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Abstract

We explore the hypothesis that the Eureka family of sub-km asteroids in the
L5 region of Mars could have formed in a collision. We estimate the size
distribution index from available information on family members; model the
orbital dispersion of collisional fragments; and carry out a formal calcula-
tion of the collisional lifetime as a function of size. We find that, as ini-
tially conjectured by Rivkin et al. (2003), the collisional lifetime of objects
the size of (5261) Eureka is at least a few Gyr, significantly longer than for
similar-sized Main Belt asteroids. In contrast, the observed degree of orbital
compactness is inconsistent with all but the least energetic family-forming
collisions. Therefore, the family asteroids may be ejecta from a cratering
event sometime in the past ∼ 1 Gyr if the orbits are gradually dispersed by
gravitational diffusion and the Yarkovsky effect (Ćuk et al., 2015). The com-
parable sizes of the largest family members require either negligible target
strength or a particular impact geometry under this scenario (Durda et al.,
2007; Benavidez et al., 2012). Alternatively, the family may have formed by a
series of YORP-induced fission events (Pravec et al., 2010). The shallow size
distribution of the family is similar to that of small MBAs (Gladman et al.,
2009) interpreted as due to the dominance of this mechanism for Eureka-
family-sized asteroids (Jacobson et al., 2014). However, our population index
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estimate is likely a lower limit due to the small available number of family
asteroids and observational incompleteness. Future searches for fainter fam-
ily members, further observational characterisation of the known Trojans’
physical properties as well as orbital and rotational evolution modelling will
help distinguish between different formation models.

Keywords: Asteroids, Dynamics, Trojan Asteroids, Mars

1. Introduction

Trojan asteroids are objects confined by solar and planetary gravity to
orbit the Sun 60◦ ahead, or behind, a planet’s position along its orbit (see
eg Murray and Dermott, 1999). Trojans of Jupiter, Neptune and Mars are
stable over the age of the solar system, dating from its formation. The tax-
onomies of Jupiter Trojans are indicative of primitive, geologically unpro-
cessed bodies (Grav et al., 2012). By contrast, the much smaller population
of Martian Trojans exhibits a wide range of taxonomies, suggesting diverse
origins (Rivkin et al., 2003, 2007).

As capture of asteroids into a stable Trojan configuration with Mars is
implausible in the present solar system (Schwarz and Dvorak, 2012), these
objects were likely deposited at their present locations when the solar sys-
tem had not yet reached its final configuration (A. Morbidelli, in Scholl et al.
(2005)). Rivkin et al. (2003) proposed that the collisional lifetime of Mars
Trojans is longer than asteroids in the main belt and, therefore, that the
objects we observe today are near their original sizes. Recently, Christou
(2013) identified a compact orbital cluster of Martian Trojans (the “Eureka
family” after its largest member, 5261 Eureka) containing most of the known
population, including newly-identified Trojans. In the same work, Christou
argued that a collision plausibly formed this cluster but it could also have
been produced by YORP-induced rotational fission (Pravec et al., 2010). In
Ćuk et al. (2015), the orbits of a compact group of Trojan test particles
ejected from Eureka were propagated in time under planetary gravitational
perturbations and the Yarkovsky effect. Those authors found that the group
is likely a genetic family formed roughly in the last Gyr of the solar system’s
history. Here, we focus on the problem of the family’s formation. Specifically,
we address the question of whether the cluster could have formed by colli-
sional fragmentation of a progenitor body. Our approach is three-pronged:
Firstly, we exploit a recent increase in the size of the known population and
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perform an appraisal of the size distribution of observed family members as a
clue to the formation mechanism. Then, we apply models of collisional frag-
mentation, seeking to reproduce the observed orbital distribution of family
members with plausible kinematical properties of the family formation event.
Finally, we perform a rigorous calculation of the collisional lifetime of Mar-
tian Trojans to determine if, and when, collisional disruption is likely to have
occurred.

This paper is organised as follows: In the following Section, we review the
currently available information on Martian Trojans and the Eureka family.
In Section 3 we look at the size distribution of family members confirmed
to-date. In Section 4 we construct a probabilistic model of the collisional
dispersion and escape of Trojan fragments and apply it to the case at hand.
In Section 5 we perform a calculation of the lifetime of objects in the Martian
Trojan clouds against collisional disruption. Finally, in Section 6 we carry
out a synthesis of results from the different lines of investigation and present
our conclusions in Section 7.

2. The observed population of Martian Trojans

Although Mars plays host to a population of co-orbital objects (Connors et al.,
2005), here we are concerned with stable Trojans, in other words asteroids
that have librated around the L4 and L5 Lagrangian equilibrium points of
Mars for an appreciable fraction of the age of the solar system. Scholl et al.
(2005) showed by numerical integration that there are at least three such ob-
jects: (5261) Eureka & (101429) 1998 VF31 at L5 and (121514) 1999 UJ7 at
L4. New simulations by Christou (2013) and by de la Fuente Marcos and de la Fuente Marcos
(2013) added a further four: (311999) 2007 NS2, (385250) 2001 DH47, 2011
UN63 and 2011 SC191. Finally, Ćuk et al. (2015) reported two additional ob-
jects, 2011 SL25 and 2011 UB256, recovered during the 2013/14 opposition
and consequently confirmed as stable Trojans by integrating their orbits. Ta-
ble 1 lists their orbital elements. The quantity D refers to the half-amplitude
of libration of the mean longitude λ around L5. Remarkably, all 6 asteroids
identified as Trojans in 2013 and 2015 are Eureka family members.

Compositional information on the three brightest Trojans shows that Eu-
reka belongs to the rare, olivine-dominated, A-type taxonomic class while
1998 VF31 shows a spectrum dominated by pyroxene and not directly re-
lated to Eureka (Rivkin et al., 2003, 2007). 1999 UJ7’s featureless spectrum
(Rivkin et al., 2003) and low albedo (pv = 0.048 ± 0.012; Mainzer et al.,
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2012) suggest a primitive taxonomy, typical of bodies in the Outer Main
Belt and Jupiter Trojan clouds (Grav et al., 2012). Assuming albedos of
0.2, 0.23 & 0.06 for the respective classes within the Bus-DeMeo taxonomy
(5261: A class; 101429: S class; 121514: C/D class; DeMeo et al., 2009;
DeMeo and Carry, 2013) yields, through the formula

D =
1329√
pv

10−H/5,

diameters of 1.8, 1.1 & 2.2 km respectively. Therefore the three brightest
Trojans are similar in size, 1-2 km across. Analysis of observations dur-
ing year one of the WISE reactivation mission gave D = 1.88±0.23 km,
pv = 0.18±0.05 for Eureka (Nugent et al., 2015), consistent with our above
estimates of size & albedo for that asteroid and within the range of albedo val-
ues obtained by WISE (Masiero et al., 2011) and IRAS (Tedesco et al., 2004)
for other so-called monominerallic olivine asteroids (Sanchez et al., 2014).

Recently, it was confirmed that asteroids (311999) 2007 NS2 and (385250)
2001 DH47, the second and third largest members of the Eureka family, share
the same spectral reflectance properties as (5261) Eureka. In particular, all
three objects display features that are diagnostic of an olivine-dominated
surface composition (Borisov et al., 2016; Polishook et al., 2016). Since the
implied taxonomy is uncommon, it further strengthens the case for a common
origin of the members of this group. In other words, we have here a real family
of objects sharing a common parent body, rather than a cluster of unrelated
asteroids.

3. Size distribution of the family

The small sample size notwithstanding, the size distribution of fam-
ily members is diagnostic of the formation mechanism (Tanga et al., 1999;
Jacobson et al., 2014). Assuming that the size distribution of the objects has
the form

N(> s) = A s −α (1)

where s is the asteroid diameter and α and A are constants, it is simple to
show that the corresponding distribution of absolute magnitudes is

N(< H) = B 10 βH (2)

where α = 5β and B is related to A, α and the albedo. In this case, the
magnitude distribution appears as a line in the plane log (N(< H)) vs H . A
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nonlinear least-squares fit utilising the Marquardt-Levenberg algorithm with
inverse-variance weights yields β=0.25±0.02 & 0.28±0.03 for the JPL/MPC
and AstDys data respectively or, equivalently, 1.25 & 1.4 for N(>D). Note
that AstDys H values for the fainter objects are systematically higher than
JPL’s. MPC magnitudes tend to be underestimated for the fainter objects
(Jurić et al., 2002). In any case, the slopes are considerably shallower than
the β = 0.5 expected for a population of collisional fragments (Dohnanyi,
1969, Fig. 1). Interestingly, Gladman et al. (2009) found an exponent of
∼ 0.3 for the distribution of asteroids with 15 < H . 18 in the Main
Belt, similar to what is found here for the Trojans. This was interpreted
by Jacobson et al. (2014) as being due to the action of YORP-induced ro-
tational fission modifying the size distribution at the small end of the pop-
ulation (D . 6 km or H & 15). A caveat lies in our premise, stated in
the following Section, that the completeness limit of the Trojans is the same
as that of NEOs, where 50% completeness is achieved at H = 19.0 − 19.5
according to Harris and D’Abramo (2015). The faintest Trojans fall into or
near this range, so this may have skewed the observed distribution towards
a shallower slope. Incidentally, extrapolation of our power law fits implies a
significant number of fainter, as yet undiscovered, Eureka cluster members,
13-22 up to H = 22 and 57-99 up to H = 24. These numbers should be
considered as lower limits if, as pointed out above, our number statistics
of observed Trojans are biased by observational completeness. This part of
the population, if it exists, should be discoverable by future observational
surveys (e.g. the Large Synoptic Survey Telescope; Lynne Jones et al., 2015;
Todd et al., 2012). In the near-term, the mapping now in progress by the
Gaia satellite may help confirm candidate Trojans as well as discover new
objects with sizes near the present completeness limit (Todd et al., 2014).

Finally, for our slope estimates we find an upper limit of r = 0.9 for the
mass ratio between the largest remnant and the parent body, similar to that
obtained (r = 0.875) if we sum up the volumes of the known family members.
This is a useful limiting case to consider in the ensuing calculations and also
allows to estimate the minimum size of the Eureka family parent body as
1.88/ (0.9)1/3 ≃ 2 km.
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4. Collisional dispersion of Trojans

4.1. Theoretical framework

To a first approximation, a collisional fragment of a Trojan must satisfy
the condition

|∆a+ aPB − aMars| < acrit (3)

to remain a Trojan, where aPB and aMars are the osculating semimajor axes
of the parent body and Mars respectively. The quantity acrit corresponds to
the widest possible libration amplitude for a Trojan, equal to

acrit =
√

8µ/3 aMars, (4)

µ representing the Mars-Sun mass ratio and ∆a the change in semima-
jor axis caused by the ejection velocity of the fragment. This is related to
the orbital elements of the parent body at the time of ejection through the
expression (Murray and Dermott, 1999)

∆a = 2a2/h (∆vresinf +∆vθ (1 + e cos f)) (5)

where ∆vr and ∆vθ are two components of the ejection velocity vector in
a body-centred reference frame (r̂ = ~r/|~r|, θ̂ = ~r×~h/|~r×~h|, ĥ = ~r×~v/|~r×~v|)
defined through the instantaneous heliocentric state vector (~r, ~v) of the parent
asteroid.

We note that Trojan collisional fragments may also escape if their orbital
eccentricity and/or inclination exceed the boundary of the stable region of
width ∼ 0.15×15◦ identified by Scholl et al. (2005). However, Gauss’ equa-
tions imply that, for a given velocity increment, changes in those elements
scale as ∆a/a where ∆a ∼ 10−3 AU and a = 1.5 AU. Therefore, escape
through violating (3) will occur for ejection speeds two orders of magnitude
smaller than those required to leave the Scholl et al. stability region. We
test this premise further in Section 4.3.

The cartesian components of a random vector v̂ that corresponds to a
uniform distribution of points on the unit sphere may be expressed through
the parameterisation v̂=v̂(θ, u):

v̂x =
√
1− u2 cos θ

v̂y =
√
1− u2 sin θ (6)

v̂z = u
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where u and θ are uniformly distributed in the intervals (−1, 1) and (0, 2π)
respectively and u is related to the co-latitude φ through the relationship
u = cosφ. The conditional probability density function (pdf) of either v̂x or
v̂y given u is given by:

p(v̂x/y|u) =
1

π
√

1− u2 − v2x/y

, −
√
1− u2 < vx/y <

√
1− u2 (7)

from which it can be shown that these components of the random vector
v̂ follow the same distribution as u.

We now carry out the transformation (f , u, θ) ⇒ (f , ∆a∗, θ) to obtain
the trivariate pdf

p(f , ∆a∗, θ) =
|∆a∗|

8π2|K(e, θ, φ)|
√

K2(e, θ, φ)−∆a∗2
, |∆a∗| < |K(e, θ, φ)|

(8)
where K(e, θ, φ) = e cos θ sin f + (1 + e cos f) sin θ and ∆a∗ is the change in
semimajor axis that results from a velocity increment ∆v = |v̂| = 1 .

We recover the distribution of ∆a for a given speed v by considering that
∆a = ∆a∗v so

p(f , ∆a, θ | v) = |∆a|
8π2v|K(e, θ, φ)|

√

v2K2(e, θ, φ)−∆a2
, |∆a| < v|K(e, θ, φ)|

(9)
from which one can obtain the pdf of ∆a for a given speed by double

integration. Note that, in deriving (8) and (9) we have assumed that the
true anomaly f varies uniformly in time. Technically this is not correct
since the uniformly-varying quantity is the mean anomaly M ; unless e = 0,
f depends on it in a nonlinear way through Kepler’s equation. However,
a uniformly-varying f is a good approximation for low-e orbits. We show
this in Fig. 2 where we plot the distribution of 105 random variates of ∆a
(grey bars) for v = 10 m sec−1 and for e=0, 0.05 and 0.1 (top, middle &
bottom panels respectively). These were generated from Eq. 5, with uniform
variates of θ and variates of f calculated from a Fourier series approximation
in M , including terms up to e4 (e.g. Murray & Dermott 1999). The bold
line is the double integral of Eq. 8 evaluated numerically using the procedure
NIntegrate in Mathematica. The two agree closely, at least up to e = 0.1,
even though f was assumed uniform in producing the bold line.
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Fig. 2 is also useful in demonstrating how the pdf of ∆a changes as the
eccentricity is gradually increased. For e = 0, K = sin θ and p(∆a|v) =
(2v)−1 for |∆a| < v and 0 otherwise. This is a good approximation for stable
Martian Trojans with e .0.1 (Mikkola et al., 1994).

If the pdf of ejection speed p(v) is supplied, the pdf of ∆a is arrived at
as the marginal probability density of the joint pdf

p(∆a, v) = p(∆a|v) p(v) (10)

by integration.

4.2. Models of fragment ejection speed

It is evident from the previous Section, specifically Eq. 10, that the dis-
tribution of ∆a for the fragments depends on the adopted distribution for
v. Obtaining physically realistic distributions of ejection speed is an active
research area where much depends on the - measured or assumed - prop-
erties of the impactor and target, quantities poorly constrained even for
well-characterised Main Belt asteroids let alone the poorly-observed Mar-
tian Trojans (Davis et al., 2002). To ensure that our conclusions will at
least encompass - if not outright represent - the truth, we carry through our
computations for two different ejection speed models, those by Cellino et al.
(1999) and Carruba et al. (2003). For our purposes, the main difference be-
tween the two is that the Cellino et al. model relates the ejection speed to
fragment size whereas Carruba et al. do not.

Model A - (Cellino et al., 1999):

Cellino et al. (1999) argued, on grounds of energy equipartition, for a
relationship between the ejection speed V and the size s of a fragment of a
catastrophic collision of the form

log (s/sPB) = 2/3 log V −K ′ (11)

where sPB is the size of the parent asteroid and K ′ a constant. Comparing
with the size-velocity statistics of known asteroid families, they found that
this relationship can adequately represent the maximum speed (say V ∗) for
a given fragment size. Furthermore, the additive constant K ′ depends on
r = mLR/mPB - the mass ratio of the largest remnant to the parent asteroid
- through the empirical law

K ′ = 0.21 log r − 1.72 (12)
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On the basis of these findings, they suggested obtaining the ejection speed
of a fragment of a given size s as a uniformly random variate between 0 and
the maximum speed from Eq. 11 once r has been specified. This is our Model
A.

The speed pdf may be obtained from the joint distribution of v and s

p(v, s) = p(v|s) p(s) (13)

where the first term is the speed pdf for a given fragment size while the
second is a pdf describing the size distribution of the fragments. The former
is assumed to be uniform (cf Eq. 11) so

p(v|s) = 1/V ∗(s), 0 ≤ v < V ∗(s). (14)

For a power law size distribution of the form (1) with exponent α, the
corresponding pdf can be built by first defining the cumulative distribution
function

p(< s) =
(

s−α
min − s−α

)

/
(

s−α
min − s−α

LR

)

, smin ≤ s < sLR (15)

and obtaining the pdf by differentiation.
The joint speed-size pdf as well as the marginal distribution for the speed

are given by expressions (A.1) and (A.2) respectively in the Appendix. For
r & 0.8 that is applicable to the limiting case r ≃ 0.9 discussed at the end of
Section 3, Cellino et al. (1999) observed that K ′ no longer follows (12) and is
approximately constant. The authors further speculated that this break may
be related to the transition between the so-called cratering and catastrophic
regimes for the outcome of a collision between asteroids. Even though Cellino
et al’s conclusion was tentative and based on a relatively limited number of
families, we do not see a clear distinction between their result and the conven-
tional approach of regarding the survival of a 0.5-parent-body-mass fragment
as the threshold between the two regimes. It is convenient, therefore, to refer
to the two subcases of this model as the cratering and catastrophic regimes
respectively. In the cratering subcase, the distributions of interest are then
given by (A.3) and (A.4).

The distributions we have just obtained are not robust in the sense that
they depend on the - arbitrarily chosen - parameter smin. They can be made
robust by setting the limiting size to be the minimum observable fragment size
sobs rather than smin. In that case, the functional form of the corresponding
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pdfs is given by (A.5) and (A.6) and similarly for the cratering case. The
upper (lower) bounds on the speed (size) domain are now determined by sobs
rather than smin.

To arrive at the pdf for ∆a we multiply the distribution (9) by either
Eq. A.5 or the equivalent expression for the cratering case and eliminate
variables by integration. This results in the branch functions (A.7) and
(A.8) for the catastrophic and cratering cases respectively. Mathematica
procedures to evaluate these expressions are available from the authors upon
request.

A caveat of the Cellino et al. model is related to their interpretation of
the orbital dispersion of asteroid family members as solely due to collisional
ejection. It was shown subsequently that the gradual action of the Yarkovsky
effect modifies significantly this distribution (Bottke et al., 2001) and is an
important factor in the constraining of family ages (Vokrouhlický et al., 2006;
Spoto et al., 2015). For this reason, Model A should overestimate ejection
speeds and the semimajor axis dispersion of the fragments. The implications
for our conclusions regarding the possibility that the Eureka family formed
by a collision are discussed at the end of this Section.

Model B - (Carruba et al., 2003):

The alternative method by Carruba et al. (2003) (Model B) generates
synthetic asteroid families from collisions at the catastrophic disruption limit
where the critical value Q∗ of the specific energy is obtained as a function of
the bulk density ρPB and radius RPB of the parent body respectively:

Q∗ = 0.4 ∗ ρPB ∗R1.36
PB . (16)

The separation velocity v∞ of the fragments is obtained through

v2∞ = v2ej − v2esc (17)

where
v2esc = 1.64 ∗G ∗MPB/RPB. (18)

The ejection velocities follow a maxwellian pdf with a quadratic mean of

< v2ej >= Q∗ ∗ fKE, (19)

where fKE represents the fraction of the impact energy that goes into the
kinetic energy of the fragments.
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The distribution of the separation speed v∞ for escaped fragments may
be defined through the ejection speed pdf pej(.) as

p∞ = pej(v
2
∞ + v2esc)/

√

1 + v2esc/v
2
∞. (20)

This is an un-normalised distribution function mapping all values vej >
vesc to a positive v∞. Consequently, it integrates not to unity but, rather, the
fraction of ejection speeds in pej that result in escapes. This integral is given

by Γ (1/2, κ2) /
√
π+2

√

κ/π exp−κ2

where κ2 = v2esc/2σ
2, σ2 = 3 < v2ej > and

Γ is the incomplete Gamma function. It approaches unity if <v2ej>≫ v2esc, in
other words when all of the fragments escape. From Eq. 16, 18 & 19 and for
typical parameter values - RPB = 1 km, ρPB = 2500 kg m−3, fKE = 0.1 and
Q∗ ∼ 103 J kg−1 - we get <v2ej> /v2esc ≃ 100 therefore p∞(.) is effectively a
maxwellian pdf of the same form as pej(.).

As this speed is assumed independent of the size s, the corresponding
pdf for the change in semimajor axis is obtained by multiplying the pdf (9)
(or its simplified form for small e) with pej(.) and integrating from |∆a| to
infinity to obtain:

pCA04(∆a) = 1/
√
2πσ2e−∆a2/2σ2

(21)

ie a Gaussian.

4.3. Numerical checks

Before proceeding further, we wish to check that our assumed mechanism
of escape - dispersion of the semimajor axis a of the fragments and escape
if |a− aMars| > acrit - is correct. This is done in two stages: Firstly, we gen-
erated a set of fragment speed-size pairs by sampling the distributions (14),
(15) and (20). These pairs were used to calculate a set of heliocentric state
vectors for the fragments where the speeds, applied along uniformly random
directions, were vectorially added to the ephemeris velocity of Eureka at 0000
UTC on 1st July 2000 retrieved from JPL HORIZONS (Giorgini et al., 1996).
The position vectors of the fragments were assumed identical to that of Eu-
reka. These state vectors were then numerically integrated for 2000 yr with
a 2nd order Bulirsch-Stoer scheme available within the MERCURY package
(Chambers, 1999) and with a model that included the 8 major planets. We
find that fragments that escape from the Trojan region do so typically within
the first few tens of years from the beginning of the integration.
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In the first test, we calculate the quantity ∆a = a− aMars averaged over
the first 20 years of the integration for each of the fragments that persist
as Trojans. The averaging is done to eliminate short-period planetary per-
turbations in the variation of a and isolate the change due to the coorbital
potential. The distribution of the values of <∆a> is shown in Fig. 3 where
we have superposed the respective analytical form from the previous Sec-
tion. In the left panel, the cratering case for Model A with sobs = 70m and
sLR = 1300m was used. In the right panel, Model B with fKE = 0.01 and
Q∗ = 103 J kg−1 was used. In both cases we assumed a size distribution of
the form (15) with α = 2.5. The distributions are offset from centre since
< ∆a >Eureka ≃ −2 m s−1⋆. The approximate number of surviving Trojan
fragments in either case is ∼100. The vertical dashed lines represent the
relationship | < ∆a > | = acrit. We observe that, although the theoretical
speed distribution of fragments extends further than this boundary, the dis-
tribution of persisting Trojan fragments in either case does not. It appears
therefore that condition (3) may be used with confidence as a criterion for
Trojan retention (or escape). It is also noteworthy that, although the two
pdfs are of different shape, the corresponding sample distributions are not
too dissimilar. This is partly due to the moderate sample size but also in
that both pdfs are supposed to describe the same physical phenomenon: the
ejection of asteroidal fragments from a collision near the limit of catastrophic
disruption of the target.

In the second test, we measure how well our analytical model predicts
the fraction of escaping (or, equivalently, remaining) fragments. We carry
out numerical simulations as before, but with two different sets of values of
the parameters that control the velocity distributions of the fragments. At
the same time, we calculate the expected fraction of escaping Trojans by
integrating the form of p(∆a) appropriate for each case across the domain
defined by (3). These parameter sets correspond to different simulation runs
and the results are shown in Table 3. Again, the statistics from the numerical
runs agree well with the analytical model predictions.

4.4. Use of the formal variance

The principal feature of the family that we wish to reproduce is its com-
pactness, defined here as the degree of dispersion in the libration amplitudes

⋆∆a may be represented in units of speed by omitting the multiplicative factor in Eq. 5
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or, equivalently, the semimajor axis of its members. An appropriate statistic
for this purpose is the variance (or its square root, the standard deviation),
equal to the order 2 moment of a zero-mean distribution i.e. E[∆a2]. For
Model A, multiplying (A.7) with ∆a2 and integrating yields (B.1) and a sim-
ilar expression (B.2) for the cratering case. For model B, the variance is
simply the square of the scale parameter σ.

To obtain the distribution of ∆a for the sample, we carry out numerical
integrations of the asteroids’ motion using the mixed variable symplectic
(MVS) option in MERCURY with an integration time step of 4d, an output
step of 128d and a duration of ∼ 6 × 103 yr. This timescale is equivalent to
∼ 5 libration cycles of the guiding centre (Mikkola et al., 1994) and, at the
same time, considerably shorter than the timescale for secular evolution of
the orbit (∼ 5× 104 yr). From the integration output, we form the complex
quantity

(1 + a− aMars) exp i (λ− λMars),

then use the Frequency Modified Fourier Transform (FMFT; Sidlichovský and Nesvorný,
1997) to calculate the libration amplitudes of a − aMars and λ − λMars as
the semi-axes of an ellipse. This is a valid approximation to the guid-
ing centre path around the equilibrium point for small libration amplitude
(Murray and Dermott, 1999), this being the case here. The location of the li-
bration centre is not fixed at 60◦ but remains a free parameter to be estimated
from the fit. This is done to account for excursions of the libration centre from
±60◦, expected for non-circular, non-planar orbits (Namouni and Murray,
2000). In Table 2 we compare our estimates of ∆λ with those from Ćuk et al.
(2015). Differences in the ∆λ estimates for the individual asteroids range
from under a degree (Eureka, 2007 NS2) to ∼ 5◦ (2011 SC191). The sample
distribution moments are, however, very similar; the respective means and
standard deviations are 2.95± 0.58 m s−1 and 2.79± 0.50 m s−1. Therefore,
this procedure may also be thought of as alternative method to calculate Tro-
jan libration amplitudes (Milani, 1993; Ćuk et al., 2015) and we can use the
new estimates to test the correlation found by Ćuk et al. with the mean or-
bital inclinations. We find, as those authors did, that the two are negatively
correlated but more weakly so (R2=0.17 vs 0.83 for that first set of libra-
tion amplitudes). Therefore the Ćuk et al. conclusion stands, but should be
re-examined as new discoveries add to the inventory of known Trojans.

It is useful, at this point, to quantify the sensitivity of the variance to
the different model parameters, particularly for Model A where the variance
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depends on them in a nontrivial algebraic fashion. By experimenting with
different values, we find that our model is most sensitive to the size of the
minimum observable fragment sobs and the size of the largest fragment sLR.
In Figure 4 we show

√

V [∆a] for the ejection laws of Cellino et al. (1999)
in the cratering (bold line) and catastrophic regimes (short dashed line) as
functions of these two parameters where we have set r = 0.8. The two dashed
horizontal lines indicate the critical value of ∆a for a Trojan to escape (grey
line) and the root-mean-square of the sample for the Eureka family (black
line). Further, we have set sobs = 750m in the left plot and sLR = 1900m in
the right. The Carruba et al. model (Model B) is independent of fragment
size and generally predicts a somewhat higher dispersion than observed, for
instance σ∆a = 1.73 m s−1 for fKE = 0.01 and Q∗ = 102 J kg−1. σ∆a ≃ 0.5
m s−1 would require reducing either fKE or Q∗ by an order of magnitude
to values not easy to reconcile with present understanding of the physics of
asteroid collisions (e.g. Jutzi et al., 2010). Therefore we focus our attention
on the size-dependent Model A from this point onwards.

As one might expect, the law for the catastrophic case generally predicts
a higher dispersion for given values of sobs and sLR than the law for the cra-
tering case. Apparently, retainment of Trojan fragments occurs over a wide
range of values for both parameters. The same cannot, however, be said
for families of fragments as compact as the Eureka family. In this instance,
values of σ∆a up to 2 ×σEureka are achieved for sLR = 1600 − 2000m in the
left panel and sobs = 600− 850m in the right. Interestingly, as σ∆a decreases
the two profiles approach each other. This is not unexpected since r = 0.8
signifies the break between the cratering and catastrophic impact regimes in
the Cellino et al. model. This close agreement is valid over the entire range
of values of sobs and sLR relevant to this problem. Fig. 5 shows contours of
constant variance as a function of these two parameters. The vertical gray
band represents the nominal WISE constraint on Eureka’s size. The 0.5 m
s−1 contour, co-incident for the two regimes, corresponds to the size range
650m < sobs < 840m or 18.4 < H < 17.9. It is noteworthy that the crater-
ing regime (continuous line) is more sensitive to an increasing σ∆a than the
catastrophic one (dashed line). Whereas quadrupling the standard deviation
to 2 m s−1 does not significantly affect the latter profile, a change of half that
size shifts the cratering profile by ∆sobs = −170m. In other words, allowing
the target value of σ∆a to vary results in different ranges in sobs between the
cratering and catastrophic regimes. It is then useful, as a consistency check,
to ask the question of what is the minimum observable size for a Martian
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Trojan at present? Although we are not aware of a specific study addressing
the level of completeness of Martian Trojan surveys, this subject has been
investigated for the near-Earth Object population. The distribution of NEO
orbits is somewhat different than that for Martian Trojans as NEOs can be
observed closer to the Earth than MTs, favouring the detection of smaller
asteroids. On the other hand, a NEO would spend most of the time well
outside the orbit of Mars where it may be unobservable.

Harris and D’Abramo (2015) calculated NEO survey completeness as a
function of the absolute magnitude H over the last 20 yr. The red point
and error bar in Fig. 5 represent the median (50%) and interquartile range
(25% → 75%) of the distribution of their “C20” quantity from their Table
2. Our analysis of the family dispersion implies somewhat higher values for
sobs but there is overlap with the 0.5 m s−1 contour for 650-700m (H ∼ 18.3)
objects. Invoking our earlier argument, it appears easier to accommodate a
cratering regime scenario, i.e. one where the ejection velocity is independent
of sLR. An actual Trojan limiting magnitude significantly fainter than that
for NEOs would be more favourable towards a catastrophic regime scenario
and vice versa for a brighter H . To distinguish between these two scenaria
would require a dedicated study of the present completeness level of MTs
and/or dedicated searches for Martian Trojans to drive 50% completeness to
the few hundred m level. We see, for instance, that for sobs = 300m (H ≃ 20)
the variance for the catastrophic regime becomes 11.2 m s−1, several times
higher than for the cratering regime and equal to the entire width of the
Trojan region.

Finally, if, as discussed in Section 4.2, Model A overestimates fragment
ejection speeds, the contours in Fig. 5 would be shifted down and to the right.
This would mean that the family is complete to a smaller size and that the
parent body was larger. In fact, the collisional hypothesis may be dismissed
altogether if this overestimate is sufficiently severe to move the contours far
from the gray bar. However, the fact that our two ejection speed models
yield similar results in the marginally catastrophic regime (Fig. 3 and see
discussion above) suggests that this is not the case.

5. Calculation of collisional lifetime

Computation of the collisional lifetime requires (i) a statistical model of
the orbits and sizes of the impactors, and (ii) a physical description of the
conditions for catastrophic disruption of the target. The impactor popula-
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tions relevant to Martian Trojans are: Mars-Crossing Main Belt asteroids
(hereafter referred to as Mars Crossers - MCs), Near Earth Objects (NEOs),
Jupiter Family Comets (JFCs) and other Martian Trojans (MTs).

Describing the size distribution for each class of impactors by the power
law (1), estimates of the exponent α for MBAs in the literature vary over
a wide range (1.3-3.0; Neukum et al., 1975; Belton et al., 1992; Ivezić et al.,
2001; Tedesco et al., 2005; Bottke et al., 2007) while for NEOs, α ≈ 2 (Bottke et al.,
2002; Stuart and Binzel, 2000). For reference, the expected value for a colli-
sionally relaxed population is 2.51 (Dohnanyi, 1969).

Fig. 6 shows the cumulative number of bodies with absolute magnitude
less than H for MBAs (black dashed line), MCs (black solid line), NEAs (red
line) and JFCs (green line) (data retrieved from the Minor Planet Center on
May 27, 2015). The rollover for fainter objects is due to the loss of detection
efficiency for those asteroids (eg DeMeo and Carry, 2013). Since the major-
ity of impactors that can lead to catastrophic disruption of Martian Trojans
are considerably smaller than those represented in the observational data, we
extrapolate from suitable power laws to account for their contribution in our
model. The straight lines in Fig. 6 represent power-law fits to the MPC data
over specific magnitude intervals. Note that the contribution from JFCs is
at least an order of magnitude lower than those of the other two source pop-
ulations for objects with H>22. For this reason we neglect the contribution
of JFCs in our model. In addition, the slope for MCs is somewhat shallower
than that for MBAs and closer to that of NEOs. It is, therefore, reasonable to
utilise the same power law dependence for the MC and NEO populations and
express the former as a multiple of the latter i.e. NMC(> D) = 8NNEO(> D).
For NNEO(> D) we adopt a functional form similar to that proposed by
Stuart and Binzel (2000): N(> D) = 1090 D[km]−α for NEOs with α a free
parameter in our model.

The distribution of potential impactor orbits is used to determine the
mean intrinsic probability of collision P (in units of km−2 yr−1 impactor−1,
the average number per year of close approaches between the centres of the
target and an impactor within a distance of 1 km) and the distribution ψ(U)
of the impact speed. The latter may be expressed as ψ(U)=dn/dU , where
dn is the mean number per year of close approaches within a distance of 1

1Formally true for a size-independent critical energy density Q∗ (see Davis et al., 2002,
and references therein)
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km with relative velocity between U and U + dU . The distribution of the
selected orbits depends on Hcutoff , the absolute magnitude cutoff we apply.
This parameter is unrelated to the power law fits to the size distributions
discussed above.

To understand how choosing a particular cutoff value may affect the im-
pact velocity distribution, we have calculated ψ(U) for Hcutoff = 15, 18, 21
and 30. For the MC population (Fig 7) we find that, considering only the
brightest objects (H<15) yields a trimodal ψ(U) with peaks at 4.5, 10 and
19 km sec−1. Including orbits for fainter objects results in a more unimodal
distribution for ψ(U) peaking at 10 km sec−1 with most (> 90%) of the power
between 5 and 20 km sec−1. It is worth noting that this is somewhat higher
than the case for the Main Asteroid Belt (e.g. Farinella and Davis, 1992).
For NEOs, there are essentially no differences between the obtained impact
velocity distributions except for a gradual reduction of the dispersion about
the mode as progressively fainter objects are included. Fewer differences still
are apparent in the case of the JFC population.

Fig. 10 shows that the dependence of P on Hcutoff is similar for the MC
and NEO populations with a shallow minimum at ∼17 and a flattening out
for objects fainter than 22. Different choices for the value of Hcutoff en-
tail variations of the computed intrinsic collision probability of 20%-30%. A
better estimation of P would require the modelling of the debiased orbital
distribution of the different impactor populations, i.e. corrected for obser-
vational selection effects, a task beyond the scope of the present work. The
uncertainty in P is a relatively minor factor affecting the final estimate of the
collisional lifetime compared to the impactor size distribution and the energy
required to disrupt the target (see below). In light of these facts, we have
adopted Hcutoff=18 since choosing a higher value does not drastically change
the result. The value of P for JFCs is about an order of magnitude smaller
than for MCs and NEOs and probably contains many fewer impactors with
respect to those two populations (Fig. 6). This further justifies our decision
to neglect the contribution of JFCs in our model.

Inter-Trojan collisions, which we have not considered so far in our com-
putations, may increase the value of P over and above what is shown in
Fig. 10. This increase should, however, be fairly small according to the fol-
lowing argument: For the Trojans listed in Christou (2013) the mean intrinsic
probability of collision is ∼ 68 × 10−18 km−2 yr−1 and the mean impact ve-
locity is 11 km s−1. The value of P is an order of magnitude higher than
that for collisions with MCs while for objects of the Mars Trojans’ sizes, at
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11 km s−1, the critical projectile size for catastrophic disruption should be
∼ 20m, corresponding to H = 26 − 27. In order for the contribution from
Trojan-Trojan collisions to be comparable to the contribution from MCs, the
number of Trojans with H < 26 − 27 should be at least 10% of MCs or a
few times 107. However, a power law extrapolation assuming β = 0.5, and
that the L5 population is complete up to H = 17 where N(H) = 2, shows
that there should be only 2 × 105 Trojans down to that size. Therefore we
believe that small Trojans, if they exist, make a negligible contribution to
the impactor population.

The parameter determining the destruction of the target is the so-called
specific impact energy

Q = 1/2(m/M)U2 (22)

where m and M are respectively the masses of the impactor and the
target and U is the impact speed.

An impact is typically termed “catastrophic” if it results in the fragmen-
tation and dispersion of the target with the largest fragment containing at
most 50% of the parent body’s mass. This occurs when Q > Q∗ where the
critical value Q∗ depends - apart from the material properties of the impactor
& target - on the size D of the target and the impact velocity U . If such
an event was responsible for the Eureka family, the size of the parent body
would still be only 25% larger than Eureka, about 2 km. We considered
the following two models for Q∗ (Fig. 11): the one by Benz and Asphaug
(1999, hereafter BA99), developed specifically for collisions among MBAs
of basaltic composition and for impact speeds of 3 and 5 km s−1, and the
other by Housen and Holsapple (1990, hereafter HH90), for which Q∗ can be
computed for any value of the target diameter and impact velocity. Even
though fragmentation models are based on rigorous physical assumptions,
the outcomes they predict are still characterised by large uncertainties. As
a case in point, we note that BA99 does not reproduce exactly the results of
HH90 for U = 3 and 5 km s−1.

All calculations are carried out for the following reference orbit for the
Martian Trojan targets: a = 1.523840 au, e = 0.05588 and I = 21.30
deg. The numerical computation of the intrinsic probabilities of collision
and distributions of the impact velocity has been done using the method
of Dell’Oro and Paolicchi (1998). We further assume that the population of
the potential impactors as well as that of the targets are in a steady state,
that the size and orbit distributions of potential impactors are uncorrelated
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and that their angular elements (longitudes of the node and pericentre) are
uniformly distributed. This last assumption follows the Öpik/Wetherill for-
malism where the semimajor axes, eccentricities and inclinations are held
fixed and the pericenter arguments and node longitudes vary uniformly. Un-
der this particular condition the general formalism of Dell’Oro and Paolicchi
(1998) is equivalent to that of Bottke et al. (1994), and reproduces the results
of the latter work.

Fig. 12 shows the collisional lifetime of a Martian Trojan as a function
of size for a specific value of the impactor size distribution index (α = 2.5)
and for the collisional fragmentation models of HH90 (red curve) and BA99
(black curve). We observe that the two models agree up to D ≃ 250 m
where τ ≃ 109 yr. They then diverge until they become again parallel to
each other for D & 2 km so that the estimated τ for Housen and Holsapple
is about a third of that for Benz and Asphaug above that size. This is due to
the somewhat higher critical energy density Q∗ in the latter model (Fig. 11).
The dependence of τ on the impactor size distribution index is illustrated in
Fig. 13 where we show curves for different values of α between 2.5 and 1.95
in increments of 0.1 for the Benz and Asphaug model. A shallowing of the
impactor size distribution increases τ particularly for the smaller sizes with
the effect that a 1 km object survives for 4.5 Gyr if α . 2.4 and the same holds
at the small end of the size range if α . 2.25. These lifetimes are significantly
longer than for similar-sized objects in the Main Belt where a 0.1 and 1 km
object will disrupt every 140 and 450 Myr respectively (Farinella et al., 1998).
The probability that a Martian Trojan will suffer at least one catastrophic
impact during a time interval ∆t = τ is 1−e−1 ∼ 63% while a 95% chance of
at least one impact requires ∆t ≃ 3τ . Therefore, for α significantly less than
2.5 and under the Benz and Asphaug model, a 2 km Martian Trojan such
as the Eureka parent body, 1998 VF31 and 1999 UJ7 may not have suffered
a single catastrophic collision over the age of the solar system. A first-order
independent check of this result is to consider the 3 largest Martian Trojans
as different outcomes of the same Poisson process. The likelihood function of
the observation of a cluster around Eureka (a “hit”) but no clusters around
the Trojans 101429 and 121514 (two “misses”) is

L(τ) = e−2∆t/τ
(

1− e−∆t/τ
)

(23)

which has a maximum at τ ∗ = ∆t/ ln (3/2). For ∆t = 4.5 Gyr, τ∗ evaluates
to 11 Gyr, in good agreement with the model prediction in Fig. 13. Under
the alternative model of Housen and Holsapple, τ is revised downwards by
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a factor of about 3. In that case, the survival time for a 2 km object is 2-3
Gyr, about half the age of the solar system and still quite long compared
to their main belt counterparts. Incidentally, this confirms the conjecture of
Rivkin et al. (2003).

The values of τ we have computed represent mean time intervals between
catastrophic collisions. There remains the possibility that the family formed
in a cratering event, where r > 0.5 and Q < Q∗. In that case, it can be
shown that the mean interval τc between such events relative to the same
interval τ for marginally catastrophic disruptions is

τc/τ ≃ (Qc/Q
∗)α/3. (24)

Assuming r ≃ 0.9 for the Eureka family, the simulations of Benz and Asphaug
(1999) suggest Qc/Q

∗ = 0.1− 0.2 (see also Leinhardt and Stewart, 2011) so
for α between 2 and 2.5, we obtain τc = (0.15− 0.30) τ or ≥1 Gyr for a 2
km asteroid. Therefore, and contrary to our findings for catastrophic events,
there is a high likelihood (∼99%) that Eureka has suffered one or more such
impacts over the age of the solar system.

6. Synthesis

The analysis done in Section 4 shows that fragment confinement in the
Martian Trojan clouds following a collisional event is possible. However, the
compactness of the Eureka family within said cloud places severe constraints
on such an origin scenario; we showed that only a marginally catastrophic
or sub-catastrophic (i.e. cratering) event can reproduce the observed libra-
tion amplitude dispersion among family members. The collisional scenario
becomes altogether untenable if, for the reasons discussed in Section 4.2, the
size-dependent ejection speed law by Cellino et al. (1999) used in our orbital
dispersion model significantly overestimates fragment ejection speeds. In-
deed, the subsequent orbital evolution of the fragments under gravitational
perturbations and a Yarkovsky-like drag force, would lead to a dispersion
in libration amplitude of a compact group of Trojans after about a Gyr
(Ćuk et al., 2015) so either the observed dispersion is (i) solely due to the
ejection velocity field from a collision, in which case the family must be
younger than a Gyr, or (ii) a combination of collisional dispersion and orbital
evolution, suggesting ejection speeds lower than inferred from the observed
dispersion of the orbits. It appears, therefore, that the only viable scenario
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from the fragment dispersion modelling is a cratering event sometime in the
past 1 Gyr where the fragments were ejected at or near the parent body’s
escape speed. This is consistent with the findings of Ćuk et al. and also
supported by our estimate of the mean cratering rate for the Eureka parent
body (Section 5). However, such low-energy impacts tend to produce second
largest fragments smaller by an order of magnitude or more in size than the
largest remnant (Durda et al., 2007; Benavidez et al., 2012). In the case at
hand, (311999) 2007 NS2 is ∼1/3 the size of Eureka (Table 1), apparently
too large to be a product of a cratering event. Possible workarounds to this
apparent quandary include an oblique impact (Durda et al., 2007) and that
the parent body is a strengthless rubble pile (Benavidez et al., 2012), both
of which act to reduce the disparity between fragment sizes. The shallow
size distribution of the family, taken at face value, would also argue against a
collisionally-generated population. This argument is, in principle, strength-
ened by the observation that models of large-r size distributions that consider
the finite dimensions of the parent body and the collisional fragments tend to
follow steeper size distributions than those with low r (Tanga et al., 1999).
One should keep in mind, however, that the slope of the size distribution
is currently underestimated due to as-yet-undiscovered Trojans at the faint
(H∼20) end of the observed population (Section 3). As evidence of signif-
icant observational incompleteness for the fainter Trojans, we point to two
recent discoveries near L5, 2016 AA165 (H=20.4) and 2016 CP31 (H=19.7).
Although not yet confirmed as Martian Trojans or members of the Eureka
family, their orbital semi-major axis, orbital location about 60◦ behind Mars
and orbital eccentricity and inclination make them strong family member
candidates, hopefully to be confirmed when recovered at a future apparition.

7. Conclusions and Discussion

The main findings of this paper may be summarised as follows:

1. The collisional lifetime of the present population of Martian Trojans is
of order of Gyr, longer than that of same-sized Main Belt asteroids.

2. The orbital distribution of Eureka family members is consistent with
family formation in the recent ∼ 20% of the solar system’s history from
a sub-catastrophic collision. This result is at odds with the sizes of the
largest family members.
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3. The family size distribution is shallower than that expected for a group
of collisional fragments and similar to that of small MBAs. Its present
usefulness as a discriminator between competing formation models is,
however, limited by the small available sample size.

We can conceive a number of distinct formation mechanisms for this fam-
ily, none of them in complete agreement with all the data at our disposal.
They are:

− Origin from a single collision. This is the simplest possible model. It
would be in agreement with the rate of sub-catastrophic or cratering
impacts on Mars Trojans, and not in dramatic disagreement with the
apparently shallow size distribution, because we have already seen that
the latter could be a result of inventory incompleteness. This scenario
would also be exciting given the taxonomy of Eureka family members,
implying an olivine-rich composition. Such asteroids are rare in the
main belt, suggesting that most of these objects have been “battered
to bits” (Burbine et al., 1996; Chapman, 1997) long ago. If this is true,
finding a family of olivine-rich objects in a region where the collisional
evolution has been very mild would suggest an origin from an old par-
ent body, possibly a survivor from an early generation of planetesimals.
There are two problems encountered by this model. One is the large
sizes of the family asteroids (311999) 2007 NS2 and (311999) 2007 DH47

relative to Eureka, a feature not generally seen in numerical simulations
of sub-catastrophic impacts. Rather than a fatal flaw in the collisional
hypothesis, this could be indicative of the specific impact conditions
or the internal structure of the parent body. The other is the strong
compactness of the Eureka family, requiring original ejection velocities
from the parent body very close to the escape velocity. This is some-
what problematic in a collisional environment in which, according to
our results, the collision rate is rather low but the collision velocities
tend to be high, producing complete fragmentation of the target body
by a smaller projectile.

− Origin from rotational fission. YORP-induced rotational fission is ap-
parently in agreement with available dynamical and physical evidence.
However, even this explanation of the origin of the Eureka family is
not exempt from problems. In particular, the small collision rate in
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the Mars Trojan region would suggest that these asteroids could expe-
rience nearly pure YORP-driven evolution, only very mildly disturbed
by collisions modifying the shape and pole orientation. If this is true,
the possibility that during its history Eureka began undergoing fis-
sion events very recently (to justify the compactness of the family)
appears unlikely. The present family could in principle be the outcome
of the last episode of a series of fission events experienced by Eureka
since its origin. However, no trace of these more dispersed “YOR-
Plet” asteroids from previous episodes are observable today, suggesting
at least some upper limit to the frequency of YORP-driven fissions,
taking into account the timescale of Yarkovsky-driven dispersion com-
puted by Ćuk et al. (2015). Incidentally, this is also a problem for the
cratering impact formation scenario if they occur every few 108 yr or
so.

Here, a clue may be the shorter (. 109 yr) collisional lifetime of Trojans
a few 100s of m across, a result that is dependent on the impactor size
distribution (Fig. 13). In other words, we do not see these older frag-
ments because they have either been removed from the Trojan clouds
outright or otherwise converted to smaller - and thus currently unob-
servable - fragments by collisions. Another potential problem is also
related to the rate of mobility due to the Yarkovsky effect. It would be
interesting to evaluate the probability that, in an environment charac-
terised by a low collision rate, a 2-km body could still be found in the
stability region in spite of it experiencing a dynamical evolution driven
by Yarkovsky. According to Ćuk et al. (2015), the dynamical evolution
of Mars Trojans, taking into account only gravitational perturbations
by major planets, is such that the eccentricity can be pumped up to
values sufficient for it to leave the stability region over timescales as
short as 1 Gyr. By adding a size-dependent Yarkovsky acceleration, the
residence time can either increase or decrease, depending on the sense
of rotation (which determines the direction of the Yarkovsky-driven
drift in semi-major axis). The problem of keeping Eureka in the stable
region can be relevant if we admit for it a quite old age, as suggested
by its uncommon composition.

− Compound scenarios. In principle, one could conceive of more convo-
luted models, including an interplay of different episodes of rotational
fission, cratering or collisional fragmentation that occurred at different
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epochs. Also the interplay of YORP cycles modifying the obliquity
angle, and corresponding Yarkovsky acceleration can play a role. Such
models appear premature today, in the absence of a much better under-
standing of the current inventory and size distribution of Mars Trojans,
complete down to smaller sizes, because these parameters have a strong
bearing on any interpretation attempts.

It is certain that constructing a quantitative evolutionary model consis-
tent with YORP dynamics and the observed properties of the family would
be highly desirable at this stage. On the observational front, completing
the family inventory down to 200-300m (H ∼ 20) objects is sorely needed
to develop more credible models of formation of the family but also to add
confidence to the orbital correlation found by Ćuk et al. (2015). Moreover,
this could also confirm the similarity to the size distribution of the small
MBA population (Gladman et al., 2009; Jacobson et al., 2014). Ultimately,
however, confirmation of the impact formation model would require in situ
measurements, for instance high-resolution imaging during a flyby to search
for evidence of a large-scale cratering event on Eureka’s surface (Thomas,
1999).

Ground-based photometric investigations aimed at deriving the spin rate
and possibly the pole orientation and sense of rotation of Eureka family
members would also add much desired information. We note that the unique
dynamical environment of the Martian Trojan clouds offers an interesting op-
portunity to study YORP-driven production of asteroids, likely the dominant
source mechanism for small MBAs (Jacobson et al., 2014). While identify-
ing MBA “offspring” is hampered by their high number density in orbital
element space (Vokrouhlický and Nesvorný, 2008; Pravec et al., 2010), this
is not an issue for the orbitally isolated Eureka family.

Finally, due to the strong dependence of radiation-driven forces on helio-
centric distance (Bottke et al., 2006), the lessons learned from studying this
unique population of inner solar system asteroids will apply to long-lived co-
orbitals of our own planet, both known and unknown (Christou and Asher,
2011; Ćuk et al., 2012; Dvorak et al., 2012), to help understand the processes
that dominate their origin and evolution.
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1999. The velocity-size relationship for members of asteroid families and
implications for the physics of catastrophic collisions. Icarus 141, 79–95.

Chambers, J. E., 1999. A hybrid symplectic integrator that permits close
encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–
799.

Chapman, C. R., 1997. Mantles were battered to bits. Nature 385, 293–295.

Christou, A. A., 2013. Orbital clustering of martian Trojans: an asteroid
family in the inner solar system? Icarus 224, 144–153.

Christou, A. A., Asher, D. J., 2011. A long-lived horseshoe companion to the
Earth. Mon. Not. R. Astron. Soc. 414, 2965–2969.

Connors, M., Stacey, G., Brasser, R., Wiegert, P., 2005. A survey of orbits
of co-orbitals of Mars. Planet. Space Sci. 53, 617–624.
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2006. Yarkovsky/YORP chronology of asteroid families. Icarus 182, 118–
142.
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Table 1: Mean orbital elements and physical properties of Eureka family asteroids.

D I Diam.†

Designation (deg) e (deg) H (km)

(5261) Eureka 5.63 0.0593 22.22 16.1 1.79
(385250) 2001 DH47 5.90 0.0572 22.80 18.9 0.49
(311999) 2007 NS2 7.40 0.0468 20.95 18.1 0.71

2011 SC191 9.52 0.0734 19.14 19.3 0.41
2011 SL25 7.97 0.0850 21.75 19.5 0.37
2011 UB256 5.89 0.0565 22.64 20.1 0.28
2011 UN63 7.44 0.0512 21.60 19.7 0.34

Orbital elements are from Ćuk et al. (2015). Absolute
magnitudes were retrieved from the Minor Planet Center
Database on 26 July 2016.
†Calculated from H assuming a visible albedo of 0.2.
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Table 2: Proper semimajor axes and libration amplitudes (2D) for Eureka family asteroids.

(5261) (311999) (385250) 2011 2011 2011 2011
Eureka 2007 NS2 2001 DH47 SC191 SL25 UB256 UN63

∆λ† (◦) 11.26 14.80 11.80 19.05 15.94 11.78 14.88
∆λ (This work) 11.56 14.19 10.68 14.44 11.86 13.67 17.83
∆a‡ (m s−1) 2.39 2.94 2.21 2.99 2.46 2.83 3.69

† Data from Ćuk et al. (2015).
‡ Calculated from the row above as ∆a =

√
3µMars aMars (Milani, 1993).
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Table 3: Comparison between analytical model predictions and numerical simulations of
the retainment and escape of Trojan fragments.

Run #1: ρ = 2500 kg m−3, α = 2.5, DLR = 1300m,
sobs = 70m, r = 0.8

Cellino et al ejection Carruba et al ejection
(cratering regime) (fKE = 0.01, Q∗ = 103 J kg−1)

NEj/NTotal NTroj/NTotal NEj/NTotal NTroj/NTotal

Model 0.30 0.70 0.06 0.94

Simulation 389/1069 680/1069 97/1039 942/1039

Run #2: ρ = 2500 kg m−3, α = 2.5, DLR = 3000m,
sobs = 100m, r = 0.5

Cellino et al ejection Carruba et al ejection
(catastrophic regime) (fKE = 0.1, Q∗ = 104 J kg−1)

NEj/NTotal NTroj/NTotal NEj/NTotal NTroj/NTotal

Model 0.86 0.14 0.84 0.16

Simulation 1251/1429 178/1429 371/415 44/415
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Appendix A. Derivation of pdfs for Model A

Combining Eqs. 11 to 15 we obtain the joint speed-size pdf

p(v, s) = 10−0.59

(

α

smin

)(

sLR
sPB

)−0.95(
smin

sPB

)α+1(
s

sPB

)3/2−α−1

(A.1)

that is nonzero within the domain (0, V ∗(s))× (smin, sLR).
For this pdf, the marginal distribution for the speed is

p(v) = 10−0.59

(

α

α− 3/2

)(

sLR
sPB

)−0.95

×
(

smin

sPB

)3/2
[

1− (smin/sU)
α−3/2

]

, 0 ≤ v < V ∗(smin) (A.2)

where sU = min{sLR, S∗(v)} and the function S∗ is obtained by solving Eq. 11
for s.

For sLR/sPB & 0.8, K ′ is independent of the mass ratio r (Cellino et al.,
1999). In that case, expressions (A.1) and (A.2) respectively become

p(v, s) = 100.2
(

α

smin

)(

smin

sPB

)α+1(
s

sPB

)3/2−α−1

(A.3)

and

p(v) = 100.2
(

α

α− 3/2

)(

smin

sPB

)3/2

×
[

1− (smin/sU)
α−3/2

]

, 0 ≤ v < V ∗(smin). (A.4)

Introducing the minimum observable fragment size sobs, we obtain for the
catastrophic case

pobs(v, s) = 10−0.59

(

α

sPB

)(

sLR
sPB

)−0.95 (
sobs
sPB

)α(
s

sPB

)3/2−α−1

(A.5)

and

pobs(v) = 10−0.59

(

α

α− 3/2

)(

sLR
sPB

)−0.95

×
(

sobs
sPB

)3/2
[

1− (sobs/sU)
α−3/2

]

, 0 ≤ v < V ∗(sobs) (A.6)
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respectively.
The pdf for ∆a is a branch function. We provide here the full expressions

for both the catastrophic:

pCE99(∆a) = 10−0.59

(

α

α− 3
2

)(

sLR
sPB

)−0.95(
sobs
sPB

)3/2

×
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(A.7)

and cratering case:

pCE99(∆a) = 100.2
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(A.8)

Appendix B. Formal variance of ∆a for Model A

Catastrophic case:

VCE99(∆a) = 10−0.59
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Cratering case:

VCE99(∆a) = 100.2
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