<table>
<thead>
<tr>
<th>Publication Year</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptance in OA@INAF</td>
<td>2020-08-27T15:38:23Z</td>
</tr>
<tr>
<td>Title</td>
<td>Optical photometry and spectroscopy of the low-luminosity, broad-lined Ic supernova iPTF15dld</td>
</tr>
<tr>
<td>Authors</td>
<td>PIAN, Elena; TOMASELLA, Lina; CAPPELLARO, Enrico; BENETTI, Stefano; Mazzali, P. A.; et al.</td>
</tr>
<tr>
<td>DOI</td>
<td>10.1093/mnras/stw3247</td>
</tr>
<tr>
<td>Handle</td>
<td>http://hdl.handle.net/20.500.12386/26904</td>
</tr>
<tr>
<td>Journal</td>
<td>MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY</td>
</tr>
<tr>
<td>Number</td>
<td>466</td>
</tr>
</tbody>
</table>
Optical photometry and spectroscopy of the low-luminosity, broad-lined Ic supernova iPTF15dld

E. Pian,1,2* L. Tomasella,3 E. Cappellaro,3 S. Benetti,3 P. A. Mazzali,4,5 C. Baltay,6 M. Branchesi,7,8 E. Brocato,9 S. Campana,10 C. Copperwheat,4 S. Covino,10 P. D’Avanzo,10 N. Ellman,6 A. Grado,11 A. Melandri,10 E. Palazzi,1 A. Piascik,4 S. Piranomonte,9 D. Rabinowitz,6 G. Raimondo,12 S. J. Smartt,13 I. A. Steele,4 M. Stritzinger,14 S. Yang,3 S. Ascenzi,9 M. Della Valle,11,15 A. Gal-Yam,16 F. Getman,11 G. Greco,7,8 C. Inserra,13 E. Kankare,13 L. Limatola,11 L. Nicastro,1 A. Pastorello,3 L. Pulone,9 A. Stamerra,2,17 L. Stella,9 G. Stratta,7,8 L. Tartaglia3 and M. Turatto3,18

1INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, Via Gobetti 101, I-40129 Bologna, Italy
2Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
3INAF, Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy
4Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, UK
5Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany
6Physics Department, Yale University, PO Box 208120, New Haven, CT 06520, USA
7Università degli Studi di Urbino ‘Carlo Bo’, Dipartimento di Scienze Pure e Applicate, Piazza della Repubblica 13, I-61029 Urbino, Italy
8INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy
9INAF, Osservatorio Astronomico di Roma, Via di Frascati, 33, I-00040 Monteporzio Catone, Italy
10INAF, Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807 Merate (LC), Italy
11INAF, Osservatorio Astronomico di Capodimonte, salita Moiariello 16, I-80131, Napoli, Italy
12INAF, Osservatorio Astronomico di Teramo, Via M. Maggini s.n.c., I-64100 Teramo, Italy
13Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, UK
14Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
15International Center for Relativistic Astrophysics, Piazza delle Repubblica, 10, I-65122 Pescara, Italy
16Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100, Israel
17INAF, Osservatorio Astronomico di Torino, Via Osservatorio 30, I-10125 Torino, Italy
18Physics & Astronomy Department, Texas Tech University, Lubbock, TX 79409, USA

Accepted 2016 December 9. Received 2016 December 8; in original form 2016 October 29

ABSTRACT

Core-collapse stripped-envelope supernova (SN) explosions reflect the diversity of physical parameters and evolutionary paths of their massive star progenitors. We have observed the Type Ic SN iPTF15dld (z = 0.047), reported by the Palomar Transient Factory. Spectra were taken starting 20 rest-frame days after maximum luminosity and are affected by a young stellar population background. Broad spectral absorption lines associated with the SN are detected over the continuum, similar to those measured for broad-lined, highly energetic SNe Ic. The light curve and maximum luminosity are instead more similar to those of low luminosity, narrow-lined Ic SNe. This suggests a behaviour whereby certain highly stripped-envelope SNe do not produce a large amount of 56Ni, but the explosion is sufficiently energetic that a large fraction of the ejecta is accelerated to higher than usual velocities. We estimate SN iPTF15dld had a main-sequence progenitor of 20–25 M⊙, produced a 56Ni mass of ~0.1–0.2 M⊙, had an ejecta mass of [2–10] M⊙, and a kinetic energy of [1–18] × 1051 erg.

Key words: stars: massive – supernovae: individual: iPTF15dld (LSQ15bfp, PS15clr) – galaxies: starburst.

* E-mail: elena.pian@sns.it

© 2016 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society
1 INTRODUCTION

Stripped-envelope supernovae (SNe), i.e. core-collapse SNe that have lost their hydrogen envelope, and retained (Type Ib) or lost (Type Ic) their helium envelope, are the progeny of massive stars (Nomoto & Hashimoto 1988; Heger et al. 2003). Their light curves (Brown et al. 2009; Drout et al. 2011; Li et al. 2011; Bianco et al. 2014; Pritchard et al. 2014; Taddia et al. 2015; Lyman et al. 2016; Prentice et al. 2016) and spectra (Filippenko 1997; Matheson et al. 2001; Modjaz et al. 2014, 2016) display significant diversity, owing to the many different parameters of the exploding stellar cores (masses, rotation rates, metallicity, multiplicity), and possibly to the different degree of asphericity of the explosion (Wheeler et al. 2000).

Type Ic SNe characterized by broad absorption lines or high photospheric velocities (∼15 000–20 000 km s⁻¹ at maximum luminosity), and hence high kinetic energies (∼10⁵² erg), accompany the majority of long-duration gamma-ray bursts (GRBs; Woosley et al. 2006) for a description of the current Pan-STARRS surveys). The Pan-STARRS reference images show a very blue starburst region that is superimposed on a larger spiral galaxy. Corsi et al. (2016), who reported early optical photometry and a spectrum on 2015 November 7, detected no significant X-ray or radio emission for this SN (see also Evans et al. 2015, 2016).

Here, we present the Swift/UVOT and ground-based optical observations of the SN, including those preliminarily reported in Tomasella et al. (2015b) and Steele, Copperwheat & Piascik (2015), and additional spectra acquired within the PESSTO program (Smartt et al. 2015). We adopt 2015 October 3 as the date of explosion, with an uncertainty of 1 d.

2 OBSERVATIONS AND DATA ANALYSIS

Optical photometry and spectroscopy of the SN were acquired at the 1.82 m Copernico telescope at Cima Ekar (Asiago, Italy), at the Telescopio Nazionale Galileo (TNG), Nordic Optical Telescope (NOT) and Liverpool Telescope (LT; Steele et al. 2004) at the Canary Islands (Spain), at the ESO NTT and 1 m Schmidt telescope as part of the PESSTO (Public ESO Spectroscopic Survey for Transient Objects) and LSQ surveys, respectively. UV photometry was taken with the UVOT instrument onboard the Swift satellite. The logs of optical photometric and spectroscopic observations are reported in Tables 1 and 2, respectively. The exposure times were typically 5–10 min for the photometry and 20–40 min for spectroscopy. These data were reduced following standard tasks within the IRAF² reduction package.

2.1 Photometry

The r-band image of the SN field obtained at the Copernico telescope is presented in Fig. 1. The SN exploded in the outskirts of a spiral galaxy, in a starburst region that is marginally resolved both in our and in the SDSS images (∼2.5 arcsec angular size) and contaminates dramatically the measurements of the SN in the bluer bands (see Section 3.1).

Given the complex background, the SN magnitudes were measured via template subtraction. For this purpose, we used the SNOOPY package³ developed by one of us (EC); this is a collection of PYTHON scripts based on publicly available tools. In particular, for template subtraction we used the ‘HOTPACKS package.⁴ For the LSQ observations, we used images of the field taken by the LSQ in 2012 as subtraction templates; while for the ugric photometry we used SDSS images, which provide a solid estimate of the pre-explosion background. SN magnitudes in the template-subtracted images were measured by point spread function (PSF) fitting. We found that PSF fitting is less sensitive to background fluctuations compared with

¹ http://star.pst.qub.ac.uk/ps1threepi/
² IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation.
⁴ http://www.astro.washington.edu/users/becker/v2.0/hotpants.html
standard aperture photometry. The LSQ images are unfiltered, but close to the r filter, therefore the magnitudes resulting from the photometry were converted to this band using a calibrating sequence of field stars.

Starting on 2015 November 6.97\,UT and ending on 2015 November 7.43\,UT, the Swift satellite observed the target (see observing log in Table 3). The UVOT camera measurements in the optical and UV were reduced according to Brown et al. (2015) and calibrated following Poole et al. (2008) and Breeveld et al. (2010). Aperture photometry with a radius of 5 arcsec with background estimated from a nearby sky area yielded the magnitudes reported in Table 3.

Table 3. Ground-based spectroscopy of iPTF15dld.

<table>
<thead>
<tr>
<th>MJD</th>
<th>UT</th>
<th>Phase</th>
<th>Telescope</th>
<th>Instrument</th>
<th>grism</th>
</tr>
</thead>
<tbody>
<tr>
<td>57330</td>
<td>2015 Nov 4</td>
<td>19.1</td>
<td>1.82m</td>
<td>AFOSC</td>
<td>gm4</td>
</tr>
<tr>
<td>57332</td>
<td>2015 Nov 6</td>
<td>21.0</td>
<td>LT</td>
<td>SPRAT</td>
<td>Red</td>
</tr>
<tr>
<td>57332</td>
<td>2015 Nov 7</td>
<td>22.0</td>
<td>NTT</td>
<td>EFOSC2</td>
<td>gr13</td>
</tr>
<tr>
<td>57342</td>
<td>2015 Nov 16</td>
<td>30.6</td>
<td>1.82m</td>
<td>AFOSC</td>
<td>gm4</td>
</tr>
<tr>
<td>57344</td>
<td>2015 Nov 18</td>
<td>32.5</td>
<td>1.82m</td>
<td>AFOSC</td>
<td>gm4</td>
</tr>
<tr>
<td>57360</td>
<td>2015 Dec 4</td>
<td>47.8</td>
<td>LT</td>
<td>SPRAT</td>
<td>Red</td>
</tr>
<tr>
<td>57373</td>
<td>2015 Dec 17</td>
<td>60.2</td>
<td>LT</td>
<td>SPRAT</td>
<td>Red</td>
</tr>
</tbody>
</table>

Note. *Phase is given in days with respect to light-curve maximum and in rest frame.

Results

3.1 Host galaxy

The SN is hosted by a compact starburst galaxy/region that, in turn, appears projected over the disc of a spiral galaxy. The narrow emission lines we detected in our spectra (see Section 3.3) indicate that the two objects, starburst and spiral galaxy, are located at the same redshift, although we cannot assess whether they form a unique structure or a galaxy pair. The starburst nucleus is a luminous UV source that was detected by GALEX on 2008 October 8 (GALEX source J005813.0−002300) with AB magnitudes FUV = 18.89, and NUV = 18.38, (Kron aperture; note that the NUV band, ~2300 Å, is similar to the umw2 band of Swift/UVOT).

The SDSS magnitudes of the starburst region at the location of the SN are reported in Table 4. Note that the half-magnitude offset in the measurements obtained with different photometric apertures does not affect significantly the colours. The u-band magnitude obtained with the 5 arcsec radius aperture, $u = 19.1$ mag, is consistent with the AB magnitude measured by UVOT in the U band (Table 3). This and the lack of UV flux variability suggest that the source detected by UVOT is dominated by the emission of the starburst region, so that the UV emission of the SN is undetectable. At a distance of 200 Mpc, the starburst component has an absolute magnitude in the g band of $−18.5$ mag, which places it at the bright end of the blue compact dwarf luminosity function (Tolstoy, Hil & Tosi 2009).

Fig. 2 shows a stellar population synthesis model to estimate the age of the stellar population in the vicinity of the SN from the observed colours (Brocato et al. 2000; Raimondo 2009). The model assumes solar metallicity and ages comprised between 1 and 500 Myr. By correcting the starburst colours – adopting the circumstellar Large Magellanic Cloud extinction law of Goobar
Figure 1. Images of the field of iPTF15dld in the r band (exposure time of 120 s) taken on 2015 November 4 with the 1.82 m Copernico telescope (larger panel on the left and enlargement centred on the host galaxy on the top-right smaller panel) and from the SDSS prior to explosion (smaller bottom-right panel, covering the same area as the small top-right panel).

Table 3. Swift/UVOT observations of the region of iPTF15dld on 2015 November 6–7.

<table>
<thead>
<tr>
<th>Filter</th>
<th>Exptime (s)</th>
<th>Vega magb</th>
<th>AB magb</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>508.36</td>
<td>17.82 ± 0.08 (stat) ± 0.01 (sys)</td>
<td>17.81 ± 0.08 (stat) ± 0.01 (sys)</td>
</tr>
<tr>
<td>b</td>
<td>706.64</td>
<td>18.24 ± 0.05 (stat) ± 0.02 (sys)</td>
<td>18.12 ± 0.05 (stat) ± 0.02 (sys)</td>
</tr>
<tr>
<td>u</td>
<td>706.65</td>
<td>17.72 ± 0.05 (stat) ± 0.02 (sys)</td>
<td>18.74 ± 0.05 (stat) ± 0.02 (sys)</td>
</tr>
<tr>
<td>$uvw1$</td>
<td>1415.24</td>
<td>17.55 ± 0.04 (stat) ± 0.03 (sys)</td>
<td>19.08 ± 0.04 (stat) ± 0.03 (sys)</td>
</tr>
<tr>
<td>$uvw2$</td>
<td>2576.14</td>
<td>17.51 ± 0.03 (stat) ± 0.03 (sys)</td>
<td>19.10 ± 0.03 (stat) ± 0.03 (sys)</td>
</tr>
</tbody>
</table>

Notes. aNote that these measurements refer entirely to the emission of the starburst region underlying the SN, while the SN itself is undetected at these wavelengths.

bNot corrected for Galactic extinction.

Table 4. Magnitudesa of the starburst region.

<table>
<thead>
<tr>
<th>Filtera</th>
<th>5 arcsec radius</th>
<th>3 arcsec radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>19.09</td>
<td>19.60</td>
</tr>
<tr>
<td>g</td>
<td>18.03</td>
<td>18.59</td>
</tr>
<tr>
<td>r</td>
<td>17.77</td>
<td>18.43</td>
</tr>
<tr>
<td>i</td>
<td>17.50</td>
<td>18.26</td>
</tr>
<tr>
<td>z</td>
<td>17.46</td>
<td>18.22</td>
</tr>
</tbody>
</table>

Note. aIn the SDSS system, not corrected for Galactic extinction.

(2008) as in Brown et al. (2010) – for moderate values of intrinsic extinction (from null to $E(B - V) = 0.35$, i.e. somewhat higher than the maximum intrinsic extinction of the assumed star-forming galaxy template, $E(B - V) = 0.21$), in addition to the Galactic one ($E(B - V) = 0.027$), we obtain the intrinsic colours reported in Fig. 2 as filled blue squares. The colour resulting from maximum correction is consistent with a population age of 10 Myr, which corresponds to the evolution time of a 20 M$_\odot$ star. The use of an extinction curve more suitable for hot stars (Siegel et al. 2014) leads to a similar conclusion.
of well-monitored SNe Ic close to maximum luminosity (Richmond et al. 1996; Galama et al. 1998; Patat et al. 2001; Foley et al. 2003; Ferrero et al. 2006; Taubenberger et al. 2006; Valentí et al. 2008a,b; Hunter et al. 2009), and possibly bluer at later times, likely owing to significant background still affecting the weaker r-band flux. No detection of iPTF15dld was obtained with the ugz filters in individual exposures. The magnitudes from the co-added exposures in these filters are consistent with the SDSS measurements.

The r- and i-band light curves of iPTF15dld were compared with those of SN 2007gr, a type Ic SN of ‘classical’ spectral appearance, i.e. with no broad absorption lines (Valenti et al. 2008b; Hunter et al. 2009). At z = 0.047, the central wavelengths of the r- and i-band filters correspond to 5980 and 7328 Å, respectively. From the VRI light curves of SN 2007gr we have constructed template light curves at those two reference wavelengths and reported them in Fig. 3, after brightening the template at 5980 Å by 0.7 mag. With the exception of the first i-band point, which is significantly brighter, the match with the templates is generally satisfactory, and it indicates that iPTF15dld is a factor of ~2 brighter at ~6000 Å and therefore bluer than SN 2007gr in the 6000–8000 Å range.

Although the available photometry (r and i bands only) is not sufficient to construct a proper pseudo-bolometric light curve, the total spectral flux is a rough proxy of the bolometric behaviour. For each spectrum, we integrated the flux calibrated, dereddened spectral signal in the rest frame, approximately corresponding to the range 3800–7800 Å (see Fig. 5) and obtained a bolometric light curve that is similar in shape to those of the faintest stripped-envelope SNe that were monitored long enough to allow a comparison with iPTF15dld (SNe 1994I, 2002ap) and in particular to that of SN 2007gr (see Hunter et al. 2009). Since our pseudo-bolometric estimate does not include the near-UV and near-infrared contributions, we have estimated this using other SNe Ic that have good photometric coverage in these bands simultaneous with the optical. At epochs
Optical observations of supernova iPTF15dld

Figure 4. Pseudo-bolometric (UVOIR) light curves of stripped-envelope SNe. The curve of iPTF15dld was obtained by integrating the spectral flux in its rest frame (filled red points). Since this covers a limited wavelength range (\(~3800–7800\ \text{Å}\), it is likely a lower limit (LL) on the UVOIR light curve, and a correction of a factor of 2 was applied to take into account the flux in a broader range (3300–24000 Å), based on the ratio of broad-band optical and near-infrared fluxes in SNe 1998bw, 2004aw, 2007gr. These corrected pseudo-bolometric luminosities, that can be considered an upper limit (UL) on the UVOIR light curve, are reported as open red circles. The errors on the iPTF15dld luminosities are estimated to be \(~20\ \text{per cent}\). For clarity, the errors on the bolometric luminosities of all other SNe were omitted (the data for these are from Iwamoto et al. 2000; Ferrero et al. 2006; Hunter et al. 2009, and references therein; the data of SN 1997ef were corrected for the different value of the Hubble constant adopted here). The purple curve represents the bolometric light curve of SN 2007gr brightened by 0.75 mag.

3.3 Spectra

The two spectra taken at the 1.82 m Copernico telescope on 2015 November 16 and 18 were averaged, owing to their closeness in time and similarity, and so were the two spectra acquired at the LT with SPRAT on 2015 December 17 and 18. Six final spectra, corrected for Galactic extinction and redshift, are reported in Fig. 5. The SPRAT spectrum of November 6 was not shown because it is very close in time to the TNG spectrum and of lower signal-to-noise ratio. The starburst dominates the spectral emission with a blue continuum and narrow emission lines. However, when its contribution is removed (see Section 2.2), the broad lines typical of SNe Ic become visible in the visual/red spectral regions. Neither hydrogen nor helium absorption lines are seen, indicating a high degree of envelope stripping and leading to Type Ic classification of the SN. The narrow emission lines from the underlying starburst region were removed.

In search of a close spectral analogue of iPTF15dld, we compared its spectra with those of eight Type Ic SNe, both broad- and narrow-lined (SN 1994I, Filippenko et al. 1995; Richmond et al. 1996; Millard et al. 1999; SN 1997ef, Iwamoto et al. 2000; Mazzali et al. 2000; SN 1998bw, Patat et al. 2001; SN 2004aw, Taubenberger et al. 2006; SN 2007gr, Hunter et al. 2009). Even taking this into account, iPTF15dld is still less luminous than the average of stripped-envelope SNe (Fig. 4).

Comparable to those of the iPTF15dld photometry, the near-UV and near-infrared fluxes of type SNe Ic combined represent about 40–50 per cent of the total flux in 3000–24000 Å (e.g. SN 1998bw, Patat et al. 2001; SN 2004aw, Taubenberger et al. 2006; SN 2007gr, Hunter et al. 2009). Even taking this into account, iPTF15dld is still less luminous than the average of stripped-envelope SNe (Fig. 4).
not compare well with iPTF15dld because their spectra have significantly broader absorption lines (although in the case of SN2006aj, only one spectrum overlaps in phase). On the other hand, the classical SNe 1994I and 2007gr represent an equally unsatisfactory match because they have narrower lines than our target. The first four spectra of iPTF15dld are more similar to those of SNe 1997ef, 2002ap, 2003jd and 2004aw, that are broad-lined Ic SNe with no accompanying GRB (see also Corsi et al. 2016). These have kinetic energies higher than seen on average in SNe Ic, although they are neither as massive nor as luminous as GRB SNe. The last spectra (2015 December) resemble both broad- and narrow-lined Ic SN spectra, presumably because they are more noisy and at those epochs (~50–60 rest-frame days after maximum), the photospheric velocities have significantly decreased also in broad-lined SNe. In Figs 6 and 7, we show two examples of spectral comparison.

While the signal-to-noise ratio of the spectra and the partial blending of absorption lines, due to their width, makes it difficult to isolate the chemical species and measure their associated velocities, the similarity with broad-lined SNe suggests higher than normal photospheric velocities.

4 DISCUSSION

The light curve of iPTF15dld resembles that of normal, narrow-lined Type Ic SNe, with SN 2007gr (Hunter et al. 2009) providing an excellent match (Fig. 3). However, the photospheric absorption lines are broad, so this is classified as a broad-lined Ic SN, rather similar to well-monitored broad-lined SNe Ic at comparable epochs after light maximum (SNe 1997ef, 2002ap, 2003jd, 2004aw). Since spectra were taken only starting 20 d after maximum, we cannot make an assessment of the photospheric velocity before and around maximum; similarly, the photometric information does not allow us to construct a pseudo-bolometric light curve covering the epoch of maximum luminosity. As a consequence, our estimates of the physical parameters are only approximated.

In the absence of synthetic light curve and spectra based on a detailed radiative transfer model obtained from observed quantities, the basic SN physical parameters can be derived by rescaling those of other well-studied SNe using the fundamental relationships of Arnett (1982), as done for instance in Corsi et al. (2012), Mazzali et al. (2013), Walker et al. (2014) and D’Elia et al. (2015). However, iPTF15dld lacks an estimate of both its light curve width, τ, and its photospheric velocity at maximum luminosity, v_p. Therefore, our estimate of its kinetic energy and ejecta mass can only be based on an average of these parameters for the five SNe that provide the best light curve and spectral match (see Section 3.3).

Hunt et al. 2009), we derive ranges of \([1–18] \times 10^{51} \text{ erg} \) and \([2–10] \text{ M}_\odot \) for the kinetic energy and ejecta mass of iPTF15dld, respectively. Since the shape and luminosity of the bolometric light curve suggest that iPTF15dld could have been similar to SN 2007gr or up to a factor of 2 more luminous at peak, we accordingly estimate that the mass of radioactive \(^{56}\text{Ni} \) synthesized in the explosion may be in the interval \([0.08–0.2] \text{ M}_\odot \). These values are consistent with a progenitor of main-sequence mass of the order of \(\sim 20–25 \text{ M}_\odot \). A dedicated accurate model is not completely justified by the limited quality of these data.

Broad-lined Ic SNe of modest luminosity are a rather uncommon and poorly known class, and have started to be detected in larger numbers thanks to dedicated surveys. As GRB SNe that are significantly more massive and luminous, they may be partially powered by an inner engine, i.e. an unusual type of remnant, like a magnetar or a black hole. The prototype of this sub-class is SN 2002ap (Mazzali et al. 2002) for which evidence had been found of a small fraction of ejected material accelerated to velocities larger than \(30,000 \text{ km s}^{-1} \). Since these objects have low ejecta mass (their synthesized \(^{56}\text{Ni} \) mass is small), the total kinetic energy is also not extremely large \((\sim 10^{51} \text{ erg})\), but the high photospheric velocities suggest a powerful engine. Whether these are the progenitors of GRBs that are misaligned with respect to the line of sight and therefore go undetected, or they represent a population of intermediate properties between classical, narrow-lined SNe Ic and GRB SNe, is matter of controversy (Mazzali et al. 2005; Maeda et al. 2008; Soderberg et al. 2010; Pignata et al. 2011). Clarification of this issue (e.g. through late-epoch radio observations; van Eerten & MacFadyen 2011) may lead to a simplification of the apparent diversity of stripped-envelope SNe. We note that the opposite, i.e. low photospheric velocities in highly luminous SNe are never observed (e.g. Mazzali et al. 2013).

The case of iPTF15dld shows how optical surveys that cover large areas of the sky with good cadence using classical facilities can improve dramatically the study of a broad range of transients. Early detection and decent monitoring of objects with a variety of properties will fill gaps present in the current information and unify seemingly different phenomena.

ACKNOWLEDGEMENTS

We acknowledge data from the Pan-STARRS1 telescope that is supported by NASA under grant no. NNX12AR65G and grant no. NNX14AM74G issued through the NEO Observation Program. We acknowledge funding from ASI INAF grant I/088/06/0, from the Italian Ministry of Education and Research and the Scuola Normale Superiore, and from INAF project: ‘Gravitational Wave Astronomy with the first detections of aLIGO and aVIRGO experiments’ (PI: E. Bricato). GR is partially supported by the PRIN INAF-2014 ‘EXCALIBURS: EXtragalactic distance scale CALIBration Using first-Rank Standard candles’ (PI: G. Clementini). L. Tomasella, EC and SB are partially supported by the PRIN-INAF 2014 project ‘Transient Universe: unveiling new types of stellar explosions with PESSTO’. MS gratefully acknowledges generous support provided by the Danish Agency for Science and Technology and Innovation realized through a Sapere Aude Level 2 grant. MB, GG and GS acknowledge financial support from the Italian Ministry of Education, University and Research (MIUR) through grant FIRB 2012 RBFR12PM1F. We thank the staff of the Copernico telescope, LT, NTT, TNG, NOT and LSQ, in particular W. Boschin, D. Carosati, S. Dalle Ave, L. Di Fabrizio, A. Fiorenzano, P. ochner, T. Purisimo and T. Reynolds. We are grateful to S. Valenti for sending archival supernova data in digital form, P. Nugent for his support of this project, L. Singer for his critical reading of the manuscript and to our referee for constructive suggestions. This research is based on observations made with the Copernico telescope (Asiago, Italy) of INAF - Osservatorio Astronomico di Padova; with the NTT at the European Organization for Astronomical Research in the Southern hemisphere, Chile, as part of the Public ESO Spectroscopic Survey for Transient Objects Survey (PESSTO) ESO programmes 188.D-3003, 191.D-0935; with the Telescopio Nazionale Galileo, operated by the Fundación Galileo Galilei of INAF, with the Liverpool Telescope, operated by Liverpool John Moores University with financial support from the UK Science and Technology Facilities Council, and with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231.

REFERENCES

Baity C. et al., 2013, PASP, 125, 683
Benetti S. et al., 2015, GCN Circ., 18563
Brown P. J. et al., 2009, AJ, 137, 4517
Campana S. et al., 2006, Nature, 442, 1008
Evans P. A. et al., 2015, GCN Circ., 18569
Huber M. et al., 2015, Astron. Telegram, 7153
Kulkarni S. R., 2013, Astron. Telegram, 4807, 1
Law N. M. et al., 2009, PASP, 121, 1395
This paper has been typeset from a \TeX/\LaTeX file prepared by the author.