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ABSTRACT

We investigate magnetohydrodynamic turbulence driven by the magnetorotational instability (MRI) in Keplerian

disks with a nonzero net azimuthal magnetic field using shearing box simulations. As distinct from most previous

studies, we analyze turbulence dynamics in Fourier (k-) space to understand its sustenance. The linear growth of MRI

with azimuthal field has a transient character and is anisotropic in Fourier space, leading to anisotropy of nonlinear
processes in Fourier space. As a result, the main nonlinear process appears to be a new type of angular redistribution of

modes in Fourier space – the nonlinear transverse cascade – rather than usual direct/inverse cascade. We demonstrate

that the turbulence is sustained by interplay of the linear transient growth of MRI (which is the only energy supply for
the turbulence) and the transverse cascade. These two processes operate at large length scales, comparable to box size

and the corresponding small wavenumber area, called vital area in Fourier space is crucial for the sustenance, while

outside the vital area direct cascade dominates. The interplay of the linear and nonlinear processes in Fourier space is
generally too intertwined for a vivid schematization. Nevertheless, we reveal the basic subcycle of the sustenance that

clearly shows synergy of these processes in the self-organization of the magnetized flow system. This synergy is quite

robust and persists for the considered different aspect ratios of the simulation boxes. The spectral characteristics of the

dynamical processes in these boxes are qualitatively similar, indicating the universality of the sustenance mechanism
of the MRI-turbulence.
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1. INTRODUCTION

The problem of the onset and sustenance of turbu-

lence in accretion disks lies at the basis of understanding
different aspects of disk dynamics and evolution: secu-

lar redistribution of angular momentum yielding obser-

vationally obtained accretion rates, dynamo action and
generation of magnetic fields and outflows, possibility of

appearance of coherent structures (e.g., vortices, zonal

flows, pressure bumps) that can form sites for planet

formation. Investigations in this direction acquired new
impetus and became more active since Balbus & Hawley

(1991) demonstrated the relevance and significance of

the magnetorotational instability (MRI) for disks. To-
day the MRI is considered as the most likely cause of

magnetohydrodynamic (MHD) turbulence in disks and

hence a driver agent of the above phenomena. Starting
from the 1990s a vast number of analytical and numer-

ical studies have investigated different aspects of linear

and nonlinear evolution of the MRI in three-dimensional

(3D) Keplerian disks using both local shearing box and
global approaches for different configurations (unstrat-

ified and stratified, incompressible and compressible,

with vertical and/or azimuthal magnetic fields having
zero and nonzero net fluxes) at different domain sizes

and resolutions (see e.g., Armitage 2011; Fromang 2013,

for a review).
In this paper, we consider a local model of a

disk threaded by a nonzero net azimuthal/toroidal

magnetic field. The linear stability analysis showed

that only non-axisymmetric perturbations can ex-
hibit the MRI for this orientation of the background

field (Balbus & Hawley 1992; Ogilvie & Pringle 1996;

Terquem & Papaloizou 1996; Papaloizou & Terquem
1997; Brandenburg & Dintrans 2006; Salhi et al. 2012;

Shtemler et al. 2012). Such perturbations are, how-

ever, sheared by the disk’s differential rotation (shear)
and as a result the MRI acquires a transient nature,

while the flow stays exponentially, or spectrally stable.

Nevertheless, as early seminal numerical simulations by

Hawley et al. (1995) revealed, the transient MRI in the
presence of an azimuthal field in fact causes transition to

MHD turbulence. However, the transient growth itself,

which in this case is the only available source of energy
for turbulence, cannot ensure a long-term sustenance

of the latter without appropriate nonlinear feedback.

In other words, the role of nonlinearity becomes cru-
cial: it lies at the heart of the sustenance of turbulence.

Thus, the transition to turbulence in the presence of

azimuthal field fundamentally differs from that in the

case of the vertical field, where the MRI grows ex-
ponentially forming a channel flow, which, in turn,

breaks down into turbulence due to secondary (para-

sitic) instabilities (Goodman & Xu 1994; Hawley et al.

1995; Bodo et al. 2008; Pessah & Goodman 2009;

Latter et al. 2009; Pessah 2010; Longaretti & Lesur

2010; Murphy & Pessah 2015).
The first developments of the MRI in magnetized disks

in the 1990s coincided with the period of the break-

through of the fluid dynamical community in under-
standing the dynamics of spectrally stable (i.e., without

exponentially growing eigenmodes) hydrodynamic (HD)

shear flows (see e.g., Reddy et al. 1993; Trefethen et al.
1993; Farrell & Ioannou 1996; Schmid & Henningson

2001; Schmid 2007). The nonnormality of these flows,

i.e., the nonorthogonality of the eigenfunctions of clas-

sical modal approach, had been demonstrated and its
consequences – the transient/nonmodal growth of per-

turbations and the transition to turbulence were thor-

oughly analyzed. There are no exponentially growing
modes in such flows and the turbulence is energetically

supported only by the linear nonmodal growth of pertur-

bations due to the shear flow nonnormality. Afterwards,
the bypass concept of the onset and sustenance of tur-

bulence in spectrally stable shear flows was formulated

(see e.g., Gebhardt & Grossmann 1994; Baggett et al.

1995; Grossmann 2000). According to this concept,
the turbulence is triggered and maintained by a sub-

tle interplay of shear-induced linear transient growth

and nonlinear processes. These processes appear to be
strongly anisotropic in Fourier (k-) space due to the

shear (Horton et al. 2010; Mamatsashvili et al. 2016) in

contrast to classical isotropic and homogeneous forced
turbulence without background shear.

Differentially rotating disks represent special case

of shear flows and hence the effects of nonnormal-

ity inevitably play a key role in their dynamics (e.g.,
Chagelishvili et al. 2003; Mukhopadhyay et al. 2005;

Zhuravlev & Razdoburdin 2014; Razdoburdin & Zhuravlev

2017). In particular, in magnetized disks, the non-
modal/transient growth of the MRI over intermediate

(dynamical) times can be actually more relevant in many

situations than its modal growth (Mamatsashvili et al.
2013; Squire & Bhattacharjee 2014). Since in the

present case of azimuthal field, the MRI exhibits only

transient rather than exponential growth, the result-

ing turbulence, like in spectrally stable HD shear flows,
is expected to be governed by a subtle cooperation of

this nonmodal growth and nonlinear processes. As we

showed previously (Mamatsashvili et al. 2014), this is
indeed the case for an analogous two-dimensional (2D)

MHD flow with linear shear and magnetic field paral-

lel to it and the flow configuration considered here in
fact represents its 3D generalization. So, our main goal

is to investigate the spectral properties and sustaining
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dynamics of MHD turbulence driven by the transient

amplification of the MRI in disks with a net nonzero

azimuthal field.

The dynamics and statistics of MRI-driven MHD tur-
bulence in Keplerian disk flows have been commonly

analyzed and interpreted in physical space rather than

in Fourier space. This also concerns studies of disks
with nonzero net azimuthal magnetic field. Below

we cite the most relevant ones. Hawley et al. (1995);

Guan et al. (2009); Guan & Gammie (2011); Ross et al.
(2016) in the shearing box, and Fromang & Nelson

(2006); Beckwith et al. (2011); Flock et al. (2011,

2012a); Sorathia et al. (2012); Hawley et al. (2013);

Parkin & Bicknell (2013) in global disk simulations ex-
tensively investigated the dependence of the dynamics

and saturation of the MRI-turbulence without explicit

dissipation on the domain size, resolution and imposed
azimuthal field strength. Fleming et al. (2000) in lo-

cal model and Flock et al. (2012b) in global model

addressed the influence of resistivity and established
a critical value of magnetic Reynolds number for the

existence of turbulence. Simon & Hawley (2009) and

Meheut et al. (2015) included also viscosity together

with resistivity and showed that at fixed field strength
the saturation amplitude mainly depends on the mag-

netic Prandtl number, that is, the ratio of viscosity

to resistivity, if the latter is larger than unity and the
Reynolds number is high enough. On the other hand, at

Prandtl numbers smaller than unity the turbulence sus-

tenance is more delicate: it appears to be independent
of the Prandtl number and mainly determined by the

magnetic Reynolds number. Simon & Hawley (2009)

attributed this behavior to the small-scale resistive dis-

sipation processes (reconnection), which are thought to
be central in the saturation process.

Part of these papers based on the local approximation

(Hawley et al. 1995; Fleming et al. 2000; Meheut et al.
2015) do present analysis of energy density power spec-

trum, but in somewhat restricted manner by consider-

ing either averaging over wavevector angle, i.e., averages
over spherical shells of constant |k|, or slices along dif-

ferent directions in Fourier space. However, there are

several studies of MRI turbulence also in the local ap-

proximation, but with nonzero net vertical magnetic flux
(Lesur & Longaretti 2011; Nauman & Blackman 2014)

and with zero net flux (Fromang & Papaloizou 2007;

Fromang et al. 2007; Simon et al. 2009; Davis et al.
2010), which go beyond energy spectrum and describe

the dynamics of MRI- turbulence and associated en-

ergy injection (stresses) and nonlinear transfer pro-
cesses in Fourier space, but again in a restricted man-

ner by using shell-averaging procedure and/or reduced

one-dimensional (1D) spectrum along a certain direc-

tion in Fourier space by integrating in the other two.

However, as demonstrated by Hawley et al. (1995);

Lesur & Longaretti (2011); Murphy & Pessah (2015) for
MRI-turbulence (with net vertical field) and by our pre-

vious study of 2D MHD shear flow turbulence in Fourier

space (Mamatsashvili et al. 2014), the power spectra
and underlying dynamics are notably anisotropic due to

shear, i.e., depend quite strongly also on the orientation

of wavevector k in Fourier space rather than only on its
magnitude |k|. This is in contrast to a classical isotropic

forced turbulence without background velocity shear,

where energy cascade proceeds along k only (Biskamp

2003). This shear-induced anisotropy also differs from
the typical anisotropy of classical shearless MHD turbu-

lence in the presence of a (strong) background magnetic

field (Goldreich & Sridhar 1995). It leads to anisotropy
of nonlinear processes and particularly to the nonlinear

transverse cascade (see below) that play a central role in

the sustenance of turbulence in the presence of transient
growth. Consequently, the shell-averaging done in the

above studies is misleading, because it completely leaves

out shear-induced spectral anisotropy, which is thus an

essential ingredient of the dynamics of shear MHD tur-
bulence. The recent works by Meheut et al. (2015) and

Murphy & Pessah (2015) share a similar point of view,

emphasizing the importance of describing anisotropic
shear MRI-turbulence using a full 3D spectral analy-

sis instead of using spherical shell averaging in Fourier

space, which is applicable only for isotropic turbulence
without shear. Such a generalized treatment is a main

goal of this paper. In particular, Murphy & Pessah

(2015) employ a new approach that consists in using

invariant maps for characterizing anisotropy of MRI-
driven turbulence in physical space and dissecting the

3D Fourier spectrum along the most relevant planes, as

defined by the type of anisotropy of the flows.
As for the global disk studies cited above, relatively

little attention is devoted to the dynamics of MRI-

turbulence in Fourier space. This is, however, under-
standable, since in contrast to the cartesian shearing

box model, global disk geometry makes it harder to per-

form Fourier analysis in all three, radial, azimuthal and

meridional directions, so that these studies only consider
azimuthal spectra integrated in other two directions.

Recently, we have numerically studied a cooper-

ative interplay of linear transient growth and non-
linear processes ensuring the sustenance of nonlin-

ear perturbations in HD and 2D MHD plane spec-

trally stable constant shear flows (Horton et al. 2010;
Mamatsashvili et al. 2014, 2016). Performing the anal-

ysis of dynamical processes in Fourier space, we showed
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that the shear-induced spectral anisotropy gives rise

to a new type of nonlinear cascade process that leads

to transverse redistribution of modes in k-space, i.e.

to a redistribution over wavevector angles. This pro-
cess, referred to as the nonlinear transverse cascade,

originates ultimately from flow shear and fundamen-

tally differs from the canonical (direct and inverse)
cascade processes accepted in classical Kolmogorov or

Iroshnikov-Kraichnan (IK) theories of turbulence (see

e.g., Biskamp 2003). The new approach developed in
these studies and the main results can be summarized

as follows:

– identifying modes that play a key role in the sustain-

ing process of the turbulence;
– defining a wavenumber area in Fourier space that is

vital in the sustenance of turbulence;

– defining a range of aspect ratios of the simulation
domain for which the dynamically important modes are

fully taken into account;

– revealing the dominance of the nonlinear transverse
cascade in the dynamics;

– showing that the turbulence is sustained by a sub-

tle interplay between the linear transient (nonmodal)

growth and the nonlinear transverse cascade.
In this paper, with the same spirit and goals in mind,

we take the approach of Mamatsashvili et al. (2014) to

investigate the dynamics and sustenance of MHD tur-
bulence driven by the transient growth of MRI with a

net nonzero azimuthal field in a Keplerian disk flow.

We adopt the shearing box model of the disk (see e.g.,
Hawley et al. 1995), where the flow is characterized by

constant shear rate, as that considered in that paper,

except it is 3D, including rotation (Coriolis force) and

vertical thermal stratification. To capture the spectral
anisotropy of the MRI-turbulence, we analyze the lin-

ear and nonlinear dynamical processes and their inter-

play in 3D Fourier space in full without using the above-
mentioned procedure of averaging over spherical shells

of constant k = |k|. So, our study is intended to be more

general than the above-mentioned studies that also ad-
dressed the spectral dynamics of MRI-turbulence. One

of our goals is to demonstrate the realization and effi-

ciency of the transverse cascade and its role in the tur-

bulence dynamics also in the 3D case, as we did for 2D
MHD shear flow. Although in 3D perturbation modes

are more diverse and, of course, modify the dynamics,

still the essence of the cooperative interplay of linear
(transient) and nonlinear (transverse cascade) processes

should be preserved.

We pay particular attention to the choice of the
aspect ratio of the simulation box, so as to encom-

pass as full as possible the modes exhibiting the most

effective amplification due to the transient MRI. To

this aim, we apply the method of optimal perturba-

tions, widely used in fluid dynamics for characterizing

the nonmodal growth in spectrally stable shear flows
(see e.g., Farrell & Ioannou 1996; Schmid & Henningson

2001; Zhuravlev & Razdoburdin 2014), to the present

MRI problem (see also Squire & Bhattacharjee 2014).
These are perturbations that undergo maximal tran-

sient growth during the dynamical time. In this frame-

work, we define areas in Fourier space, where the tran-
sient growth is more effective – these areas cover small

wavenumber modes. On the other hand, the simula-

tion box includes only a discrete number of modes and

minimum wavenumbers are set by its size. A dense pop-
ulation of modes in these areas of the effective growth

in k-space is then achieved by suitably choosing the box

sizes. In particular, we show that simulations with elon-
gated in the azimuthal direction boxes (i.e., with az-

imuthal size larger than radial one), do not fully account

for this nonmodal effects, since the discrete wavenum-
bers of modes contained in such boxes scarcely cover the

areas of efficient transient growth.

The paper is organized as follows. The physical model

and derivation of dynamical equations in Fourier space
is given in Section 2. Selection of the suitable aspect

ratio of the simulation box based on the optimal growth

calculations is made in Section 3. Numerical simulations
of the MRI-turbulence at different aspect ratios of the

simulation box are done in Section 4. In this Section we

present also energy spectra, we determine dynamically
active modes and delineate the vital area of turbulence,

where the active modes and hence the sustaining dy-

namics are concentrated. The analysis of the interplay

of the linear and nonlinear processes in Fourier space
and the sustaining mechanism of the turbulence is de-

scribed in Section 5. In this Section we also reveal the

basic subcycle of the sustenance, describe the impor-
tance of the magnetic nonlinear term in the generation

and maintenance of the zonal flow, examine the effect of

the box aspect ratio and demonstrate the universality of
the sustaining scheme. A summary and discussion are

given in Section 6.

2. PHYSICAL MODEL AND EQUATIONS

We consider the motion of an incompressible conduct-

ing fluid with constant kinematic viscosity ν, thermal

diffusivity χ and Ohmic resistivity η, in the shearing
box centered at a radius r0 and rotating with the

disk at angular velocity Ω(r0). Adopting the Boussi-

nesq approximation for vertical thermal stratification
(Balbus & Hawley 1991; Lesur & Ogilvie 2010), the
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governing equations of the non-ideal MHD become

∂U

∂t
+ (U · ∇)U = −1

ρ
∇P +

(B · ∇)B

4πρ
− 2Ω×U

+ 2qΩ2xex − ΛN2θ ez + ν∇2
U, (1)

∂θ

∂t
+U · ∇θ =

uz

Λ
+ χ∇2θ, (2)

∂B

∂t
= ∇× (U×B) + η∇2

B, (3)

∇ ·U = 0, (4)

∇ ·B = 0, (5)

where ex, ey, ez are the unit vectors, respectively, along

the radial (x), azimuthal (y) and vertical (z) directions,
ρ is the density, U is the velocity, B is the magnetic

field, P is the total pressure, equal to the sum of the

thermal and magnetic pressures, θ ≡ δρ/ρ is the per-
turbation of the density logarithm (or entropy, since

pressure perturbations are neglected in the Boussinesq

approximation). Finally, N2 is the Brunt-Väisälä fre-
quency squared that controls the stratification. It is

assumed to be positive and spatially constant, equal

to N2 = 0.25Ω2, formally corresponding to a stably

stratified (i.e., convectively stable) local model along the
vertical z-axis (Lesur & Ogilvie 2010). For dimensional

correspondence with the usual Boussinesq approxima-

tion, we define a stratification length Λ ≡ g/N2, where g
is the vertical component of the gravity. Note, however,

that Λ cancels out from the equations if we normalize

the density logarithm by Λθ → θ, which will be used
henceforth. So, here we take into account the effects

of thermal stratification in a simple way. Bodo et al.

(2012, 2013) studied more sophisticated models of strat-

ified MRI-turbulence in the shearing box, treating ther-
mal physics self-consistently with dynamical equations.

The shear parameter q = −d lnΩ/d ln r is set to q = 3/2

for a Keplerian disk.
Equations (1)-(5) have a stationary equilibrium so-

lution – an azimuthal flow along the y-direction with

linear shear of velocity in the the radial x-direction,
U0 = (0,−qΩx, 0), with the total pressure P0, density

ρ0 and threaded by an azimuthal uniform background

magnetic field, B0 = (0, B0y, 0), B0y > 0. This simple,

but important configuration, which corresponds to a lo-
cal version of a Keplerian flow with toroidal field, allows

us to grasp the key effects of the shear on the perturba-

tion dynamics and ultimately on a resulting turbulent
state.

Consider perturbations of the velocity, total pres-

sure and magnetic field about the equilibrium, u =

U−U0, p = P−P0,b = B−B0. Substituting them into

Equations (1)-(5) and rearranging the nonlinear terms
with the help of divergence-free conditions (4) and (5),

we arrive to the system (A1)-(A9) governing the dy-

namics of perturbations with arbitrary amplitude that is
given in Appendix. These equations are solved within a

box with sizes (Lx, Ly, Lz) and resolutions (Nx, Ny, Nz),

respectively, in the x, y, z−directions. We use standard
for the shearing box boundary conditions: shearing-

periodic in x and periodic in y and z (Hawley et al.

1995). For stratified disks, outflow boundary conditions

in the vertical direction are more appropriate, however,
in the present study, as mentioned above, we adopt a lo-

cal approximation in z with spatially constant N2 that

justifies our choice of the periodic boundary conditions
in this direction (Lesur & Ogilvie 2010). This does not

affect the main dynamical processes in question.

2.1. Energy equation

The perturbation kinetic, thermal and magnetic en-
ergy densities are defined, respectively, as

EK =
1

2
ρ0u

2, Eth =
1

2
ρ0N

2θ2, EM =
b
2

8π
.

From the main Equations (A1)-(A9) and the shearing
box boundary conditions, after some algebra, we can

readily derive the evolution equations for the volume-

averaged kinetic, thermal and magnetic energy densities

d

dt
〈EK〉 = qΩ 〈ρ0uxuy〉−N2 〈ρ0θuz〉+

1

4π
〈B0u⊗∇b〉

− 1

4π
〈bb⊗∇u〉 − ρ0ν〈(∇u)

2〉, (6)

d

dt
〈Eth〉 = N2 〈ρ0θuz〉 − ρ0N

2χ〈(∇θ)
2〉, (7)

d

dt
〈EM 〉 = qΩ

〈
−bxby

4π

〉
+

1

4π
〈B0b⊗∇u〉

+
1

4π
〈bb⊗∇u〉 − η

4π
〈(∇b)

2〉, (8)

where the angle brackets denote an average over the

box. Adding up Equations (6)-(8), the cross terms of

linear origin on the right hand side (rhs), proportional to
N2 and B0 (which describe kinetic-thermal and kinetic-

magnetic energy exchange, respectively) and the nonlin-

ear terms cancel out because of the boundary conditions.
As a result, we obtain the equation for the total energy
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density E = EK + Eth + EM ,

d〈E〉
dt

= qΩ

〈
ρ0uxuy −

bxby
4π

〉

− ρ0ν〈(∇u)
2〉 − ρ0N

2χ〈(∇θ)
2〉 − η

4π
〈(∇b)

2〉. (9)

The first term on the rhs of Equation (9) is the flow
shear, qΩ, multiplied by the volume-averaged total

stress. The total stress is a sum of the Reynolds,

ρ0uxuy, and Maxwell, −bxby/4π, stresses that describe,
respectively, exchange of kinetic and magnetic ener-

gies between perturbations and the background flow in

Equations (6) and (8). Note that they originate from

the linear terms proportional to shear in Equations
(A2) and (A6). The stresses also determine the rate of

angular momentum transport (e.g., Hawley et al. 1995;

Balbus 2003) and thus are one of the important diagnos-
tics of turbulence. The negative definite second, third

and fourth terms describe energy dissipation due to vis-

cosity, thermal diffusivity and resistivity, respectively.
Note that a net contribution from the nonlinear terms

has canceled out in the total energy evolution Equation

(9) after averaging over the box. Thus, only Reynolds

and Maxwell stresses can supply perturbations with
energy, extracting it from the background flow due to

the shear. In the case of the MRI-turbulence studied

below, these stresses ensure energy injection into tur-
bulent fluctuations. The nonlinear terms, not directly

tapping into the flow energy and therefore not changing

the total perturbation energy, act only to redistribute
energy among different wavenumbers as well as among

components of velocity and magnetic field (see below).

In the absence of shear (q = 0), the contribution from

the Reynolds and Maxwell stresses disappears in Equa-
tion (9) and hence the total perturbation energy cannot

grow, gradually decaying due to dissipation.

2.2. Spectral representation of the equations

Before proceeding further, we normalize the variables

by taking Ω−1 as the unit of time, the disk scale height

H as the unit of length, ΩH as the unit of velocity,
ΩH

√
4πρ0 as the unit of magnetic field and ρ0Ω

2H2

as the unit of pressure and energy. Viscosity, thermal

diffusivity and resistivity are measured, respectively, by
Reynolds number, Re, Péclet number, Pe, and magnetic

Reynolds number, Rm, defined as

Re =
ΩH2

ν
, Pe =

ΩH2

χ
, Rm =

ΩH2

η
.

All the simulations share the same Re = Pe =

Rm = 3200 (i.e., the magnetic Prandtl number
Pm = Rm/Re = 1). The strength of the imposed

background uniform azimuthal magnetic field is mea-

sured by a parameter β = 2Ω2H2/v2A, which we fix

to β = 200, where vA = B0y/(4πρ0)
1/2 is the corre-

sponding Alfvén speed. In the incompressible case, this
parameter is a proxy of the usual plasma β parameter

(Longaretti & Lesur 2010), since the sound speed in

thin disks is cs ∼ ΩH. In this non-dimensional units,
the mean field becomes B0y =

√
2/β = 0.1.

Our primary interest lies in the spectral aspect of

the dynamics, so we start with decomposing the per-
turbations f ≡ (u, p, θ,b) into spatial Fourier harmon-

ics/modes

f(r, t) =

∫
f̄(k, t) exp (ik · r) d3k (10)

where f̄ ≡ (ū, p̄, θ̄, b̄) denotes the corresponding Fourier

transforms. Substituting decomposition (10) into per-
turbation Equations (A1)-(A9), taking into account the

above normalization and eliminating the pressure (see

derivation in Appendix), we obtain the following evolu-
tion equations for the quadratic forms of the spectral ve-

locity, logarithmic density (entropy) and magnetic field:

∂

∂t

|ūx|2
2

= −qky
∂

∂kx

|ūx|2
2

+Hx+I(uθ)
x +I(ub)

x +D(u)
x +N (u)

x ,

(11)

∂

∂t

|ūy|2
2

= −qky
∂

∂kx

|ūy|2
2

+Hy+I(uθ)
y +I(ub)

y +D(u)
y +N (u)

y ,

(12)

∂

∂t

|ūz|2
2

= −qky
∂

∂kx

|ūz|2
2

+Hz+I(uθ)
z +I(ub)

z +D(u)
z +N (u)

z ,

(13)

∂

∂t

|θ̄|2
2

= −qky
∂

∂kx

|θ̄|2
2

+ I(θu) +D(θ) +N (θ), (14)

∂

∂t

|b̄x|2
2

= −qky
∂

∂kx

|b̄x|2
2

+ I(bu)
x +D(b)

x +N (b)
x , (15)

∂

∂t

|b̄y|2
2

= −qky
∂

∂kx

|b̄y|2
2

+M+ I(bu)
y +D(b)

y +N (b)
y ,

(16)

∂

∂t

|b̄z|2
2

= −qky
∂

∂kx

|b̄z|2
2

+ I(bu)
z +D(b)

z +N (b)
z . (17)

These seven dynamical equations in Fourier space,
which are the basis for the subsequent analysis,

describe processes of linear, Hi(k, t), I(uθ)
i (k, t),

I(θu)(k, t), I(ub)
i (k, t), I(bu)

i (k, t), M(k, t), and non-

linear, N (u)
i (k, t), N (θ)(k, t), N (b)

i (k, t), origin, where

the index i = x, y, z henceforth. D(u)
i (k, t), D(θ)(k, t),
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D(b)
i (k, t) describe the effects of viscous, thermal and

resistive dissipation as a function of wavenumber and

are negative definite. These terms come from the re-

spective linear and nonlinear terms in main Equations
(A1)-(A7) and their explicit expressions are derived in

Appendix. In the turbulent regime, these basic linear

and nonlinear processes are subtly intertwined, so be-
fore embarking on calculating and analyzing these terms

from the simulation data, we first describe them in more

detail below. Equations (11)-(17) serve as a mathemati-
cal basis for our main goal – understanding the character

of the interplay of the dynamical processes sustaining

the MRI-turbulence. Since we consider a finite box in

physical space, the perturbation dynamics also depends
on the smallest wavenumber available in the box (see

Section 3), which is set by its sizes Lx, Ly, Lz and is a

free parameter in the shearing box.
To get a general feeling, as in Simon et al. (2009);

Lesur & Longaretti (2011), we derive also equations for

the spectral kinetic energy, EK = (|ūx|2+|ūy|2+|ūz|2)/2,
by combining Equations (11)-(13),

∂EK
∂t

= −qky
∂EK
∂kx

+H+I(uθ)+I(ub)+D(u)+N (u), (18)

where

H =
∑

i

Hi =
q

2
(ūxū

∗

y + ū∗

xūy),

I(uθ) =
∑

i

I(uθ)
i , I(ub) =

∑

i

I(ub)
i ,

D(u) =
∑

i

D(u)
i = −2k2

Re
EK , N (u) =

∑

i

N (u)
i

and for the spectral magnetic energy, EM = (|b̄x|2 +

|b̄y|2 + |b̄z|2)/2, by combining Equations (15)-(17),

∂EM
∂t

= −qky
∂EM
∂kx

+M+ I(bu) +D(b) +N (b), (19)

where

M = −q

2
(b̄xb̄

∗

y + b̄∗xb̄y), I(bu) =
∑

i

I(bu)
i = −I(ub),

D(u) =
∑

i

D(u)
i = − 2k2

Rm
EM , N (b) =

∑

i

N (b)
i .

The equation of the thermal energy, Eth = N2|θ|2/2, is
straightforward to derive by multiplying Equation (14)

just by N2, so we do not write it here. Besides, we will
see below that the thermal energy is much less than the

magnetic and kinetic energies, so the thermal processes

have a minor contribution in forming the final picture
of the turbulence. Similarly, we get the equation for the

total spectral energy of perturbations, E = EK + Eth +

EM ,

∂E
∂t

= −qky
∂E
∂kx

+H+M+D(u) +N2D(θ)

+D(b) +N (u) +N2N (θ) +N (b). (20)

One can distinguish six basic processes, five of linear
and one of nonlinear origin, in Equations (11) and (17)

(and therefore in energy Equations 18 and 19) that un-

derlie the perturbation dynamics:

1. The first terms on the rhs of Equations (11)-(17),
−qky∂(.)/∂kx, describe the linear “drift” of the re-

lated quadratic forms parallel to the kx-axis with

the normalized velocity qky. These terms are of
linear origin, arising from the convective deriva-

tive on the lhs of the main Equations (A1)-(A7)

and therefore correspond to the advection by the
background flow. In other words, background

shear makes the spectral quantities (Fourier trans-

forms) drift in k−space, non-axisymmetric har-

monics with ky > 0 and ky < 0 travel, respec-
tively, along and opposite the kx−axis at a speed

|qky|, whereas the ones with ky = 0 are not ad-

vected by the flow. This drift in Fourier space
is equivalent to the time-varying radial wavenum-

ber, kx(t) = kx(0) + qΩkyt, in the linear analysis

of non-axisymmetric shearing waves in magnetized
disks (e.g., Balbus & Hawley 1992; Johnson 2007;

Pessah & Chan 2012). In the energy Equations

(18) and (19), the spectral energy drift, of course,

does not change the total kinetic and magnetic en-
ergies, since

∫
d3k∂(kyEK,M )/∂kx = 0.

2. The second rhs terms of Equations (11)-(13), Hi,
and Equation (16), M, are also of linear origin

associated with the shear (Equations B29-B31

and B43), i.e., originate from the linear terms

proportional to the shear parameter in Equations
(A2) and (A6). They describe the interaction

between the flow and individual Fourier modes,

where the velocity components |ūi|2 and the az-
imuthal field perturbation |b̄y|2 can grow, respec-

tively, due to Hi and M, at the expense of the

flow. In the present case, such amplification is
due to the linear azimuthal MRI fed by the shear.

In the presence of the mean azimuthal field, only

non-axisymmetric modes exhibit the MRI and

since they also undergo the drift in k−space,
their amplification acquires a transient nature

(Balbus & Hawley 1992; Papaloizou & Terquem

1997; Brandenburg & Dintrans 2006; Salhi et al.
2012; Shtemler et al. 2012). From the expressions
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(B29)-(B31) and (B43), we can see that Hi and

M are related to the volume-averaged nondimen-

sional Reynolds and Maxwell stresses entering

energy Equations (6) and (8) through

q〈uxuy〉 =
∫

Hd3k, q〈−bxby〉 =
∫

Md3k,

where H =
∑

i Hi, and hence represent, respec-

tively, the spectra of the Reynolds and Maxwell

stresses, acting as the source, or injection of kinetic

and magnetic energies for perturbation modes at
each wavenumber (see Equations 18 and 19) (see

also Fromang & Papaloizou 2007; Simon et al.

2009; Davis et al. 2010; Lesur & Longaretti 2011).

3. the cross terms, I(uθ)
i and I(θu) (Equations B32

and B37) describe, respectively, the effect of the

thermal process on the i-component of the veloc-

ity, ūi, and the effect of the z-component of the ve-
locity on the logarithmic density (entropy) for each

mode. These terms are also of linear origin, re-

lated to the Brunt-Väisälä frequency squared N2,
and come from the corresponding linear terms in

Equations (A3) and (A4). They are not a source of

new energy, as
∑

i I
(uθ)
i +N2I(θu) = 0, but rather

characterize exchange between kinetic and ther-

mal energies (Equation 14 and 18), so they cancel

out in the total spectral energy Equation (20).

4. the second type of cross terms, I(ub)
i and I(bu)

i

(Equations B33 and B44), describe, respectively,

the influence of the i-component of the magnetic

field, b̄i, on the same component of the velocity,

ūi, and vice versa for each mode. These terms are
of linear origin too, proportional to the mean field

B0y, and originate from the corresponding terms

in Equations (A1)-(A3) and (A5)-(A7). From the

definition it follows that I(ub)
i = −I(bu)

i and hence

these terms also do not generate new energy for

perturbations, but rather exchange between ki-
netic and magnetic energies (Equations 18 and 19).

They also cancel out in the total spectral energy

equation.

5. The terms D(u)
i , D(θ) and D(b)

i (Equations B34,
B38 and B45) describe, respectively, dissipation of

velocity, logarithmic density (entropy) and mag-

netic field for each wavenumber. They are obvi-

ously of linear origin and negative definite. Com-
paring these dissipation terms with the energy-

supplying terms Hi and M, we see that the dissi-

pation is at work at large wavenumbers k & kD ≡
min(

√
Re,

√
Pe,

√
Rm).

6. The terms N (u)
i , N (θ) and N (b)

i (Equations B35,

B39 and B46) originate from the nonlinear terms

in main Equations (A1)-(A7) and therefore de-

scribe redistributions, or transfers/cascades of
the squared amplitudes, respectively, of the i-

component of the velocity, |ūi|2, entropy, |θ̄|2, and
the i-component of the magnetic field, |b̄i|2, over
wavenumbers in k−space as well as among each

other via nonlinear triad interactions. Similarly,

the above-defined N (u), N2N (θ), N (b) describe
nonlinear transfers of kinetic, thermal and mag-

netic energies, respectively. It follows from the

definition of these terms that their sum integrated

over an entire Fourier space is zero,
∫
[N (u)(k, t) +N2N (θ)(k, t) +N (b)(k, t)]d3k = 0,

(21)

which is, in fact, a direct consequence of cance-

lation of the nonlinear terms in the total energy
Equation (9) in physical space. This implies that

the main effect of nonlinearity is only to redis-

tribute (scatter) energy (drawn from the back-
ground flow by Reynolds and Maxwell stresses)

of the kinetic, thermal and magnetic components

over wavenumbers and among each other, while
leaving the total spectral energy summed over all

wavenumbers unchanged. The nonlinear trans-

fer functions (N (u), N (θ), N (b)) play a central

role in MHD turbulence theory – they deter-
mine cascades of energies in k-space, leading to

the development of their specific spectra (e.g.,

Verma 2004; Alexakis et al. 2007; Teaca et al.
2009; Sundar et al. 2017). These transfer func-

tions are one of the main focus of the present

analysis. One of our main goals is to explore how
they operate in the presence of the azimuthal field

MRI in disks and ultimately of the shear. Specifi-

cally, below we will show that, like in 2D HD and

MHD shear flows we studied before (Horton et al.
2010; Mamatsashvili et al. 2014), energy spec-

tra, energy-injection as well as nonlinear trans-

fers are also anisotropic in the quasi-steady MRI-
turbulence, resulting in the redistribution of power

among wavevector angles in k−space, i.e., the

nonlinear transverse cascade.

Having described all the terms in spectral equations,

we now turn to the total spectral energy Equation (20).

Each mode drifting parallel to the kx−axis, go through
a dynamically important region in Fourier space, which

we call the vital area, where energy-supplying linear

terms, H and M, and redistributing nonlinear terms,
N (u), N (θ), N (b) operate. The net effect of the nonlin-
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ear terms in the total spectral energy budget over all

wavenumbers is zero according to Equation (21). Thus,

the only source for the total perturbation energy is the

integral over an entire k-space
∫
(H + M)d3k that ex-

tracts energy from a vast reservoir of shear flow and

injects it into perturbations. Since the terms H and

M, as noted above, are of linear origin, the energy ex-
traction and perturbation growth mechanisms (the az-

imuthal MRI) are essentially linear by nature. The role

of nonlinearity is to continually provide, or regenerate
those modes in k-space that are able to undergo the

transient MRI, drawing on mean flow energy, and in

this way feed the nonlinear state over long times. This

scenario of a sustained state, based on a subtle cooper-
ation between linear and nonlinear processes, is a key-

stone of the bypass concept of turbulence in spectrally

stable HD shear flows (Gebhardt & Grossmann 1994;
Baggett et al. 1995; Grossmann 2000; Chapman 2002).

3. OPTIMIZATION OF THE BOX ASPECT RATIO

– LINEAR ANALYSIS

It is well known from numerical simulations of MRI-

turbulence that its dynamics (saturation) generally de-

pends on the aspect ratio (Ly/Lx, Lx/Lz) of a compu-
tational box (e.g., Hawley et al. 1995; Bodo et al. 2008;

Guan et al. 2009; Johansen et al. 2009; Shi et al. 2016).

In order to understand this dependence and hence ap-

propriately select the aspect ratio in simulations, in
our opinion, one should take into account as fully as

possible the nonmodal growth of the MRI during in-

termediate (dynamical) timescales, because it can ulti-
mately play an important role in the turbulence dynam-

ics (Squire & Bhattacharjee 2014). However, this is of-

ten overlooked in numerical studies. So, in this Section,
we identify the aspect ratios of the preselected boxes

that better take into account the linear transient growth

process.

In fluid dynamics, the linear transient growth of per-
turbations in shear flows is usually quantified using the

formalism of optimal perturbations (Farrell & Ioannou

1996; Schmid & Henningson 2001; Schmid 2007). This
approach has already been successfully applied to

(magnetized) disk flows (Mukhopadhyay et al. 2005;

Zhuravlev & Razdoburdin 2014; Squire & Bhattacharjee
2014; Razdoburdin & Zhuravlev 2017). Such perturba-

tions yield maximum linear nonmodal growth during

finite times and therefore are responsible for most of

the energy extraction from the background flow. So, in
this framework, we quantify the linear nonmodal opti-

mal amplification of the azimuthal MRI as a function of

mode wavenumbers for the same parameters adopted in
the simulations.

In the shearing box, the radial wavenumber of each

non-axisymmetric perturbation mode (shearing wave)

changes linearly with time due to shear, kx(t) = kx(0)+

qΩkyt. The maximum possible amplification of the total
energy E = EK + Eth + EM of a shearing wave, with an

initial wavenumber k(0) = (kx(0), ky, kz) by a specific

(dynamical) time td is given by

G(k(td)) = max
f̄(0)

E(k(td))
E(k(0)) , (22)

where the maximum is taken over all initial conditions
f̄(0) with a given energy E(k(0)). The final state at td
and the corresponding energy E(k(td)) are found from

the initial state at t = 0 by integrating the linearized
version of spectral Equations (B10)-(B18) in time for

each shearing wave and finding a propagator matrix

connecting the initial and final states. Then, expres-

sion (22) is usually calculated by means of the singu-
lar value decomposition of the propagator matrix. The

square of the largest singular value then gives the opti-

mal growth factor G for this set of wavenumbers. The
corresponding initial conditions, leading to this highest

growth at td are called optimal perturbations. (A reader

interested in the details of these calculations is referred
to Squire & Bhattacharjee (2014), where the formalism

of optimal growth and optimal perturbations in MRI-

active disks, which is adopted here, is described to a

greater extent.) Reference time, during which to calcu-
late the nonmodal growth, is generally arbitrary. We

choose it equal to the characteristic (e-folding) time of

the most unstable MRI mode, td = 1/γmax = 1.33Ω−1,
where γmax = 0.75Ω is its growth rate (Balbus 2003;

Ogilvie & Pringle 1996), since it is effectively a dynam-

ical time as well.
Figure 1 shows G in (kx, ky)−plane at fixed kz as well

as its value maximized over the initial kx(0), Gmax =

maxkx(0) G, represented as a function of ky, kz. Because

of the kx-drift, the optimal mode with some initial ra-
dial wavenumber kx(0), at td will have the wavenumber

kx(td) = kx(0) + qkytd. In the top panel, G is repre-

sented as a function of this final wavenumber kx(td).
Because of the shear, the typical distribution at fixed kz
is inclined towards the kx-axis, having larger values on

the kx/ky > 0 side (red region). The most effective non-
modal MRI amplification occurs at smaller wavenum-

bers, in the areas marked by dark red in both (kx, ky)

and (ky, kz)-planes in Figure 1. Thus, the growth of

the MRI during the dynamical time appears to favor
smaller kz (see also Squire & Bhattacharjee 2014), as

opposed to the transient growth of the azimuthal MRI

often calculated over times much longer than the dy-
namical time, which is the more effective the larger is kz
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Figure 1. (upper panel) Optimal nonmodal growth factor,
G, in (kx, ky)-plane at td = 1.33 and kz/2π = 1 (which is the
same as kz = 1 in new mode number notations used in the
next Sections). (lower panel) Maximized over initial kx(0)
growth factor, Gmax, as a function of ky and kz.

Figure 2. Discrete modes (black dots) contained in each
simulation box superimposed on the distribution of G in
(kx, ky)-plane from the upper panel of Figure 1. From all
the selected boxes, the box (4, 4, 1) contains most of the ef-
fectively amplified modes.

(Balbus & Hawley 1992; Papaloizou & Terquem 1997).
Obviously, the growth over such long timescales is irrel-

evant for the nonlinear (turbulence) dynamics.

In the simulation box, however, the wavenumber spec-
trum is inherently discrete, with smallest wavenumbers

being defined by the box size (Lx, Ly, Lz) as ki,min =

2π/Li, while other wavenumbers being multiples of

them. We take Lz = 1 (i.e., Lz = H in dimen-
sional units) and mainly consider four aspect ratios

(Lx, Ly, Lz) = (4, 4, 1), (2, 4, 1), (1, 4, 1), (4, 2, 1). Fig-

ure 2 shows the modes (black dots) in each box superim-
posed on the map ofG in (kx, ky)-plane from Figure 1 for

the first vertical harmonics with kz,min, or equivalently

kz = 1 (in new notations used below). We see that from

among these four boxes, the box (4, 4, 1) contains the

largest possible number of modes in the area of the ef-
fective transient growth and therefore best accounts for

the role of the nonmodal effects in the energy exchange

processes in the case of turbulence. Of course, further
increasing Lx and Ly leads to larger number of modes

in the area of effective growth, however, as also seen

from Figure 2, already for the box (4, 4, 1) this area ap-
pears to be sufficiently well populated with modes, i.e.,

enough resolution (measured in terms of ∆ki = 2π/Li)

is achieved in Fourier space to adequately capture the

nonmodal effects. To ascertain this, we also carried out
a simulation for the box (8, 8, 1) and found that the ra-

tio of the number of the active modes (i.e., the number

in the growth area) to the total number of modes in this
larger box is almost the same as for the box (4, 4, 1).

Consequently, these boxes should give qualitatively sim-

ilar dynamical pictures in Fourier space. For this reason,
below we choose the box (4, 4, 1) as fiducial and present

only some results for other boxes for comparison at the

end of Section 5.

4. SIMULATIONS AND GENERAL
CHARACTERISTICS

The main Equations (A1)-(A9) are solved using the

pseudo-spectral code SNOOPY (Lesur & Longaretti
2007). It is a general-purpose code, solving HD and

MHD equations, including shear, rotation, stratifica-

tion and several other physical effects in the shearing
box model. Fourier transforms are computed using

the FFTW library, taking also into account the drift

of radial wavenumber kx(t) in k-space due to shear
in order to comply with the shearing-periodic bound-

ary conditions. Nonlinear terms are computed using

a pseudo-spectral algorithm (Canuto et al. 1988), and

antialiasing is enforced using the 2/3-rule. Time in-
tegration is done by a standard explicit third-order

Runge-Kutta scheme, except for viscous and resistive

terms, which are integrated using an implicit scheme.
The code has been extensively used in the shearing

box studies of disk turbulence (e.g., Lesur & Ogilvie

2010; Lesur & Longaretti 2011; Herault et al. 2011;
Meheut et al. 2015; Murphy & Pessah 2015; Riols et al.

2017).

We carry out simulations for boxes with different ra-

dial and azimuthal sizes (Lx, Ly, Lz) = (4, 4, 1), (2, 4, 1),
(1, 4, 1), (4, 2, 1), (8, 8, 1) and resolution of 64 grid points

per scale height H = 1 (Table 1). The numerical resolu-

tion adopted ensures that the dissipation wavenumber,
kD, is smaller than the maximum wavenumber, ki,max =
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Table 1. Simulation characteristics: box size, number of grid points, volume- and time-averaged values (denoted by double
brackets) of the perturbed kinetic, EK , magnetic, EM , and thermal, Eth, energy densities as well as the rms values of the
magnetic field components and the Reynolds, uxuy, and Maxwell, −bxby, stresses in the fully developed turbulence.

(Lx, Ly, Lz) (Nx, Ny, Nz) 〈〈EK〉〉 〈〈EM 〉〉 〈〈Eth〉〉 〈〈b2x〉〉
1/2 〈〈b2y〉〉

1/2 〈〈b2z〉〉
1/2 〈〈uxuy〉〉 〈〈−bxby〉〉

(8, 8, 1) (512, 512, 64) 0.0173 0.0422 0.0022 0.101 0.266 0.06 0.0037 0.0198

(4, 4, 1) (256, 256, 64) 0.0125 0.03 0.0019 0.086 0.224 0.05 0.0028 0.0146

(2, 4, 1) (128, 256, 64) 0.0116 0.0298 0.0019 0.085 0.223 0.05 0.0028 0.0144

(1, 4, 1) (64, 256, 64) 0.0111 0.0295 0.0018 0.085 0.222 0.05 0.0027 0.0143

(4, 2, 1) (256, 128, 64) 0.0056 0.012 0.0011 0.053 0.14 0.03 0.0013 0.0059

2πNi/3Li, in the box (taking into account the 2/3-rule).

The initial conditions consist of small amplitude ran-

dom noise perturbations of velocity on top of the Ke-
plerian shear flow. A subsequent evolution is followed

up to tf = 630 (about 100 orbits). The wavenumbers

kx, ky, kz are normalized, respectively, by the grid cell
sizes of Fourier space, ∆kx = 2π/Lx,∆ky = 2π/Ly and

∆kz = 2π/Lz, that is, (kx/∆kx, ky/∆ky, kz/∆kz) →
(kx, ky, kz). As a result, the normalized azimuthal and

vertical wavenumbers are integers ky, kz = 0,±1,±2, ...,
while kx, although changes with time due to drift, is in-

teger at discrete moments tn = nLy/(q|ky|Lx), where n

is a positive integer.
In all the boxes, initially imposed small perturbations

start to grow as a result of the nonmodal MRI ampli-

fication of the constituent Fourier modes. Then, af-
ter several orbits, the perturbation amplitude becomes

high enough, reaching the nonlinear regime and eventu-

ally the flow settles down into a quasi-steady sustained

MHD turbulence. Figure 3 shows the time-development
of the volume-averaged perturbed kinetic, 〈EK〉, ther-
mal, 〈Eth〉, and magnetic, 〈EM 〉, energy densities as

well as the Reynolds, 〈uxuy〉, and Maxwell −〈bxby〉
stresses for the fiducial box (4, 4, 1). For completeness,

in this figure, we also show the evolution of the rms

values of the turbulent velocity and magnetic field com-
ponents. The magnetic energy dominates the kinetic

and thermal ones, with the latter being much smaller

than the former two, while the Maxwell stress is about 5

times larger than the Reynolds one. This indicates that
the magnetic field perturbations are primarily respon-

sible for energy extraction from the mean flow by the

Maxwell stress, transporting angular momentum out-
ward and sustaining turbulence. In contrast to the 2D

plane case (Mamatsashvili et al. 2014), the Reynolds

stress in this 3D case is positive and also contributes
to the outward transport. The temporal behavior of

the volume-averaged kinetic and magnetic energy den-

sities and stresses is consistent with analogous studies

of MRI-turbulence in disks with a net azimuthal field
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Figure 3. Evolution of volume-averaged Reynolds and
Maxwell stresses (top row), kinetic, thermal and magnetic
energy densities (second row), rms of velocity (third row)
and magnetic field (bottom row) components for the fiducial
box (4, 4, 1). Turbulence sets in after several orbits, with the
magnetic energy dominating kinetic and thermal energies,
and the Maxwell stress the Reynolds one. The azimuthal
component of the turbulent magnetic field is larger than the
other two ones due to the shear. It is also about twice larger
than the mean field B0y = 0.1 (Table 1).
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Figure 4. Typical structure of the magnetic field in the fully developed quasi-steady turbulent state at t = 550 for the box
(4, 4, 1). Shown are the sections in (y, x) and (y, z)-planes.

(Hawley et al. 1995; Guan et al. 2009; Simon & Hawley

2009; Meheut et al. 2015). For all the models, the time-
and volume-averaged quantities over the whole quasi-

steady state, between t = 100 and the end of the run at

tf , are listed in Table 1. For the fiducial model, the ra-

tios of the magnetic energy to kinetic and thermal ones
are 〈〈EM 〉〉/〈〈EK〉〉 = 2.4 and 〈〈EM 〉〉/〈〈Eth〉〉 = 15.8,

respectively, and the ratio of the Maxwell stress to the

Reynolds stress is 〈〈−bxby〉〉/〈〈uxuy〉〉 = 5.21. For other
boxes, similar ratios hold between magnetic and hydro-

dynamic quantities, as can be read off from Table 1, with

the magnetic energy and stresses being always dominant
over respective hydrodynamic ones. Interestingly, for

all boxes in the quasi-steady turbulent state, 〈EM 〉 and
〈−bxby〉 closely follow each other at all times, with the

ratio being nearly constant, 〈EM 〉/〈−bxby〉 ≈ 2 (see also
Hawley et al. 1995; Guan et al. 2009). From Table 1, we

can also see how the level (intensity) of the turbulence

varies with the radial and azimuthal sizes of the boxes.
For fixed Ly = 4, the saturated values of the energies

and stresses increase with Lx, but only very little, so

they can be considered as nearly unchanged, especially
after Lx > 1. By contrast, at fixed Lx = 4, these quanti-

ties are more sensitive to the azimuthal size Ly, increas-

ing more than twice with the increase of the latter from

Ly = 2 to Ly = 4. However, after Ly = 4 the increase
of the turbulence strength with the box size is slower, as

evident from the box (8, 8, 1). This type of dependence

of the azimuthal MRI-turbulence characteristics on the
horizontal sizes of the simulation box is consistent with

that of Guan et al. (2009).

The structure of the turbulent magnetic field in the
fully developed quasi-steady turbulence in physical

space is presented in Figure 4. It is chaotic and stretched

along the y-axis due to the shear, with by achieving

higher values than bx and bz. At this moment, the
rms values of these components are, 〈b2x〉1/2 = 0.079,

〈b2z〉1/2 = 0.044, while 〈b2y〉1/2 = 0.2 and is twice

larger than the background field B0y = 0.1. These

values, as expected, are consistent with the bottom
panel of Figure 3. So, the turbulent field satisfies

〈b2z〉1/2 < 〈b2x〉1/2 < B0y < 〈b2y〉1/2, which in fact holds

throughout the evolution for all models (Table 1).

4.1. Analysis in Fourier space – an overview

A deeper insight into the nature of the turbulence
driven by the azimuthal MRI can be gained by perform-

ing analysis in Fourier space. So, following Horton et al.

(2010); Mamatsashvili et al. (2014, 2016), we examine
in detail the specific spectra and sustaining dynamics of

the quasi-steady turbulent state by explicitly calculat-

ing and visualizing the individual linear and nonlinear

terms in spectral Equations (11)-(17), which have been
classified and described in Section 2, based on the simu-

lation data. These equations govern the evolution of the

quadratic forms (squared amplitudes) of Fourier trans-
forms of velocity, thermal and magnetic field perturba-

tions and are more informative than Equations (18) and

(19) for spectral kinetic and magnetic energies. In the
latter equations a lot of essential information is averaged

and lost. Therefore, energy equations alone are insuffi-

cient for understanding intertwined linear and nonlinear

processes that underlie the sustaining dynamics of the
turbulence. For this reason, we rely largely on Equa-

tions (11)-(17), enabling us to form a complete picture

of the turbulence dynamics. So, we divide our analysis
in Fourier space into several steps:

I. Three-dimensionality, of course, complicates the

analysis. Therefore, initially, we find out which

vertical wavenumbers are important by integrating

the spectral energies and stresses in (kx, ky)-plane
(Figure 5). As will be evident from such analysis,

mostly the lower vertical harmonics, |kz| = 0, 1, 2,

(i.e., with vertical scales comparable to the box size
Lz) engage in the turbulence maintaining process.
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II. Next, concentrating on these modes with lower ver-

tical wavenumber, we present the spectral mag-

netic energy in (kx, ky)-plane (Figure 6) and iden-

tify the energy-carrying modes in this plane (Fig-
ure 7). From these modes, we delineate a narrower

set of dynamically important active ones, which are

central in the sustenance process. Based on this,
we identify a region in Fourier space – the vital area

– where the basic linear and nonlinear processes for

these modes operate. Despite a limited extent of
the vital area, the number of the dynamically im-

portant modes within it appears to be quite large

and they are distributed anisotropically in Fourier

space.

III. Integrating in (kx, ky)-plane the quadratic forms

of the spectral velocity and magnetic field compo-
nents (|ūi|2 and |b̄i|2) as well as the corresponding

linear and nonlinear terms on the rhs of Equations

11-17), we obtain a first idea about the importance

of each of them in the dynamics as a function of kz
(Figure 8). Note that the action of the linear drift

terms vanishes after the integration. Nevertheless,

the universality and importance of the linear drift
is obvious in any case.

IV. Finally, we analyze the interplay of these pro-

cesses/terms that determines the turbulence dy-
namics (Figures 9-14). As a result, we construct

the turbulence sustaining picture/mechanism by

revealing the transverse nature of the nonlinear
processes – the nonlinear transverse cascade – and

demonstrating its key role in the sustenance.

Fromang & Papaloizou (2007); Simon et al. (2009);

Davis et al. (2010); Lesur & Longaretti (2011) took a
similar approach of representing the MHD equations

in Fourier space and analyzing individual linear and

nonlinear (transfer) terms in the dynamics of MRI-

turbulence. They derived evolution equations for the
kinetic and magnetic energy spectra, which are similar

to our Equations (18)-(19) except for notation and mean

field direction. As mentioned above, we do not make the
shell-averages in Fourier space, as done in these studies,

that completely wipes out spectral anisotropy due to the

shear crucial to the turbulence dynamics.
Since our analysis primarily focuses on the spectral as-

pect of the dynamics, the SNOOPY code, being of spec-

tral type, is particularly convenient for this purpose, as

it allows us to directly extract Fourier transforms. From
now on we consider the evolution after the quasi-steady

turbulence has set in, so all the spectral quantities/terms

in Equations (11)-(17) are averaged in time over an en-
tire saturated turbulent state between t = 200 and the
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Figure 5. Integrated in (kx, ky)-plane time-averaged ki-
netic, ÊK , magnetic, ÊM and thermal Êth energy spectra (up-
per panel) as well as Reynolds, Ĥ, and Maxwell, M̂, stresses
(lower panel) as a function of kz for the box (4, 4, 1).

end of the run. Below we concentrate on the fiducial
box (4, 4, 1). Comparison of the spectral dynamics in

other boxes and the effects of the box aspect ratio will

be presented in the next Section.

4.2. Energy spectra, active modes and the vital area

Figure 5 shows the time-averaged spectra of the

kinetic, magnetic and thermal energies as well as

the Reynolds and Maxwell stresses integrated in
(kx, ky)-plane, ÊK,M,th(kz) =

∫
EK,M,thdkxdky and

(Ĥ(kz),M̂(kz)) =
∫
(H,M)dkxdky as a function of

kz. The magnetic energy is the largest and the thermal
energy the smallest, while the Maxwell stress dominates

the Reynolds one, at all kz. All the three energy spec-

tra and stresses reach a maximum at small |kz| – the
magnetic and thermal energies as well as the stresses at

|kz| = 1, while the kinetic energy at kz = 0 – and rapidly

decrease with increasing |kz|. As a result, in particular,

the magnetic energy injection into turbulence due to the
Maxwell stress takes place mostly at small kz, which

is consistent with our linear optimal growth calcula-

tions (Section 3) and also with Squire & Bhattacharjee
(2014), but is in contrast to the accepted view that

the purely azimuthal field MRI is stronger at high kz
(Balbus & Hawley 1992; Hawley et al. 1995). The main
reason for this difference, as mentioned above, is that

the latter is usually calculated over much longer times

(spanning from tens to hundred dynamical times), fol-

lowing the evolution of the shearing waves from ini-
tial tightly leading to final tightly trailing orientation,

whereas the optimal growth is usually calculated over a

finite (dynamical) time, which seems more appropriate
in the case of turbulence. Thus, the large-scale modes
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Figure 6. Logarithm of the spectral magnetic energy, log10EM , in (kx, ky)-plane at kz = 0, 1, 2 for the box (4, 4, 1). The spectra
is strongly anisotropic due to the shear, having larger power on the kx/ky > 0 side at a given ky. Dashed rectangles delineate
the vital area of turbulence, where the sustaining process is concentrated (see Figures 9-14).
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Figure 7. Distribution of the active modes in k-space at
kz = 0, 1, 2 for the box (4, 4, 1). The color dots represent the
modes whose magnetic energy, EM , grows more than 50%
of the maximum spectral magnetic energy, EM,max, and the
colors indicate the fraction of time each mode contains this
higher energy during the quasi-steady state until the end of
the simulation.

with the first few kz contain most of the energy and

hence play a dynamically important role.

To have a fuller picture of the energy spectra, in
Figure 6 we present sections of EM in (kx, ky)-plane

again at first three vertical wavenumbers kz = 0, 1, 2,

for which it is higher (see Figure 5). The spectrum is
highly anisotropic due to the shear with the same ellipti-

cal shape and inclination towards the kx−axis irrespec-

tive of kz. This indicates that modes with kx/ky > 0

have more energy than those with kx/ky < 0 at fixed
ky. The kinetic energy spectrum shares similar prop-

erties and is not shown here. A similar anisotropic

spectrum was already reported in the shearing-box sim-
ulations of MRI-turbulence with a nonzero net verti-

cal field (Hawley et al. 1995; Lesur & Longaretti 2011;

Murphy & Pessah 2015). This energy spectrum, which
clearly differs from a typical turbulent spectrum in the

classical case of forced MHD turbulence without shear

(Biskamp 2003), arises as a consequence of a specific

anisotropy of the linear and nonlinear terms of Equa-
tions (11)-(17) in k−space. These new features are not

common to shearless MHD turbulence and hence it is

not surprising that Kolmogorov or IK theory cannot ad-

equately describe shear flow turbulence.
Having described the energy spectrum, we now look

at how energy-carrying modes, most actively participat-

ing in the dynamics, are distributed in (kx, ky)-plane.
We refer to modes whose magnetic energy reaches val-

ues higher than 50% of the maximum spectral mag-

netic energy as active modes. Although this defini-
tion is somewhat arbitrary, it gives an idea on where

the dynamically important modes are located in Fourier

space. Figure 7 shows these modes in (kx, ky)-plane at

kz = 0, 1, 2 with color dots. They are obtained by fol-
lowing the evolution of all the modes in the box during

an entire quasi-steady state and selecting those modes

whose magnetic energy becomes higher than the above
threshold. The color of each mode indicates the frac-

tion of time, from the onset of the quasi-steady state till

the end of the simulation, during which it contains this
higher energy. We have also checked that Figure 7 is not

qualitatively affected upon changing the 50% threshold

to either 20% or 70%. Like the energy spectrum, the

active modes with different duration of “activity” are
distributed quite anisotropically in (kx, ky)-plane, occu-

pying a broader range of radial wavenumbers |kx| . 12

than that of azimuthal ones |ky| . 3. This main, energy-
containing area in k-space represents the vital area of

turbulence. Essentially, the active modes in the vital

area take part in the sustaining dynamics of turbulence.
The other modes with larger wavenumbers lie outside

the vital area and always have energies and stresses less

than 50% of the maximum value, therefore, not playing

as much a role in the energy-exchange process between
the background flow and turbulence. Note that the to-

tal number of the active modes (color dots) in Figure

7 is equal to 114, implying that the dynamics of the
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Ĥx Î
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(uθ)
z Î
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Figure 8. Integrated in (kx, ky)-plane the quadratic forms of the spectral velocity and magnetic field components together with
the corresponding linear and nonlinear terms from corresponding Equations (11)-(17) as a function of kz.

MRI-turbulence, strictly speaking, cannot be reduced to
low-order models of the sustaining processes, involving

only a small number of active modes (e.g., Herault et al.

2011; Riols et al. 2017).

4.3. Vertical spectra of the dynamical terms

Having identified the vital area, we now examine the
significance of each of the linear and nonlinear terms in

this area first along the vertical kz-direction in Fourier
space. For this purpose, we integrate in (kx, ky)-plane

the quadratic forms of the spectral velocity and mag-

netic field components as well as the rhs terms of Equa-

tions (11)-(13) and (15)-(17), as we have done for the
spectral energies and stresses above. We do not apply

this procedure to the linear drift term (which vanishes

after such integration) and dissipation terms, as their



16

action is well known. The results are presented in Fig-

ure 8 (the spectral quantities integrated in (kx, ky)-plane

are all denoted by hats), which shows that:

• The dynamics of ̂|b̄x|2 is governed by Î(bu)
x and N̂ (b)

x ,

which are both positive and therefore act as a source

for the radial field at all kz.

• The dynamics of |̂b̄y|2 is governed by M̂ and N̂ (b)
y ,

the action of Î(bu)
y is negligible compared with these

terms. The effect of M̂ is positive for all kz, reaching
a maximum, as we have seen before, at |kz| = 1. This

implies that the energy injection into turbulence from

the background flow due to the MRI occurs over a
range of length scales, preventing the development of

the proper inertial range in the classical sense (see also

Lesur & Longaretti 2011). On the other hand, N̂ (b)
y

is negative and hence acts as a sink for low/active

kz, but positive at large |kz|. So, the nonlinear term

transfers the azimuthal field component from these
wavenumbers to large |kz| as well as (which is more

important) to other components.

• The dynamics of |̂b̄z|2 is governed by Î(bu)
z and N̂ (b)

z ,
which are both positive, with the latter being larger

than the former at all kz. Note that |̂b̄z|2 is smaller

compared to the other two components, while |̂b̄y|2 is

the largest.

• The dynamics of |̂ūx|2 is governed by Ĥx and N̂ (u)
x ,

the action of the exchange terms, Î(uθ)
x and Î(ub)

x , are

negligible compared to these terms. The effect of Ĥx

is positive for all kz, acting as the only source for ūx.

By contrast, N̂ (u)
x is negative (sink), opposing Ĥx,

with a similar dependence of its absolute value on kz.

So, the nonlinear term transfers the radial velocity to
other components.

• The dynamics of |̂ūy|2 is governed by Ĥy, Î(ub)
y and

N̂ (u)
y , the action of Î(uθ)

y is negligible. The effects

of N̂ (u)
y and Î(ub)

y are positive for all kz, while Ĥy is

negative. Special attention deserves the sharp peak of

|̂ūy|2 at kz = 0. This peak is related to the formation

of the zonal flow with |kx| = 1 and ky = 0 in the
MRI-turbulence (Johansen et al. 2009), which will be

analyzed below.

• The dynamics of |̂ūz|2 is governed by Ĥz, Î(uθ)
z and

N̂ (u)
z , the action of Î(ub)

z is negligible. |̂ūz|2 is the

only term that explicitly depends on the thermal pro-

cesses. Note also that N̂ (u)
z is negative at |kz| ≥ 1, but

becomes positive at kz = 0, implying inverse transfer

towards small kz. We do not go into the details of this

dependence, as |̂ūz|2 is anyway smaller compared to

the other components. Besides, the thermal processes

do not play a major role in the overall dynamics, since
their energy is much smaller than the magnetic end ki-

netic energies (see also Figure 3).

It is seen from Figure 8 that all the dynamical terms

primarily operate at small vertical wavenumbers |kz| =
0, 1, 2. Some of them (N̂ (b)

x and N̂ (b)
z ) may extend up to

|kz| = 3−6, but eventually decay at large |kz|. Similarly,

the spectra of the velocity and magnetic field have rela-
tively large values also at small |kz|. So, |kz| = 2 can be

viewed as an upper vertical boundary of the vital area

in Fourier space.

5. INTERPLAY OF THE LINEAR AND

NONLINEAR PROCESSES IN THE

SUSTENANCE OF THE TURBULENCE

We have seen above that the sustaining dynamics of

turbulence is primarily concentrated at small vertical

wavenumbers, so now we present the distribution of the
time-averaged amplitudes of the spectral quantities ūi,

b̄i as well as the linear (kx-drift, Hi, Ii,M) and non-

linear (Ni) dynamical terms in (kx, ky)-plane again at
kz = 0, 1, 2 in Figures 9-14 (as noted before, we omit

here the thermal processes, θ̄, which play a minor role).

These figures give quite a detailed information and in-

sight about all the linear and nonlinear processes in-
volved in Equations (11)-(17) and allow us to properly

understand their interplay leading to the turbulence sus-

tenance. We start the analysis of this interplay with a
general outline of the figures. We do not show here

the viscous (D(u)
i ) and resistive D(b)

i terms, since their

action is quite simple – they are always negative and
reduce the corresponding quantities, thereby opposing

the sustenance process. They increase with k, but in

the vital area are too small to have any influence on the

dynamics.
A first glance at the plots makes it clear that all

the spectra of the physical quantities and processes are

highly anisotropic due to the shear, i.e., strongly de-
pend on the azimuthal angle in (kx, ky)-planes as well

as vary with kz, with a similar type of anisotropy and

inclination towards the kx-axis, as the energy spectrum
in Figure 6. For the nonlinear processes represented

by N (u)
i and N (b)

i (bottom row in Figures 9-14), this

anisotropy can not be put within the framework of com-

monly considered forms of nonlinear – direct and inverse
– cascades, since its main manifestation is the trans-

verse (among wavevector angles) nonlinear redistribu-

tion of modes in (kx, ky)-plane as well as among differ-
ent kz. In these figures, the nonlinear terms transfer
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Figure 9. Spectrum of the radial field, |b̄x|, and the maps of the corresponding linear and nonlinear terms, governing its
dynamics (Equation 15), in (kx, ky)-plane at kz = 0(left), 1(middle), 2(right). The spectrum as well as the action of these
terms are highly anisotropic, (i.e., depend on the wavevector azimuthal angle) due to the shear. These terms are appreciable and
primarily operate in the vital area |kx| . 12, |ky| . 3. The red and yellow (blue and dark blue) regions in each panel correspond
to wavenumbers where respective dynamical terms are positive (negative) and hence act as a source (sink) for |b̄x|

2. In light
green regions, outside the vital area, these terms are small, although, as we checked, preserve the same anisotropic shape. In
particular, the nonlinear transfer term N (b)

x transversely redistributes |b̄x|
2 from the blue and dark blue regions, where N (b)

x < 0,

to the red and yellow regions, where N (b)
x > 0. These regions exhibit considerable variations with the azimuthal angle of the

wavevector and also depend on kz.

the corresponding quadratic forms of the velocity and
magnetic field components transversely away from the

regions where they are negative (N (u)
i < 0,N (b)

i < 0,

blue and dark blue) towards the regions where they are

positive (N (u)
i > 0,N (b)

i > 0, yellow and red). These re-

gions display quite a strong angular variation in (kx, ky)-

planes.
Similarly, the terms of linear origin Hi, Ii,M are

strongly anisotropic in (kx, ky)-plane. For the corre-

sponding quantity, they act as a source when positive

(red and yellow regions) and as a sink when negative
(blue and dark blue regions). The linear exchange of

energy with the background shear flow (which is the

central energy supply for turbulence) involves all the
components of the velocity perturbation through Hi

terms in Equations (11)-(13) and only the azimuthal y-

component of the magnetic field perturbation through

the Maxwell stress term, M, in Equation (16). However,
the other quadratic forms can grow due to the linear ex-

change, Ii, and nonlinear, Ni, terms. The growth of the
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Figure 10. Same as in Figure 9, but for the azimuthal field b̄y with the corresponding dynamical terms from Equation (16).
The dynamics of this component is primarily determined by the combined action of the drift, the Maxwell stress M, which is
positive (energy injection) and the nonlinear term N (b)

y , which is negative (sink) in the vital area. The linear exchange term

I(bu)
y is negligible compared with the above terms and is not shown here.

quadratic forms and energy extraction from the flow as

a result of the operation of all these linear terms essen-
tially constitutes the azimuthal MRI in the flow.

The linear drift parallel to the kx-axis is equally im-

portant for all the physical quantities. The plots de-
picting the drift (second row in Figures 9-14), show that

this process transfers modes with velocity |qky| along kx-
axis at ky > 0 and in the opposite direction at ky < 0.

Namely, the drift gives the linear growth of individual
harmonics a transient nature, as it sweeps them through

the vital area in k-space. One has to note that the dy-

namics of axisymmetric modes with ky = 0 should be
analyzed separately, as the drift does not affect them.

Consequently, the drift can not limit the duration of

their amplification and if there is any, even weak, linear

or nonlinear source of growth at ky = 0, these harmonics
can reach high amplitudes.

Let us turn to the analysis of the route ensuring the

turbulence sustenance. First of all, we point out that
it should primarily rely on magnetic perturbations, as

the Maxwell stress is mainly responsible for energy sup-

ply for turbulence. From Figure 9, it is seen that the

linear exchange term I(bu)
x and the nonlinear term N (b)

x

make comparable contributions to the generation and

maintenance of the radial field component |b̄x|. This is

also consistent with the related plots in Figure 8. The
exchange term takes energy from the radial velocity ūx

and gives to b̄x. The distribution of N (b)
x clearly demon-
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Figure 11. Same as in Figure 9, but for b̄z with the corresponding dynamical terms from Equation (17). The transverse

character of the nonlinear redistribution, N (b)
z , is also evident. |b̄z| is small in comparison with |b̄x| and |b̄y|.

strates transversal transfer of |b̄x|2 in (kx, ky)-plane for

all considered kz = 0, 1, 2 as well as among different

components. The linear drift term also participates in

forming the final spectrum of |b̄x| in the quasi-steady
turbulent state. It opposes the action of the nonlinear

term: for ky > 0 (ky < 0), N (b)
x , transfers modes to the

left (right), from the blue and dark blue region to the red
and yellow regions, while the drift transfers in the op-

posite direction. So, the interplay of the drift, I(bu)
x and

N (b)
x yields the specific anisotropic spectra of |b̄x| shown

in the top row of this figure. Particularly noteworthy is

the role of the nonlinear term at ky = 0, kz = 1, 2, be-

cause the drift and the linear magnetic-kinetic exchange

terms are proportional to ky and hence vanish. As a
result, axisymmetric modes with ky = 0 are energeti-

cally supported only by the nonlinear term. (At ky = 0,

although N (b)
x is positive both at kz = 1 and kz = 2,

its values at kz = 1 are about an order of magnitude

smaller than those at kz = 2 and might not be well

represented by light green color in the bottom middle
panel in Figure 9.) So, b̄x, which is remarkably gener-

ated by the nonlinear term, in turn, is a key factor in

the production and distribution of the energy-injecting
Maxwell stress, M, in Fourier space. Indeed, note the

correlation between the distributions of |b̄x| and M in

(kx, ky)-plane depicted, respectively, in the top row of
Figure 9 and in the third row of Figure 10.

From Figure 10 it is evident that, in fact, the Maxwell

stress, M, which is positive in (kx, ky)-plane and ap-

preciable in the vital area, is the only source for the
quadratic form of the azimuthal field component, |b̄y|2,
and hence for the turbulent magnetic energy, which is
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Figure 12. Spectra of |ūx| and the maps of the corresponding linear and nonlinear terms governing its dynamics (Equation
11) in (kx, ky)-plane at kz = 0(left), 1(middle), 2(right). The dynamics of this velocity component is primarily determined by

Hx (source) and N (u)
x (sink), the linear exchange terms, I(uθ)

x and I(ub)
x , are negligible compared with the above terms and are

not shown here.

dominated by this component. The linear exchange
term, I(bu)

y , appears to be much smaller with this stress

term (and hence is not shown in this figure). The non-

linear term, N (b)
y , is negative in the vital area (blue re-

gions in the bottom row of Figure 10), draining |b̄y|2
there and transferring it to large wavenumbers as well

as among different components. Thus, the sustenance
of the magnetic energy is of linear origin, due solely to

the Maxwell stress that, in turn, is generated from the

radial field component. This stage constitutes the main

(linear) part of the sustenance scheme, which will be
described in the next subsection, and is actually a man-

ifestation of the azimuthal MRI.

The dynamics of the vertical field component b̄z is
shown in 11. This components is smaller than b̄x and

b̄y. The linear exchange term, I(bu)
z , acts as a source,

supplying b̄z from the vertical velocity ūz. The nonlin-

ear term, N (b)
z , also realizes the transverse cascade and

scatters the modes in different areas of (kx, ky)-plane
(from the yellow and red to blue and dark blue areas

in the bottom row of Figure 11). However, as it is seen

from the related plot in Figure 8, the cumulative effect

of N (b)
z in (kx, ky)-plane is positive and even prevails

over the positive cumulative contribution of I(bu)
z in this

plane at every kz. As it is clearly seen from Figure 11,

the linear drift term opposes the action of the nonlinear
term for b̄z, similar to that in the case of b̄x.

Figure 12 shows that the linear term Hx can be pos-

itive and act as a source for the radial velocity |ūx|2
at the expense of the mean flow, while the nonlinear
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Figure 13. Same as in Figure 12, but for ūy with the corresponding dynamical terms from Equation (12). The influence of the

thermal process, I(uθ)
y , is negligible and not shown here. The spectrum of |ūy| reaches a maximum at kx = ±1, ky = kz = 0,

which corresponds to the zonal flow in physical space.

term N (u)
x is negative and drains it. The exchange terms

I(uθ)
x , I(ub)

x are also negative, giving the energy of the
radial velocity, respectively, to θ̄ and b̄x, but their con-

tributions are negligible compared with Hx and N (u)
x

and hence not shown in this figure. So, the sustenance
of |ūx| is ensured by the interplay of the linear drift and

Hx terms. Indeed, shifting the result of the action of Hx

by the linear drift to the right (left) for ky > 0 (ky < 0)

gives the spectrum of |ūx| presented in the top row this
figure.

Figure 13 shows that the dynamics of the azimuthal

velocity ūy is governed primarily by Hy, I(ub)
y and N (u)

y .

The action of I(uθ)
y is negligible compared with these

terms, in agreement with the corresponding plot of Fig-
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Figure 14. Same as in Figure 12, but for ūz with the corresponding dynamical terms from Equation (13). The influence of the

linear magnetic exchange term I(ub)
z is negligible and is not shown here. The nonlinear term N (u)

z transfers |ūz|
2 towards small

kz (as it also seen in the corresponding panel of Figure 8).

ure 8, and is not shown in this figure. The contribu-

tions of I(ub)
y and N (u)

y can be positive and hence these

terms act as a source for |ūy|2. The distribution of Hy

at kz = 0 is quite complex with alternating positive

and negative areas in (kx, ky)-plane, while it is neg-

ative for kz = 1, 2. A interplay between these three
terms yields the spectrum of |ūy| shown in the top row

of Figure 13. From this spectrum, the harmonic with

kx = 1, ky = kz = 0 has the highest amplitude. Trans-

lating this result in physical space, it implies that the
turbulence forms quite powerful azimuthal/zonal flow,

which will be examined in more detail in the next sub-

section.
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The basic subcycle of the turbulence sustenance

I
(bu)
x

M

N
(b)
x

ūy ūx

b̄x

b̄y

Figure 15. Sketch of the basic subcycle of the sustaining
process (the solid arrows within the rectangle): (i) generation

of b̄x by the nonlinearity N (b)
x , (ii) subsequent production of

M from b̄x and (iii) of the azimuthal field energy |b̄y|
2 by M

(the linear MRI stage) and finally (iv) the nonlinear feedback

– contribution of b̄y toN (b)
x . The other contributions (dashed

arrows) of I(bu)
x to the production of b̄x and the feedback of

ūx, ūy, b̄x to N b
x (ūz and b̄z are small and not shown), are a

part of the overall sustaining scheme, but outside the basic
subcycle.

Figure 14 shows that the contribution of the thermal
I(uθ)
z in the dynamics of the quadratic form of verti-

cal velocity, |ūz|2, is mostly negative (sink), but not

so strong. The magnetic exchange term I(ub)
z also acts

as a sink, but is much smaller than I(uθ)
z and can be

neglected. Of course, the role of the linear drift term

is standard and similar to those for other components
described above. The sustenance of |ūz| at kz = 0 is

ensured by the combination of the linear drift and the

positive nonlinear term N (u)
z , while at kz = 1, 2 it is

maintained by the interplay of the linear drift and Hz,
which provides a source, now the nonlinear term N (u)

z

acts as a sink.

5.1. The basic subcycle of the turbulence sustenance

As we already mentioned, the sustenance of the tur-

bulence is the result of a subtle intertwining of the
anisotropic linear transient growth and nonlinear trans-

verse cascade processes, which have been described in

the previous section. The intertwined character of these
processes is too complex for a vivid schematization.

Nevertheless, based on the insight into the turbulence

dynamics gained from Figures 9-14, we can bring out

the basic subcycle of the sustenance that clearly shows
the equal importance of the linear and nonlinear pro-

cesses. The azimuthal and radial magnetic field compo-

nents are most energy-containing in this case. The basic
subcycle of the turbulence sustenance, which is concen-

trated in the vital area in Fourier space, is sketched in

Figure (15) (solid arrows within a rectangle) and can

be understood as follows. The nonlinear term N (b)
x con-

tributes to the generation of the radial field b̄x through

the transverse cascade process. In other words, N (b)
x

provides a positive feedback for the continual regenera-

tion of the radial field, which, in turn, is a seed/trigger
for the linear growth of the MRI – b̄x creates and ampli-

fies the Maxwell stress, M, due to the shear (via linear

term in Equation B15 proportional to q). The positive
stress then increases the dominant azimuthal field en-

ergy |b̄y|2/2 at the expense of the mean flow, opposing

the negative nonlinear term N (b)
y (and resistive dissipa-

tion). Thus, this central energy gain process for turbu-

lence, as mentioned before, is of linear nature and a con-

sequence of the azimuthal MRI. The linearly generated
b̄y gives a dominant contribution – positive feedback –

to the nonlinear term N (b)
x , closing the basic subcycle.

This is only a main part of the complete and more
intricate sustaining scheme that involves also the veloc-

ity components. In this sketch, the dashed arrows de-

note the other, extrinsic to the basic subcycle, processes.
Namely, b̄x, together with the nonlinear term, is fueled

also by the linear exchange term, I(bu)
x , which takes en-

ergy from the radial velocity ūx, while the azimuthal

velocity ūy gets energy from b̄y via the linear exchange

term I(ub)
y . These are all linear processes, part of the

MRI. (The vertical velocity does not explicitly partici-

pate in this case.) All These components of the velocity
ūx, ūy, ūz and the magnetic field b̄x, b̄z then contribute

to the nonlinear feedback through the nonlinear term

for the radial field, N (b)
x , which is the most important

one in the sustenance (see Equations B46), but still the

contribution of b̄y in this nonlinear term is dominant.

This feedback process is essentially 3D: we verified that
modes with |kz| = 1, 2 give the largest contribution to

the horizontal integral in the expression for the nonlin-

ear term N (b)
x (not shown here).

It is appropriate here to give a comparative analy-
sis of the dynamical processes investigated in this pa-

per and those underlying sustained 3D MRI-dynamo

cycles reported in Herault et al. (2011) and Riols et al.
(2015, 2017), despite the fact that these papers consid-

ered a magnetized Keplerian flow with different, zero net

vertical flux, configuration and different values of pa-
rameters (smaller resolution, box aspect ratio, smaller

Reynolds numbers) than those adopted here. These ap-

parently resulted in the resistive processes penetrating

into the vital area (in our terms) and reducing a num-
ber of active modes to only first non-axisymmetric ones

(shearing waves) with the minimal azimuthal and verti-

cal wavenumbers, ky = 2π/Ly, kz = 0, 2π/Lz, which un-
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dergo the transient MRI due to the mean axisymmetric

azimuthal (dynamo) field. By contrast, the number of

the active modes in our turbulent case is more than hun-

dred (Figure 7). Regardless of these differences, we can
trace the similarities in the sustenance cycles – the en-

ergy budget equations for these modes derived in those

papers in fact show that a similar scheme underlies the
sustenance as in the present case. The energy of the

radial field b̄x of new leading non-axisymmetric modes

is supplied by the joint action of the induction term
(i.e., I(bu)

x in our notations) and redistribution by the

nonlinear term, however, a summation over kx as used

in those energy budget equations does not permit to see

how this nonlinear redistribution of modes over kx due to
the transverse cascade actually occurs in their analysis.

As for the energy of b̄y, it is amplified by the Maxwell

stress during the transient MRI phase (also called the
Ω-effect) and is drained by the corresponding nonlinear

term. Since in the turbulent state considered here there

are much more active modes, representing various lin-
ear and nonlinear dynamical terms in (kx, ky)-plane has

a definite advantage over such low-mode-number models

in that gives a more general picture of nonlinear triad

interactions among all active modes. Such a comparison
raises one more point for thought: for a correct consider-

ation of nonlinear triad interactions, we gave preference

to boxes symmetrical in (x, y)-plane, while, all simu-
lations in those papers are carried out in azimuthally

elongated boxes.

5.2. Zonal flow

Excitation of zonal flows by the MRI-turbulence
was previously observed by Johansen et al. (2009) and

Bai & Stone (2014) in the case of zero and nonzero net

vertical magnetic flux, respectively. We also observe it
here in the case of the net azimuthal field. As noted

above, the mode corresponding to the zonal flow is ax-

isymmetric and vertically constant, ky = kz = 0, with
large scale variation in the radial direction, |kx| = 1.

The divergence-free (incompressibility) condition (B17)

implies that the radial velocity is zero, ūx = 0, for this

mode and hence Hy = 0 at all times, also the magnetic

exchange term is identically zero at ky = 0, I(ub)
y = 0.

Therefore, a source of the zonal flow can be only the
nonlinear term N (u)

y in Equation (12). We can divide

this term into the magnetic, N (u,mag)
y , and hydrody-

namic, N (u,kin)
y , parts,

N (u)
y = N (u,mag)

y +N (u,kin)
y . (23)
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Figure 16. Evolution of the large-scale mode k0 = (1, 0, 0),
which corresponds to the axisymmetric zonal flow. Shown
are the amplitudes of the azimuthal |ūy| (black) and the ver-
tical |ūz| (blue) velocities (upper panel) as well as the mag-

netic N (u,mag)
y (black) and hydrodynamic N (u,kin)

y (green)

parts of the nonlinear term N (u)
y (lower panel). The dom-

inant azimuthal velocity (i.e., zonal flow) is driven by the
magnetic part of the nonlinear term and is characterized by
remarkably slower time variations.

For the dominant mode k0 = (1, 0, 0), these two parts
in Equation (23) have the forms:

N (u,mag)
y (k0, t)

=
i

2
ū∗

y(k0, t)

∫
d3k′b̄y(k

′, t)b̄x(k0 − k
′, t) + c.c.,

with the integrand composed of the turbulent magnetic

stresses and

N (u,kin)
y (k0, t)

= − i

2
ū∗

y(k0, t)

∫
d3k′ūy(k

′, t)ūx(k0 − k
′, t) + c.c.,

with the integrand composed of the turbulent hydro-

dynamic stresses. To understand the nature of the
zonal flow, in Figure 16 we present the time-development

of the azimuthal and vertical velocities as well as the

driving nonlinear terms for this mode. |uy(k0, t)| is
characterized by remarkably longer timescale (tens of

orbits) variations and prevails over rapidly oscillating

|uz(k0, t)|, i.e., the dominant harmonic indeed forms a
slowly varying in time axisymmetric zonal flow. Com-

paring the time-development of |ūy(k0, t)| with that of

the corresponding nonlinear terms in the lower panel

of Figure 16, we clearly see that it is driven primarily
by the magnetic nonlinear term, N (u,mag)

y (k0, t), which

physically describes the effect of the total azimuthal

magnetic tension (random forcing) exerted by all other
smaller-scale modes on the large-scale k0 mode, whereas
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N (u,kin)
y (k0, t), corresponding to the net effect of the hy-

drodynamic stresses, is much smaller than the magnetic

one. The important role of the magnetic perturbations

in launching and maintaining the zonal flow is consistent
with the findings of Johansen et al. (2009).

5.3. Effect of the aspect ratio and the universality of

the turbulence sustenance scheme

The main advantage of the box (4, 4, 1) analyzed in the

previous subsection is that (i) it is symmetric in physical

(x, y)-and Fourier (kx, ky)-planes, where the effects of

shear are most important, (ii) the modes contained in
this box densely cover the vital area in (kx, ky)-plane

and sufficiently comprise effectively growing (optimal)

harmonics (see the panel for the box (4, 4, 1) in Figure
2). In the three asymmetric boxes – (1, 4, 1), (2, 4, 1)

and (4, 2, 1) – the modes less densely cover the vital area

(Figure 2). As for the box (8, 8, 1), as mentioned above,
the results qualitatively similar to the box (4, 4, 1) are

expected. In this subsection, we examine how the box

aspect ratio influences the turbulence dynamics, and in

particular, the distribution of the linear and nonlinear
process in Fourier space.

A general temporal behavior of the volume-averaged

energies, stresses and rms values of the velocity and
magnetic field components is similar to that for the box

(4, 4, 1) represented in Figure 3 (see also Table 1) and

we do not show it here, but concentrate instead on the
differences in Fourier space. Figure 17 juxtaposes the

spectra of the magnetic energy, Maxwell stress and the

magnetic nonlinear term N (b)
x for all the boxes. From

this figure it is evident that the skeleton of the bal-
ances of the various linear and nonlinear processes and,

in particular the basic subcycle, underlying the suste-

nance of the azimuthal MRI-turbulence are qualitatively
the same in all the simulated boxes and quite robust –

the variations in box sizes do not affect its effectiveness.

Changes in box aspect ratios lead to variation of the
inclinations, shapes and intensities of the energy spec-

tra as well as the distribution of linear and nonlinear

dynamical terms in (kx, ky)-plane. It is seen in Figure

17 that this variation is minimal between the symmet-
ric in (x, y)-plane boxes (4, 4, 1) and (8, 8, 1) – they have

similar spectral characteristics with identical inclination

angles – but is more remarkable among the asymmetric
boxes, (4, 2, 1), (2, 4, 1), (1, 4, 1). Specifically, in the lat-

ter boxes, the spectral characteristics are somewhat de-

formed and have different inclinations compared to those
in the symmetric boxes. The reason for this is the reduc-

tion of the active modes’ number/density along the kx-

and ky-axis in these boxes in contrast to the symmetric

ones (see Figure 2).

6. SUMMARY AND DISCUSSION

In this paper, we elucidated the essence of the sus-

tenance of MRI-driven turbulence in Keplerian disks
threaded by a nonzero net azimuthal field by means of

a series of shearing box simulations and analysis in 3D

Fourier (k-)space. It is well known that in the linear
regime the MRI in the presence of a azimuthal field has

a transient nature and eventually decays without an ap-

propriate nonlinear feedback. We studied in detail the

linear and nonlinear dynamical processes and their inter-
play in Fourier space that ensure such a feedback. Our

first key finding is the pronounced anisotropy of the non-

linear processes in k-space. This anisotropy is a natural
consequence of the anisotropy of linear processes due

to the shear and cannot be described in the framework

of direct and inverse cascades, commonly considered in
the classical theory of HD and MHD turbulence without

shear, because the main activity of the nonlinear pro-

cesses is transfer of modes over wavevector orientation

(angle) in k-space, rather than along wavevector that
corresponds to direct/inverse cascades. This new type

of nonlinear process – the transverse cascade – plays a

decisive role in the long-term maintenance of the MRI-
turbulence. Our second key result is that the sustenance

of the turbulence in this case is ensured as a result of

a subtle interplay of the linear transient MRI growth
and nonlinear transverse cascade. This interplay is in-

trinsically quite complex. Nevertheless, one can isolate

the basic subcycle of the turbulence sustenance, which

is as follows. The linear exchange of energy between
the magnetic field and the background flow, realized by

the Maxwell stress, M, supplies only the azimuthal field

component b̄y. As for the radial field b̄x, it is powered

by the linear exchange I(bu)
x and the nonlinear N (b)

x

terms. So, b̄x and b̄y have sources of different origin.

However, one should bear in mind that these processes
are intertwined with each other: the source of b̄y (i.e.,

the Maxwell stress, M) is created by b̄x. In its turn,

the production of the nonlinear source of b̄x (i.e., N (b)
x )

is largely due to b̄y. Similarly intertwined are the dy-

namics of other spectral magnetic and kinematic com-

ponents. This sustaining dynamics of the turbulence
is concentrated mainly in a small wavenumber area of

k-space, i.e., involves large scale modes, and is appro-

priately called the vital area.
The spectra of the kinetic and magnetic energies that

are established in the turbulent state as a result of such

interplay are consequently also anisotropic and funda-

mentally differ from classical Kolmogorov or IK spec-
tra. So, the conventional characterization of nonlinear

MHD cascade processes in shear flows in terms of direct

and inverse cascades, which ignores the shear-induced
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Figure 17. Spectra of EM , M and N (b)
x in (kx, ky)-plane at kz = 1 for all the boxes: (4, 2, 1) (top row), (4, 4, 1) (second

row), (8, 8, 1) (third row), (2, 4, 1) (fourth row) and (1, 4, 1) (bottom row). In all the panels, the general structure of these
spectral terms is quite similar, that indicates the universality and the robust character of the turbulence sustaining scheme. At
the same time, the symmetric boxes (4, 4, 1) and (8, 8, 1) have similar spectral pictures with identical inclinations, while in the
asymmetric in (x, y)-plane boxes, the spectral characteristics are somewhat deformed and have different inclinations compared
to the symmetric boxes.

spectral anisotropy and the resulting important trans-

verse cascade process, is generally incomplete and mis-
leading. For this reason, we examined the dynamical

processes in 3D Fourier space in full without making

the shell-averaging, which has been commonly done in

previous studies of MRI-turbulence and smears out the

anisotropy. We also showed that the turbulence is ac-
companied by a large scale and slowly varying in time

zonal (azimuthal) flow, which is driven by the turbulent

magnetic stresses.



27

The proposed scheme of the turbulence sustenance

based on the intertwined cooperated action of the linear

and nonlinear processes in the vital area is quite robust –

it is effective for different aspect ratios of the simulation
box. For all the box configurations considered, (4, 4, 1),

(1, 4, 1), (2, 4, 1), (4, 2, 1) and (8, 8, 1), the scheme is es-

sentially universal, although there are quantitative dif-
ferences. The anisotropy of the box in (kx, ky)-plane is

superposed on the intrinsic shear-induced anisotropy of

the dynamical process and somewhat deforms the pic-
ture of the turbulence, but the sustaining scheme is not

changed. In any case, an isotropic distribution of modes

in (kx, ky)-plane seems preferable for studying the own

anisotropy of the shear flow system, which is naturally
achieved for equal radial and azimuthal sizes, Lx = Ly,

of the box.

In this paper, we considered a spectrally stable (i.e.,
without purely exponential MRI) magnetized disk flow

with an azimuthal field, where the energy for turbulence

can only be supplied via linear transient growth of the
MRI. Being associated with shear, it seems obvious that

the vital area and nonlinear transverse cascade should

be also present in disk flows with a nonzero net vertical

magnetic field, which can give rise to the exponentially
growing MRI (Balbus & Hawley 1991; Goodman & Xu

1994; Pessah & Goodman 2009). In this case, besides

purely exponentially growing axisymmetric (channel)
modes, energy supply and transport via (transient)

growth of non-axisymmetric (ky 6= 0) modes are also im-

portant (Longaretti & Lesur 2010; Mamatsashvili et al.
2013; Squire & Bhattacharjee 2014). The latter, leading

to anisotropic nonlinear dynamics (Murphy & Pessah

2015), can inevitably effect the nonlinear transverse cas-

cade process. However, the presence of the purely ex-
ponentially growing modes should somewhat alter the

scheme of the interplay of the dynamical processes that

we studied here in the case of the azimuthal field. We
plan to explore this interplay also in the case of vertical

field MRI-turbulence, which will be published elsewhere.

An interesting application of this approach – anal-
ysis of turbulence dynamics in Fourier space – and a

natural extension of the present study would be un-

derstanding the nature of MRI turbulence with zero

net magnetic flux, where the classical linear exponen-

tially growing MRI is absent. This case has been

studied in several different configurations and there is

much debate over the nature of dynamo action, whether

it is small-scale or large-scale (Lesur & Ogilvie 2008;
Davis et al. 2010; Gressel 2010; Bodo et al. 2011, 2012,

2013; Hirose et al. 2014; Shi et al. 2016), and on the

convergence with increasing resolution/Reynolds num-
ber (Pessah et al. 2007; Fromang & Papaloizou 2007;

Fromang 2010; Bodo et al. 2011, 2014). A study of

this kind will therefore be very helpful in the resolution
of these issues. In this regard, we would like to men-

tion recent high-resolution and high-Reynolds number

simulations of MRI-turbulence by Walker et al. (2016)

and Zhdankin et al. (2017), resolving larger wavenum-
bers outside the vital area – inertial and dissipation

ranges. It was shown that the properties of turbulence

at these wavenumbers are insensitive to the specific na-
ture of the imposed large-scale magnetic field and are

similar to those of classical MHD turbulence without

shear. In particular, the characteristic energy spectra
of the inertial range is close to the IK spectrum, pro-

vided the energy of the large-scale azimuthal magnetic

field fluctuations is subtracted, while the small-scale vis-

cous and resistive dissipation characteristics are almost
unaffected by the presence of MRI. These studies, fo-

cusing on larger wavenumbers, combined with our anal-

ysis, which focuses instead on smaller wavenumbers that
carry most of the energy and stress, should be fruitful

in shedding light on the dynamical picture of zero-net

flux MRI-turbulence.
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APPENDIX

A. PERTURBATION EQUATIONS IN PHYSICAL SPACE

Equations governing the evolution of the velocity, total pressure and magnetic field perturbations, u, p,b, about the
equilibrium Keplerian flow U0 = (0,−qΩx, 0) with net azimuthal field B0 = (0, B0y, 0) are obtained from the basic
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Equations (1)-(5) and componentwise have the form:

Dux

Dt
= 2Ωuy −

1

ρ0

∂p

∂x
+

B0y

4πρ0

∂bx
∂y

+
∂

∂x

(
b2x

4πρ0
− u2

x

)
+

∂

∂y

(
bxby
4πρ0

− uxuy

)
+

∂

∂z

(
bxbz
4πρ0

− uxuz

)
+ ν∇2ux, (A1)

Duy

Dt
= (q−2)Ωux−

1

ρ0

∂p

∂y
+

B0y

4πρ0

∂by
∂y

++
∂

∂x

(
bxby
4πρ0

− uxuy

)
+

∂

∂y

(
b2y

4πρ0
− u2

y

)
+

∂

∂z

(
bzby
4πρ0

− uzuy

)
+ν∇2uy (A2)

Duz

Dt
= − 1

ρ0

∂p

∂z
−N2θ+

B0y

4πρ0

∂bz
∂y

+ +
∂

∂x

(
bxbz
4πρ0

− uxuz

)
+

∂

∂y

(
bybz
4πρ0

− uyuz

)
+

∂

∂z

(
b2z

4πρ0
− u2

z

)
+ ν∇2uz (A3)

Dθ

Dt
= uz −

∂

∂x
(uxθ)−

∂

∂y
(uyθ)−

∂

∂z
(uzθ) + χ∇2θ (A4)

Dbx
Dt

= B0y
∂ux

∂y
+

∂

∂y
(uxby − uybx)−

∂

∂z
(uzbx − uxbz) + η∇2bx, (A5)

Dby
Dt

= −qΩbx +B0y
∂uy

∂y
− ∂

∂x
(uxby − uybx) +

∂

∂z
(uybz − uzby) + η∇2by, (A6)

Dbz
Dt

= B0y
∂uz

∂y
+

∂

∂x
(uzbx − uxbz)−

∂

∂y
(uybz − uzby) + η∇2bz, (A7)

∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
= 0, (A8)

∂bx
∂x

+
∂by
∂y

+
∂bz
∂z

= 0, (A9)

where D/Dt = ∂/∂t− qΩx∂/∂y is the total derivative along the background flow.

B. DERIVATION OF SPECTRAL EQUATIONS FOR QUADRATIC TERMS

Here we derive evolution equations for velocity, entropy and magnetic field perturbations in Fourier space. Substi-

tuting decomposition (10) into Equations (A1)-(A9) and taking into account the normalization made in the text, we
arrive at the following equations governing the dynamics of perturbation modes in Fourier space

(
∂

∂t
+ qky

∂

∂kx

)
ūx = 2ūy − ikxp̄+ ikyB0y b̄x − k2

Re
ūx + ikxN

(u)
xx + ikyN

(u)
xy + ikzN

(u)
xz , (B10)

(
∂

∂t
+ qky

∂

∂kx

)
ūy = (q − 2)ūx − iky p̄+ ikyB0y b̄y −

k2

Re
ūy + ikxN

(u)
xy + ikyN

(u)
yy + ikzN

(u)
yz , (B11)

(
∂

∂t
+ qky

∂

∂kx

)
ūz = −ikz p̄−N2θ̄ + ikyB0y b̄z −

k2

Re
ūz + ikxN

(u)
xz + ikyN

(u)
yz + ikzN

(u)
zz , (B12)

(
∂

∂t
+ qky

∂

∂kx

)
θ̄ = ūz −

k2

Pe
θ̄ + ikxN

(θ)
x + ikyN

(θ)
y + ikzN

(θ)
z , (B13)

(
∂

∂t
+ qky

∂

∂kx

)
b̄x = ikyB0yūx − k2

Rm
b̄x + ikyF̄z − ikzF̄y, (B14)

(
∂

∂t
+ qky

∂

∂kx

)
b̄y = −qb̄x + ikyB0yūy −

k2

Rm
b̄y + ikzF̄x − ikxF̄z (B15)

(
∂

∂t
+ qky

∂

∂kx

)
b̄z = ikyB0yūz −

k2

Rm
b̄z + ikxF̄y − ikyF̄x (B16)
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kxūx + kyūy + kzūz = 0, (B17)

kxb̄x + ky b̄y + kz b̄z = 0, (B18)

where k2 = k2x + k2y + k2z and B0y =
√
2/β is the normalized background azimuthal field. These spectral equations

contain the linear as well as the nonlinear (N
(u)
ij (k, t), N

(θ)
i (k, t), F̄i(k, t), i, j = x, y, z) terms that are the Fourier

transforms of the corresponding linear and nonlinear terms in the original Equations (A1)-(A9). The latter are given

by convolutions

N
(u)
ij (k, t) =

∫
d3k′

[
b̄i(k

′, t)b̄j(k− k
′, t)− ūi(k

′, t)ūj(k− k
′, t)
]
, (B19)

N
(θ)
i (k, t) = −

∫
d3k′ūi(k

′, t)θ̄(k− k
′, t) (B20)

where i, j = x, y, z and F̄x, F̄y, F̄z are the fourier transforms of the respective components of the perturbed electromotive
force F = u× b,

F̄x(k, t) =

∫
d3k′

[
ūy(k

′, t)b̄z(k− k
′, t)− ūz(k

′, t)b̄y(k− k
′, t)
]

F̄y(k, t) =

∫
d3k′

[
ūz(k

′, t)b̄x(k− k
′, t)− ūx(k

′, t)b̄z(k− k
′, t)
]

F̄z(k, t) =

∫
d3k′

[
ūx(k

′, t)b̄y(k− k
′, t)− ūy(k

′, t)b̄x(k− k
′, t)
]

and describe the contribution from nonlinearity to the magnetic field perturbations. In the case of classical forced

MHD turbulence without background shear flow, these nonlinear transfer terms in k-space were also derived in Verma

(2004). From Equations (B10)-(B12) and the divergence-free conditions (B17) and (B18) we can eliminate pressure

p̄ = 2i(1− q)
ky
k2

ūx − 2i
kx
k2

ūy + iN2 kz
k2

θ̄ +
∑

(i,j)=(x,y,z)

kikj
k2

N
(u)
ij (B21)

Substituting it back into Equations (B10)-(B12) we get

(
∂

∂t
+ qky

∂

∂kx

)
ūx = 2

(
1− k2x

k2

)
ūy + 2(1− q)

kxky
k2

ūx +N2 kxkz
k2

θ̄ + ikyB0y b̄x − k2

Re
ūx +Qx, (B22)

(
∂

∂t
+ qky

∂

∂kx

)
ūy =

[
q − 2− 2(q − 1)

k2y
k2

]
ūx − 2

kxky
k2

ūy +N2 kykz
k2

θ̄ + ikyB0y b̄y −
k2

Re
ūy +Qy, (B23)

(
∂

∂t
+ qky

∂

∂kx

)
ūz = 2(1− q)

kykz
k2

ūx − 2
kxkz
k2

ūy −N2

(
1− k2z

k2

)
θ̄ + ikyB0y b̄z −

k2

Re
ūz +Qz, (B24)

where

Qi = i
∑

j

kjN
(u)
ij − iki

∑

m,n

kmkn
k2

N (u)
mn, i, j,m, n = x, y, z. (B25)

Multiplying Equations (B22)-(B24), respectively, by ū∗

x, ū
∗

y, ū
∗

z, and adding up with their complex conjugates, we

obtain
∂

∂t

|ūx|2
2

= −qky
∂

∂kx

|ūx|2
2

+Hx + I(uθ)
x + I(ub)

x +D(u)
x +N (u)

x , (B26)

∂

∂t

|ūy|2
2

= −qky
∂

∂kx

|ūy|2
2

+Hy + I(uθ)
y + I(ub)

y +D(u)
y +N (u)

y , (B27)

∂

∂t

|ūz|2
2

= −qky
∂

∂kx

|ūz|2
2

+Hz + I(uθ)
z + I(ub)

z +D(u)
z +N (u)

z , (B28)
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where the terms of linear origin are

Hx =

(
1− k2x

k2

)
(ūxū

∗

y + ū∗

xūy) + 2(1− q)
kxky
k2

|ūx|2, (B29)

Hy =
1

2

[
q − 2− 2(q − 1)

k2y
k2

]
(ūxū

∗

y + ū∗

xūy)− 2
kxky
k2

|ūy|2 (B30)

Hz = (1− q)
kykz
k2

(ūxū
∗

z + ū∗

xūz)−
kxkz
k2

(ūyū
∗

z + ū∗

yūz), (B31)

I(uθ)
i = N2

(
kikz
k2

− δiz

)
θ̄ū∗

i + θ̄∗ūi

2
, (B32)

I(ub)
i =

i

2
kyB0y(ū

∗

i b̄i − ūib̄
∗

i ), (B33)

D(u)
i = − k2

Re
|ūi|2, (B34)

and the modified nonlinear transfer functions for the quadratic forms of the velocity components are

N (u)
i =

1

2
(ūiQ

∗

i + ū∗

iQi). (B35)

Here i = x, y, z and δiz is the Kronecker delta. It is readily shown that the sum of Hi is equal to the Reynolds stress

spectrum multiplied by the shear parameter q, H = Hx +Hy +Hz = q(ūxū
∗

y + ū∗

xūy)/2

Similarly, multiplying Equation (B13) by θ̄∗ and adding up with its complex conjugate, we get

∂

∂t

|θ̄|2
2

= −qky
∂

∂kx

|θ̄|2
2

+ I(θu) +D(θ) +N (θ), (B36)

where the terms of linear origin are

I(θu) =
1

2
(ūz θ̄

∗ + ū∗

z θ̄), (B37)

D(θ) = − k2

Pe
|θ̄|2 (B38)

and the modified nonlinear transfer function for the quadratic form of the entropy is

N (θ) =
i

2
θ̄∗(kxN

(θ)
x + kyN

(θ)
y + kzN

(θ)
z ) + c.c. (B39)

Multiplying Equations (B14)-(B16), respectively, by b̄∗x, b̄
∗

y, b̄
∗

z, and adding up with their complex conjugates, we

obtain
∂

∂t

|b̄x|2
2

= −qky
∂

∂kx

|b̄x|2
2

+ I(bu)
x +D(b)

x +N (b)
x (B40)

∂

∂t

|b̄y|2
2

= −qky
∂

∂kx

|b̄y|2
2

+M+ I(bu)
y +D(b)

y +N (b)
y (B41)

∂

∂t

|b̄z|2
2

= −qky
∂

∂kx

|b̄z|2
2

+ I(bu)
z +D(b)

z +N (b)
z , (B42)

where M is the Maxwell stress spectrum multiplied by q,

M = −q

2
(b̄xb̄

∗

y + b̄∗xb̄y), (B43)

I(bu)
i = −I(ub)

i =
i

2
kyB0y(ūib̄

∗

i − ū∗

i b̄i) (B44)
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D(b)
i = − k2

Rm
|b̄i|2 (B45)

and the modified nonlinear terms for the quadratic forms of the magnetic field components are

N (b)
x =

i

2
b̄∗x[kyF̄z − kzF̄y] + c.c., N (b)

y =
i

2
b̄∗y[kzF̄x − kxF̄z] + c.c., N (b)

z =
i

2
b̄∗z[kxF̄y − kyF̄x] + c.c. (B46)
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