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Abstract

We present monitoring campaign observations at optical and near-infrared (NIR) wavelengths

for a radio-loud active galactic nucleus (AGN) at z=0.840, SDSS J110006.07+442144.3 (here-

after, J1100+4421), which was identified during a flare phase in late February, 2014. The cam-

paigns consist of three intensive observing runs from the discovery to March, 2015, mostly

within the scheme of the OISTER collaboration. Optical-NIR light curves and simultaneous

spectral energy distributions (SEDs) are obtained. Our measurements show the strongest

brightening in March, 2015. We found that the optical-NIR SEDs of J1100+4421 show an al-

most steady shape despite the large and rapid intranight variability. This constant SED shape

is confirmed to extend to ∼ 5 µm in the observed frame using the archival WISE data. Given

the lack of absorption lines and the steep power-law spectrum of αν ∼ −1.4, where fν ∝ ναν ,

synchrotron radiation by a relativistic jet with no or small contributions from the host galaxy and

the accretion disk seems most plausible as an optical-NIR emission mechanism. The steep

optical-NIR spectral shape and the large amplitude of variability are consistent with this object

being a low νpeak jet-dominated AGN. In addition, sub-arcsec resolution optical imaging data

taken with Subaru Hyper Suprime-Cam does not show a clear extended component and the

spatial scales are significantly smaller than the large extensions detected at radio wavelengths.

The optical spectrum of a possible faint companion galaxy does not show any emission lines at

the same redshift and hence a merging hypothesis for this AGN-related activity is not supported

by our observations.

Key words: relativistic processes — accretion, accretion disks — quasars: supermassive black holes —

quasars: individual (SDSS J110006.07+442144.3)

1 Introduction

Since the detection of γ-ray emission from narrow-line Seyfert

1 galaxies (NLS1s; Abdo et al. 2009a), which are one of the

low-mass populations of active galactic nuclei (AGN), the na-

ture of systems with relativistic jets but lower masses than

blazars and radio galaxies has attracted much attention from

researchers in fields such as AGN, relativistic phenomena, and

galaxies. These γ-ray-loud NLS1s have in general smaller black

hole (BH) masses of MBH ∼ 106−8 M⊙ (Abdo et al. 2009a) for

the first four γ-ray-loud NLS1s than blazars with larger BHs

of < MBH >= 2.8× 108 M⊙(Pian et al. 2005), even though

such strong jet activities are thought to be generally associated

with massive systems. Multi-wavelength observational studies

on these populations, including γ-ray (Abdo et al. 2009b), X-

ray, high-resolution radio VLBI (Doi et al. 2012), provide clues

to the relationship between the central engines and jet forma-

tion mechanisms, AGN triggering mechanisms, and possibly

BH growth (from lower to higher masses in quasars and ellip-

tical galaxies). However, these observational studies have been

done for a limited number of objects while statistical studies on

NLS1s were recently done in several papers (e.g., Foschini et al.

2015).

The rapid optical flare of the extragalactic object

SDSS J110006.07+442144.3 (J1100+4421, hereafter) was ini-

tially recognized on February 23, 2014 (Tanaka et al. 2014),

during the 1-hour-cadence Kiso Supernova Survey (KISS;

Morokuma et al. 2014), which utilizes the 105-cm Kiso Schmidt

telescope and its optical wide-field imager, the Kiso Wide Field

Camera (KWFC; Sako et al. 2012). Quick imaging and spectro-

scopic follow-up observations with the Faint Object Camera and

Spectrograph (FOCAS; Kashikawa et al. 2002) on the Subaru

8.2-m telescope right after the flare detection indicated that the

object was a narrow-line AGN at z = 0.840 with a small BH

mass of MBH = 1.0− 1.5× 107 M⊙ and a sub-Eddington ra-

tio of Lbol/LEdd ∼ 0.3 (Tanaka et al. 2014). By combining

these optical data with archival radio, infrared (WISE), γ-ray

(Fermi) data and X-ray data taken via a ToO observation with

X-ray Telescope (XRT) on board the Swift satellite, Tanaka

et al. (2014) revealed the similarity of this object’s SED to those

of the radio/γ-ray-loud NLS1s, although the large [O III]/Hβ
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flux ratio does not satisfy the general criteria for NLS1s. Flux

ratio between the [O III] emission lines and radio emission is

also consistent with those of radio-loud NLS1s (Berton et al.

2016).

To examine the origins of the emission mechanisms and

variability of J1100+4421, we carried out intensive monitor-

ing observations under the auspices of the global telescope

network known as Optical and Infrared Synergetic Telescopes

for Education and Research (OISTER1; Sekiguchi et al. 2017).

OISTER is one of the best observational organizations to

achieve continuous, long-term monitoring observations in op-

tical and near-infrared wavelengths for relatively bright objects

because of its multi-site observing facilities.

In this paper, we describe our imaging monitoring obser-

vations and additional spectroscopic observations in Section 2.

Results of the data analyses for the observational data are shown

in Section 3. The implications of the observational results on

the emission mechanisms and the host galaxy and environmen-

tal properties are described in Section 4. We summarize the

content of the paper in Section 5.

Cosmological parameters used in this paper are ΩM =

0.3, ΩΛ = 0.7, H0 = 70 km s−1 Mpc−1. All the observ-

ing times are specified in UT. All magnitudes in optical and

near-infrared wavelengths are measured in AB system unless

otherwise noted. Galactic extinctions (Schlafly & Finkbeiner

2011), Au = 0.055,Ag = 0.043,Ar = 0.029,Ai = 0.022,Az =

0.016,AJ = 0.009,AH = 0.006, and AKs = 0.004 mag, are

not corrected for the photometric values in Table 2 or the spec-

tra shown in Figure 3 while they are corrected in calculating the

SEDs and fitted power-law indices. Note that power-law indices

of the spectral energy distribution (SED), αν , measured in this

paper are defined as fν ∝ ναν .

2 Monitoring Campaign Observations and
Data Reduction

2.1 Optical and Near-Infrared Imaging

2.1.1 Observations

We used 10 telescopes and 12 instruments in Japan among

the OISTER collaboration to take most of the imaging data

presented in this paper. Instruments used (from east to west

in Japan) are a visible Multi-Spectral Imager (MSI; Watanabe

et al. 2012) on the 1.6-m Pirka telescope, the FLI Micro Line

Deep Depletion CCD camera on the 0.55-m Saitama univer-

sity Common-use Research for Astronomy (SaCRA) telescope,

MITSuME (Kotani et al. 2005; Yatsu et al. 2007; Shimokawabe

et al. 2008) on the 0.5-m Akeno telescope, KWFC (Sako et al.

2012) on the 1.05-m Kiso Schmidt telescope, Line Imager

and Slit Spectrograph (LISS; Hashiba et al. 2014) and Nishi-

Harima Infrared Camera (NIC) on the 2.0-m Nayuta tele-

1 http://oister.oao.nao.ac.jp/

scope, Kyoto Okayama Optical Low-dispersion Spectrograph

(KOOLS; Yoshida 2005) and ISLE (Yanagisawa et al. 2008) on

the 1.88-m Okayama Astrophysical Observatory (OAO) tele-

scope, MITSuME on the 0.5-m OAO telescope (Kotani et al.

2005; Yanagisawa et al. 2010), Hiroshima Optical and Near-

InfraRed camera (HONIR; Akitaya et al. 2014; Sakimoto et al.

2012) on the 1.5-m Kanata telescope, a near-infrared camera on

the 1.0-m Kagoshima telescope, and MITSuME on the 1.05-m

Murikabushi telescope.

In addition, we also took B-band images with the 1.88-m

telescope at the Kottamia Astronomical Observatory (KAO) in

Egypt on Feb. 9, 2015 and imaging data with Hyper Suprime-

Cam (HSC; Miyazaki et al. 2012) on the Subaru 8.2-m tele-

scope in Hawaii, in g-band on November 27, 2014 and May

24, 2015, and in z-band on Novermber 26, 2014, respectively.

The plate scales and fields-of-view of these two instruments are

0.304 arcsec−1 pixel and 10 arcmin, and 0.168 arcsec−1 pixel

and 1.5 degree in diameter of a circular shape field-of-view, re-

spectively.

The observing epochs fall into three intensive campaigns:

from February, 2014 to March, 2014, right after the discov-

ery described in Tanaka et al. (2014), from October, 2014 to

November, 2014, and in March 2015. In the second observ-

ing campaign, from Oct 2014 to Nov 2014, we obtained data at

least once in multiple bands almost every night if the weather

permitted. During the third observing epoch, optical imaging

data with OAO188 KOOLS were taken 2-3 times per night over

4 continuous nights, at intervals of a few hours, if the weather

permitted.

The instruments used in this campaign nicely cover a wide

range of wavelengths from optical to NIR, from u-band to Ks-

band as shown in Table 2.

2.1.2 Data Reduction

Basic data reduction for imaging data was done in a standard

manner. Bias subtraction, overscan subtraction (if necessary),

flat-fielding, sky subtraction, and astrometry procedures are

done with a data reduction pipeline for each instrument. We

combined all images taken within a night to create one stacked

image per day, except for the discovery and quick follow-up

data shown in Tanaka et al. (2014) and the OAO KOOLS op-

tical data in March 2015. The HSC data was reduced using

hscPipe version 3.8.5, which was developed based on the LSST

pipeline (Ivezic et al. 2008; Axelrod et al. 2010).

For these reduced images, we performed forced photome-

try by fixing the coordinates of J1100+4421 and the reference

stars (Table 1) into consistent locations, using the Common-use

Automatic Realtime Photometry (CARP) pipeline (Saito et al.

2017), which has been developed to conduct photometry for im-

ages taken by the OISTER collaboration, The adopted aperture

size was set to be three times the seeing FWHM in diameter.
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Fig. 1. The Kiso KWFC g-band image of the field at the discovery epoch. The central object in the figure is the target J1100+4421. The reference stars for

the relative photometry are marked. North is up and east is left. The box size is 6 arcmin square.

For images with < 3σ detections for J1100+4421, we set 3σ

upper limits provided by the CARP pipeline.

According to the fields-of-view and filters of the images,

different reference stars may be used in different images, al-

though the same stars were used in a given filter as much as

possible. Most of the data were calibrated via star #2 in opti-

cal and the star #3 in NIR. In the optical wavelengths, ugriz-

band magnitudes of the reference stars are derived from SDSS

Data Release 12 (DR12; Alam et al. 2015) and BV RI-band

magnitudes are calculated from the SDSS magnitudes using the

conversion equations shown in Jester et al. (2005). Magnitudes

of the reference stars in NIR wavelengths are derived from the

2MASS database (Skrutskie et al. 2006) and converted to those

in the AB system as follows: JAB = JVega + 0.94, HAB =

HVega+1.38, and Ks,AB =Ks,Vega+1.86 (Tokunaga & Vacca

2005).

The reference stars #1, and #2 have nearby stars separated

by 3.5 arcsec and 6.2 arcsec, respectively, which are at least

3.4 mag fainter in optical wavelengths than the reference stars.

Most of our imaging data were taken under seeing of a few arc-

sec and these nearby stars contaminate the flux measurements of

the reference stars. However, the fraction of flux contributed by

these nearby stars is estimated to be typically a factor of ∼ 0.02

by comparing the SDSS magnitudes of the stars and does not

affect our conclusions.

In principle, using different reference stars for relative pho-

tometry could provide different magnitudes for the target. The

spectral slopes of J1100+4421, as described in §3.3, are compa-

rable to those of cool, red stars. We checked for possible sys-

tematic differences in relative photometry with different stars of

different spectral slopes (colors) and confirmed that the differ-

ences of the resulting magnitudes are smaller than 10%, even if

we use a blue star as a reference star. Therefore, we conclude

that the choice of the reference stars does not affect our conclu-

sions, which require only about 10% accuracy.

As shown in Section 4.3, there is a faint galaxy 2.7 arc-

sec away from the object, which also contaminates the flux

of the object. The measured brightness (g = 25.32 mag, z =

22.15 mag) is roughly 10 times or more fainter than the object

in most of the detected epochs although these factors depend on

the brightness phase of the object. These are also small effects

on our photometries and resultant discussion.

2.2 Optical Spectroscopy

2.2.1 Observations

In addition to the Subaru FOCAS spectra obtained in February,

2014 (Tanaka et al. 2014), we took a new long-slit spectrum

of a 900-sec exposure using the grating R400 and the order-

sort filter OG515 with the Gemini Multi-Object Spectrographs
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Table 1. SDSS and 2MASS photometry of the References Stars.

Ref RA Dec u g r i z J H Ks

1 11:00:08.54 +44:20:25.95 23.81(0.68) 20.26(0.02) 18.80(0.01) 17.94(0.01) 17.51(0.01) 16.40(0.11) 15.69(0.12) 15.59(0.17)

2 11:00:04.87 +44:23:34.51 21.96(0.17) 19.67(0.01) 18.75(0.01) 18.39(0.01) 18.21(0.02) - - -

3 11:00:14.17 +44:22:38.39 18.64(0.02) 16.15(0.00) 15.08(0.00) 14.66(0.00) 14.46(0.00) 13.36(0.02) 12.72(0.02) 12.60(0.02)

4 11:00:18.37 +44:22:09.50 17.65(0.01) 15.66(0.00) 14.97(0.00) 14.70(0.00) 14.60(0.00) 13.62(0.02) 13.15(0.02) 13.06(0.03)

5 11:00:14.97 +44:20:58.44 16.73(0.01) 14.93(0.00) 14.31(0.00) 14.59(0.00) 13.97(0.00) 13.01(0.02) 12.61(0.02) 12.49(0.02)

JHK magnitudes are shown in the Vega system, which are the raw values in the 2MASS catalog. Magnitude errors are shown in the parenthesis.

(GMOS; Hook et al. 2004) on the Gemini-North 8.1-m tele-

scope on December 11, 2015. The resulting wavelength range

is 5150-9400Å. The slit width was 1.0 arcsec and the spectral

resolution was R ∼ 940. The slit was aligned with J1100+4421

and a nearby galaxy located about 2.7 arcsec to the south-east.

Although the sky was clear, it was windy and then the seeing

was bad and variable from 1.1 arcsec to 3.2 arcsec during the

night.

We note that atmospheric dispersion corrector (ADC) is

not available for GMOS while an ADC is equipped with the

Cassegrain focus and available for FOCAS on the Subaru tele-

scope. The resultant slit loss is estimated in some cases and

available on the Gemini website2. The position angle of the slit

was 115.0 deg (east from north) and the parallactic angle was

∼−140 deg. Then, the difference of the angles was ∼ 105 deg

causing the differential slit loss of ∼ 20% over the observed

wavelength range. On the other hand, the standard star used

for flux calibration, Feige 110, was observed at the parallactic

angle on the same night.

2.2.2 Data Reduction

The GMOS spectrum was reduced with the Gemini IRAF pack-

age. The reduction procedure was basically equivalent to that

done for the FOCAS spectra (Tanaka et al. 2014). Wavelength

calibration was done using the CuAr lamp spectrum. The ob-

tained GMOS spectrum and the FOCAS spectra on February

23, 2014 (Tanaka et al. 2014) are shown in Figure 3. Note that

the GMOS spectrum was obtained without the ADC and the

relative flux calibration is not correct at ∼ 20% level.

3 Results

3.1 Light Curves

The obtained light curves (LCs) are shown in Figure 2 and sum-

marized in Table 2. Deep observations in which the object is de-

tected with a high significance are limited because of the faint-

ness of the object for 1-2m-class telescopes. The object, when

detected, was brighter than the SDSS magnitudes measured for

the ugriz-band images taken in 2003; the SDSS magnitudes are

the faintest among our data, although the depths of most of our

2 http://www.gemini.edu/sciops/instruments/gmos/itc-sensitivity-and-

overheads/atmospheric-differential-refraction

images are shallower than the SDSS magnitudes.

As described in Section 2.1, the observing data mostly con-

sist of three campaigns. We below summarize the brightness

changes separately in each of these three observing epochs.

First, we briefly summarize the discovery with Kiso KWFC

and 1-month follow-up observations after the discovery, which

were described in detail in Tanaka et al. (2014). The ob-

ject showed a rapid increase in brightness from non-detection

(g > 20− 21 mag) to 19.73± 0.13 mag on February 23, 2014.

After that, the object quickly faded down to 21 − 22 mag

during the discovery night at Kiso and the next 24 hours at

Mauna Kea, Hawaii. We monitored the object after this discov-

ery over about 1 month with Kiso KWFC (g-band), Kottamia

Observatory 1.88-m telescope (V -band), Akeno MITSuME

(g,RC ,IC -bands), OAO KOOLS (g-band), and Kanata HONIR

(RC , J-bands). The data sampling was sparse, but the object

seemed to brighten a few times to a level similar to that of the

discovery epoch. The peak magnitude in this observing epoch

in blue optical bands was V =19.17±0.13 mag and that in NIR

was Ks = 17.68± 0.22.

In the second observing campaign, we did not detect the ob-

ject on most of the nights during bright moon phases, plac-

ing only weak upper limits on its brightness at those times.

Compared to the first and third observing epochs, the object

was fainter, reaching only to RC = 19.58 ± 0.19 mag and

Ks = 18.91± 0.21 even at its peak.

The object was at its brightest in this third observing epoch,

up to 18.58± 0.11 mag in g-band (brighter than the discovery

epoch by a factor of ∼2.9 in flux units) and 18.07±0.10 mag in

RC -band. In addition, the object was also the brightest in NIR,

Ks = 17.45± 0.20.

3.2 Variability Time Scale

Variability time scales, in general, provide useful information to

constrain the size of an emitting region and the emission mech-

anism producing the variability. We adopt a doubling/halving

time scale τ as an indicator of the variability,

F (t) = F0(t)2
−(t−t0)/τ (1)

following equation (1) in Foschini et al. (2011). As done in

Foschini et al. (2011) for flat-spectrum radio quasars at MeV

energies, the time scale τ is calculated only for a combination
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Fig. 2. Light curves of SDSS J110006.07+442144.3 in magnitude unit. u in blue, B in green, g in red, V in purple, RC in orange, i in blue, IC in green, z

in red, J in purple, H in orange, and Ks and K in blue. Left Panel: Entire light curves of J1100+4421. Upper limits only in g-band are shown. Time ranges

magnified in the right panels are shown in gray at the top of the panel. Three Right Panels: Light curves of J1100+4421 focused around the discovery epoch,

the Oct-Nov 2014 campaign observing run, and the bright epoch in March 2015, respectively. Upper limits in all the filters are shown. Galactic extinctions are

not corrected.
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Fig. 3. A comparison of optical spectra taken with Subaru FOCAS on February 24, 2014 (already shown in Tanaka et al. 2014) and Gemini-N GMOS newly

obtained on December 11, 2015. The GMOS spectrum is separated into three wavelength ranges because the gaps between the adjacent GMOS CCDs.

Emission and absorption lines which could originate from an AGN and a galaxy are indicated in dot-dashed lines. Note that all the indicated lines are not

detected. Strong telluric absorptions (O2 A-band and B-band) and a strong OH airglow emission around 5,577Å causing bad sky subtraction are shaded in

dark gray. Galactic extinctions are not corrected.

of the measurements which show significant (> 3σ) variability.

The shortest halving time scale τ in the observed frame ob-

tained in our study is τ = 0.38± 0.18 days (∼ 9.2± 4.5 hours).

This is derived from the data taken on MJD 56712, on the

night of our quick follow-up observations with Subaru FOCAS.

Because of our limited time sampling and depths, the real typi-

cal halving time scale could be shorter than the obtained value.

Compared with previous works on variability time scales of

blazars in UV, optical, and NIR wavelength regions (Urry et al.

1997), in which optical flares over time scales from minutes

to days are detected, the time scale of J1100+4421 is longer

than most of those values, even though the BH mass of our ob-

ject is smaller than those in blazars by a few orders of mag-

nitude. If we assume a Doppler boosting factor of δ = 10 for

J1100+4421, similar to that of blazars (Fan et al. 2013), the

size of the optical-NIR emission region R is evaluated (Zhang

et al. 2012) as R< cδ∆t/(1+ z) = 10×0.38/(1+0.84) light-

days∼ 2.1 light-days= 5.4× 1015 cm, which corresponds to

1.2× 103 times the Schwarzschild radius for a 1.5× 107 M⊙

BH (Rs = 4.4× 1012 cm) and is larger than the rest-frame UV-

optical emitting region.

3.3 Simultaneous Spectral Energy Distribution

The light curves sometimes show clear intranight variability by

a factor of up to ∼ 2, so the photometry used to construct SEDs

should be almost simultaneous. All the colors and SEDs shown

below are measured for data taken almost simultaneously, i.e.,

with time intervals shorter than 2 hours (0.083 days).

We made simultaneous SEDs at 10 epochs as shown in

Figure 4, including instances during all the three observing

epochs. We fit each SED with a single power-law (fν ∝ ναν ).

The power-law indices αν are plotted as a function of observed

or interpolated RC-band brightness in Figure 5. In addition to

fitting the photometric SEDs, the FOCAS and GMOS optical

spectra were also fitted with a single power-law. We note that

the fitting results for the FOCAS spectra (αν = −1.40± 0.01)

were presented in Tanaka et al. (2014). The obtained power-law

index of the GMOS spectrum is αν =−1.48±0.10 but the spec-

trum is not corrected for the differential slit loss due to atmo-

spheric differential refraction. The possible differential slit loss

is about 20%, causing an overestimate of αν . We here do not es-

timate the exact factor and set the error of αν from the GMOS

spectrum to be 0.3, roughly corresponding to the 20% differ-

ence. (i.e., αν = −1.48± 0.30 instead of αν = −1.48± 0.10).
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These fitting results for the spectra are included in Figure 5.

Overall, the obtained power-law indices are consistent with

being identical, although some of the indices are somewhat

steep (small αν ). This indicates that the origin of the optical-

NIR emission (or spectrum) is the same regardless of bright-

ness and observing epochs. The weighted average of the indices

among our own monitoring data is αν =−1.39±0.02 as shown

in gray shade in Figure 5.

In addition to our data, archival mid-infrared (MIR) data

obtained with Wide-Field Infrared Survey Explorer (WISE)

in the 3.4 µm (W1) and 4.6 µm-bands (W2) are available.

These data were taken during the NEOWISE Reactivation mis-

sion (Mainzer et al. 2014). We made WISE light curves

of J1100+4421 and nearby reference objects from the Single

Exposure (L1b) Source Table. The WISE magnitudes in the

Vega system obtained from the catalogs are converted to AB

magnitudes using the equations in Jarrett et al. (2011), W 1AB=

W 1Vega +2.699 and W 2AB = W 2Vega +3.339. By combin-

ing this with the WISE data shown in Tanaka et al. (2014),

J1100+4421 shows clear variability around 56984 (Nov. 23,

2014) both in the W1 and W2 bands (Figure 6), while the ref-

erence objects are stable in flux within the error bars. The

power-law indices derived from the two-band WISE data are

αν,MIR ∼−1.4 at all epochs. On days of MJD= 56983−4, the

optical-MIR power-law index are also αν,opt,MIR ∼−1.4.

3.4 Host Galaxy and Environment

Host galaxies of blazars are known to be massive elliptical

galaxies (Sbarufatti et al. 2005; Falomo et al. 2014) while

those of radio-loud NLS1 galaxies are star-forming galaxies

(Zhou et al. 2007; Antón et al. 2008; León Tavares et al. 2014

Caccianiga et al. 2015). The central BH mass of J1100+4421

is measured using the Hβ and MgII emission lines and found

to be as small as 1.0− 1.5 × 107 M⊙ (Tanaka et al. 2014).

Considering this small BH mass, the host galaxy properties are

expected to be similar to those of RLNLS1, rather than those

of blazars. In addition, a large spatial extension of radio emis-

sion from this host galaxy is detected in FIRST data (Becker

et al. 1995). We investigate here the host galaxy properties us-

ing the Subaru HSC images with sub-arcsec spatial resolution

(see Figure 7).

The seeing sizes (FWHM) of the Subaru HSC images are

0.56 arcsec in g-band and 0.51 arcsec in z-band. The FWHM

sizes of the object are 0.58 arcsec in g-band and 0.55 arc-

sec in z-band. These are almost unresolved and dominated

by the nucleus. We note that the HSC magnitudes are g =

21.71±0.12 mag and z = 20.57±0.11 mag, respectively, both

of are ∼ 0.4 mag brighter than the SDSS magnitudes, which

have photometric uncertainties of ∆g = 0.11 and ∆z = 0.25.

We also note that these two HSC observations were done at dif-

ferent epochs.

Compared with the extended (∼ 10 arcsec; Gabányi et al.

2017) radio emission detected in the FIRST data, the optical

sizes measured above are much smaller. However, the optical

sizes are measured using broad-band imaging data, and most

of the light is continuum emission, including components from

the AGN and the host galaxy. In the z-band bandpass, [O III]

emission lines are included as well as the Hβ emission line,

and we here set a brightness constraint on the extended [O III]

emission. As seen in the HSC z-band image, no extended struc-

ture aligned to the radio structure is detected. Considering the

width of the bandpass, we convert the upper limit of z-band sur-

face brightness zlim = 29.4 [mag arcsec−2] (3σ) to the upper

limit of [O III] surface brightness m([O III])lim = 24.4 [mag

arcsec−2] (3σ) by assuming that the [O III] spectral widths are

the same (∼10Å FWHM) as that of the central source spectrum.

This limit corresponds to a flux density of 2.1× 10−18 [erg s−1

cm−2 arcsec−2] and is smaller than the [O III] flux detected for

the central source by a factor of ∼ 600. In addition to the imag-

ing data, we examine the spatial extension of the [O III] emis-

sion lines along the slits detected in our spectroscopic data with

FOCAS and GMOS. The sizes perpendicular to the slits are al-

most the same as or slightly extended than those of the continua,

also indicating that the [O III] emitting region size is not as large

as that in radio wavelength. We also note that there are no clear

blue-shifted [O III] emission lines in any of our FOCAS and

GMOS spectra.

4 Discussion

4.1 Contributions from Host Galaxy and Accretion

Disk

We first evaluate the luminosity contribution of the host galaxy

and the accretion disk. We note that the observed wavelength

range corresponds to 0.2 µm to 1.2 µm in the rest-frame, UV to

short NIR wavelengths.

The spectra do not show any significant absorption lines

which could indicate host galaxy components. The faintest

photometry among all of our data are the 5-band SDSS val-

ues. Although the measurement errors are not small (∆m =

0.11− 0.40 mag), the measurements in the five different bands

are almost simultaneous, the observation times ranging from

MJD= 52722.1509 to MJD= 52722.1542 (48 minutes differ-

ence on March 23, 2004), and the fitted power-law index is

αν = −1.48 ± 0.42 (the leftmost point in the left panel of

Figure 5); this is consistent with the power-law indices com-

puted at other epochs. Although there is a possibility that the

host galaxy color is similar to that of the varying AGN com-

ponent, the contribution from the host galaxy, especially dur-

ing the bright phases when we detected it with 1-2m class tele-

scopes, is expected to be small. This is consistent with the fact
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Fig. 4. The SEDs from NIR to optical during the simultaneous observations in blue filled circles. Observing times in MJD are shown in bottom-left and the

time baseline among the observing points are shown in the parenthesis in a unit of day. The fitted lines are shown in red. Note that gray filled circles are

data points with low signal-to-noise ratios (S/N< 3) and not used for the fitting. Solid, dashed, and dot-dashed lines indicate that the SEDs in NIR and optical,

optical, and NIR wavelengths are fitted. The FOCAS spectra in the two phases (αν,opt =−1.40, the brightest and faintest) are also shown in gray alternately

for a reference purpose. The Galactic extinction are corrected for the data points and power-law indices calculated here.

that host galaxies (bulge components) of low-z NLS1s are as

faint as MB,bulge =−18.5 mag (Botte et al. 2004), correspond-

ing to mi ∼ 25.2 mag at this redshift, much fainter than the

detection limits of most of our data.

The second item to be examined is the luminosity of the

accretion disk. The BH mass is estimated to be 1.0− 1.5×

107 M⊙, based on the line luminosity and widths of the MgII

and Hβ emission lines (Tanaka et al. 2014). The bolometric lu-

minosity can be explained by sub-Eddington accretion (∼30%).

For a BH with this small mass and normal (or somewhat high)

Eddington ratio, the peak wavelength of the accretion disk semi-

blackbody emission is UV to soft X-ray if we assume that the

object has a standard accretion disk (Shakura & Sunyaev 1973).

This means that the luminosity of the UV-optical wavelength

region is expected to be fν ∝ ν1/3 (αν = 1/3) which is incon-

sistent with, much harder than, the obtained power-law index

αν ∼ −1.4. This indicates the accretion disk component does

not significantly contribute to the observed flux in the observed

wavelength range.

4.2 Synchrotron Radiation in optical-NIR

Wavelength Regions

Considering the small luminosity contribution from the host

galaxy and accretion disk, a plausible explanation for the vary-

ing luminosity with constant power-law indices would be syn-

chrotron emission by high-energy electrons inside a relativistic

jet.

Following the conventional synchrotron theory (see Rybicki

& Lightman 1979 for details), we can derive the power-law

index of electron distribution (dNe/dE ∝ E−p) from the ob-

served optical-IR spectrum as p=−2α+1= 3.8. This is much

softer than the prediction of standard diffusive shock accelera-

tion theory, which predicts the power-law index of p= 2.0 (e.g,

Blandford & Ostriker 1978). We note that such a soft electron

distribution is easily achieved by e.g., radiative cooling, ineffi-

cient acceleration and so on, and hence the electron power-law

index of ∼ 3.8 estimated here is not unusual. Indeed, it is well

known that similar soft electron distribution is derived in many

blazars by applying synchrotron plus inverse-Compton model-

ing of the broad-band spectral energy distribution from radio to

γ-ray (see e.g, Ghisellini et al. 2010).

The emission mechanism can be investigated with higher-
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Fig. 5. (Left): Power-law index versus RC -band flux for SDSS J1100+4421. Filled circles are values obtained with the simultaneous imaging data. Different

colors (red, blue, and green) indicate different wavelength ranges (optical and NIR, optical and NIR in the observed frame) fitted to calculated the power-law

indices. Filled boxes indicate the power-law indices obtained from the FOCAS and GMOS spectra. The leftmost filled circle is the power-law index from the

SDSS photometry. The averaged αν is shown in gray shaded region. The Galactic extinction are corrected when we calculate the power-law indices. (Right):

Power-law indices of various kinds of AGN from the literature. Indices of the optical SDSS spectrum of PMN J0948+0022, optical imaging of PMN J0948+0022

(Itoh et al. 2013), UV spectra of blazars (Pian et al. 2005), UV imaging of radio-loud NLS1s (Foschini et al. 2015), optical spectra of radio-loud NLS1s (Foschini

et al. 2015), UV spectra of radio-quiet NLS1s (Constantin & Shields 2003), UV imaging of narrow-line and broad line Seyferts (Grupe et al. 2010), and

optical SDSS spectra of quasars (Vanden Berk et al. 2001) are shown. The bars indicate the root-mean-square of αν for Grupe et al. (2010), the systematic

uncertainty of αν for quasars (Vanden Berk et al. 2001), and the ranges of the αν values for the rest of the papers.
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Fig. 6. (Top): Power-law indices calculated with the WISE 3.4 µm and 4.6 µm-band data as a function of time. (Middle), (Bottom): WISE light curves of

J1100+4421 in the 3.4 µm (W1) and 4.6 µm (W2) -bands are shown in gray. The left panels are for the whole range of the WISE data while the other panels

are magnified views of the four observing epochs of the NEOWISE Reactivation mission. In the four right panels, data points with < 0.5 mag errors are shown

in black. Weighted averages of flux during each epoch is shown in red. The error bars are shown only in the magnified panels.

Fig. 7. (Left): Subaru/HSC z-band image in gray scale overlaid with the FIRST radio data in contour. The central object in this figure is J1100+4421. Beam

size of the FIRST image (5.4 arcsec) is shown at the left-bottom part of the figure in green. (Right): The slits of the FOCAS and GMOS observations are shown

in blue and red, respectively.



Publications of the Astronomical Society of Japan, (2014), Vol. 00, No. 0 13

energy observational data where the synchrotron self-Compton

(SSC) radiation dominates. We checked Fermi Large Area

Telescope (LAT) source catalog (3FGL; Fermi LAT 4-Year

Point Source Catalog; Acero et al. 2015) and found that no ob-

ject is detected at the position of J1100+4421; and no source

appears in the 2FGL catalog investigated in Tanaka et al.

(2014). The Fermi/LAT upper limit in νFν units is a few times

10−12 erg s−1 cm−2 (Acero et al. 2015). This upper limit is

roughly comparable to the expected SSC emission and can be

explained by the synchrotron/SSC model (Chiang & Böttcher

2002) if we assume p= 3.8.

The observed optical-NIR SEDs are well described by syn-

chrotron emission, which indicates that the peak frequency of

the synchrotron emission is lower than the observed wavelength

range, νpeak < 1015 Hz, and so the object belongs to a low-

frequency-peaked blazar population. The observed optical-NIR

colors of J1100+4421 at z = 0.840, obtained almost simultane-

ously, are g − J ∼ 1.1, R− J ∼ 0.8, and I − J ∼ 0.6 in the

AB system, roughly corresponding to g−J ∼ 2.1, R−J ∼ 1.5,

and I − J ∼ 1.1 in the Vega system. These colors are at the

blue end of the distribution for blazars at z ∼ 0.02− 1.8 shown

in Ikejiri et al. (2011) and consistent with both the colors of

higher- or lower-frequency-peaked populations. The large vari-

ability amplitude (∆g ∼ 3.5 mag, a factor of ∼ 30, between the

SDSS and our March 2015 photometry) also might indicate that

J1100+4421 is similar to low νpeak blazars because there are no

high νpeak blazars showing such a large amplitude of variability

(Ikejiri et al. 2011). The small color variability within our ob-

servations, i.e. almost constant power-law indices, is consistent

with the object belonging to a low νpeak blazar population.

A comparison with the spectral indices of other AGN is

shown in the right panel of Figure 5. The power-law index αν

of J1100+4421 in the rest-frame UV to short NIR wavelengths

is consistent with those in the observed UV wavelengths for

blazars at z = 0.15− 1.41 (αν,UV = −2.00–−0.32; Pian et al.

2005), RLNLS1 at z = 0.06− 0.80 (αν,UV = −0.7± 1.4, me-

dian −0.7; Foschini et al. 2015), RLNLS1 at z = 0.06− 0.80

(αν,opt = −− 1.0± 0.8, median −0.8; Foschini et al. 2015),

RQNLS1 at z = 0.01 − 0.26 (αν,UV = −4.41–−0.44, me-

dian −0.91; Constantin & Shields 2003), broad-line Seyferts

at < z >= 0.086 (αν,UV = −0.79 ± 0.67, median −0.61;

Grupe et al. 2010), and narrow-line Seyferts at < z >= 0.087

(αν,UV = −0.85± 0.66, median −0.65; Grupe et al. 2010) We

note that most of these values are the range of the αν values,

not the root-mean-square, except for the values in Grupe et al.

(2010). On the other hand, the power-law index of J1100+4421

is clearly different from those of SDSS quasars (αν = −0.44,

∼ 0.1 uncertainty) shown in Vanden Berk et al. (2001) and most

(> 90%) of the SDSS quasars have harder UV-optical spectra

than J1100+4421 (Shen et al. 2011). This difference also sup-

ports our hypothesis that the emission of J1100+4421 in optical-

NIR wavelength regions arises from synchrotron radiation in the

relativistic jet, not an accretion disk.

The famous Fermi LAT-detected NLS1, PMN J0948+0022

(Abdo et al. 2009a), a low νpeak radio/γ-loud NLS1 at z =

0.585, shares observational properties similar to J1100+4421

including kpc-scale radio emission (Doi et al. 2012), but lacks

the high [O III]/Hβ flux ratio of J1100+4421. If J1100+4421

follows the general distributions observed for low νpeak blazars

in Ikejiri et al. (2011), a high degree of polarization might

be expected for J1100+4421 as was indeed detected from

PMN J0948+0022 (Itoh et al. 2013).

PMN J0948+0022 shows a different behavior in its power-

law indices than J1100+4421. The extinction-corrected (AV =

0.263 mag; Schlegel et al. 1998; assuming the extinc-

tion law given by Cardelli et al. 1989) SDSS spectrum of

PMN J0948+0022 gives a power-law index αν =−1.77±0.07.

On the other hand, Itoh et al. (2013) measured an optical

power-law index of 0 < αν < 1 during a brighter phase of

PMN J0948+0022 after the detection of a γ-ray flare with Fermi

LAT. They indicated that the index varies at different brightness

phases, which is a well known behavior known as the “bluer-

when-brighter” trend for blazars (e.g., Ikejiri et al. 2011) and

quasars (e.g., Kokubo et al. 2014); we note that J1100+4421

does not show such a change in its power-law indices.

4.3 Host Galaxy and Environment

As pointed out in previous papers, there is a hypothesis that

radio-loud NLS1s, which are an AGN population mostly simi-

lar to J1100+4421, are products of interaction (Zhou et al. 2007;

Antón et al. 2008). Therefore, we consider here whether or not

this hypothesis is valid for J1100+4421. For more massive sys-

tems like quasars, the existence of extended narrow emission

line regions sometimes indicates recent minor merger events

and AGN triggering (Fu & Stockton 2009; Matsuoka 2012). An

observational study on extended narrow-line regions in nearby

Seyfert galaxies (Keel et al. 2012) also shows that a significant

fraction of the sample galaxies are interacting or merging sys-

tems. However, as shown in Section 3.4, we tentatively con-

clude that an extended [O III] emitting region is not present in

our optical broad-band imaging data.

This indicates the small (< 1 arcsec FWHM correspond-

ing to several kpc) size of the [O III] emitting regions. This

small size of the [O III] narrow-line region itself is partly con-

sistent with the notion that large, extended narrow-line regions

are usually associated with AGN which have low Eddington ra-

tios and/or high BH masses (Matsuoka 2012).

The power-law index of this object in the radio frequency is

hard to measure because of non-simultaneous observations as

shown in Table 1 of Tanaka et al. (2014). The indices naively

measured (i.e., ignoring the time differences between the obser-
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vations) indicate both possibilities that J1100+4421 belongs to

flat- or steep-spectrum population. If J1100+4421 is a steep-

spectrum radio-loud AGN which is indicated by the largely ex-

tended radio lobe, the radio-loud nature, which is one of the

unique points of J1100+4421, may be inconsistent with the fact

that a high fraction (about 60%) of steep-spectrum radio-loud

quasars may host extended narrow-line regions, although not

all of them do (Matsuoka 2012).

We identified a galaxy at (RA, Dec) = (11:00:06.30,

+44:21:43.4), to the east of J1100+4421 by 2.7 arcsec (21 kpc

at this redshift, z = 0.840) in our deep HSC imaging data.

The magnitudes of this galaxy are g = 25.32± 0.36 mag and

z = 22.15 ± 0.09 mag in Novermber 2014, a factor of 18.4

and 3.0 fainter than the faintest phases of J1100+4421, re-

spectively. We took a GMOS optical spectrum of this galaxy

with a 1.0 arcsec-width slit along J1100+4421 as described in

Section 2.2.1. The spectrum does not show any significant con-

tinuum because of the faintness of the galaxy and the short

exposure, and does not show any emission lines at the same

redshift as that of J1100+4421. Hence it is unclear whether

or not this galaxy interacts with J1100+4421. As pointed by

Doi et al. (2012), RLNLS1s with extended radio structure, with

which J1100+4421 shares similar properties, are thought to

be at the final stage of evolution of NLS1s, possibly as they

evolve to broad-line, more massive, AGN. With this hypothesis

in mind, the possible non-detection of extended narrow-line re-

gions might be consistent with preferred detections in massive

systems.

5 Summary

We carried out monitoring campaign observations at optical and

NIR wavelengths for the radio-loud AGN J1100+4421 with a

BH mass of 1.0− 1.5× 107 M⊙. The light curves and simul-

taneous SEDs are shown and rapid variability behaviors are de-

tected in each of the three observing campaigns. The object

shows large variability during our observations, changing by a

factor of ∼ 30 while its power-law indices remain unchanged

(αν ∼ −1.4 where fν ∝ ναν ). All of the observational re-

sults are consistent with the hypothesis that the optical-NIR

emission originates from synchrotron radiation in a relativis-

tic jet. The small SED changes indicate that J1100+4421 be-

longs to a low νpeak blazar population. The marginal spatial

resolution in sub-arcsec optical imaging data taken with Subaru

HSC, showing no large, extended [O III] narrow-line region, is

smaller than the extended radio emission detected in the FIRST

survey data. A newly obtained optical spectrum of a possible

companion galaxy does not support the idea that the galaxy is

at the same redshift of J1100+4421, or the merging hypothe-

sis for triggering the AGN-related activity of J1100+4421. To

understand the nature of J1100+4421, which does not share all

its properties with any other set of objects like NLS1s, further

observations including multi-wavelength, high-resolution radio

VLBI (Gabányi et al. 2017), deep narrow-line region imaging or

integral-field spectroscopy, more densely-sampled monitoring,

and polarization are required.
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Table 2. Summary of Optical and Near-Infrared Photometric Measurements of J1100+4421. Galactic extinctions are not corrected.

telescope instrument filter MJD date (UT) magnitude

Kiso KWFC u 56958.80 2014-10-28 > 20.27

Kiso KWFC u 56964.82 2014-11-03 > 20.41

Kiso KWFC u 56968.84 2014-11-07 > 18.86

Kiso KWFC u 56976.74 2014-11-15 > 19.56

Kiso KWFC u 56977.82 2014-11-16 > 20.36

Subaru FOCAS B 56712.27 2014-02-24 21.17± 0.10

Subaru FOCAS B 56712.55 2014-02-24 21.72± 0.10

Subaru FOCAS B 56712.63 2014-02-24 21.78± 0.10

Pirka MSI B 56954.82 2014-10-24 > 20.03

Pirka MSI B 56955.82 2014-10-25 > 16.95

Pirka MSI B 56959.80 2014-10-29 21.71± 0.14

Pirka MSI B 56965.78 2014-11-04 21.58± 0.12

Pirka MSI B 56983.84 2014-11-22 21.16± 0.14

Pirka MSI B 56984.83 2014-11-23 21.72± 0.16

Pirka MSI B 56986.84 2014-11-25 22.13± 0.21

Pirka MSI B 56987.83 2014-11-26 22.14± 0.15

Pirka MSI B 56988.79 2014-11-27 21.73± 0.16

Kottamia Kottamia B 57063.03 2015-02-10 > 19.93

Pirka MSI B 57174.58 2015-06-01 > 19.25

Pirka MSI B 57175.61 2015-06-02 > 16.22

Kiso KWFC g 56325.66 2013-02-02 > 21.33

Kiso KWFC g 56327.70 2013-02-04 > 21.06

Kiso KWFC g 56347.59 2013-02-24 > 18.67

Kiso KWFC g 56709.50 2014-02-21 > 20.90

Kiso KWFC g 56710.51 2014-02-22 > 21.30

Kiso KWFC g 56711.46 2014-02-23 19.73± 0.16

Kiso KWFC g 56711.51 2014-02-23 20.18± 0.13

Kiso KWFC g 56711.51 2014-02-23 20.22± 0.20

Kiso KWFC g 56711.55 2014-02-23 19.96± 0.15

Kiso KWFC g 56711.60 2014-02-23 19.82± 0.14

Kiso KWFC g 56712.72 2014-02-24 21.08± 0.14

Kiso KWFC g 56712.72 2014-02-24 21.19± 0.14

Kiso KWFC g 56713.63 2014-02-25 21.50± 0.14

Kiso KWFC g 56713.63 2014-02-25 21.48± 0.14

Kiso KWFC g 56714.46 2014-02-26 > 19.05

Kiso KWFC g 56718.70 2014-03-02 > 20.34

Kiso KWFC g 56726.82 2014-03-10 20.01± 0.15

Kiso KWFC g 56727.57 2014-03-11 > 20.62

Kiso KWFC g 56728.49 2014-03-12 > 18.48

Kiso KWFC g 56731.66 2014-03-15 > 20.23

Kiso KWFC g 56732.77 2014-03-16 > 19.84

Kiso KWFC g 56733.52 2014-03-17 > 20.04

Kiso KWFC g 56738.74 2014-03-22 > 20.68

Kiso KWFC g 56739.74 2014-03-23 > 20.86

Kiso KWFC g 56744.51 2014-03-28 > 20.85

Kiso KWFC g 56745.42 2014-03-29 > 16.95

Kiso KWFC g 56747.72 2014-03-31 > 21.07

Kiso KWFC g 56748.73 2014-04-01 > 20.00

Kiso KWFC g 56749.74 2014-04-02 > 21.11
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Table 2. (Continued)

telescope instrument filter MJD date (UT) magnitude

Kiso KWFC g 56765.58 2014-04-18 > 19.63

Kiso KWFC g 56766.49 2014-04-19 > 20.90

Kiso KWFC g 56770.60 2014-04-23 21.21± 0.20

Kiso KWFC g 56771.57 2014-04-24 > 21.72

Kiso KWFC g 56772.53 2014-04-25 > 21.32

Kiso KWFC g 56773.54 2014-04-26 > 20.73

Kiso KWFC g 56774.53 2014-04-27 > 21.72

Kiso KWFC g 56809.54 2014-06-01 > 21.39

Kiso KWFC g 56850.48 2014-07-12 > 18.33

Kiso KWFC g 56853.49 2014-07-15 > 21.06

Kiso KWFC g 56859.49 2014-07-21 > 20.43

Kiso KWFC g 56876.47 2014-08-07 > 18.75

Kiso KWFC g 56946.84 2014-10-16 > 18.70

Akeno MITSuME g 56954.73 2014-10-24 > 19.87

Akeno MITSuME g 56955.73 2014-10-25 > 20.75

Akeno MITSuME g 56957.73 2014-10-27 > 19.09

OAO MITSuME g 56957.80 2014-10-27 > 20.59

Kiso KWFC g 56957.80 2014-10-27 > 20.57

Akeno MITSuME g 56958.72 2014-10-28 > 20.72

Kiso KWFC g 56958.78 2014-10-28 > 21.17

OAO MITSuME g 56958.80 2014-10-28 > 20.06

Kiso KWFC g 56959.78 2014-10-29 > 21.55

Murikabushi MITSuME g 56959.80 2014-10-29 > 21.38

OAO MITSuME g 56959.84 2014-10-29 > 19.20

Murikabushi MITSuME g 56960.78 2014-10-30 21.24± 0.22

Kiso KWFC g 56960.80 2014-10-30 > 21.07

Murikabushi MITSuME g 56961.78 2014-10-31 > 21.02

Akeno MITSuME g 56962.73 2014-11-01 > 20.93

Akeno MITSuME g 56963.71 2014-11-02 > 20.18

OAO MITSuME g 56963.83 2014-11-02 > 19.36

Akeno MITSuME g 56964.73 2014-11-03 > 20.70

Kiso KWFC g 56964.79 2014-11-03 > 21.41

OAO MITSuME g 56964.83 2014-11-03 > 20.31

Kiso KWFC g 56965.76 2014-11-04 > 20.09

Akeno MITSuME g 56965.78 2014-11-04 > 20.00

OAO MITSuME g 56965.83 2014-11-04 > 20.14

Akeno MITSuME g 56967.73 2014-11-06 > 19.89

Kiso KWFC g 56967.79 2014-11-06 > 19.90

OAO MITSuME g 56967.85 2014-11-06 > 18.55

Akeno MITSuME g 56968.78 2014-11-07 > 20.07

Kiso KWFC g 56968.82 2014-11-07 > 20.33

Kiso KWFC g 56970.81 2014-11-09 > 20.67

OAO MITSuME g 56971.83 2014-11-10 > 19.64

Akeno MITSuME g 56973.70 2014-11-12 > 20.53

Akeno MITSuME g 56974.69 2014-11-13 > 20.61

Akeno MITSuME g 56975.68 2014-11-14 > 20.82

Akeno MITSuME g 56976.68 2014-11-15 > 20.92

Kiso KWFC g 56976.72 2014-11-15 > 20.60

Akeno MITSuME g 56977.67 2014-11-16 > 20.64
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Table 2. (Continued)

telescope instrument filter MJD date (UT) magnitude

Akeno MITSuME g 56978.72 2014-11-17 > 20.56

Akeno MITSuME g 56979.66 2014-11-18 > 21.07

Akeno MITSuME g 56980.69 2014-11-19 > 20.00

Murikabushi MITSuME g 56980.72 2014-11-19 > 20.55

Akeno MITSuME g 56981.66 2014-11-20 > 21.00

Kiso KWFC g 56981.69 2014-11-20 > 21.82

Murikabushi MITSuME g 56981.73 2014-11-20 > 21.42

Kiso KWFC g 56982.76 2014-11-21 > 21.15

Kiso KWFC g 56983.74 2014-11-22 20.56± 0.20

Nayuta LISS g 56984.50 2014-11-23 > 20.19

Kiso KWFC g 56984.72 2014-11-23 > 21.47

Kiso KWFC g 56987.81 2014-11-26 > 21.44

Subaru HSC g 56988.50 2014-11-27 21.72± 0.12

Kiso KWFC g 56988.67 2014-11-27 > 21.50

Murikabushi MITSuME g 56989.71 2014-11-28 > 20.34

Kiso KWFC g 57009.83 2014-12-18 19.51± 0.12

Kiso KWFC g 57014.60 2014-12-23 > 18.98

Kiso KWFC g 57040.57 2015-01-18 > 19.53

Kiso KWFC g 57042.60 2015-01-20 > 21.47

Kiso KWFC g 57046.75 2015-01-24 > 21.53

Kiso KWFC g 57047.77 2015-01-25 > 20.64

Kiso KWFC g 57049.70 2015-01-27 > 21.45

Akeno MITSuME g 57050.69 2015-01-28 > 20.85

Kiso KWFC g 57055.72 2015-02-02 > 20.26

Akeno MITSuME g 57062.54 2015-02-09 > 20.43

Akeno MITSuME g 57063.67 2015-02-10 > 20.45

OAO MITSuME g 57063.76 2015-02-10 > 19.19

OAO MITSuME g 57064.61 2015-02-11 > 20.20

Akeno MITSuME g 57064.74 2015-02-11 > 20.59

Kiso KWFC g 57064.74 2015-02-11 > 20.91

Kiso KWFC g 57073.63 2015-02-20 > 21.74

OAO188 KOOLS g 57102.49 2015-03-21 19.82± 0.14

OAO188 KOOLS g 57103.46 2015-03-22 18.70± 0.11

OAO188 KOOLS g 57103.56 2015-03-22 18.58± 0.11

OAO188 KOOLS g 57103.72 2015-03-22 18.94± 0.10

OAO188 KOOLS g 57104.56 2015-03-23 19.45± 0.12

OAO MITSuME g 57106.64 2015-03-25 > 20.61

OAO MITSuME g 57129.59 2015-04-17 > 20.90

OAO MITSuME g 57133.60 2015-04-21 > 21.04

OAO MITSuME g 57166.57 2015-05-24 > 20.59

Subaru HSC g 57167.50 2015-05-25 21.74± 0.13

OAO MITSuME g 57167.53 2015-05-25 > 19.49

OAO MITSuME g 57174.49 2015-06-01 > 19.14

OAO MITSuME g 57176.54 2015-06-03 > 20.18

Kottamia - V 56726.93 2014-03-10 19.17± 0.13

Saitama - V 57063.54 2015-02-10 > 18.92

Kanata HONIR RC 56712.62 2014-02-24 20.48± 0.16

Akeno MITSuME RC 56726.51 2014-03-10 19.48± 0.21

Kanata HONIR RC 56726.75 2014-03-10 19.73± 0.12
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Table 2. (Continued)

telescope instrument filter MJD date (UT) magnitude

Kottamia - RC 56726.93 2014-03-10 20.01± 0.14

Akeno MITSuME RC 56954.73 2014-10-24 > 19.56

Akeno MITSuME RC 56955.73 2014-10-25 20.04± 0.19

Akeno MITSuME RC 56957.73 2014-10-27 > 18.16

OAO MITSuME RC 56957.80 2014-10-27 > 19.95

Akeno MITSuME RC 56958.72 2014-10-28 20.24± 0.20

OAO MITSuME RC 56958.80 2014-10-28 > 19.75

Murikabushi MITSuME RC 56959.80 2014-10-29 20.35± 0.18

OAO MITSuME RC 56959.84 2014-10-29 > 19.03

Murikabushi MITSuME RC 56960.78 2014-10-30 20.51± 0.19

Murikabushi MITSuME RC 56961.78 2014-10-31 20.73± 0.18

Akeno MITSuME RC 56962.73 2014-11-01 > 19.97

Akeno MITSuME RC 56963.71 2014-11-02 > 19.68

OAO MITSuME RC 56963.83 2014-11-02 > 19.13

Akeno MITSuME RC 56964.73 2014-11-03 > 20.14

OAO MITSuME RC 56964.83 2014-11-03 > 19.65

Akeno MITSuME RC 56965.75 2014-11-04 > 20.13

OAO MITSuME RC 56965.83 2014-11-04 > 19.69

Akeno MITSuME RC 56967.74 2014-11-06 > 19.94

OAO MITSuME RC 56967.85 2014-11-06 > 18.32

Akeno MITSuME RC 56968.78 2014-11-07 > 19.60

OAO MITSuME RC 56971.83 2014-11-10 > 19.11

Akeno MITSuME RC 56973.70 2014-11-12 > 19.89

Akeno MITSuME RC 56974.69 2014-11-13 > 20.37

Akeno MITSuME RC 56975.68 2014-11-14 > 19.91

Akeno MITSuME RC 56976.68 2014-11-15 20.14± 0.19

Kanata HONIR RC 56976.87 2014-11-15 > 18.18

Kanata HONIR RC 56976.87 2014-11-15 > 19.67

Akeno MITSuME RC 56977.67 2014-11-16 19.58± 0.19

Akeno MITSuME RC 56978.71 2014-11-17 > 20.03

Akeno MITSuME RC 56979.66 2014-11-18 > 20.50

Akeno MITSuME RC 56980.69 2014-11-19 > 19.45

Murikabushi MITSuME RC 56980.72 2014-11-19 > 20.32

Akeno MITSuME RC 56981.66 2014-11-20 > 20.15

Murikabushi MITSuME RC 56981.73 2014-11-20 20.86± 0.18

Kanata HONIR RC 56981.73 2014-11-20 21.01± 0.13

Murikabushi MITSuME RC 56989.71 2014-11-28 > 20.04

Akeno MITSuME RC 57050.69 2015-01-28 > 20.18

Akeno MITSuME RC 57062.54 2015-02-09 > 19.79

Akeno MITSuME RC 57063.67 2015-02-10 > 20.26

OAO MITSuME RC 57063.76 2015-02-10 > 18.85

OAO MITSuME RC 57064.61 2015-02-11 > 19.74

Akeno MITSuME RC 57064.74 2015-02-11 > 20.24

OAO188 KOOLS RC 57102.50 2015-03-21 19.27± 0.12

OAO188 KOOLS RC 57102.67 2015-03-21 18.95± 0.11

OAO188 KOOLS RC 57102.80 2015-03-21 18.62± 0.11

OAO188 KOOLS RC 57103.48 2015-03-22 18.13± 0.10

OAO188 KOOLS RC 57103.58 2015-03-22 18.07± 0.10

OAO MITSuME RC 57106.64 2015-03-25 20.35± 0.20
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Table 2. (Continued)

telescope instrument filter MJD date (UT) magnitude

Kanata HONIR RC 57106.66 2015-03-25 20.64± 0.12

OAO MITSuME RC 57129.59 2015-04-17 19.48± 0.18

Akeno MITSuME RC 57130.66 2015-04-18 > 20.07

OAO MITSuME RC 57133.60 2015-04-21 19.98± 0.17

OAO MITSuME RC 57166.57 2015-05-24 > 19.98

OAO MITSuME RC 57167.53 2015-05-25 > 19.13

OAO MITSuME RC 57174.49 2015-06-01 > 18.88

OAO MITSuME RC 57176.54 2015-06-03 > 19.87

Subaru FOCAS i 56712.63 2014-02-24 20.72± 0.10

Kanata HONIR IC 56726.77 2014-03-10 19.41± 0.14

Kottamia - IC 56732.53 2014-03-16 18.91± 0.21

Akeno MITSuME IC 56954.73 2014-10-24 > 18.85

Akeno MITSuME IC 56955.73 2014-10-25 > 19.68

Akeno MITSuME IC 56957.73 2014-10-27 > 17.19

OAO MITSuME IC 56957.80 2014-10-27 > 19.37

Akeno MITSuME IC 56958.72 2014-10-28 > 19.64

OAO MITSuME IC 56958.80 2014-10-28 > 19.29

Murikabushi MITSuME IC 56959.80 2014-10-29 19.99± 0.19

OAO MITSuME IC 56959.84 2014-10-29 > 18.32

Murikabushi MITSuME IC 56960.78 2014-10-30 20.08± 0.19

Murikabushi MITSuME IC 56961.78 2014-10-31 > 19.56

Akeno MITSuME IC 56962.73 2014-11-01 > 19.51

Akeno MITSuME IC 56963.71 2014-11-02 > 19.11

OAO MITSuME IC 56963.83 2014-11-02 > 18.43

Akeno MITSuME IC 56964.71 2014-11-03 > 19.65

OAO MITSuME IC 56964.83 2014-11-03 > 19.21

Akeno MITSuME IC 56965.72 2014-11-04 > 19.68

OAO MITSuME IC 56965.83 2014-11-04 > 19.19

Akeno MITSuME IC 56967.72 2014-11-06 > 19.55

OAO MITSuME IC 56967.85 2014-11-06 > 17.92

Akeno MITSuME IC 56968.77 2014-11-07 > 19.19

OAO MITSuME IC 56971.83 2014-11-10 > 18.80

Akeno MITSuME IC 56973.70 2014-11-12 > 19.27

Akeno MITSuME IC 56974.69 2014-11-13 > 19.75

Akeno MITSuME IC 56975.68 2014-11-14 > 19.61

Akeno MITSuME IC 56976.68 2014-11-15 > 19.76

Akeno MITSuME IC 56977.67 2014-11-16 > 19.65

Akeno MITSuME IC 56978.71 2014-11-17 > 19.61

Akeno MITSuME IC 56979.66 2014-11-18 > 19.88

Akeno MITSuME IC 56980.69 2014-11-19 > 18.84

Murikabushi MITSuME IC 56980.72 2014-11-19 > 19.94

Akeno MITSuME IC 56981.66 2014-11-20 > 19.63

Murikabushi MITSuME IC 56981.73 2014-11-20 > 20.70

Murikabushi MITSuME IC 56989.71 2014-11-28 > 19.02

Akeno MITSuME IC 57050.65 2015-01-28 > 19.78

Akeno MITSuME IC 57062.54 2015-02-09 > 18.27

Akeno MITSuME IC 57063.67 2015-02-10 > 19.73

OAO MITSuME IC 57063.76 2015-02-10 > 18.36

OAO MITSuME IC 57064.61 2015-02-11 > 18.83
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Table 2. (Continued)

telescope instrument filter MJD date (UT) magnitude

Akeno MITSuME IC 57064.74 2015-02-11 > 19.69

OAO188 KOOLS IC 57102.49 2015-03-21 19.07± 0.12

OAO188 KOOLS IC 57102.66 2015-03-21 18.86± 0.11

OAO188 KOOLS IC 57102.79 2015-03-21 18.53± 0.11

OAO188 KOOLS IC 57103.47 2015-03-22 18.28± 0.11

OAO188 KOOLS IC 57103.57 2015-03-22 17.92± 0.10

OAO MITSuME IC 57106.64 2015-03-25 > 19.79

OAO MITSuME IC 57129.59 2015-04-17 > 19.60

Akeno MITSuME IC 57130.66 2015-04-18 > 19.38

OAO MITSuME IC 57133.60 2015-04-21 19.55± 0.21

OAO MITSuME IC 57166.57 2015-05-24 > 19.44

OAO MITSuME IC 57167.53 2015-05-25 > 18.72

OAO MITSuME IC 57174.49 2015-06-01 > 18.45

OAO MITSuME IC 57176.54 2015-06-03 > 19.57

Kiso KWFC z 56958.82 2014-10-28 > 19.78

Kiso KWFC z 56959.84 2014-10-29 > 19.70

Nayuta LISS z 56984.50 2014-11-23 19.51± 0.12

Subaru HSC z 56987.50 2014-11-26 20.57± 0.11

Kiso KWFC z 57064.76 2015-02-11 > 18.99

OAO188 KOOLS z 57102.67 2015-03-21 18.79± 0.12

OAO188 KOOLS z 57103.47 2015-03-22 17.96± 0.12

OAO188 KOOLS z 57103.58 2015-03-22 17.78± 0.11

Kanata HONIR J 56732.68 2014-03-16 18.32± 0.21

Nayuta NIC J 56981.75 2014-11-20 20.23± 0.21

Nayuta NIC J 57104.53 2015-03-23 18.38± 0.20

Nayuta NIC J 57106.67 2015-03-25 19.85± 0.21

Nayuta NIC H 56955.80 2014-10-25 19.64± 0.21

Nayuta NIC H 56964.79 2014-11-03 19.60± 0.21

Nayuta NIC H 56965.77 2014-11-04 19.62± 0.21

Nayuta NIC H 56981.76 2014-11-20 20.01± 0.20

Nayuta NIC H 57104.53 2015-03-23 17.79± 0.20

Kanata HONIR Ks 56726.77 2014-03-10 17.85± 0.21

Kanata HONIR Ks 56732.70 2014-03-16 17.68± 0.22

Kagoshima - Ks 56954.77 2014-10-24 > 14.87

Nayuta NIC Ks 56955.80 2014-10-25 18.91± 0.21

OAO188 ISLE K 56959.86 2014-10-29 19.02± 0.21

Nayuta NIC Ks 56964.79 2014-11-03 > 18.89

Kagoshima - Ks 56965.74 2014-11-04 > 16.85

Nayuta NIC Ks 56965.77 2014-11-04 19.49± 0.21

Kagoshima - Ks 56975.71 2014-11-14 > 15.85

Kanata HONIR Ks 56976.87 2014-11-15 > 16.75

Kagoshima - Ks 56981.71 2014-11-20 > 16.15

Kanata HONIR Ks 56981.72 2014-11-20 > 17.27

Nayuta NIC Ks 56981.76 2014-11-20 19.73± 0.21

OAO188 ISLE K 56981.84 2014-11-20 19.11± 0.20

Nayuta NIC Ks 56982.86 2014-11-21 > 18.89

Kagoshima - Ks 56988.70 2014-11-27 > 14.47

Nayuta NIC Ks 57104.51 2015-03-23 17.45± 0.20

Kanata HONIR Ks 57106.66 2015-03-25 > 17.75
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Table 2. (Continued)

telescope instrument filter MJD date (UT) magnitude

Nayuta NIC Ks 57106.67 2015-03-25 19.22± 0.20


