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ABSTRACT

Context. Photometric observations of planetary transits may show localized bumps, called transit anomalies, due to the possible
crossing of photospheric starspots.
Aims. The aim of this work is to analyze the transit anomalies and derive the temperature profile inside the transit belt along the transit
direction.
Methods. We have developed the algorithm TOSC, a tomographic inverse-approach tool which, by means of simple algebra, recon-
structs the flux distribution along the transit belt.
Results. We test TOSC against some simulated scenarios. We find that TOSC provides robust results for light curves with photometric
accuracies better than 1 mmag, returning the spot-photosphere temperature contrast with an accuracy better than 100 K. TOSC is also
robust against the presence of unocculted spots, provided that the apparent planetary radius given by the fit of the transit light curve is
used in place of the true radius. The analysis of real data with TOSC returns results consistent with previous studies.

Key words. methods: data analysis – methods: numerical – techniques: photometric – stars: activity – stars: atmospheres – starspots

1. Introduction

During planetary transits, the observed flux of the star decreases
because part of the stellar disk is occulted by the planetary disk.
If the accuracy of the transit photometry is high enough, it is pos-
sible to analyze the fine details of the transit light curve (LC) and
characterize the stellar surface. In particular, if the planet transits
over stellar spots, then an apparent rebrightening (called “tran-
sit anomaly”) of the star is observed during the spot crossing, as
it corresponds to an increase of the flux received from the star
because a darker area is occulted.

The analysis of transit anomalies has been theorized by
Schneider (2000). From the observational point of view, the
study of Silva (2003) is the first example of how these transit
anomalies can be analyzed to obtain information on the mor-
phology and physical parameters of the crossed spots. Since
then, many other authors have analyzed the high-accuracy tran-
sit photometry of active stars with the aim of modeling the stel-
lar spots (e.g., Pont et al. 2007; Rabus et al. 2009; Huber et al.
2010; Winn et al. 2010; Tregloan-Reed et al. 2013; Béky et al.
2014b; Nascimbeni et al. 2015; Mancini et al. 2015).

While the analysis of individual transits allows us to model
the spots intersected by the planet in those specific epochs, the
observations of many transits give us the possibility to study
a large number of spots, which can be statistically signifi-
cant in order to characterize the average photospheric activity
(Béky et al. 2014b). Furthermore, if the same spots are repeat-
edly occulted, then the spin-orbit alignment of the system can
be constrained (Sanchis-Ojeda & Winn 2011a; Nutzman et al.
2011; Désert et al. 2011).

In the case of recurrent anomalies, we can also char-
acterize the time evolution of the spots and the rotation
of the star (Silva-Valio 2008; Silva-Valio & Lanza 2011;
Sanchis-Ojeda et al. 2011b; Béky et al. 2014a). This task is

usually accomplished by continuous long-term photometric and
spectroscopic monitorings of the stars, requiring a large amount
of telescope time. Moreover, the results obtained via these meth-
ods are affected by several limitations and degeneracies between
the parameters of the adopted models (Lanza 2016). Another ad-
vantage of transiting systems is, then, that the evolution of indi-
vidual spots can be studied using a few consecutive transits.

In recent years, the analysis of transit anomalies has been
approached using various methods. For example, some au-
thors fit the transit anomaly with a given analytical model
to retrieve the size of the spots and their flux ratio with re-
spect to the photosphere (e.g., Sanchis-Ojeda & Winn 2011a;
Nascimbeni et al. 2015). Some other authors have written more
sophisticated and computationally expensive codes, which fit the
transit light curves by means of Monte Carlo algorithms (e.g.,
Tregloan-Reed et al. 2013; Béky et al. 2014b). In both cases,
some assumptions on the shape and distribution of the spots over
the stellar disk are needed.

In this paper we present the Tomography Of Spotted transit
Chords (TOSC) code, a new and fast algorithm which analyzes
the transit anomalies and reconstructs the flux distribution inside
the area of the stellar surface intersected by the transiting planet,
namely the “transit chord”. The term “chord” here is used im-
properly, as the chord is by definition a straight segment with
endpoints on a circle. From a pure geometrical point of view, it
would be more appropriate to use the term “belt”. Nonetheless,
in exoplanet science the two terms are used interchangeably. In
this paper, we will prefer the notation “chord” as most widely
used by the community. We will use the term belt only when it
is required by the bi-dimensionality of the tomography.

The main advantage of our code with respect to previous ap-
proaches is that it only needs some assumptions on the geometry
of the planetary system and on the spectrum of the star. In other
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words, TOSC does not assume any a priori parameter of the pho-
tospheric spots occulted by the planet (e.g., shape, size, and tem-
perature). In Sect. 2 we describe the geometrical model and the
inversion algorithm which returns the tomography of the transit
chord. In Sect. 3 we test TOSC against a few simulated transits,
in order to check its robustness and its response to photometric
accuracy and spot parameters. Finally, in Sect. 4 we compare our
code with other models for transit anomalies, applying TOSC to
some transit LCs which have already been analyzed in literature.

2. The model

The out-of-transit stellar flux Foot depends on the effective tem-
perature of the star and on the presence of active regions on the
stellar surface. Active regions evolve with time and rotate with
the star. Foot is thus by principle a function of time. Nonetheless,
both effects (evolution and rotation of active regions) generally
have timescales much longer than the typical duration of a plan-
etary transit (i.e., a few hours). It is thus a common practice to fit
a low-order polynomial to the out-of-transit data, and to normal-
ize the observed fluxes by this polynomial, in order to remove
any long-term trend in the observed LC. After normalization,
the dependence of Foot on time can thus be dropped. In the fol-
lowing discussion, all the fluxes are normalized by the low-order
polynomial fit of the out-of-transit LC.

During the transit, the flux F(t) received from the stellar disk
is given by:

F(t) = Foot − Focc(t), (1)

where Focc(t) is the occulted stellar flux at any time t. The de-
pendence on time is given by the fact that Focc(t) depends on
the limb darkening (LD, see e.g., Winn 2010) profile. Moreover,
the light curve may have anomalies in case the planet occults
active regions, either in the form of cool spots or photospheric
bright faculae, showing bumps or dips correspondingly (e.g.,
Silva 2003; Ballerini et al. 2012).

F(t) is the observable that we want to convert into the
spatially-resolved brightness profile of the transit chord. To this
purpose, in the following sections we describe how we model
the stellar disk (Sect. 2.1), the transit chord (Sect. 2.2) and the
transit LC (Sect. 2.3).

2.1. The stellar disk

If we neglect the effects of surface brightness inhomogeneities
and of their rotation over timescales of a few hours typical of
the transits, we can assume that the flux emerging from the stel-
lar disk is constant, and is given by the surface integral of the
specific intensity I over the disk.

The stellar disk observed from Earth is not uniformly bright
due to the LD effect. We assume a quadratic profile (Claret
2004), which is generally adopted in fitting transit LCs. This pro-
file is usually parametrized as

I(µ)
I0

= 1 − u1(1 − µ) − u2(1 − µ)2, (2)

where I0 is the specific intensity at the center of the disk, µ =
cos γ, γ is the angle between the line of sight and the normal to
the stellar surface, and u1 and u2 are the limb darkening coeffi-
cients, which are part of the output of the transit LC fitting or are
derived from a model atmosphere.

To compute the broadband intensity I0 at the center of the
stellar disk, we first convolve the intensity given by the BT-Settl

synthetic spectral library by Baraffe et al. (2015) with the re-
sponse function of the instrumental setup used to collect the LC.
Then, the intensity I0 is computed interpolating the temperature
grid of the model at the effective temperature Teff of the star.

The flux Foot emerging from the stellar disk is thus given by
the integral of I(µ) over the stellar disk (see Eq. (3) in Lanza
2016):

Foot = 2π R2
∗

∫ 1

0
I(µ)µdµ. (3)

Substituting Eq. (2) into Eq. (3) and integrating we obtain:

Foot = πR2
∗I0

6 − 2u1 − u2

6
, (4)

where R∗ denotes the stellar radius.

2.2. The transit chord

Assuming that the shift of the planet on the stellar disk during
the photometric exposure is negligible compared to the plane-
tary radius, the stellar flux Focc(t) occulted by the planet at the
time t during the transit is given by the integral of the stellar
flux over the planetary disk in the sky-projected plane. We can
thus assume that each photometric point taken during the transit
is representative of an area on the projected stellar disk centered
on the planet and having the same planetary radius. Hence, as the
planet moves over the stellar disk, it scans the transit chord. The
transit LC is thus, from this point of view, the observable carry-
ing information on the flux distribution along the transit chord.

In particular, the U-shaped transit LC is due to the LD, while
anomalies (bumps and/or dips) with respect to the best-fit transit
model are due to active regions on the stellar surface. In both
cases, the inference on LD and/or stellar activity is possible be-
cause the planetary radius is smaller than the length of the tran-
sit chord (the planetary radius is of the order of 10% or less of
the stellar radius), thus the movement along the transit chord
provides a spatially resolved scan of the chord itself. Roughly
speaking, the spatial resolution of the scan is of the same order
of the shift of the planet along the chord between two adjacent
photometric points if the noise can be neglected.

To reconstruct the flux distribution along the transit chord,
we refer the stellar disk to a Cartesian reference frame centered
at its center. We assume the transit chord to be in the horizontal
direction, at the ordinate y = b ·R∗, where R∗ is the stellar radius
and b the impact parameter in units of the stellar radius.

For the sake of simplicity, in our model the disk of the planet
is assumed to be entirely inside the disk of the star. In other
words, we do not model the ingress and the egress. We thus de-
fine a grid inside the transit chord made up of adjacent equal
rectangular cells. If the orbit inclination is not 90◦, the plane-
tary track across the stellar disk is actually curved. The most
tilted configuration occurs when the projected planetary orbit is
an ellipse of semi minor axis equal to the stellar radius. In this
case, the maximum displacement along the vertical direction of
the planet during the transit is R∗

√
1 − (R∗/a)2, where a is the

semi major axis. For a giant planet (Rp ∼ 0.1) in a tight orbit
(R∗/a ∼ 0.1), the maximum displacement turns out to be a few
percents of the planetary radius. Given this small effect, and the
difficulty in taking into account warped cells inside the curved
transit chord, for the sake of simplicity we approximate the tran-
sit chord as a rectilinear segment. Each cell thus has height equal
to the diameter of the planet and width ∆x depending on the
number N of cells (Fig. 1). The length of the grid equals the
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Fig. 1. Schematic representation of the geometry discussed in the text.
The circle represents the transiting planet, while the grid rectangles
show the cells used in the chord reconstruction.

length of the top side of the chord in Fig. 1, such that the first
and last grid cells are completely contained into the projected
stellar disk. Using Pythagoras’s theorem, the total length lchord
of the reconstructed chord is

lchord = 2R∗

√
1 −

(
Rp + b

)2
,

and the width of each cell is thus given by

∆x =
lchord

N
=

2R∗
√

1 −
(
Rp + b

)2

N
, (5)

where Rp is the planetary radius in units of the stellar radius.
For the sake of simplicity, we assume that the intensity Ii

emerging from the ith cell in the chord is uniform and equal to
the intensity at the center of the cell:

Ii = I (µ(xi, b · R∗)) , (6)

(i.e., we neglect the dependence of I on µ inside the cell, see
Eq. (2)). The corresponding emerging flux is thus:

Fi =

"
I(x, y)dxdy ' I (µ(xi, b · R∗))

"
dxdy

= I (µ(xi, b · R∗)) · 2RpR∗∆x. (7)

where the double integral is extended over the surface of the ith
cell.

O

A

B

O

C

D

Fig. 2. Graphical representation of the computation of the weights dis-
cussed in the text. The circle is the planetary disk centered in O, while
the gray grid shows the cells drawn on the stellar disk partially covered
by the planetary disk.

2.3. The reconstruction algorithm

The flux dimming Focc(t) at any time t during the transit is the
sum of the fluxes Fi of the cells multiplied by the corresponding
overlap fractional area between the cells and the planetary disk.
With these assumptions, we obtain:

Focc(t) =

N∑
i=1

wi(t) · Fi, (8)

where the weights wi(t) are the overlap fractional areas, and thus
run from 0 to 1.

The weights wi(t) are computed by geometric considerations
(Fig. 2). From left to right, the first non-zero weight is computed
as the area (in cyan in Fig. 2) of the circular segment bounded
by the arc ÂB. The second weight (i.e., the orange area in Fig. 2)
is then computed as the area of the circular segment bounded
by the arc ĈD (the cyan and orange circular segment) minus the
area of the circular segment bounded by ÂB, and so forth.

The N unknowns Fi can be retrieved solving the linear
system:
w1(t1) · · · wN(t1)
...

. . .
...

w1(tM) · · · wN(tM)

 ·

F1
...

FN

 =


Focc(t1)

...
Focc(tM)

 (9)

where t1 . . . tM are the times when the M photometric points were
collected.

In principle, there is no restriction on the maximum number
of cells. Nonetheless, large values of N are discouraged for two
reasons. First of all, if N > M then the system in Eq. (9) is
overdetermined and the data are “overfit”. This corresponds to
extracting from the data an amount of information larger than
the information carried by the data themselves.

The second reason is given by the Nyquist sampling theo-
rem. Assuming that the transit is evenly sampled at positions
separated by the distance ∆x0 on the stellar disk, the planet
samples the transit chord with the spatial frequency f0 = 1

∆x0
.

The corresponding Nyquist frequency is f = f0/2, which is the
maximum frequency that allows the reconstruction of the transit
chord without aliases. The Nyquist theorem thus suggests to di-
vide the chord into cells whose minimum width is ∆xmin = 2∆x0.
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Plugging this into Eq. (5), the requirement on the spatial fre-
quency translates into N < M/2.

We let the user of TOSC decide the optimal N for their pur-
poses, cautioning that in our tests values of N larger than M/2
have proven to introduce aliases in the reconstruction.

Noise in the data, numerical precision and the fact that the
system is overdetermined if N < M generally lead to the lack of
an exact solution for Eq. (9). For these reasons, we solve Eq. (9)
through a χ2 minimization procedure rather than by using canon-
ical linear methods, aiming at the vector x̃ which best approxi-
mates Eq. (9) via the condition

x̃ = min
x

(
‖A · x − Focc‖

2
)
, (10)

where A is the M × N matrix of the coefficients in Eq. (9)

A =


w1(t1) . . . wN(t1)
...

...
w1(tM) . . . wN(tM)

 ; (11)

and

Focc =


Focc(t1)

...
Focc(tM)

 . (12)

To improve the capability of TOSC to converge to a physically
acceptable solution, in TOSC there is the possibility to con-
strain the fit cell flux1. In the assumption that the transit LCs
are not affected by bright faculae, the maximum flux expected
from the cells cannot exceed the photospheric flux. The user
can thus constrain the maximum flux Fi,max corresponding to
Teff,max = Teff+nσTeff

, whereσTeff
is the measurement uncertainty

on the stellar Teff , while n is a free parameter set by the user. Set-
ting n = 0, the maximum allowed temperature equals the nom-
inal stellar Teff ; setting n to a very large number corresponds to
putting no constraint on Teff,max. Moreover, the user can also con-
strain the minimum flux Fi,min emerging from the grid cells by
setting the minimum temperature Teff,min for the reconstructed
transit chord. To this purpose, the study of Berdyugina (2005)
and Andersen & Korhonen (2015) provide some useful indica-
tions on the spots’ temperature contrast as a function of the stel-
lar effective temperature.

Mathematically speaking, solving Eq. (10) is an ill-posed
problem. Hence, we regularize the inversion problem using
Tikhonov’s method, that is, we insert an additive term into
Eq. (10) such that the best solution x̃ is found as:

x̃ = min
x

(
‖A · x − Focc‖

2 + λ‖T · x‖2
)
, (13)

where λ is a non-negative Lagrangian multiplier and T is, in
the Tikhonov regularization framework, an ad-hoc matrix which
gives preference to solutions with acceptable characteristics. We
give preference to smooth solutions of Eq. (13) by minimizing
the differences between neighboring elements of x, with the aim

1 To implement the minimization algorithm with constraints inside
TOSC, we use the function lsei of the limSolve package v.1.5.5.1
(Soetaert et al. 2009) for the R environment (R core team 2016), which
uses the singular value decomposition method for matrix inversion
(Press et al. 1992).

of providing solutions with minimum jumps between neighbor-
ing cells along the transit chord2.

T =


1 −1 0 0 . . . 0 0
0 1 −1 0 . . . 0 0
...

...
0 . . . 1 −1

 . (14)

The constraints and the regularization through the Lagrangian
multiplier λ are useful to reduce the propagation of errors and
numerical instabilities introduced by approximations and noisy
data. A posteriori we also find that the regularization in the re-
gression algorithm is able to reduce the autocorrelation in the
residuals introduced by numerical approximations in the code
(see Sect. 3). The side effect of the regularization is to smooth
the solution of the reconstruction problem, lowering the spatial
resolution of the reconstruction. In particular, at large λ the so-
lution of Eq. (13) is over-smoothed, leading again to autocorre-
lated first neighbors. We will further discuss the impact of λ on
the solution in Sect. 4.2, where we apply TOSC to a clear transit
feature detected in real data.

In TOSC we implement an automatic search of the optimal
multiplier λ. This search consists in increasing iteratively the
value of λ until the absolute value of the autocorrelation be-
tween first neighbors decreases below the threshold 1.96/

√
N.

This threshold corresponds to the 95% confidence interval for
the hypothesis that residuals are randomly distributed around
zero (Chatfield 1980). We remark that this is an automatic op-
timization criterion, which can be overridden by the user in case
of unsatisfactory results.

Once the optimal λ multiplier is fixed, TOSC computes the
array of fluxes x̃ in Eq. (13), which is then converted into tem-
peratures by means of the grid of fluxes predicted by the syn-
thetic spectral models (Sect. 2.1). The temperature contrast ∆T
discussed in the following sections is the difference between the
reconstructed and the effective temperature, and is thus negative
in the presence of cool spots.

3. Simulated transits

To test TOSC, we check its robustness and accuracy in recon-
structing a simulated transit chord. In the following subsections,
we simulate a planetary system with the parameters of the planet
system hosted by HAT-P-11 (listed in Table 1), and we analyze
the output of the reconstruction algorithm when different config-
urations of spots are simulated.

3.1. Transit curve simulation

There are several codes capable to simulate the LCs of planetary
transits. These codes generally simulate a clean stellar disk, with
no signature of stellar activity. Since in this work we are inter-
ested in analyzing the effect of photospheric spots on transit LCs,
we write a simple code to simulate the planetary transits over
spotted photospheres, to provide to TOSC some test cases. In
brief, this code pixelates the stellar disk along two perpendicular
directions, and for each pixel the emerging flux is computed con-
volving the photometric passband with the same limb-darkened

2 The Tikhonov regularization is suited for the cases where some de-
gree of correlation between neighboring points is expected, as in the
case of extended spotted areas inside the transit chord. An alterna-
tive is the maximum entropy regularization, which conversely mini-
mizes the correlation between different parts of the reconstructed image
(Piskunov et al. 1990), and is thus less suited for the aim of TOSC.
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Table 1. Parameters of the planetary system HAT-P-11 used in this pa-
per (Bakos et al. 2010).

Teff 4780 K
Rp 0.05862 R∗
aa 0.0530 AU
ib 88.50◦
ec 0.198
ωd 355.2◦

u1, u2
e, f 0.599, 0.073

Notes. (a) Orbital semi-major axis. (b) Orbital inclination. (c) Orbital ec-
centricity. (d) Argument of periastron. (e) Quadratic limb darkening co-
efficients. ( f ) From Sanchis-Ojeda & Winn (2011a).

stellar spectrum used in TOSC. The number of pixels along each
direction is chosen one order of magnitude larger than the num-
ber of the simulated photometric points (see Sect. 3.2). A poste-
riori, we find that increasing the number of pixels does not have
any effect on the reconstruction of the transit chord.

Then, the flux dimming for any position of the planetary disk
over the stellar disk is computed. The integration of the occulted
stellar flux is performed using the IDL routine aper.pro, which
computes aperture photometry with the capability of counting
subpixels. A posteriori, we find that this feature provides a major
improvement in the computation of the LC, which in turn allows
a more precise reconstruction of the transit chord.

3.2. Transit over a spot-free stellar disk

The simplest case to test TOSC is the transit of the planet
over a spot-free stellar disk. To this purpose, we have simu-
lated the transit of the planet uniformly sampling the transit

chord with 100 points between −R∗(
√

1 − (b + Rp)2 − Rp) and

R∗(
√

1 − (b + Rp)2 − Rp) (see Fig. 1). This is the typical num-
ber of photometric points in transit LCs provided by dedicated
space-borne observatories. Following the Nyquist sampling the-
orem (Sect. 2.3), this gives a number of cells equal to 50.

First, we neglected the LD effect and did not include mea-
surement errors in the simulations. In the absence of LD, the
occulted flux is a constant fraction R2

p of the stellar flux between
the second and third contact. Nonetheless, we used the transit
simulator discussed in Sect. 3.1 to check the inaccuracies intro-
duced by numerical approximations in the transit simulation.

We ran TOSC on the simulated LC, setting λ = 0 for the
regularization discussed in Sect. 2.3. We find that TOSC is not
capable of returning exactly ∆T = 0 as expected. The best fit is
systematically ∼10−3 K off the true value, and it shows a regular
autocorrelated pattern with amplitude of the order of ∼10−4 K
(Fig. 3, top panel). These features are due to the propagation of
numerical approximations both in the LC simulation and in the
transit chord reconstruction. We remark that these inaccuracies
are negligible compared with the uncertainty usually associated
with the measurement of stellar effective temperatures (.100 K),
and are thus irrelevant in any practical purpose.

We then simulated the more realistic case of a planetary tran-
sit over a limb-darkened stellar disk, using the quadratic LD law
with the coefficients in Table 1. In this case, the unregularized
algorithm was able to reconstruct the transit chord temperature
profile with an uncertainty of .1 K (see Fig. 3, second panel
from top). We thus find that the presence of LD increases the
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Fig. 3. Examples of reconstruction of the thermal profile of the transit
chord for the case of an unspotted stellar disk. The orbital parameters
used in the simulation are listed in Table 1. From top to bottom, we show
the case of (i) a stellar disk with no LD, noise-free LC and λ = 0; (ii) a
stellar disk with LD, noise-free LC and λ = 0; (iii) a stellar disk with
LD and LC with a photometric precision of 1 mmag and λ = 23; (iv) a
stellar disk with LD and LC with a photometric precision of 0.1 mmag
and λ = 2.9.

offset of the best fit solution with respect to the true value. This
is due to the fact that the flux assigned to each grid cell is an
approximation of the true one (see Eq. (6)).

Finally, we added some randomly-generated noise to the
transit LC. First of all we simulated a 1 mmag photometric
noise, typical of ground-based high-precision photometric ob-
servations. A posteriori, we find that the output of the regression
is heavily affected by the propagation of the photometric uncer-
tainties in the matrix inversion such that, in the most extreme
cases, the automatic optimization of λ does not converge to a
smooth solution. When it does, we find that the λ multiplier is
of the order of .10 and the accuracy in the reconstruction of the
transit chord is σT ∼ 100 K (Fig. 3, second panel from bottom).

If we decrease the photometric noise down to 0.1 mmag,
similar to Kepler’s precision (Borucki et al. 2010) and to
what is expected from future photometers (e.g., CHEOPS,
Scandariato et al. 2016), we find that the convergence of TOSC
is more robust: the accuracy in the reconstruction is σT . 30 K
(Fig. 3, bottom panel).

To better understand how λ and σT depend on the photomet-
ric uncertainty, we ran the following test: we simulated the five
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Fig. 4. λ (red squares) and σT (black circles) as functions of the photo-
metric uncertainty of the LC.

different values of the photometric uncertainty, from 0.1 mmag
to 1 mmag, shown in Fig. 4. For each of these values, we gen-
erated 105 random samples of photometric noise to add to the
model LC. For each noisy LC we ran TOSC and we stored the
corresponding λ and σT. For each value of the photometric noise
we can thus compute the median λ and σT, which are plotted in
Fig. 4. We find that λ is generally of the order of a few units
or less and does not depend on the photometric accuracy, while
σT increases with the photometric uncertainty of the LC, consis-
tently with the test cases discussed above.

3.3. Transit over a spotted stellar disk

Photospheric spots modify the transit LC in two ways. On the
one hand, if spots are not crossed by the transiting planet,
then the transit LC is deeper, because the planet occults a
larger fraction of the stellar light (see e.g., Czesla et al. 2009;
Ballerini et al. 2012). The effect is thus that the planet has an
apparent radius larger than the true one. On the other hand, as
discussed in the introduction of this paper, if spots are crossed
during the planetary transit then the transit LC shows localized
anomalies.

To test the robustness of TOSC in the presence of spots, we
first simulated the case of a stellar disk with a spot not occulted
by the planet during its transit over the disk. For this purpose, we
used the same model of the HAT-P-11 system used above, and
we simulated a circular spot 1000 K cooler than the photosphere
and radius equal to 0.15 R∗ (i.e., approximately three times larger
than the planet). These parameters depict one of the largest and
coolest spots found by Béky et al. (2014b) for HAT-P-11. The
transit LC was simulated as above, and no random noise was
added in order to test the net effect of unocculted starspots on
the transit chord reconstruction.

Given this test case, the reconstructed transit chord computed
by TOSC with λ = 0 is systematically 20 K hotter than the
expectations. This is due to the fact that, assuming a spot-free
photosphere, TOSC overestimates the fraction of stellar light oc-
culted by the planet, and thus the temperature of the occulted
stellar photosphere. To fix this bias, we fit the simulated LC
using the JKTEBOP code version 34 (Southworth et al. 2004),
obtaining an apparent planetary radius of 0.058965 R∗, that is,
larger than the true radius. We ran TOSC with this apparent ra-
dius, and we find that the simulated transit chord is reconstructed
with an accuracy of .3 K, comparable with the accuracy of
∼1 K discussed in Sect. 3.2. This indicates that the assumption
of a slightly larger planet counteracts the effect of the neglected

unocculted photospheric spots, thus improving the accuracy of
the algorithm.

This test favors the use of the apparent radius of the planet
rather than the true one, thus we advise the user of TOSC to fit
the transit LC under examination and derive the apparent plan-
etary radius for that given transit. This represents an advantage
for TOSC, because the apparent planetary radius is easily mea-
surable from the transit LC, while the true radius is not precisely
measurable in case of active photospheres. Nonetheless, we re-
mark that in the most optimistic scenario the LC is affected by
a photometric uncertainty as small as 0.1 mmag, which intro-
duces an uncertainty of .30 K in the transit chord reconstruction
(Sect. 3.2). Thus, if the true planetary radius is used, then the
corresponding bias (.20 K in the simulated case) turns out to be
negligible, unless more extremely spotted photospheres have to
be taken into account.

Next, we tested the robustness of TOSC in the presence of
transit anomalies given by spot-crossing events, which is the
main goal of our algorithm. We first simulated the same photo-
spheric spot as above placed at the center of the transit chord
(Fig. 5, top panel), and we simulated the corresponding light
curve, adding a random photometric noise of 1 mmag (Fig. 5,
middle panel). We fit the LC assuming the apparent planetary
radius obtained with JKTEBOP (0.058965 R∗, see above), and
show the result in the bottom panel of Fig. 5: the reconstructed
chord obtained with λ = 3 (as returned by the automatic opti-
mization) clearly shows a cooler interval corresponding to the
anomaly in the LC, with width and temperature contrast con-
sistent with the simulated spot within the uncertainties. For the
sake of comparison, the bottom panel of Fig. 5 shows the aver-
age of the temperature inside the cells drawn over the simulated
photosphere.

To compute the uncertainty σT on the temperature along the
transit chord we proceeded in the following way. First of all,
we simulated the transit LC with the same parameters of the
given star and planet, assuming a clear photosphere: the fit of
this noise-free LC would provide a noise-free temperature pro-
file of the unspotted transit chord, with the exception of small
numerical instabilities. Then, we computed the residuals of the
best fit of the observed LC and we add them to the simulated
noise-free LC. This gives us a simulated LC with the same pho-
tometric accuracy of the observed one. Finally, we ran TOSC
on this noisy simulated LC using the same λ that was optimized
for the observed LC, and we compute the standard deviation of
the temperature of the grid cells as an estimate of σT. This is
an average uncertainty on the reconstructed temperature profile,
obtained with the same noise model of the data.

Finally, we considered a scenario in which the spot is smaller
and hotter than that described above, in order to reduce the am-
plitude of the anomaly with respect to the transit profile depth.
In particular, we simulate a circular spot with half the plane-
tary radius and 500 K cooler than the photosphere, placed along
the transit chord but off-center, in order to introduce also some
asymmetry in the system. Given that this spot has less con-
trast with respect to the previous test case, its signal is below
the 1 mmag photometric uncertainty simulated above. We thus
added a smaller photometric noise of 0.1 mmag, which is slightly
smaller than the signal expected from the spot-crossing event
(see right panel in Fig. 6). We find that, even if the anomaly is
at the limit of the photometric noise, the spot can be detected
with a regularization parameter as small as λ = 1. Nonetheless,
we remark that the spot-to-photosphere contrast (∆T & −200 K)
underestimates the simulated one (−500 K). This is for two rea-
sons. First of all, the regularization operated by the algorithm
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Fig. 5. Left panel: sketch of the simulated transiting system with a photospheric spot along the transit chord. The horizontal dashed lines delimit
the transit chord. Stellar flux increases from orange to white. Right panel – top panel: simulated LC with the unperturbed model and the transit fit
represented by the solid black line and the solid green line respectively. Middle: residuals of the transit fit. Bottom: the reconstructed transit chord.
In the bottom panel, the uncertainty on the reconstruction is shown in dashes, while the solid green line represents the simulated temperature
profile of the chord (see text for better details).
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Fig. 6. As in Fig. 5, for the test case with a smaller and hotter spot as discussed in the text.

tends to smooth out the discontinuities in temperature profile of
the chord. Secondly, and most importantly, in this case the spot
does not cover the full height of the reconstructed chord, which
is equal to the diameter of the planet (see Fig. 1). The algorithm
is not capable of reconstructing the flux distribution perpendicu-
lar to the transit chord, then the net result is that along any cell
in the transit chord (Fig. 1) the flux missing due to the cooler
temperature of the spot is redistributed over the entire surface of

the cell. As a consequence, the temperature of the cells returned
by the algorithm is an upper limit of the spot temperature.

4. Comparison with previous results on real transits
In Sect. 3 we tested TOSC against a few simulated cases. In
this section we compare it with other models that have been al-
ready discussed in the recent literature. To this purpose, we have
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applied TOSC to a few test cases that have been analyzed with
similar reconstruction algorithms.

4.1. CoRoT-2

CoRoT-2 (GSC 00465-01282) is an active young G dwarf
(Teff = 5630 K) hosting the Hot Jupiter CoRoT-2b (Rp =
1.466RJ) which transits the stellar disk every ∼1.74 days
(Alonso et al. 2008). The planetary transit LCs observed with
the CoRoT satellite (Baglin et al. 2006) show both deformations
with respect to the unperturbed transit profile and changes in the
transit depth. These features have been attributed to the ubiq-
uitous presence of photospheric dark spots (Lanza et al. 2009;
Silva-Valio et al. 2010; Silva-Valio & Lanza 2011; Bruno et al.
2016).

Wolter et al. (2009) analyze the most prominent transit
anomaly in the whole photometric monitoring of CoRoT-2,
found in the transit close to JD = 2 454 335.0, with the aim of
modeling the spot crossed by the planet. The authors claim
that the LC does not constrain the spot’s size, shape and con-
trast with respect to the photosphere. For this reason they limit
their models to circular spots or circle segments enclosed in the
transit chord. They also adopt two fixed values for the spot’s
contrast (i.e., its temperature), consistently with the analysis of
Lanza et al. (2009). The authors conclude that the spot is either
∼350 K cooler than the photosphere and is of the same size of the
planet, or it is ∼1200 K cooler and is as small as half the planet
size. They do not discuss the scenario of a large spot centered
out of the chord.

We analyzed the same transit LC as that discussed by
Wolter et al. (2009). We downloaded the latest reduction of the
data from the CoRoT archive, we extracted the time interval
around the analyzed transit, we kept the photometric points with
good quality as flagged by the reduction pipeline, and we nor-
malized the transit profile with a straight line fitting the LC right
before the ingress and after the egress of the planet. The final LC
is shown in the top panel of Fig. 7.

We fit the LC with TOSC assuming the parameters in Table 2
and using the photometric passband of CoRoT. We also adopt
the apparent planetary radius (see Sect. 3.3) Rp = 0.1617 R∗ as
obtained fitting the LC with JKTEBOP after masking out the
transit anomaly, in order to fit only the data points not affected
by the intersected spot. A posteriori, we find that the Lagrangian
multiplier selected by TOSC (λ = 1.08) does not give a smooth
reconstruction of the transit chord. This is likely to be an effect of
the photometric uncertainty of 1.5 mmag of the LC (Sect. 3.2).
We thus artificially set λ = 6.25 and find clear evidence of an
area ∼300 K cooler than the photosphere slightly after the mid
transit and extending over '0.3 R∗ in the projected plane.

As discussed in Sect. 3.3, we remark that TOSC does not
provide any information on the flux distribution inside each in-
dividual grid cell and that, as a consequence, it provides only an
average of the temperature contrast in each cell. Thus we can-
not exclude that the cells are only partly covered by the spot,
and that the spot’s temperature is lower than the one returned by
TOSC. Thus we conclude that the spot crossed by CoRoT-2b is
&300 K cooler than the photosphere, consistently with the results
of Wolter et al. (2009).

4.2. HAT-P-11

HAT-P-11 is a V = 9.6 K4 dwarf (Teff = 4780 K) in the
Kepler field (Borucki et al. 2010), orbited by a hot Neptune
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Fig. 7. Top panel: CoRoT-2 LC discussed in the text. The unperturbed
model and the transit fit are represented by the solid black line and the
solid green line respectively. Middle: residuals of the transit fit. Bottom:
the reconstructed transit chord with the uncertainty on the reconstruc-
tion shown in dashes.

Table 2. Parameters of the planetary system CoRoT-2 used in this paper.

Teff 5360 ± 120 K
Rp 0.1658 R∗
a 0.02798 AU
i 88.08◦
e 0.0143
ω 102◦
u1, u2 0.413, 0.293

Notes. All data are taken from Gillon et al. (2010).

every 4.9 days (Bakos et al. 2010). Béky et al. (2014b) aim at
analyzing the transits observed by the Kepler telescope. To this
purpose, they develop SPOTROD, a Monte Carlo algorithm which
models the transit anomalies assuming a number of circular pho-
tospheric spots. In particular, in their paper they show exten-
sively the results for the transits occurring at BJD = 2 454 967.6
and BJD = 2 455 671.4. In the first case, they find evidence of a
spot entirely lying under the transit chord located ∼0.31 R∗ ahead
the mid-transit, with radius '0.05 R∗ and spot-to-photosphere
flux ratio of '0.4. For the second transit, the authors find two de-
generate models for the crossed spot, both with radius '0.23 R∗
and flux ratio of ∼0.8. The two degenerate models are centered
off the transit chord, ∼0.4 R∗ after the mid-transit, and they ba-
sically differ by the fact that the two circular spots are centered
either above or below the chord. Based on the geometry of their
model, we derive that the length of the intersection between the
spot and the chord in the projected plane is 0.08 R∗ and 0.3 R∗ in
the two transits respectively.

For the sake of comparison, we ran TOSC on the same two
transit LCs discussed above, using Kepler’s passband. The pa-
rameters of the planetary system needed as input are listed in
Table 1. The apparent planetary radius obtained with JKTEBOP
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Fig. 8. As in Fig. 7 for the HAT-P-11 system discussed in the text. The left and right panels show the result for the transits occurring on
BJD = 2 454 967.6 and BJD = 2 455 671.4 respectively.

(see Sect. 3.3) is 0.06006 R∗ and 0.06063 R∗ for the two transits
respectively. The output of the algorithm is shown for both cases
in Fig. 8.

For the first transit TOSC optimizes λ = 0.34. The recon-
structed anomaly is centered at '−0.3 R∗ and is d ' 0.15 R∗
wide. The fit spot-to-photosphere temperature contrast is ∆T '
−900 K, which corresponds to a flux ratio of 0.53.

For the second transit TOSC returns λ = 0.89. The re-
constructed anomaly is centered at '0.4 R∗ and its width is
'0.3 R∗. The fit spot-to-photosphere temperature contrast is
∆T ' −350 K, which leads to a flux ratio of 0.8.

In both cases our results are thus generally consistent with
what is obtained using SPOTROD. Only for the first transit we
find some discrepancy in the spot-to-photosphere flux ratio. A
closer look at the best fit of the LC returned by TOSC reveals
that the algorithm systematically underestimates the observed
flux at the center of the transit anomaly by more than the pho-
tometric uncertainty. This is due to the smoothing of the best-
fit model introduced by the regularizing constraints in the al-
gorithm. As a matter of fact, the best fit returned by TOSC
follows more closely the data if we artificially reduce λ down
to 0.01. Correspondingly, the temperature contrast decreases to
∆T ' −1200 K, which corresponds to a flux ratio of ∼0.38, con-
sistent with the results of Béky et al. (2014b). Nonetheless, the
residuals show some degree of autocorrelation, introduced by
the inversion algorithm (see Sect. 3.2). The purpose of the auto-
matic optimization discussed in Sect. 2.3 is to find the smallest
Lagrangian multiplier which returns non autocorrelated resid-
uals. In this particular case, the best Lagrangian multiplier is
λ = 0.34. If, on the other hand, we artificially use large multipli-
ers, the best fit tend to be over-smoothed and, correspondingly,
the residuals get more autocorrelated as λ increases. In the left
panel of Fig. 9 we plot the best fit obtained with three different
values of λ, while in the right panel we plot the autocorrelation
of the residuals computed at different values of λ.

4.3. HAT-P-36

HAT-P-36 is a V = 12.5 G5 dwarf (Teff = 5620 K) or-
bited by a hot Jupiter (Rp = 1.3RJ) approximately every

Table 3. Parameters of the planetary system HAT-P-36 used in this
paper.

Teff 5620 ± 40 K
Rp 0.1243 R∗
a 0.02388 AU
i 85.86◦
e 0
u1, u2 0.24, 0.40

Notes. All data are taken from Mancini et al. (2015).

1.3 days (Bakos et al. 2012). In their detailed study of the sys-
tem, Mancini et al. (2015) analyzed the anomalies in the transit
LCs of the system. They find the most evident anomalies in the
transit LC in the Gunn r band, collected on April, 15th 2013
with the BFOSC imager mounted on the 1.52 m Cassini Tele-
scope at the Astronomical Observatory of Bologna in Loiano,
Italy. They use the GEMC+PRISM codes (Tregloan-Reed et al.
2013, 2015), which basically combines Monte Carlo and genetic
algorithms to simulate circular spots on the stellar surface. In
their analysis of the aforementioned LC, they find evidence of
two spots (one after the second contact and the other before the
third contact) with T ' 5000 K and radius '0.2 R∗. In particu-
lar, the planet disk does not enter completely into the spots or,
in other words, the spots do not completely cover the occulted
belt along the vertical direction. Given the geometrical model
used by the GEMC+PRISM algorithm, we derive that the length
of the intersection of the chord with each of the stellar spots is
.0.16 R∗ in the projected plane.

We analyzed the normalized LC provided by Mancini et al.
(2015), using TOSC with the parameters listed in Table 3. We
do not list the argument of periastron ω as it is meaningless
in case of circular orbits. We also used the apparent radius
Rp = 0.1273 R∗ obtained fitting the LC with JKTEBOP. The
output of the transit chord reconstruction, obtained with regu-
larization λ = 1.08, is shown in Fig. 10. We find that the two
spot-crossing events occur at the borders of the reconstructed
chord. Nonetheless, our fit suggests that the two sections of the
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Fig. 10. As in Fig. 7 for the transit LCs of the HAT-P-36 system dis-
cussed in the text.

projected transit chord intersected by the spots are &0.12 R∗,
while the temperature contrast is between ∆T = −100 K and
∆T = −200 K, consistently different from what Mancini et al.
(2015) found (∆T ' −600 K). This may be due to the fact that,
according to Mancini et al. (2015), the two spots do not inter-
sect the whole height of the occulted belt. As we discussed in
Sect. 3.3, when the grid cells are only partly covered by the spot,
the temperature returned by TOSC is an intermediate value be-
tween the Teff and the true temperature of the spot Ts. Let us
assume that the fit flux F is given by the weighted mean

F = (1 − α) F∗ + αFs, (15)

where α is the fraction of the grid cells covered by the spot, while
F∗ and Fs are the temperature of the quiet photosphere and the
spot respectively. After performing some algebra, we obtain

Fs

F∗
= 1 −

1 − F/F∗
α

, (16)

where Fs
F∗

is the spot-to-photosphere flux contrast and F
F∗
' 0.8

is the contrast corresponding to the ∆T ' 150 K returned by
TOSC. Following the scenario depicted by Mancini et al. (2015)
in their Fig. 8, if we assume α . 0.5 then we obtain Fs

F∗
. 0.6,

which corresponds to a temperature contrast of .−400 K, closer
to their result.

4.4. GJ1214

GJ1214 is a M4.5 red dwarf orbited by a super-Earth (Rp '

2.6 R⊕) every 1.58 days (Charbonneau et al. 2009). On May,17th
2012, Nascimbeni et al. (2015) observed a planetary transit si-
multaneously in the B and R photometric bands using the LBC
camera mounted at the double 8.4 m Large Binocular Telescope.
The photometric uncertainty of the observed LCs is .1 mmag.
Both transit LCs show a clear signature of the crossing of a
spot near the egress of the planet. Analyzing the shape (width
and height) of the transit anomaly in the two bands, the authors
conclude that the projected spot is as large as the planet, and is
∼110 K cooler than the photosphere.

Nascimbeni et al. (2015) also analyze the residuals with re-
spect to the best fit, dividing the LCs in three non overlap-
ping sections: the off-transit, the spot (corresponding to the
transit anomaly) and the in-transit (which does not include the
anomaly). They find no correlation between the B and R off-
transit residuals, which is indicative of the fact that no correlated
noise (due to e.g., instrumental or atmospheric effects) affects
the data. Conversely, in the transit anomaly the B and R resid-
uals show a clear correlation, as expected when a large spot is
occulted. Most interestingly, the same correlation is present in
the in-transit residuals, suggesting that the whole transit chord is
characterized by inhomogeneities.
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Fig. 11. As in Fig. 7 for the transit LCs of the GJ1214 system discussed in the text. The left panel shows the fit of the B band LC, obtained with
regularization parameter λ = 0.42. The right panel shows the fit of the R band LC, obtained with regularization parameter λ = 0.19.

Table 4. Parameters of the planetary system GJ1214 used in this paper.

Reference
Teff 3252 ± 20 K Anglada-Escudé et al. (2013)
Rp 0.1161 R∗ Carter et al. (2011)
a 14.97 R∗ Bean et al. (2010)
i 88.94◦ Bean et al. (2010)
e 0 Carter et al. (2011)
u1,B, u2,B 0.5259, 0.3296 Nascimbeni et al. (2015)
u1,R, u2,R 0.4326, 0.3323 Nascimbeni et al. (2015)

We have used TOSC to analyze in further detail the same B
and R LCs discussed above. In Table 4 we list the parameters
injected in the algorithm. As in Sect. 4.3, we do not list the
argument of periastron ω as it is meaningless in case of circu-
lar orbits. We also use the apparent planetary radius derived by
Nascimbeni et al. (2015), that is 0.1186 R∗ and 0.1178 R∗ in the
B and R bands respectively. The output of the reconstruction is
shown in Fig. 11. Unfortunately, the spot-crossing event occurs
too close to the egress and TOSC is not able to entirely model
it. Nonetheless, both reconstructed transit chords clearly show a
photospheric spot .80 K cooler than the photosphere near the
egress.

The transit LCs also show that after the mid-transit and be-
fore the anomaly the transit depth increases by ∼0.2% in the
B band and ∼0.1% in the R band. This suggests that the part of
the stellar disk occulted by the planet after mid-transit is brighter
than the average stellar disk. Accordingly, the temperature con-
trast returned by TOSC suggests that the second half of the tran-
sit chord is hotter by ∼50 K than the quiet photosphere. The
increase in brightness may be due to a large group of photo-
spheric faculae, extending for ∼0.5 R∗ and neighboring the spot
detected near the stellar limb. This scenario is consistent with
the solar case, where spots are often accompanied by faculae
(Wiegelmann et al. 2014). Moreover, we remark that the bright-
ening effect seems to increase approaching the stellar limb, as
indicated by Foukal et al. (1991), Solanki et al. (2006), and that
it is more pronounced in the B band than in the R band, con-
sistently with the fact that the facular contrast increases toward

shorter wavelengths (Chapman & McGuire 1977; Ermolli et al.
2007).

We remark that TOSC is only suited for modeling cold spots
on the stellar surface, that is, it is not capable to model warm
regions such as faculae or plages, for which a proper spectrum
should be taken into account. Even though the numerical value of
the temperature contrast is unreliable, still the best fit of the LCs
clearly indicates an extended warm section of the transit chord,
consistently between the B and R data sets. The presence of
this region supports the hypothesis of Nascimbeni et al. (2015),
which postulated the presence of additional inhomogeneities on
the stellar surface to explain the correlated noise in the in-transit
residuals. The presence of faculae in the photosphere of GJ1214
has also been recently postulated by Rackham et al. (2017).

Another interpretation of the analyzed transit LC is that cool
spots are ubiquitous along the transit chord. In this scenario, even
masking out the most evident transit anomaly, the lower enve-
lope of the LC is shallower than the LC expected in the case of a
quiet transit chord, that is, the apparent planetary radius is under-
estimated (see Sect. 3.3). If we arbitrarily increase the apparent
Rp used to reconstruct the transit chord by 5%, then the ∆T is
smaller (i.e., the transit chord is cooler) by ∼20 K, i.e., there are
no faculae in the transit chord and the temperature contrast is of
the order of ∼−100 K, as found by Nascimbeni et al. (2015).

5. Conclusions

In this paper we present TOSC, a new fast algorithm which an-
alyzes the anomalies in the transit LCs with the aim of recon-
structing the flux distribution, and the temperature profile, of the
transit chord. The only inputs needed by the code are the param-
eters of the planetary system, the LD coefficients and the model
spectrum for unspotted and spotted photosphere. The presence of
unocculted spots, not reconstructed by TOSC, can be accounted
for using the apparent radius of the planet in place of the true
radius.

We test the performances of TOSC using simulated transits.
We show that TOSC is generally able to reconstruct the crossed
spots for a photometric accuracy better than 1 mmag, and that the
temperature contrast is returned with an uncertainty of .100 K.
We also test TOSC with real transits available in literature which
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have been already analyzed with alternative codes. These com-
parisons show that TOSC is consistent with previous approaches,
even in the case of more sophisticated algorithms.

TOSC is available as a web interface3, where the user can run
the algorithm feeding a few input files and retrieving the output.
The web page contains also extensive instructions and some ex-
ample data. The source code is also available for download.
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