-
tions that produce the flattening of the model. Near the meridional
plane, flattening is simply produced by downweighting high vertical
action orbits. However, near the symmetry axis, the situation is more
complicated as the density structure is governed primarily by the
near-shell orbits. The vertical flattening near the axis is determined

by the typical ratio of the radial to vertical action of the contributing
orbits. Therefore, models that are more radially biased in the plane
can produce more prolate density contours near the symmetry axis.
Whilst our modelling procedure is sufficient for our purposes, it
may require more careful thought to extend it to a broader range of
density and kinematic profiles.

3.3 Rotation profiles

The models specified in the previous subsection are strictly non-
rotating, as the DF depends on the modulus of Jφ . Here, we gener-
alize the models to allow for rotation, using the procedure described
in Binney (2014).

To our even DF fe( J), we add an odd component fo( J) such that
the full DF is given by

f ( J) = fe( J) + k

1 − |k|fo( J) where fo( J) = h(Jφ)fe( J). (11)

The function h(Jφ) is odd and restricted to −1 ≤ h(Jφ) ≤ 1. The
magnitude of the rotation is governed by the parameter |k| which
varies from 0 for the non-rotating case to 1

2 for the maximally
rotating case. Negative k produces models that rotate in the opposite
direction.

Rotation is an antisymmetric property in action space as in veloc-
ity space. The introduction of rotation as a function of the actions
does not contribute to the density of the model, which depends solely
on the even part of the DF fe. Rotation can therefore be switched on
or off for our action-based models with little computational cost, as
it does not interfere with self-consistency.

We work with two simple analytic rotation profiles:

hT( J) = tanh

(
Jφ

χ

)
,

hE( J) =
√

2e

χ
Jφ exp

(
− J 2

φ

χ2

)
. (12)

Both models have a single parameter χ > 0 which controls the
slope of h at small Jφ . The models differ in that hT tends to a
fixed rotation at large radii, whereas hE produces zero rotation at
large radii such that the rotation is localized to angular momenta
|Jφ | � 2χ . This reduces the number of orbits with high angular
momentum relative to the z-axis, and thus changes the shape of
the rotation curve at its peak amplitude, causing a faster decay in
the mean projected velocity with radius. In Fig. 7, we show the
numerical rotation curves 〈v||〉(b) produced by our self-consistent
models, where b is the distance from the z-axis in the plane of sight.
We note that the properties of h(Jφ) largely translate into similar
properties of 〈v||〉, giving the exponential curves a generally higher
amplitude and steeper gradient at small χ . Overplotted is the binned
data for NGC 4372, for which the difference between these models
is significant: a steeper gradient is required to fit the two data points
with especially large radial velocities. We will elaborate further on
the relative merits of the hyperbolic tangent and exponential models
in Section 5.

3.4 Model validation

Here, we examine how successfully our models reproduce the ob-
served velocity dispersion profiles before embarking on a full fitting
of the data.

To obtain the velocity dispersion profiles plotted against the
binned data in Fig. 7, we use the average v-band mass-to-light
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Figure 7. Projected circularly averaged velocity dispersion profiles (above) and rotation profiles (below) for those of our models with maximum rotation
(k = 0.5), overplotted with binned data for NGC 4372, from the sources in Section 2. The velocity scale used for NGC 4372 is computed using the values in
Table 2 and the models have been scaled by the average Milky Way globular cluster mass-to-light ratio 1.98 ± 0.19 from McLaughlin & van der Marel (2005).
The left-hand plots show results for the hyperbolic tangent rotation profile, while the right-hand plots show results for the exponential rotation profile. We see
a promising agreement between the scales and overall shapes of the models and data, and note that the range of χ values between χ = 0.25 and 8 gives a
reasonable spread of gradients about the data points, where higher values of χ are represented by darker lines.

ratio for the Milky Way globular clusters from McLaughlin & van
der Marel (2005), ϒ/(M	/L	) = 1.98 ± 0.19, where the error
represents the standard deviation over all clusters. We see a promis-
ing agreement between the shape and scale of the data in the sample
case of NGC 4372. We also note that in the case of maximum rota-
tion (k = 0.5), for which we expect the largest spread of gradients in
the velocity dispersion profile, the range of χ values from χ = 0.25
to 8 gives an appropriate spread of curves to match the data.

4 DATA A NA LY SIS

With our model framework in place, we now discuss how we fit the
models to the data. As each model calculation is expensive, we opt
to compute the models on a grid of parameters and using a novel
interpolation scheme we are able to accurately compute model prop-
erties at any parameter values. In Section 4.1, we present the novel
representation of our models that enables accurate interpolation. In
Section 4.2, we present our choices for the computed grid of mod-
els. Finally, in Section 4.3, we give our formalism for fitting the
models to the data.

4.1 Compact model representation

For our analysis, we require the l.o.s. velocity v|| distribution as
a function of on-sky position (x, y) for each set of parameters P:
f (v|||x, y,P). In general, the models presented in this paper are
not fast to compute. It takes approximately 300 s to compute a self-
consistent model to an error threshold of 0.1 per cent, and a further
50 s to find each l.o.s. velocity distribution. This is not fast enough
to use in an MCMC algorithm. However, as we anticipate the model
properties vary slowly with the flattening and rotation parameters
(qz, χ , k), we need only to interpolate over a small set of models
that span the anticipated range in these parameters.

This then raises the question as to what properties of the models
should be interpolated and whether there is an efficient represen-
tation of the models that could be employed. For the non-rotating
models, we have found that the l.o.s. velocity distributions are very
well fit by q-Gaussian profiles (Tsallis 2009) defined by

W(y; q, β) ∝ (1 − β(1 − q)x2)1/(1−q). (13)

The q-Gaussians offer an improvement over a Gaussian (the limit
of the q-Gaussian as q → 1) as for q < 1 they fall to zero at finite x
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Figure 8. Linear and logarithmic plots of q-Gaussian fits to the l.o.s. veloc-
ity distributions at the two most extreme axial ratios qz represented in our
parameter space. These are taken at a small angle to the z-axis (φ′ = 1.47) to
emphasize the effect of flattening on the l.o.s. velocities. The fits are tested
close to the scale radius (b = 1.34) and at the largest impact parameter
represented (b = 12), demonstrating the relatively greater effect of the axial
ratio at larger impact parameters. The crosses correspond to our models and
the continuous lines to the fitted Gaussians, with all distributions normalized
to unit area. The b = 1.34 plots have been shifted by +0.5 on the linear scale
and × 10 on the logarithmic scale. Note that the q-Gaussians perform very
well in both cases, over at least five orders of magnitude.

and therefore follow the behaviour of the l.o.s. velocity distributions
beyond the escape speed.

In Fig. 8, we show two examples of l.o.s. velocity distributions
for the non-rotating Modified Plummer model with the maximum
and minimum flattening used in this work (qz = 0.6 and 0.98) along
with the best q-Gaussian fits. The q-Gaussian does a fantastic job
of reproducing the distribution over about five orders of magnitude,
for different models at different on-sky positions.

Inspired by the Gauss–Hermite representation that has been
widely employed in characterizing the line profiles of external
galaxies (van der Marel & Franx 1993), we here use a novel
approach to representing the l.o.s. velocity distribution using a
q-Gaussian orthogonal polynomial basis expansion. In Appendix
B, we describe how a general distribution can be represented by
a set of q-Gaussian polynomials, give explicit expressions for the
first five polynomials and describe how the parameters of the q-
Gaussian weight function (q, β) are chosen. Each l.o.s. distribution
can then be represented by eight numbers – q, β, the five coefficients
qi and the shift in position of the l.o.s. velocity maximum due to
rotation, v0. In Fig. 9, we show the close agreement between our
models and the q-Gaussian fits over the range of rotation parameters
k, and in Appendix B, we demonstrate the representation’s success
in reproducing l.o.s. distributions over the entire parameter grid,
via interpolation. A close agreement can be seen between profiles
interpolated from the q-Gaussian parameters and profiles computed
directly via self-consistency.

Figure 9. Linear and logarithmic plots of q-Gaussian fits to the l.o.s. ve-
locity distributions over the range of rotation parameters k = 0.1, 0.3 and
0.5 with χ = 0.25 and axial ratio (qz = 0.6 and θ = 0.77). Above, we show
the resulting plots for the hyperbolic tangent rotation curve, while below we
show the plots for the exponential rotation curve. We have used a position
b = 1.34 and φ′ = 0.65, at which the onset of rotation has a visible effect.
The successive plots have been shifted horizontally by 0.5

√
GM/rs for aes-

thetic purposes. Note the remarkable agreement for all rotation parameters
over 7 orders of magnitude.

4.2 Choice of models

Our models have three physical parameters, the viewing angle θ to
the z-axis in spherical co-ordinates, the amplitude of rotation k and
the angular momentum scale χ . Axisymmetry of the models gives
a natural range of θ between θ = 0 and π/2, and for each cluster
we choose a lower limit for θ by setting the maximum intrinsic
cluster ellipticity according to the maximum ellipticity ε = 0.27
reported for any globular cluster in Harris (1996, 2010 edition).
Using the relation between observed (qobs) and intrinsic (qisc) axial
ratios given by

q2
obs = q2

isc sin2 θ + cos2 θ, (14)

the values of qobs from White & Shawl (1987) and the lower limit
qisc = 0.73 from Harris (1996, 2010 edition) give a lower limit on
θ for each cluster. The analytical form of the rotation curves gives
a range of k between k = −0.5 and 0.5. We have determined an
appropriate range for χ by comparing the projected mean velocity
curves for the maximally rotating case (k = ±0.5) to the velocity
dispersion data as shown in Fig. 7. The range of possible gradients
for σ/

√
GM/rs is largest for maximal k and so we wish to ensure

that even for this extreme case, we do not obtain unreasonable
results. We find that a range χ/

√
GMrs = 0.25, 0.5, 1, 2, 4 and 8

gives a reasonable spread of values.
Given a set of model parameters (θ , k, χ ), we must evaluate

the model at range of on-sky positions. We use a on-sky polar
coordinate with radius b and polar angle φ′. We use a logarithmic
grid of b values between b = 0.5′ and 12′, matching the range
of the spectroscopic data from Section 2.1. Axisymmetry of the
models gives a natural range of φ′ between φ′ = 0 and π/2. We
evaluate the q-Gaussian expansion parameters for all our models
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such that for a given vector (θ , k, χ , b, φ′), any model l.o.s. velocity
distribution at any position can be evaluated via linear interpolation
on the q-Gaussian parameters.

4.3 Fitting models to data

We fit the model parameters P using the data D by evaluating the
posterior

p(P|D) ∝ L(D|P)p(P). (15)

We defineP = (θ, k, χ, vsys, ϒ), where vsys is the systemic velocity
of the entire cluster and ϒ the mass-to-light ratio.

Our data D is a set of radial velocities {v||, i} and associated
uncertainties {σ ||, i} at a set of positions {xi, yi} defined with respect
to a coordinate system aligned with the PA of the cluster (taken from
White & Shawl 1987). We work with the likelihood

L(D|P) ∝
∏

i

∫
dv′

|| p(v||,i |v′
||, σ||,i)p(v′

|||xi, yi,P). (16)

The uncertainty distribution p(v||,i |v′
||,i , σ||,i) is a normal distribu-

tion N (x; μ, σ ) such that the integral over the uncertainties can
be performed by Monte Carlo integration using N samples {v′

||,i,n}
from the distribution N (v′

||; v||,i , σ||,i). The likelihood is then given
by

L(D|P) ∝
∏

i

1

N

n=N∑
n=1

p(v′
||,i,n|xi, yi,P). (17)

We opt to work with an outlier model such that

p(v|||x, y,P) = (1 − ε)f (v|||x, y,P) + εfout(v|||x, y,P), (18)

where f is the likelihood of our dynamical model (computed via
the q-Gaussian expansion) and fout is the likelihood of the outlier
model. We model fout as N (v||; μout, σout).

One further complication is the potential combination of Nd dif-
ferent data sets for which we add Nd additional offset parameters
�k (with �1 = 0) such that equation (17) reads

L(D|P) ∝
k=Nd∏
k=1

∏
i

n=N∑
n=1

p(v′
||,i,n + �k|xi, yi,P), (19)

where the product i runs over the data from data source k. These
parameters account for possible zero-point systematic variations
between different radial velocity sources.

In total, we have (7 + Nd) parameters in our fits. The fitting
of parameters is performed in two steps. First, we maximize the
posterior using Powell’s method. We perform this procedure five
times from a set of initial parameters drawn from a broad Gaussian.
We choose the highest posterior result from the set of optimizations
and seed a set of walkers about a much narrower Gaussian that
explore the posterior using the EMCEE algorithm (Foreman-Mackey
et al. 2013) using 60 walkers with a burn-in and production of
∼2000 and ∼1000 steps, respectively. We set the number of samples
from the radial velocity uncertainties at N = 500 and re-runs with
N = 2500 produced negligible changes in the results. We adopt
uniform priors in the parameters cos θ , k, μout, vsc and �i. We
adopt uniform priors in the logarithm of the parameters χ , ε and
σ out. For ϒ , we use a Gaussian prior N (1.98, 0.19) taken from the
ensemble properties of the globular clusters from McLaughlin &
van der Marel (2005).

4.4 Results

In Fig. 10, we show the results of one of the MCMC run fitting
the exponential model to the data from NGC 2808. This corner
plot displays the generic features seen for all the clusters but is
chosen because NGC 2808 is the cluster in our sample that has the
most convincing evidence for rotation. In general, we see a lack of
correlations in our parameters except between the systemic velocity
vsys and the �i. Anticorrelations are expected between these values,
as for each data subsample, the constraint is on vsys + �i.

In Table 3, we present the median values for each of the parame-
ters in the three models for each cluster, along with their 68 per cent
confidence intervals. The systemic velocities, mass-to-light ratios
and velocity offset parameters are all well constrained and take con-
sistent values for all three models. We will discuss these in the next
section. In general, we find that the data favour lower values of cos θ

such that very small inclination angles are ruled out. These models
have the most extreme flattening consistent with the observed el-
lipticity, and consequently rule out high degrees of flattening along
the l.o.s.. For the tanh model, we measure k consistent with zero at
the ∼1σ level except in the case of NGC 2808. The rotation curve
scale χ is more poorly constrained than the other parameters, with
essentially the entire allowed range being consistent with the data.
For the exp model, we find that k is non-zero at the 1σ level for
NGC 2808 and NGC 6752 (and marginally for NGC 5927). Again,
χ is poorly constrained but there is a tendency for χ ≈ 1–2 such
that the data favours a rotating core within radius rs.

In Fig. 11, we show the l.o.s. velocity dispersion and mean ve-
locities of the models compared to the data. The velocity dispersion
is computed in elliptical bins, with ellipticity equal to the observed
ellipticity from Table 1 for both the models and the data. The mean
velocities are computed by binning the data along the major axis,
whilst for the models we simply compute the mean velocity along
the major axis. We see that the dispersions for all three sets of mod-
els are very similar and agree well with the data. In the cases of NGC
5927 and NGC 2808, the models appear to be a poor representation
of the data, but this can partly be attributed to the presence of out-
liers (which our models find are significant in these clusters). These
cases are discussed further in Sections 5.1.2 and 5.1.4. We see that
for most clusters the data points show a low level of rotation, which
is replicated by the models. However, in NGC 2808 and NGC 6752,
the data appear to produce a rotation signal (k > 0 at the 1σ level).
In NGC 2808, this signal is fitted nicely by both the tanh and exp
models, but for NGC 6752 it appears only the exp model can fit the
rotation profile.

In Figs 12 and 13, we show the median 2D l.o.s. velocity disper-
sions and mean velocities for the tanh and exp models with the data
points overplotted. We see that the 2D l.o.s. dispersions are very
similar for both models. We also note the difference in the shape of
the mean velocity surfaces, with the exp model producing a more
pronounced rotating core than the tanh models. We see that in the
cases of NGC 2808, NGC 6752 and NGC 5927 a more central ro-
tating core is favoured, whilst for NGC 362 and NGC 4372, a more
extended rotation curve is required.

5 D I SCUSSI ON

5.1 Evidence for rotation

Although the values of k and χ computed for our models point
towards the presence of rotation in a few cases, the evidence for
rotation appears quite weak. To quantify this, we have computed the
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Figure 10. Corner plot for the exponential rotating model fit to the data from NGC 2808. θ is the inclination angle, k and χ the rotation profile amplitude and
scale, vsys the systemic velocity, ϒ the mass-to-light ratio, �2 the offset between the systemic velocities of the two data subsamples used and ε, μout and σ out

are the parameters describing the outlier model. The four contour levels enclose ∼12, ∼39, ∼68 and ∼86 per cent of the probability. We have used the package
from Foreman-Mackey (2016) to produce this plot.

evidences for both the hyperbolic tangent and exponential rotating
models, relative to the evidence for the non-rotating model, given
by

K = Zrot

Znorot
=

∫
dProt p(Prot|D)∫

dPnorot p(Pnorot|D)
. (20)

We evaluate the evidence for each model using the Multinest al-
gorithm (Feroz, Hobson & Bridges 2009) via a PYTHON interface
(Buchner et al. 2014). The results are reported in Table 3 along with
an estimate of the uncertainty output by the algorithm. Following
the guidelines from Kass & Raftery (1995), we interpret values of

2 ln K > 2 as positive evidence for cluster rotation. We see that when
using the tanh model, the evidence for rotation is deemed strong
only for NGC 2808. NGC 4372 has a weak indication of rotation
(2 ln K ∼ 1.5), but all other clusters have evidence ratios K < 1
indicating clearly that the introduction of rotation in the form of
a flat hyperbolic rotation curve does not significantly improve the
model fits. For the exponential rotation model, the evidence ratio
increases over the hyperbolic model for NGC 2808, NGC 4372 and
NGC 5927, indicating that the rotation in these clusters is more cen-
tralized. NGC 2808 displays a convincing level of rotation, while
the other two clusters display more modest evidence that rotation is
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Table 3. Results of fitting the dynamical models to the data: three different models are considered – norot is a non-rotating model whilst tanh and exp
correspond to rotating models with the form given in equation (12). The rotating models are described by the amplitude and scale parameters, k and χ ,
respectively. θ is the angle of inclination to the rotation axis. vsys is the systemic velocity and ϒ the mass-to-light ratio. �i gives the systematic offsets between
different sets of spectroscopic data. Finally, K gives the Bayesian factor for the rotating models compared to the non-rotating model.

Model Name cos θ k log2( χ√
GMrs

) vsys ϒ �2 �3 2 ln K

(km s−1) (ϒ	) (km s−1) (km s−1)

norot 362 0.45+0.29
−0.29 – – 222.75+0.46

−0.41 1.97+0.20
−0.17 – – –

1851 0.39+0.33
−0.28 – – 319.81+0.66

−0.53 1.98+0.15
−0.11 0.04+0.64

−0.65 – –

2808 0.18+0.16
−0.13 – – 101.61+0.72

−1.07 2.45+0.16
−0.13 2.07+1.09

−0.94 – –

4372 0.38+0.28
−0.27 – – 74.82+0.61

−0.39 2.05+0.11
−0.12 0.21+0.82

−0.64 1.57+0.75
−0.91 –

5927 0.22+0.19
−0.16 – – −103.27+0.34

−0.34 2.94+0.17
−0.18 −1.01+0.50

−0.44 – –

6752 0.21+0.24
−0.14 – – −26.23+0.20

−0.27 2.24+0.07
−0.08 −0.67+0.31

−0.37 0.12+0.41
−0.41 –

tanh 362 0.47+0.30
−0.35 0.16+0.18

−0.29 1.22+1.06
−2.50 222.79+0.54

−0.48 2.02+0.22
−0.18 – – 0.00 ± 0.18

1851 0.56+0.22
−0.40 0.02+0.14

−0.23 0.80+1.79
−2.74 319.84+0.50

−0.50 1.96+0.16
−0.18 −0.02+0.54

−0.75 – −0.17 ± 0.22

2808 0.23+0.16
−0.13 0.30+0.09

−0.10 −0.91+2.29
−0.84 101.59+1.13

−0.89 2.46+0.15
−0.15 2.05+1.05

−1.17 – 4.06 ± 0.28

4372 0.41+0.23
−0.22 0.34+0.11

−0.16 −0.39+1.62
−1.10 74.90+0.49

−0.33 2.08+0.16
−0.20 0.15+0.43

−0.55 2.02+0.56
−0.76 1.73 ± 0.28

5927 0.26+0.19
−0.17 0.02+0.22

−0.23 1.26+1.13
−2.22 −103.29+0.45

−0.34 2.94+0.14
−0.10 −1.13+0.57

−0.50 – −0.52 ± 0.30

6752 0.27+0.18
−0.19 −0.14+0.18

−0.11 0.32+1.80
−1.44 −26.25+0.29

−0.29 2.24+0.11
−0.07 −0.68+0.42

−0.33 0.03+0.41
−0.37 −0.31 ± 0.33

exp 362 0.40+0.37
−0.24 0.14+0.22

−0.28 0.70+1.89
−1.79 222.87+0.47

−0.55 2.03+0.16
−0.15 – – −0.07 ± 0.18

1851 0.51+0.22
−0.41 −0.07+0.29

−0.17 0.25+2.30
−1.81 319.79+0.57

−0.72 1.98+0.14
−0.15 0.07+0.67

−0.71 – −0.14 ± 0.22

2808 0.16+0.13
−0.11 0.37+0.08

−0.10 −0.43+1.84
−1.01 101.65+0.84

−0.63 2.42+0.11
−0.13 1.85+0.97

−1.00 – 7.19 ± 0.28

4372 0.47+0.24
−0.32 0.23+0.15

−0.15 −0.15+2.02
−2.09 74.86+0.56

−0.76 2.05+0.12
−0.15 0.30+0.72

−0.71 1.78+1.01
−0.80 2.37 ± 0.28

5927 0.13+0.23
−0.10 0.17+0.19

−0.35 −1.38+1.59
−0.46 −103.26+0.46

−0.41 3.00+0.12
−0.18 −0.89+0.50

−0.58 – 1.44 ± 0.30

6752 0.20+0.24
−0.13 −0.14+0.07

−0.07 −0.10+1.74
−0.96 −26.19+0.32

−0.30 2.22+0.11
−0.08 −0.78+0.37

−0.36 0.08+0.54
−0.31 0.01 ± 0.34

present (2 ln K ≈ 2). For NGC 362, NGC 1851 and NGC 6752, the
Bayes factors for the exponential and hyperbolic tangent models
are essentially unity, indicating that the evidence for rotation is very
weak, if rotation is present at all.

Our rotation parameters k and χ can be used to calculate the phys-
ical rotation parameter Arot/σ 0, a common measure for the degree
of rotation in globular clusters (e.g. Kacharov et al. 2014), where
σ 0 is the central velocity dispersion and Arot refers to the maximum
amplitude of the projected mean velocity profile.3 In Fig. 14, we
plot this parameter against the intrinsic ellipticity ε = 1 − qisc (filled
symbols), along with the corresponding values from the literature
(empty symbols). We also show data from Bellazzini et al. (2012)
and Bianchini et al. (2013) for a larger sample of globular clusters.
We see that our clusters sit on the approximate positive correla-
tion between ellipticity and rotation strength (that is also exhibited
in the literature data), although there is a large degree of scatter.
We have also shown the relationship between ellipticity and rota-
tion strength for an isotropic spheroidal rotator from Binney (2005)
along with two lines for vertically anisotropic models (quantified by
δ = 1 − 〈σ 2

zz〉/〈σ 2
xx〉). When a galaxy is flattened, the kinetic energy

associated with vertical motion decreases relative to that associated
with the planar motion. In order to maintain isotropy, some planar
kinetic energy must be supplied by rotation. Below the isotropic ro-
tator curve, 〈σ 2

zz〉 < 〈σ 2
xx〉 as less of the planar motion is provided by

3 We compute Arot by finding the maximum mean velocity along the major
axis for each set of parameters from our Monte Carlo chains and the PAs
described in Section 2.2, and de-projecting by dividing by sin θ . Formally,
we should compute the signal observed when viewing edge-on, but the
discrepancy is small.

rotation and must be compensated for by random motions. There-
fore, beneath the isotropic rotator line we link the flattening more
strongly to anisotropy. Above the line 〈σ 2

zz〉 > 〈σ 2
xx〉 so we require

more rotation to compensate for the decrease in random planar mo-
tions. We see that in general our clusters lie beneath the isotropic
rotator line, indicating that the flattening of the clusters is related
to anisotropy as opposed to rotation. However, for several clusters
(NGC 362, NGC 5927 and NGC 2808), the rotation strength is still
consistent with the isotropic rotator, suggesting that the flattening
may be related to rotation. We note that our models are flexible
enough to allow any combination of Arot/σ 0 and ε in this plane and
that the observed distribution/correlation is not due to the models
being too restrictive.

In Fig. 14, we also show existing estimates from the literature for
some of our clusters, which we will discuss along with the evidence
for rotation in each case. Both NGC 362 and NGC 6752 have low
evidence for rotation and we do not comment in any further detail
on these clusters.

5.1.1 NGC 1851

As shown in Table 3, we obtain negligible evidence for rotation in
the case of NGC 1851, relative to the non-rotating case. NGC 1851
has been studied in detail by Scarpa et al. (2011) using a sample of
184 radial velocities, comparable with our 221. In this work, a max-
imum rotation amplitude of Arot < 0.8 kms−1 is quoted along with a
central velocity dispersion σ0 = 10.4 kms−1, in agreement with the
value from Harris (1996, 2010 edition). Given that this constitutes
an upper limit on the rotation signal, we do not believe that our
result is in conflict with the literature, but rather provides stronger
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Figure 11. Dispersion and mean velocity profiles fit results: for our six globular clusters we show the l.o.s. dispersion profiles σ as a function of elliptical
radius m =

√
x2 + y2/q2 and the mean velocity 〈v〉 along the major axis. The black points are computed using a GMM on the data split into eight equally

populated bins. The lines and coloured bands show the median and 1σ confidence region computed from the models using samples from our MCMC chains
(note for the mean velocity we bin in x but the models are computed along y = 0). Blue corresponds to the non-rotating model, whilst green and red correspond
to rotating models with hyperbolic and exponential rotation curves as described in the text. For NGC 2808, we also show the data from Lützgendorf et al.
(2012) in grey, which was not used in the fits.

evidence that the degree of rotation in NGC 1851 is negligible. In
Fig. 14, we see that our results agree with this literature value, to
within error.

5.1.2 NGC 2808

NGC 2808 contains at least five different stellar populations with
different radial distributions (Simioni et al. 2016), making it a par-
ticularly complex cluster both to model and to observe. This is
reflected in the fact that our model can provide a very good match
to the integral-field spectroscopy and Fabry–Perot measurements of
velocity dispersion obtained by Lützgendorf et al. (2012) for the in-
ner regions of the cluster (grey points in Fig. 11), but a much worse

match to data in the outer regions. Despite this, Fig. 10 demon-
strates that the parameters for this cluster are well constrained in
our models, such that we can draw conclusive evidence for rotation
in this case.

5.1.3 NGC 4372

In the case of NGC 4372, we compare our results to those of
Kacharov et al. (2014). Fig. 14 demonstrates that these values agree
to within error, with ours having a significantly lower value of the
rotation parameter. This may partially be explained by the fact that
we do not group the radial velocity data into overlapping bins in
the plane of the sky as in Kacharov et al. (2014), a procedure which
potentially enhances the rotation signal.
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Figure 12. 2D hyperbolic rotation curve model fits: each set of panels shows the l.o.s. velocity dispersion on the sky and the mean l.o.s. velocity scaled by the
central dispersion. On each panel, we also display the location of the spectroscopic data in faint black. Note the different ranges used for 〈v〉/σ 0 (the minimum
range is ±3 per cent).

As our results are in tension with those of Kacharov et al. (2014),
we have opted to also fit our models to the same data set used by
Kacharov et al. (2014). Fitting the non-rotating model to the data
gives a systemic velocity of (75.8 ± 0.4) km s−1 and a mass-to-
light ratio of 1.87 ± 0.17. These values agree well with Kacharov
et al. (2014), who find (75.91 ± 0.38) km s−1 and 1.7 ± 0.4 (where
we have quoted the model fit for an assumed inclination angle of
i = 45◦ and using stars with v < 20). The fact we have used a fixed
density profile for our kinematic fits to the data is reflected in the
smaller error bar for the mass-to-light ratio than the Kacharov et al.
(2014) results. When fitting the exponential rotation law, we find
the models favour a higher degree of rotation with k = 0.35+0.11

−0.23

(compared to k = 0.23 ± 0.15 from Table 3), which corresponds
to Arot/σ0 = 0.16+0.17

−0.11. This is lower than, but still consistent with,
the value from Kacharov et al. (2014) of Arot/σ 0 = 0.26 ± 0.07.
We find the ratio of the exponential to the non-rotating model is
2 ln K = 2.8 ± 0.2, which suggests the rotating model provides a

slightly better fit than the non-rotating model, but that the data only
marginally favour rotation.

5.1.4 NGC 5927

This cluster appears to have significant evidence for rotation in
the case of the exponential model, but the most negligible rotation
signal according to the hyperbolic tangent model. Although the
exponential profile generally does a better job of fitting the rota-
tion curve, such a disparity indicates that the data for NGC 5927
do not allow a robust conclusion to be drawn with regards to the
rotation signal. Indeed, this cluster has the fewest radial velocity
members in our sample, a total of 87. Furthermore, the surface
brightness profile for NGC 5927 has a peculiar increase in density
at around 10′′ (possibly due to differential reddening) and so is not
well represented by our Modified Plummer model, despite being
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Figure 13. 2D exponential rotation curve model fits: see Fig. 12 for details.

post-core–collapse (McLaughlin & van der Marel 2005). This is
also noted by Watkins et al. (2015), who find that the unusual shape
of the surface brightness profile gives rise to difficulties in fitting
the spectroscopic data points above 1.′5. We encounter a similar
problem, whereby our model appears to give a good match to the
shape of the velocity dispersion profile, but like the fits in Watkins
et al. (2015), falls below the scale of these data points. We therefore
stress that, despite the apparent evidence for rotation, our results are
inconclusive in this case.

5.2 Mass-to-light ratios

In Table 4, we give our mass-to-light ratios along with mass-to-light
ratios in the literature for the clusters in our sample. We see that our
results are in good agreement with the literature values for all cases
except for NGC 2808 (inconsistent with all other values at >2σ ),
which we have discussed in Section 5.1.2. We also see a good agree-
ment between the values of ϒ for our three different rotation curves,

indicating that these results are robust. An interesting comparison to
our results is with the N-body simulations from Baumgardt (2017).
As noted by this author, among others, mass segregation leads to
underestimates of the dispersion from giant stars and thus to un-
derestimates of the mass-to-light ratio. The mass-to-light ratios of
Baumgardt (2017) account for this effect. However, for only two of
our clusters do we find that our estimates are smaller than those of
Baumgardt (2017) and in general the agreement is good.

5.3 Velocity offsets

In our analysis, we have allowed for arbitrary velocity offsets be-
tween different sources of data. In general, we find these velocity
offsets are consistent with zero at the 2σ level. Comparing Fig. 14
and Table 3, we see that the velocity offsets �2 and �3 between
data sets are of the same order as the rotation signal. This is not a
cause for concern, as the offset values are in good agreement be-
tween the non-rotating, hyperbolic tangent and exponential models.
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Figure 14. Relationship between intrinsic ellipticity and rotation for those
clusters in our sample with evidence for rotation, NGC 2808 and NGC 5927.
Empty symbols represent literature values (Scarpa et al. 2011; Bellazzini
et al. 2012; Bianchini et al. 2013; Kacharov et al. 2014), while filled symbols
represent our values. Black points represent a sample of clusters from the
literature (Bellazzini et al. 2012; Bianchini et al. 2013). Note that our values
are intrinsic properties whilst the literature data are the observed properties.
The lines represent the upper limit for a maximally rotating, self-gravitating
sphere (Binney 2005), where the solid line represents the isotropic case
(δ = 0), and the dashed and dotted lines represent an increasing degree of
radial anisotropy (δ = 0.05 and 0.1, respectively).

Table 4. Comparison between our values of the mass-to-light ratio for each
cluster in column (4) and the values from McLaughlin & van der Marel
(2005) in column (1), Watkins et al. (2015) in column (2) (from Kacharov
et al. (2014) in the case of NGC 4372) and Baumgardt (2017) in column (3).

Name ϒMVdM/ϒ	 ϒW, K/ϒ	 ϒB/ϒ	 ϒ tw/ϒ	
(1) (2) (3) (4)

362 – – 1.73 ± 0.26 1.97+0.20
−0.17

1851 1.98 1.51 ± 0.03 2.40 ± 0.2 1.98+0.15
−0.11

2808 2.02 1.56 ± 0.02 1.96 ± 0.16 2.42+0.11
−0.13

4372 – 1.7 ± 0.4a 1.67 ± 0.19 2.05+0.11
−0.12

5927 2.93 1.48+0.15
−0.17 2.19 ± 0.42 2.94+0.17

−0.18

6752 1.88 2.14+0.05
−0.06 2.60 ± 0.41 2.24+0.07

−0.08

Note. aFor NGC 4372, we quote the value measured by Kacharov et al.
(2014).

Table 5. Comparison between the offsets obtained from fitting the non-
rotating model to each cluster compared to the offsets from duplicate obser-
vations between data sets. All quantities are given in km s−1.

Name �2 �2, dupl �3 �3, dupl

1851 0.04+0.64
−0.65 −0.22+0.33

−0.35 – –

2808 2.07+1.09
−0.94 −0.04+0.16

−0.32 – –

4372 0.21+0.82
−0.64 −0.04+0.21

−0.23 1.57+0.75
−0.91 0.49+0.47

−0.49

5927 −1.01+0.50
−0.44 −0.09+0.17

−0.13 – –

6752 −0.67+0.31
−0.37 −0.73+0.59

−0.64 0.12+0.41
−0.41 0.42+0.72

−0.90

This indicates that our models have taken good account of offsets
and have not erroneously interpreted them as rotation signals. As
a cross-check of these offset measurements, we can compare them
to the offsets measured using observations of the same stars in the
different data sets. For the presented analysis, we naturally removed
these. Table 5 gives the results for the offsets from the non-rotating

model fits along with the median offsets measured from the du-
plicate observations. The Lardo sample has been calibrated so that
duplicate offsets with the GES data are consistent with zero for all
clusters but NGC 6752, for which the mean difference between du-
plicates is of magnitude <1.0 km s−1. These offsets are replicated
by our fits, particularly in the cases of NGC 1851 and NGC 4372, for
which they are consistent with zero at the 1σ level. For NGC 2808
and NGC 5927, a larger positive offset, only consistent with zero at
the 2σ level, is found. For NGC 6752, the two measures of offset
between the Lardo and GES data sets agree that there is a small
systematic discrepancy. For the comparison between the Kacharov
and GES data, the picture from the two methods also consistently
points to the Kacharov data moving systematically 0.5–1 km s−1

faster than the GES data (this is mirrored by the 1 km s−1 offset be-
tween the systemic velocities found using the full data set and just
the Kacharov data). Similarly for the Lane and GES data compari-
son, there is a small consistent, but not significant, positive offset.

5.4 Alternative models

The models of Varri & Bertin (2012) are similar to those presented
here in that they are self-consistent rotating dynamical equilibria
that are appropriate for the modelling of globular clusters. These
authors consider two types of models: the first set of rigidly rotating
models depend on the Jacobi energy E − ωJφ whilst the second,
more flexible, set are similar to truncated isotropic spherical models
but depend on the argument

I = E − ωJφ

1 + bJ 2c
φ

. (21)

These models are differentially rotating with amplitude controlled
by (a dimensionless version of) ω, the scale b and power c. As
with our models, the moments of these models must be computed
purely numerically. The authors note that these models have the nice
properties of central isotropy whilst tending to tangential anisotropy
in the outskirts with σ 2

T/σ 2
R = 2. This should be compared to our

models which tend to isotropy in the outskirts (although this can be
simply adapted through modification of D( J) (equation 8) in the
outskirts (see Williams & Evans 2015a). As with our models, the
isodensity contours of the Varri & Bertin (2012) models get rounder
with radius.

The models presented here are potentially much more flexible
and powerful than those of Varri & Bertin (2012). For instance, by
our procedure the density profile properties are separate from the
rotation, whilst Varri & Bertin (2012) find that the density profiles
are altered when the rotation parameters are adjusted. In the most
extreme cases, large degrees of rotation give rise to an increas-
ing density with distance along the major axis – a so-called torus
structure – whilst in our models the maximum rotation for a given
density profile is mathematically constrained in an obvious way
(|k| < 0.5). Additionally, in our formulation, multiple components
can be simply considered as the sum of action-based DFs whilst an
equivalent procedure for DFs defined in terms of the energy is more
awkward. Inspired by the work of Varri & Bertin (2012), it may be
advantageous to construct truncated density profiles by following
the same procedure as in Section 3 and adopting a slightly more
flexible rotation curve of

h(Jφ) ∝ Jφ exp

[
−

(
Jφ

χ

)2c]
(22)

where we have introduced the parameter c to allow for faster rotation
profile decays at large radius. Throughout this paper, we have used
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c = 1. We anticipate that the current data are entirely insensitive to
modest changes in c.

6 C O N C L U S I O N S

We have constructed axisymmetric rotating self-consistent dynam-
ical models of six globular clusters (NGC 362, NGC 1851, NGC
2808, NGC 4372, NGC 5927 and NGC 6752). The models have
been fitted to surface brightness data from Trager et al. (1995) and
l.o.s. velocities from spectroscopic data [from the GES, Lardo et al.
(2015), Kacharov et al. (2014) and Lane et al. (2011)]. Our work
represents both an advance in theory in that the presented models
are new and an advance in data analysis as we have developed a
novel scheme for fitting the models to the data. We will briefly
present the main achievements and conclusions of this paper.

6.1 Action-based globular cluster models

We found that the surface brightness profiles of our sample of glob-
ular clusters are well reproduced by a simple adjustment to the
classic Plummer law. This Modified Plummer model produces a
slower break in the density profile at the scale radius. Using an
Eddington inversion scheme, we numerically computed the cor-
responding isotropic action-based DF and found that it was well
approximated by a simple function of the actions. Flattening was
introduced by scaling the vertical action by a factor qz which was
found to scale linearly with the observed flattening near the scale
radius q = 1

2 (1 + qz). Rotation about the symmetry axis was intro-
duced to the models by adding odd functions of the z-component of
the angular momentum, which has no effect on the density profile.
We implemented two rotation curves: a hyperbolic tangent model
that has a flat rotation profile with angular momentum and an ex-
ponential model that limits rotation to low angular momenta so
produces a rotating core.

6.2 Data analysis

We fitted our models to the data in two steps: first, we fixed the
density profile using the surface brightness data from Trager et al.
(1995). Secondly, for each cluster we produced a grid of rotating
models viewed at varying inclination angles such that the observed
ellipticity matched that of each cluster. To perform inference on our
parameters, we created a novel interpolation scheme for extract-
ing arbitrary models from our grid of models. Each l.o.s. velocity
distribution is expressed in terms of a q-Gaussian basis expansion
and l.o.s. velocity distributions at arbitrary positions and model
parameters can be reconstructed with high accuracy by linearly in-
terpolating on the basis coefficients. We have demonstrated that this
scheme works extremely well and represents an improvement over
the classic Gauss–Hermite expansion as it correctly reproduces the
truncation of the l.o.s. velocity distributions at the escape speed.
Such an approach is applicable to analysis of any l.o.s. velocity data
(from e.g. integral-field spectroscopy data) and we hope that the
procedure outlined in this paper will prove more generally useful.

6.3 Results

We have fitted our models to the globular cluster data by using
MCMC to estimate the uncertainties in the derived parameters. We
derived systemic velocities and mass-to-light ratios for all the clus-
ters, which agree well with literature values using N-body models
that account for effects such as mass segregation (Baumgardt 2017).

We also measured the velocity offsets between different data sets
used in the analysis and found they agreed well with the observa-
tions of the same stars from the two data sets.

From our model fits, we have found, in general, that there is a
weak preference for the models to be viewed edge-on. We have
found, from evaluating the Bayesian evidence ratio, that the hyper-
bolic tangent rotation model (which gives a flatter rotation curve out
to infinity) produces no better a fit to all the globular clusters bar
NGC 2808 than does the non-rotating model. Only in the case of
NGC 2808 do we find significant evidence for rotation when fitting
this flat rotation curve model. However, when fitting the exponential
rotation model (which produces centralized rotation and zero rota-
tion at infinity), we find that there is positive evidence for rotation
in NGC 2808, and to a lesser extent in NGC 4372 and NGC 5927.
For all other clusters, the data quality is too poor to reliably detect
any rotation. We concluded our study by plotting the results of the
rotation amplitude over the central dispersion against ellipticity for
our sample of clusters. Our results show that there is a weak cor-
relation between rotation signal and ellipticity, with the clusters all
lying beneath the classic isotropic rotator line. This suggests that
the flattening in these clusters is linked to anisotropy.

6.4 Future directions

The modelling presented here is the first step towards a much richer
analysis. We have shown the validity of both the models and the
data analysis procedure and the machinery is applicable to the many
more globular clusters for which there are spectroscopic data. Our
work has shown that for many globular clusters, the rotation signals
are weak and so more high-quality data is required to robustly
extract the rotation properties. Additionally, in some instances we
are limited by the quality of the photometric observations used.

Watkins et al. (2015) have provided high-quality proper mo-
tion measurements within globular clusters and in turn anisotropy
measurements. We have used these measurements to validate our
particular choice of models, but a fuller analysis would also use this
data in the model fits. There is a strong link between anisotropy,
rotation and flattening and so restricting the anisotropy can lead
to improved measurements of the rotation. It is unlikely that the
proper motion data are of high enough quality to reveal a visible
rotation signal, but they may potentially provide constraints on the
inclination angle.

Analysis of integral-field spectroscopy data from the Multi Unit
Spectroscopic Explorer (MUSE) survey (Bacon et al. 2014) will
soon yield a wealth of further kinematic measurements for globular
clusters, allowing the observation of many more stars than can be
observed using other spectroscopic techniques. The kinematics of
NGC 6397 have already been analysed by Kamann et al. (2016)
with a sample of 12 307 stars, pointing towards the possibility of a
slight rotational signature in this cluster, along with slight flattening
in its inner regions. The data are shown to reach an accuracy of <1
kms−1, comparable to the accuracy of the measurements used in
this work.

Our reliance on the PAs measured by White & Shawl (1987)
could also be eliminated in future work by using the now publicly
available photometry from the HST UV legacy survey of Galactic
globular clusters (Piotto et al. 2015; Soto et al. 2017). By engaging
with the photometric data in two dimensions rather than fitting the
density profile along one radial trajectory, the density isophotes of
our flattened models could be used to produce a separate prediction
for the PA of each cluster.
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Finally, we opened our paper with a discussion of the poten-
tial importance of dynamical models in distinguishing between
models of globular cluster formation and evolution. In particular,
we mentioned that action-based models are ideally suited to deal-
ing with multiple populations, as we are free to sum an arbitrary
number of components without changing our algorithms. A neces-
sary next step is to separate the globular cluster into subpopulations
and simultaneously fit a model for each component. Many globu-
lar clusters exhibit Na–O anticorrelation signatures (Carretta et al.
2010), such that an interesting first step would be to separate the
data from our clusters into [Na/O] rich and poor populations and
fit a sum of two of the presented models to detect any correlations
between chemistry and dynamics (Bellazzini et al. 2012). Cordero
et al. (2017) have already demonstrated the feasibility of such a
study using M13. Such developments will bring globular clusters
in line with dwarf spheroidal galaxies or components of the Milky
Way, for which chemodynamical modelling is now routine.
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APPENDIX A : SURFAC E D ENSITY PROFILE
O F M O D I F I E D P L U M M E R L AW

In equation (2), we introduced a density profile that bears a re-
semblance to the classic Plummer profile in that its asymptotic
limits are ρ ∼ r 0 and ρ ∼ r−5, but it has a slower turn-over be-
tween these regimes. The corresponding 3D mass profile m(r) is
given by

m(r)/M = 1 − 1 + 4r + 6r2

(1 + r)4
. (A1)

Solving m(r)/M = 1
2 gives a solution for the 3D half-light radius

rh = 1.5925rs. This profile also has an analytic surface density
profile given by

�(R) = M

4πr2
s

(16s4 + 83s2 + 6) − 15s2(3s2 + 4)X(s)

(s2 − 1)4
, (A2)

where s = R/rs and X(s) is the function introduced by Hernquist
(1990) given by

X(s) =
{

arcsech (s)/
√

1 − s2 if 0 ≤ s ≤ 1
arcsec (s)/

√
s2 − 1 if s ≥ 1,

(A3)

which is continuous through s = 1. Solving �(R)/�(0) = 1
2 gives

the core radius rc = 0.3432rs. Similarly, the mass contained within
a cylinder of radius R, M′(R), is given by

M ′(R)/M = 1 + 1

2

(2 − 9s2 − 8s4) + 15s4X(s)

(s2 − 1)3
. (A4)

The numerical solution for R of M ′(R)/M = 1
2 results in

R = Rh = 1.2038rs. Comparison to the Plummer profile where
Rh = rs and rh = 1.3048rs, we see that as expected from a slower
turn-over, the half-light radii for our model lie further out than in
the corresponding Plummer case.

APPENDIX B: Q -GAU SSIAN POLYNOMIAL
BA SIS EXPANSION

Line profiles of galaxies are often simplified through a representa-
tion in terms of Gauss–Hermite polynomials Hi(y) (van der Marel

& Franx 1993; Magorrian & Binney 1994). Such an expansion is
valid for distributions that extend to ±∞, but is inappropriate for
distributions that truncate at some fixed value. For instance, when
representing the l.o.s. velocity profiles of our models, we require
the weight to be identically zero beyond the escape velocity Vesc. In
this appendix, we will give a set of orthogonal polynomials using
the q-Gaussian as a weight function which are appropriate for this
problem.

The unit q-Gaussian weight function is defined as

W(y; q) = Cq (1 − (1 − q)y2)1/(1−q), (B1)

where Cq is a normalization constant given by

Cq =
√

1 − q

π

�

(
5−3q

2(1−q)

)

�

(
2−q

1−q

) . (B2)

For q < 1, W = 0 at y = ±y0 = ±(1 − q)−1/2. Additionally, we
define the constant

Nq =
∫ y0

−y0

dy W2(y; q) = C2
q

√
π

1 − q

�

(
3−q

1−q

)

�

(
7−3q

2(1−q)

) . (B3)

We use Gram–Schmidt orthogonalization to construct a set of
orthonormal polynomials Qi(y) on the interval (−y0, y0). The poly-
nomials are normalized such that∫ y0

−y0

dy W2(y; q)Q2
i (y; q) = Nq . (B4)

The first five polynomials are given by

Q0(y; q) = 1,

Q1(y; q) = x
√

7 − 3q,

Q2(y; q) = 1

2

√
9 − 5q

3 − q
[(7 − 3q)x2 − 1],

Q3(y; q) = 1

2

9 − 5q√
9 − 3q

√
(7 − 3q)(11 − 7q)

[
x3 − 3

9 − 5q
x

]
,

Q4(y; q) =
√

(7 − 3q)(13 − 9q)

192(3 − q)(2 − q)

× [(9 − 5q)(11 − 7q)x4 − 6(9 − 5q)x2 + 3]. (B5)

Given some function f(y), the coefficients of the q-Gaussian poly-
nomial expansion are given by

qi = N−1
q

∫ y0

−y0

dy f (y)W(y; q)Qi(y; q), (B6)

and the representation of f can be reconstructed as

f̂ (y) = W(y; q)
∑

i

qiQi(y; q). (B7)

B1 Choice of q

For the best representation of a general profile F(x), we must first
shift and scale the ordinate of the distribution such that the peak at
x = xc coincides with y = 0 and the width is approximately that of
the unit q-Gaussian. We opt to match the standard deviation of F to
the standard deviation of the q-Gaussian given by σ q = 1/(5 − 3q).
If F( ± xe) = 0, we define σ as the standard deviation of F and set
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x0 = max(xe − xc, xc − xe). Then, an appropriate scaling is given
by

β =
√

1

2σ 2
− 3

2x2
0

, (B8)

and

f (y) = F (y/β + xc). (B9)

Additionally, we choose q as

q = 1 − 1

(βx0)2
. (B10)

B2 Checks of the q-Gaussian interpolation

In Section 4.1, we presented some checks of the accuracy of the
q-Gaussian expansion scheme by comparing the reconstructed l.o.s.
velocity distributions at several on-sky positions and also as a func-
tion of the rotation amplitude k. In this appendix, we present a much
fuller range of checks of the accuracy of our procedure. In Fig. B1,

we show the actual distributions alongside the reconstructed distri-
butions for five different on-sky positions for three different near-
spherical models (two maximally rotating exponential models with
χ = 0.25

√
GMrs and 8

√
GMrs and a non-rotating model) that lie

on the interpolation grid points. This procedure tests the quality
of the on-sky interpolation. We see that the q-Gaussians capture
the shapes of the distributions over many orders of magnitude and
possibly the only criticism is the small failure near the peaks of
the distributions. In Fig. B2, we show the same results for the most
flattened model considered qz = 0.6 and again the results are very
satisfactory and as good as the near-spherical case.

In Figs B3 and B4, we show the comparison of the actual and the
reconstructed distributions for the most spherical and most flattened
models, respectively. We show the results evaluated at two on-sky
positions for a range of different rotation curve parameters. For the
most flattened case, we see the inability of the q-Gaussian expansion
to correctly capture the height of the peak for the most extreme
on-sky position. However, we note that these tests are at extreme
values and so not representative of the whole. Indeed, the figures
demonstrate the high quality with which we can reproduce the
distribution anywhere and for any model.

Figure B1. Comparison between q-Gaussian Hermite fits interpolated at five points between the (b, φ′) grid points of Section 3 and the l.o.s. velocity
distributions obtained by computing the self-consistent model at these points in parameter space, for the most spherical model (qz, θ ) = (0.98, 1.57). We see
that the q-Gaussian Hermite distributions interpolate well over the position co-ordinates.
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Figure B2. Comparison between q-Gaussian Hermite fits interpolated at five points between the (b, φ′) grid points of Section 3 and the l.o.s. velocity
distributions obtained by computing the self-consistent model at these points in parameter space, for the most flattened model (qz, θ ) = (0.6, 0.77). We see that
the q-Gaussian Hermite distributions interpolate well over the position co-ordinates.

Figure B3. Comparison between q-Gaussian Hermite fits interpolated at (qz, θ ) = (0.95, 0.63) and at four values of (qz, k, χ ), and the l.o.s. velocity distributions
obtained by computing the self-consistent model at these points in parameter space. The two different values of b = 1.34 and 12 tested are the grid points
of maximum rotation and of maximum distance from the cluster centre, respectively. We hold φ′ = 0.1 such that the effects of rotation can be most clearly
observed. We see that the q-Gaussian Hermite distributions interpolate well over the physical model parameters, particularly in logarithmic space.
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Figure B4. Comparison between q-Gaussian Hermite fits interpolated at (qz, θ ) = (0.65, 0.22) and at four values of (qz, k, χ ), and the l.o.s. velocity distributions
obtained by computing the self-consistent model at these points in parameter space. The two different values of b = 1.34 and 12 tested are the grid points
of maximum rotation and of maximum distance from the cluster centre, respectively. We hold φ′ = 0.1 such that the effects of rotation can be most clearly
observed. We see that the q-Gaussian Hermite distributions interpolate well over the physical model parameters, particularly in logarithmic space.
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