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With the launch of the Gaia mission, general relativity (GR) is now at the very core of astrometry. Given
the high level of accuracy of the measurements, the development of a suitable relativistic model for carrying
out the correct data processing and analysis has become a critical necessity; its primary goal is to have a
consistent set of stellar astrometric parameters by which to map a relativistic kinematic of a large portion of
the MilkyWay and, therefore, taking the first step of the cosmic distance ladder to higher accuracy. To trace
light trajectories back to the emitting stars requires an appropriate treatment of local gravity and a
relativistic definition of the observable, according to the measurement protocol of GR, so that astrometry
cannot be set apart from fundamental physics. Consequently, the final Gaia outputs, following completion
of its operational life, will have important new implications and an overwhelming potential for
astrophysical phenomena requiring the highest precision. In this regard, the present work establishes
the background GR procedure to treat such relativistic measurements from within the weak gravitational
field of the Solar System. In particular, we make the method explicit in the framework of the RAMOD
relativistic models, consistent with the IAU (standard) resolutions and, therefore, suitable for validating the
GREM approach baselined for Gaia.

DOI: 10.1103/PhysRevD.96.104030

I. INTRODUCTION

Gaia, of the European Space Agency (ESA), is the first
astrometric mission of the twenty-first century and was
successfully launched on December 19, 2013. The chal-
lenging astrometric goal of themission is the census of about
two billion individual stars comprising the Milky Way
(MW) to be materialized in the form of a catalog that will
list, for each entry, the five fundamental astrometric param-
eters: two angular coordinates (providing a direction), the
parallax, and the two components of annual proper motion
[1,2]. Gaia is a spinning two-telescope astrometric system
imaging two fields-of-view (FOVs), separated by a large
angle (indispensable for absolute parallaxes), on to the same
focal plane. In addition, a special scanning law (that
combines a six-hour spin period of the two-telescope optical
assembly with a 5.8 revolutions/year precession of the same
axis at a fixed 45° angle to the Sun) ensures a repeated 4π
coverage of the celestial sphere over the satellite’s opera-
tional lifetime. In five years, each detected object is expected
to be observed, on average, 70 times, leading to a total of
more than 150 billion measurements. At the end of the
mission, astrometric accuracies are expected to be better
than 5–10 microarcseconds (μas) for the brighter stars and
130– 600 μas for faint targets, with red objects better
measured than bluer ones.
Since the location of an object in astrophysical astrom-

etry is considered reliable if its relative error is better than

10%, performing parallaxes to 10 μas or better implies
reaching the kpc scale, i.e., the Galactic scale. Therefore,
thanks to the depth of the MW probed with precision
parallaxes, space motions (including radial velocities when-
ever possible), and astrophysical characterization (through
spectrophotometry) for such an unprecedented sample of
individual stars, Gaia will have a huge impact across many
fields. These include many branches of stellar astrophysics
(details of the structure and stellar evolutionary phases),
exoplanets (about 15000 within 200–500 pc), solar system
objects, the cosmic distance ladder (through a superb
astrometric characterization, i.e., model independent, of
the primary calibrators such as Cepheids), and fundamental
physics. Gaia will not only greatly enhance our knowledge
of the Galactic structure, but it will also provide precise
information allowing astronomers to frame a much more
detailed kinematical picture of our Galaxy than ever before.
For instance, new “accurate” distances and motions of the
stars within our Galaxy will provide access to the cosmo-
logical signatures left in the disk and halo, offering inde-
pendent, direct and detailed comparisons of the predictions
of the most advanced cosmological simulations [3].
On September 14, 2016, the first catalogue, TGAS, was

released to the scientific community worldwide ([4,5]). The
five-parameter astrometric solution for two million stars in
common between the Tycho-2 Catalogue and Gaia were
collected, complete down to magnitude 9—solar neighbor-
hood, open clusters and associations, moving groups, etc.—
with submilliarcsec accuracy (10% at 300 pc). Although
TGAS has not yet achieved the final expected accuracy, it*crosta@oato.inaf.it
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represents a first return from theGaia data that already shows
the mission is fulfilling its promise.
Nevertheless, a six-dimensional accurate reconstruction

of the individual stars across a large portion of the
Milky Way necessarily needs extremely accurate astromet-
ric observations modeled within a fully, comparably
accurate, relativistic framework. Indeed, at the microarc-
second level of accuracy, a fully relativistic inverse ray-
tracingmethodology is required in accordancewith the local
geometrical environment affecting light propagation itself
and at the observer’s gravitational location, i.e., a correct
application of the precepts of the theory of measurement in
general relativity (GR) [6]. Consequently, rigorous models
of the Gaia observables consistent with the precepts of GR
and the relativistic consistency of the whole data processing
chain are both indispensable prerequisites for the physically
correct achievement of Gaia’s goals.
Given the absolute character of the results, the DPAC

(Data Processing and Analysis Consortium, i.e., the
international consortium which is in charge of the reduction
of the Gaia data [7]) decided two procedures for the sphere
reconstruction task: one by the Astrometric Global Iterative
Solution (AGIS,[8]) and the other by the Global Sphere
Reconstruction (GSR, [9,10]), an independent procedure
for validation purposes. This approach brings some simi-
larities with the strategy adopted for the HIPPARCOS
mission. In that case, two different consortia (FAST and
NDAC) prepared two complete and independent data
reduction pipelines. In the case of Gaia, it was decided
to replicate the baseline process AGIS by implementing
GSR, which uses different astrometric models and different
algorithms, as part of the so-called Astrometric Verification
Unit (AVU).
In the Gaia context, the practical realization of the

celestial sphere is an extremely challenging problem
because of the high quality of the observations and the
large number of unknowns involved. The former issue
implies that the aforementioned accurate relativistic astro-
metric model has to be adequately used, while the huge
number of unknowns and observations puts this task at the
forefront of high-performance computing problems [11].
Finally, this reconstruction allows, as a byproduct, a high-
accuracy estimation of the PPN γ parameter at the 10−6

level, and thus represents a high-accuracy test of gravity
theories by itself [12]. Moreover, the scientific validation of
the sphere reconstruction will involve both a mutual
verification of the AGIS and GSR results and several
comparisons with external data.
This paper is the development of the GSR astrometric

model suitable for theAVUpurposewithin the framework of
the General Relativistic Astrometric MODels (RAMOD), a
family with increasing intrinsic accuracy adapted to many
different observer’s settings, interfacing numerical and
analytical relativity and based on the measurement protocol
of classical general relativity.

RAMOD was initially developed to finalize consistently
with GR the sphere reconstructions within AVU, but it
actually describes, in a relativistically rigorous way, the null
geodesics in the weak field regime at different levels of
accuracy for the first linear perturbations of the metric, and
different models of the family can be adopted according to
the needs of a specific problem or measurements in the
Solar System. For example, in principle, RAMOD3a (see
Crosta et al., 2015, and references therein [13]), a static
model at the ϵ2 level (where ϵ≡ v=c), should be sufficient
for the sphere reconstruction at the Gaia accuracy of GSR,
and RAMOD3b/4a (ϵ3) will be used if the retarded
distances need to be included appropriately, because it is
able to consider them in a more rigorous way. Dynamical
models like RAMOD4 (up to ϵ4) could be suitable, for
example, for taking into account gravitomagnetic relativ-
istic effects. The modular structure of GSR, moreover,
allows one to implement different astrometric models, thus
transforming this pipeline in a sort of machinery for the
numerical testing of different relativistic models. Here we
adapt the RAMOD3/4 solutions in GSR in order to produce
a validation Gaia catalogue and compare its outputs with
those of the GREM baselined model of AGIS. The resulting
catalog will be expressed in the BCRS coordinates of the
IAU resolutions [14].
Despite the fact that this issue might seem rather

technical, we wish to stress that from the theoretical,
computational, and experimental points of view, relativistic
astrometry is opening largely uncharted territory.
Stemming from the Gaia needs, there now exist different
ways to model light propagation observables in the context
of GR [15–17]. Their multiple and simultaneous avail-
ability is needed in order to rule out possible spurious
contributions (especially systematic errors due to, e.g.,
insufficient instrumental modeling) and to consolidate the
future experimental results, particularly if one is required to
take into account and to implement gravitational source
velocities and retarded time effects; these manifest them-
selves in the weak gravitational fields of the Solar System,
which turns out to be “strong” already at the level of the
accuracy expected for Gaia, namely ðv=cÞ3. Light tracing
can be affected by such ever-present and ever-changing
gravitational perturbations interfering with the accurate
physical interpretation of the measurements, especially in
the case of a continuous whole sky coverage.
Section II is devoted to summarize the GR light-tracing

from within the IAU metric of the Solar System in the
RAMOD context, and Sec. III puts in the same framework
the relativistic observation for a Gaia-like observer.
Section IV details the relativistic observation equations
needed to solve the astrometric problem for AVU/GSR,
while Sec. V shows the numerical consistency of the new
relativistic algorithms with the intrinsic accuracy of the
RAMOD/IAU adopted relativistic model and their valida-
tion with respect to GREM. Finally, in Sec. VI, we remark
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on the impact of such a relativistic procedure beyond the
immediate scope of the AVU/GSR astrometric solution.

II. INVERSE RAY-TRACING FROM WITHIN
WEAK GRAVITATIONAL FIELDS

A. Spacetime metric in the global and
local coordinate system

Given a geometrical background, analytical solutions of
the null geodesic provide the light directions that can be
implemented in the relativistic modeling of astronomical
observables. As far as the Solar System is concerned, the
background spacetime consists of N gravitationally inter-
acting bodies, each associated with its own world lines LðaÞ
(a ¼ 1…N). Here, we choose to neglect the multipolar
fields defined along it.
It is customary to identify a “global coordinate system”

xα ¼ ðct; xiÞ (with the origin at the center-of-mass) and N
local coordinate systems Xα

ðaÞ ¼ ðcTðaÞ; Xa
ðaÞÞ for each

single body. A mapping between the global and local set
of coordinates is given by [18] (Damour-Soffel-Xu for-
malism, hereafter DSX)

xμðaÞ ¼ xμðcTðaÞ; Xi
ðaÞÞ

¼ zμðaÞðcTðaÞÞ þ eμi ðcTðaÞÞXi
ðaÞ þ ξμðcTðaÞ; Xi

ðaÞÞ;
ξμ ¼ O½ðXi

ðaÞÞ2�; ð1Þ

where zαðaÞ ¼ zαðaÞðτðaÞÞ is the parametric equations of LðaÞ
(with τðaÞ proper time), eμi ðcTðaÞÞ denotes a triad of
spacelike vectors (i ¼ 1, 2, 3) undergoing some geometric
transport (e.g., Fermi transport) along the line LðaÞ.
The gravitational fields interact weakly if the spacetime

region of interest can be assumed to be not too close to any
given body, so that the metric results as the sum of the
Minkowskian metric ηαβ ¼ diag½−1; 1; 1; 1� and small per-
turbations given as

gαβ ¼ ηαβ þ hαβ ð2Þ

and can be expressed either in the global coordinates xμ or
in any of the N local coordinates Xμ

ðaÞ. The choice of

coordinates is actually a gauge choice. In fact, the form of
the metric can be very different within different coordinate
systems. A minimal request is that it admits a PN expansion
in the usual sense,

h00¼Oðc−2Þ; h0i ¼Oðc−3Þ; h00¼Oðc−2Þ; ð3Þ

in each of these coordinate systems. Following DSX, in all
coordinate systems we require the spatial coordinates to be
“conformally Cartesian” or “isotropic,”

g00gij ¼ −δij þOð1=c4Þ: ð4Þ

This condition imposes severe restrictions on the
various elements zμ, eμa, ξμ entering the map between
the global coordinates and any of the local ones.
However, while standard gauges (harmonic, standard
PN gauges) impose differential conditions on the metric,
DSX conditions are instead purely algebraic and, hence,
more flexible.
Furthermore, at the level of Gaia accuracy, each

source can be assumed to move with a constant velocity
relative to the global reference system, i.e., ~viðaÞ ¼ const,

where ~viðaÞ are the coordinate components of the

spatial velocity of the ath source, with 4-velocity ~u
(see Sec. II B). In this case, the transformation between
local coordinates Xμ ¼ ðcT; XiÞ (where the body is at
rest) to global coordinates xμ ¼ ðct; xiÞ (where the body
moves with constant velocity) is given by a Lorentz
transformation, i.e.,

xμðXαÞ ¼ xμ0 þ Λμ
νXν; ð5Þ

such that for the body

~xiðtÞ ¼ ~xi0 þ ~viðt − t0Þ þOð ~v2Þ: ð6Þ

According to DSX the transformation law of the canoni-
cal form of the metric perturbation in the local coordinates
Xμ ¼ ðcT; XiÞ in the exterior region of the matter field can
be written as

hμνcanðct; xiÞ ¼ Λμ
αΛν

βh
αβ
canðcT; XiÞ: ð7Þ

In the simplest case of an extended body with monopole
structure one obtains

hμνmonoðct;xiÞ
¼ 2GMϵ2½γðrðtretÞ− ϵ~v ·rðtretÞÞ�−1ðημνþ2ϵ2 ~uμ ~uνÞ: ð8Þ

Replacing then the retarded time tret with t in the retarded
distance (see Appendix A)

riðtretÞ ¼ riðtÞ þ ϵrðtÞ~vi þ ϵ2ðrðtÞ · ~vÞ ~vi þOðϵ3Þ;

rðtretÞ ¼ rðtÞ
�
1þ ϵ~v · nðtÞ þ 1

2
ϵ2 ~v2 þ 1

2
ϵ2ð~v · nðtÞÞ2

�
;

þOðϵ3Þ; ð9Þ

so that

~v · rðtretÞ¼ rðtÞ½~v ·nðtÞþ ϵ ~v2þ ϵ2 ~v2ð~v ·nðtÞÞ�þOðϵ3Þ:
ð10Þ
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The latter approximations allow to make explicit the
retarted time dependency on the coordinate time in the
metric coefficient at the accuracy level targeted for a Gaia-
like observer and according to the present IAU resolutions
for the BCRS metric [14], namely

g00ðct; xiÞ ¼ −1þ 2ϵ2hðaÞðt; xiÞ þOð4Þ;
g0iðct; xiÞ ¼ −4ϵ3hðaÞðt; xiÞ~viðaÞ þOð4Þ;
gijðct; xiÞ ¼ δij½1þ 2ϵ2hðaÞðt; xiÞ� þOð4Þ; ð11Þ

where

hðaÞðt; xiÞ ¼
GMðaÞ
rðaÞðt; xiÞ

; ð12Þ

rðaÞðt;xiÞ¼ ½ðx−xaðtÞÞ2þðy−yaðtÞÞ2þðz− zaðtÞÞ2�1=2:
ð13Þ

This is the form of the metric extensively used in the
literature (see, e.g., Ref [17,19–23]) to which we refer in
order to compare RAMOD/GSR results with those of
GREM/AGIS. In the following we remove the subscript
(a) for simplicity, and, where not useful, we retain terms up
to the order of Oðϵ3Þ in the expansion of perturbation
quantities.

B. Fiducial observers and BCRS frame

RAMOD framework is based on the measurement
protocol in GR [6]. This implies the determination of a
set of fiducial observers in order to define measurements
all along the light trajectories—from the observer up to
the star—with respect to a common rest space. We remind
the reader that GR is based on covariant equations for
different observers, instead, the goal of an astrometric
catalogue is to fix coordinate quantities related to the stars.
Then the crucial point is to correctly match these two
requirements.
Following the IAU resolutions, RAMOD assumes as

fiducial observers those at rest with respect to the center-of-
mass (CM) of the BCRS, viz. the static observer with
associated 4-velocity

uα ¼ 1ffiffiffiffiffiffiffiffiffiffi−g00
p ∂α

0 ≈ ð1þ ϵ2hÞ∂α
0; ð14Þ

denoted as “local barycentric observer.”
Note that the congruence of curves u is in general not

vorticity-free at the microarcsecond level of accuracy,
because of the term ωijðuÞ ¼ ∂ ½ihj�0; i.e., locally and only
locally u is at rest with respect to the CM chosen as origin
of the coordinate system.

However, if one compares the scale of the Solar System
and the photon crossing time through it—approximately
10 hours in total- the gravitational field of the Solar
System cannot significantly change in a dynamical sense
during such a time. Then when a photon approaches the
weak gravitational field of the Solar System, practically
for a Gaia-like observer it will be subjected to the
gravitational field generated by the masses of the bodies
in the system while being rather insensitive to their own
motion. This approximation fits well for the case of
constant velocity discussed above and allows to neglect
the locality of the vorticity of u consistently with
the purpose of this paper, i.e., a straight comparison
between RAMOD and GREM approaches in the IAU
framework.

C. Photon trajectories in the RAMOD/IAU framework

The fundamental unknown of the RAMOD approach is
the space-like four-vector l̄α, which is the projection of the
tangent to the null geodesic onto the rest-space of the local
barycentric observer, namely the one locally at rest with
respect to the barycenter of the Solar System. Physically,
such a four-vector identifies the line-of- sight of the
incoming photon relative to that observer.
Let the null geodesic of the photon be described by the

tangent vector field kα, i.e.,

kα∇αkβ ¼ 0; kαkα ¼ 0; ð15Þ

∇α being the covariant derivative associated with the
spacetime metric. The RAMOD decomposition of the
photon 4-momentum with respect to the fiducial observer
can be denoted as

kα ¼ −ðu · kÞuα þ lα ≡ Eðk; uÞuα þ lα: ð16Þ

The trajectory can be parametrized by a parameter σ
such that

k̄α ¼ kα

Eðk; uÞ ¼
dxα

dσ
; ð17Þ

implying that Eq. (15) becomes

k̄α∇αk̄β ¼ −
d ln Eðk; uÞ

dσ
k̄β: ð18Þ

Correspondingly we can define the previous equations for
l̄α, so the null geodesic reads for each value of α [13,24] as:
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dl̄α

dσ
þ duα

dσ
− ðl̄α þ uαÞðl̄β _uβ þ l̄βl̄τ∇τuβÞ

þ Γα
βγðl̄β þ uβÞðl̄γ þ uγÞ ¼ 0: ð19Þ

Neglecting all the Oðh2Þ terms and taking into account
that l̄0 ¼ h0il̄i þOðh2Þ, the solutions of the photon
equation of motion are given by

dx0

dσ
¼ l̄0ðσÞ þ 1þ ϵ2hðσÞ; dxa

dσ
¼ l̄aðσÞ: ð20Þ

To the order Oðϵ3Þ, we then have

l̄a ¼ l̄a
∅ þ ϵ2l̄a

ð2Þ þ ϵ3l̄a
ð3Þ; xα ¼ xα∅ þ ϵ2xαð2Þ þ ϵ3xαð3Þ;

ð21Þ

where l̄a
∅ denotes the unperturbed local photon direction

and the parameter σ of the light ray trajectory is fixed so
that it is σ ¼ 0 at the event of observation with coordinates
xαobs ¼ ðx0obs; xiobsÞ. Therefore, the unperturbed orbit can be
written as

x0∅ ¼ x0obs þ σ; xa∅ ¼ xaobs þ l̄a
∅σ; ð22Þ

with xαð2Þð0Þ ¼ 0 and xαð3Þð0Þ ¼ 0.
The “actual” locally spatial photon direction evaluated at

the observation point l̄a
obs ¼ l̄a

∅ þ ϵ2l̄a
ð2Þð0Þ þ ϵ3l̄a

ð3Þð0Þ
has to be considered as known, being related to the direct
measurement and to the selected attitude of the observ-
er’s frame.
To the order Oðϵ3Þ Eq. (19) for l̄a becomes

dl̄a

dσ
¼ ϵ2½2∂ah − 3l̄a

∅l̄b
∅∂bh�

þ ϵ3½−4ðl̄∅ · ~vÞ∂ahþ 4~val̄b
∅∂bh − l̄a

∅∂th� ð23Þ

¼ ϵ2
�
2∂ah − 3l̄a

∅
dh
dσ

�

þ ϵ3
�
−4ðl̄∅ · ~vÞ∂ahþ 4~va

dh
dσ

þ 2l̄a
∅∂th

�
þOðϵ4Þ;

ð24Þ

where we have used the relation

dh
dσ

¼ l̄i
∅∂ihþ ϵ∂thþOðϵ2Þ; ð25Þ

whereas

l̄0ðσÞ ¼ −4ϵ3ðl̄∅ · ~vÞhðσÞ: ð26Þ

Note that the eq. (23) has the same form of eq. (22) in [13]
neglecting terms of the order of ϵ4.
Once one introduces the following integral quantities

HðσÞ ¼
Z

σ

0

hðσÞdσ; HaðσÞ ¼
Z

σ

0

½∂ah�ðσÞdσ;

HaðσÞ ¼
Z

σ

0

HaðσÞdσ; HtðσÞ ¼
Z

σ

0

½∂th�ðσÞdσ;

HtðσÞ ¼
Z

σ

0

HtðσÞdσ; ð27Þ

the solution is then formally given by

l̄aðσÞ ¼ l̄a
obs þ ϵ2f2½1 − 2ϵð~v · l̄∅Þ�HaðσÞ

− ð3l̄a
∅ − 4ϵ ~vaÞðhðσÞ − hobsÞg þ 2ϵ3l̄a

∅H
tðσÞ;

ð28Þ

so that the trajectory results in

xaðσÞ ¼ xaobs þ l̄a
obsσ þ ϵ2f2½1 − 2ϵð~v · l̄∅Þ�HaðσÞ

− ð3l̄a
∅ − 4ϵ ~vaÞðHðσÞ − hobsσÞg þ 2ϵ3l̄a

∅HtðσÞ;
ð29Þ

whereas

x0ðσÞ ¼ x0obs þ σ þ ϵ2½1 − 4ϵð~v · l̄∅Þ�HðσÞ: ð30Þ

Finally, the normalization factor EðK; uÞ satisfies the
equation

dE
dσ

¼ ϵ2l̄i
∅∂ih − ϵ3∂th

¼ ϵ2
dh
dσ

− 2ϵ3∂thþOðϵ4Þ; ð31Þ

with solution

EðK; uÞ ¼ 1þ ϵ2ðhðσÞ − hobsÞ − 2ϵ3HtðσÞ; ð32Þ

where the unperturbed value has been set equal to unity
without any loss of generality.

1. Light trajectories for N-body system
with constant velocities

Denoting xi − xiðaÞ ≡ riðaÞ, xiobs − xiðaÞ ≡ riobs, and ni ¼
ri=r, dropping the summation symbol, and the subscript
(a), the solutions for n-mass monopoles with constant
velocities to be implemented in the astrometric problem
for the RAMOD/IAU framework are (more details in
Appendix B):
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l̄0 ¼ −4GMϵ3
l̄∅ · ~v
r

;

l̄a − l̄a
obs ¼ −GMϵ2

��
1

r
−

1

robs

��
l̄a
∅ − 2ϵ

�
2dav −

da

d2
ð~v · robsÞ

��
þ 2

da

d2
½1 − 2ϵð~v · l̄∅Þ�ðn · l̄∅ − nobs · l̄∅Þ

�

þ 2GMϵ3
robs
d2r

�
dav − 2

da

d2
ð~v · dÞ

�
½r − robs − ðnobs · l̄∅Þσ�;

x0 − x0obs ¼ σ þ ϵ2GM½1 − 3ϵð~v · l̄∅Þ� ln
�

rþ ðr · l̄∅Þ
robs þ ðrobs · l̄∅Þ

�
þ ϵ3GM
rþ ðr · l̄∅Þ

�
r − robs þ σ

robs þ ðrobs · l̄∅Þ
ð~v · dÞ − ð~v · l̄∅Þσ

�
;

xa − xaobs ¼ l̄a
obsσ − GMϵ2

�
l̄a
∅

�
½1þ ϵð~v · l̄∅Þ� ln

�
rþ ðr · l̄∅Þ

robs þ ðrobs · l̄∅Þ
�
−

σ

robs

�
þ 2

da

d2
½r − robs − ðnobs · l̄∅Þσ�

�

− GMϵ3
�

l̄a
obs

rþ ðr · l̄∅Þ
�

r − robs þ σ

robs þ ðrobs · l̄∅Þ
ð~v · dÞ − ð~v · l̄∅Þσ

�
− 2dav

�
ln

�
rþ ðr · l̄∅Þ

robs þ ðrobs · l̄∅Þ
�
− 2

σ

robs

�

− 2
rrobs
d2

�
dav − 2

da

d2
ð~v · dÞ

�
ðn · l̄∅ − nobs · l̄∅Þ þ 2

da

d2robs
½ð~v · l̄∅Þðrobs · l̄∅Þ − ð~v · dÞ�σ

�
; ð33Þ

where

σ ¼ ðr · l̄∅Þ − ðrobs · l̄∅Þ þOðϵ2Þ
¼ ðx − xobsÞ · l̄∅ þOðϵ2Þ; ð34Þ

and

da ¼ ½l̄∅ × ðrobs × l̄∅Þ�a
¼ raobs − l̄a

∅ðrobs · l̄∅Þ≡ Pðl̄∅Þabrbobs; ð35Þ

d2 ¼ r2obs − ðrobs · l̄∅Þ2; ð36Þ

represents the impact parameter with respect to the
(a)-source (being Pðl̄∅Þab the projector orthogonal to l̄∅),
whereas

dav ¼ ½l̄∅ × ð~v × l̄∅Þ�a ¼ Pðl̄∅Þab ~vb; ð37Þ

is the projected source velocity with respect to the un-
perturbed light direction.
Setting ~vðaÞ ¼ 0 the static solution is obtained straightly.

The spatial component of these equations are equivalent
to those compared with the Time Transfer Function
approach [25].
Moreover, following Ref. [13,17] equivalently one can

parametrize the photon trajectory in terms of the photon
impact parameter ξ̂i w.r.t. to the center-of-mass of the
system (which is equivalent to di in case of one body), as
follows

xi ¼ ξ̂i þ
Z

σ

σ̂
l̄idσ; ð38Þ

σ̂ being the value of the parameter σ at the point of closest
approach, so that

ri ¼ xi − xiðaÞ ¼ r̂ip þ l̄i
∅ðσ − σ̂Þ þOðϵ2Þ; ð39Þ

where r̂ip ¼ ξ̂i − xiðaÞ denotes the relative distance between
the point of closest approach and the source position with
respect the origin of BCRS at given reference time.
Therefore, the class of solutions in [13], can be reformu-
lated from Eqs. (23) and (27) by replacing σ → σ − σ̂ ≡ τ
and riobs → r̂ip and merging all the different levels of
accuracy up to ϵ3 order in the case of metric (8) expressed
in IAU coordinates.

III. THE ASTROMETRIC OBSERVABLE
FOR A GAIA-LIKE OBSERVER

A. The observable

Given the solution of the null geodesic we need to define
a relationship between the unknowns, namely the position
and motion of the star, and the observable quantities.
Indeed, we need to fix the initial condition in order to
guarantee a unique solution of the astrometric problem.
These conditions are the components l̄k

obs deduced from
equations (33) and provided by the satellite observations.
RAMOD relies on the tetrad formalism for the definition

of the observable. The observables can be expressed as
functions of the direction cosines of the incoming direction
kα with respect to the axes of the spatial triad Eâ adapted to
the Gaia satellite attitude [26,27], namely a set of three
orthonormal spacelike vectors that are comoving with the
satellite and define its rest frame. Therefore, the observ-
ables are given as follows:
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cosψ ðâ;kÞjσ¼0 ¼
PðusÞαβkαEβ

â

½PðusÞαβkαkβ�1=2
				
σ¼0

ð40Þ

â-th being the direction cosine measured by the observer,
i.e., the satellite us, where all the quantities are obviously
computed at the event of the observation and PðusÞ is the
operator that projects onto the satellite rest frame.

B. The observer

Given an orthonormal threading frame fu; eðuÞâg along
us, the (timelike) satellite world line has 4-velocity

uαs ¼ γðus; uÞ½uα þ ϵναðus; uÞ� ð41Þ

where

ναðus; uÞ ¼ ναðus; uÞâeðuÞâ;

γðus; uÞ ¼ ð1 − ϵ2∥νðus; uÞ∥
2Þ−1=2; ð42Þ

so that us · us ¼ −1. An adapted frame to this world line
can be obtained by boosting the orthonormal threading
frame fu; eðuÞâg along us, i.e.,

Eα
0̂
¼ uαs ; Eα

â ¼ Bαðus; uÞeðuÞâ; ð43Þ

where

Eα
â ¼

�
PðusÞ−

γðus;uÞ
γðus;uÞþ1

ϵ2νðu;usÞ⊗ νðu;usÞ
�
α

∟eðuÞâ;

ð44Þ

(the symbol ∟ denotes right contraction) and

ϵναðu; usÞ ¼
1

γðus; uÞ
uα − uαs : ð45Þ

The time component of the satellite 4-velocity (41) is

u0 ¼ 1þ ϵ2
�
1

2
v2 þ h

�
þOðϵ4Þ; ð46Þ

implying that

uαs ¼ u0½∂α
0 þ ϵvα�; ð47Þ

where the notation

vα ¼ va∂α
a; v2 ¼ δabvavb ð48Þ

has been used and va depends on t only. In terms of the
coordinate components of the spatial velocity the frame
components ναðus; uÞâ and the associated Lorentz factor
γðus; uÞ are

ναðus; uÞâ ¼ ð1þ 2hϵ2Þvα;

γðus; uÞ ¼ 1þ v2

2
ϵ2 þOðϵ4Þ: ð49Þ

The spatial triad (44) adapted to us is thus given by

~λαâ¼Eα
â ¼

�
ϵvaþ ϵ3

�
va
�
v2

2
þ3h

�
−4h ~va

��
∂α
0

þð1−ϵ2hÞ∂α
aþva

ϵ2

2
vαþOðϵ4Þ

¼ λαâþ ϵva
�
1þ ϵ2

�
v2

2
þ3h

��
∂α
0þ

1

2
ϵ2vavb∂α

bþOðϵ4Þ:

ð50Þ

where, according to metric (11),

λαâ ¼ eðuÞâ ¼ ð1 − ϵ2hÞ∂α
a − 4ϵ3h ~va∂α

0: ð51Þ

is the local barycentric observer-adapted orthonormal
spatial frame.

C. Gaia’s attitude frame and the observables

The astrometric satellite Gaia is expected to orbit the
Earth-Sun system at the outer Lagrangian point L2 follow-
ing a trajectory modulated in three spatial directions. More
precisely, the two Gaia Fields of View (FoVs) can sweep
the whole celestial sphere approximately every six months
thanks to the combination of three independent motions of
the satellite: the spin around its z-axis (1 turn every 6 hours),
the precession of such an axis around the satellite-Sun
direction (α ¼ 45°) with a period of 70 days, and the orbital
motion around the Sun of its barycenter.
The Gaia attitude frame is specified by the following

spatial rotation of the adapted triad (50)

Fα
â ¼ AðσiÞâb̂ ~λαb̂; ð52Þ

where

A ¼ 1

ð2 − ΣÞ2

0
BB@

4ðσ21 − σ22 − σ23Þ þ Σ2 8σ1σ2 þ 4σ3Σ 8σ1σ3 − 4σ2Σ
8σ1σ2 − 4σ3Σ 4ð−σ21 þ σ22 − σ23Þ þ Σ2 8σ2σ3 þ 4σ1Σ
8σ3σ1 þ 4σ2Σ 8σ3σ2 − 4σ1Σ 4ð−σ21 − σ22 þ σ23Þ þ Σ2

1
CCA; ð53Þ
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with Σ ¼ 1 − σ21 − σ22 − σ23, detðAÞ ¼ 1 and fσ1; σ2; σ3g are modified Rodrigues parameters.
These latter expressions can then be linked in a standard way to the astrometric unknowns of the observed object [28].

We find

cosψ ðâ;kÞ ¼ ðCâ · l̄Þð1þ 2ϵ2hÞ½1þ ϵðv · l̄∅Þ� − ϵðCâ · l̄∅Þð1 − ϵ2hÞðv · l̄∅Þ þ ϵð1þ 2ϵ2hÞ½ðv · l̄ÞðCâ · l̄∅Þ −Câ · v�

þ ϵ2½1þ ϵðv · l̄∅Þ�
�
−
1

2
ðv · l̄∅ÞðCâ · vÞ þ ðCâ · l̄∅Þ

�
ðv · l̄∅Þ2 −

v2

2

��
þOðϵ4Þ; ð54Þ

which have to be evaluated at the position of the satellite, i.e., for σ ¼ 0. The coefficients Cb
â are functions only of the

attitude parameters (σ1, σ2, σ3), and are explicitly given by

Cb
1̂
¼ A1̂ b̂; Cb

2̂
¼ A2̂ b̂; Cb

3̂
¼ A3̂ b̂; ð55Þ

namely

C1
1̂
¼ 4ðσ21 − σ22 − σ23Þ þ Σ2

ð2 − ΣÞ2 ; C2
1̂
¼ 8σ1σ2 þ 4σ3Σ

ð2 − ΣÞ2 ; C3
1̂
¼ 8σ1σ3 − 4σ2Σ

ð2 − ΣÞ2 ;

C1
2̂
¼ 8σ1σ2 − 4σ3Σ

ð2 − ΣÞ2 ; C2
2̂
¼ 4ð−σ21 þ σ22 − σ23Þ þ Σ2

ð2 − ΣÞ2 ; C3
2̂
¼ 8σ2σ3 þ 4σ1Σ

ð2 − ΣÞ2 ;

C1
3̂
¼ 8σ3σ1 þ 4σ2Σ

ð2 − ΣÞ2 ; C2
3̂
¼ 8σ3σ2 − 4σ1Σ

ð2 − ΣÞ2 C3
3̂
¼ 4ð−σ21 − σ22 þ σ23Þ þ Σ2

ð2 − ΣÞ2 : ð56Þ

It is worth rewriting Eq. (54) as follows

cosψ ðâ;kÞ ¼ cosψ ð0Þ
ðâ;kÞ þ ϵ cosψ ð1Þ

ðâ;kÞ þ ϵ2 cosψ ð2Þ
ðâ;kÞ þ ϵ3 cosψ ð3Þ

ðâ;kÞ; ð57Þ

where

cosψ ð0Þ
ðâ;kÞ ¼ Câ · l̄∅;

cosψ ð1Þ
ðâ;kÞ ¼ ðv · l̄∅ÞðCâ · l̄∅Þ −Câ · v;

cosψ ð2Þ
ðâ;kÞ ¼ Câ · l̄

ð2Þ
obs −

1

2
ðv · l̄∅ÞðCâ · vÞ þ ðCâ · l̄∅Þ

�
hobs þ ðv · l̄∅Þ2 −

v2

2

�
;

cosψ ð3Þ
ðâ;kÞ ¼ Câ · l̄

ð3Þ
obs þ ðv · l̄∅ÞðCâ · l̄

ð2Þ
obsÞ − ðCâ · vÞ

�
2hobs þ

1

2
ðv · l̄∅Þ2

�

þ ðCâ · l̄∅Þ
�
ðv · l̄∅Þ

�
4hobs þ ðv · l̄∅Þ2 −

v2

2

�
þ v · l̄ð2Þ

obs

�

¼ Câ · l̄
ð3Þ
obs þ ðv · l̄∅Þ cosψ ð2Þ

ðâ;kÞ þ 2hobs cosψ
ð1Þ
ðâ;kÞ þ ðCâ · l̄∅Þ½hobsðv · l̄∅Þ þ v · l̄ð2Þ

obs�; ð58Þ

with hobs ¼ GM=robs and l̄obs ¼ l̄∅ þ ϵ2l̄ð2Þ
obs þ ϵ3l̄ð3Þ

obs, i.e.,

l̄a
obs ¼ l̄a

∅ − GMϵ2
�
l̄a
∅

robs
− 2

da

d2

�
r� − robs
jx� − xobsj

− ðnobs · l̄∅Þ
��

− 2GMϵ3
��

1

jx� − xobsj
ln

�
r� þ ðr� · l̄∅Þ

robs þ ðrobs · l̄∅Þ
�
−

2

robs

�
dav

þ r�robs
d2jx� − xobsj

�
dav − 2

da

d2
ð~v · dÞ

�
ðn� · l̄∅ − nobs · l̄∅Þ −

da

d2

�
ð~v · l̄∅Þðnobs · l̄∅Þ −

~v · d
robs

��
; ð59Þ

where we have used the relation

σ� ¼ jx�−xobsjþϵ2½1þϵð~v · l̄∅Þ�Hðxa�ÞþGMϵ3
jx�−xobsj

r�þðr� · l̄∅Þ
��

1þ r�−robs
jx�−xobsj

�
~v ·d

robsþðrobs · l̄∅Þ
− ~v · l̄∅

�
þOðϵ4Þ: ð60Þ
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IV. LINKING THE ASTROMETRIC OBSERVABLE
TO THE STARS: THE LINEARIZED

OBSERVATION EQUATIONS FOR GAIA

Repeated observations of the same objects from different
satellite orientations and at different times allows to
estimate their angular positions, parallaxes, and proper
motions, i.e., the actual realization of an absolute reference
frame. This process is conventionally called Astrometric
Sphere Reconstruction. From a mathematical point of view,
these observations translate into a large number of equa-
tions, linearized with respect to the unknown parameters
around known initial values, whose solution in the least-
squares sense eventually provides the catalog with its
errors, and determines the Gaia reference frame.
In principle, the â-th direction cosine turns out to be a

function of the spatial position xa� of the star (or, equiv-
alently, its astrometric parameters) and the satellite’s
attitude represented by the parameters σi, i.e.,

cosψ ðâ;kÞjσ¼0 ¼ fâðxi�;σiÞ¼ fð0Þâ þ ϵfð1Þâ þ ϵ2fð2Þâ þ ϵ3fð3Þâ ;

ð61Þ

where, according to equations (58), we define:

fð0Þâ ¼ Câ · l̄∅;

fð1Þâ ¼ ðv · l̄∅Þfð0Þâ −Câ · v;

fð2Þâ ¼ Câ · l̄
ð2Þ
obs þ

1

2
ðv · l̄∅Þfð1Þâ

þ fð0Þâ

�
hobs þ

1

2
ðv · l̄∅Þ2 −

v2

2

�
;

fð3Þâ ¼ Câ · l̄
ð3Þ
obs þ ðv · l̄∅Þfð2Þâ þ 2hobsf

ð1Þ
â

þ fð0Þâ ½hobsðv · l̄∅Þ þ v · l̄ð2Þ
obs�: ð62Þ

Our task is to make the function f explicit by exploiting
the RAMOD/IAU astrometric solution in order to provide a
stellar catalogue consistent with the precepts of general
relativity, which is also suitable for the validation of the
baseline relativistic model for Gaia.
Since Gaia collects a large number of observations, a

large overdetermined system is produced that can be
linearized around a given starting point xio. Then, in order
to determine the unknowns, we have to consider the
solution of a linear system of equations such as

b ¼ Aδx ð63Þ

where b ¼ f− sinϕjδϕ
jgT (j ¼ 1;…; nobs), δx ¼ xun − xo

is the unknowns vector, and A is the nun × nobs design
matrix of the system whose coefficients are aji ¼ ∂f=∂xi.

The variation of (61) with respect to any parameters pi is

δðcosψ ðâ;kÞjσ¼0Þ ¼
X
j

∂fâðpiÞ
∂pj

δpj; ð64Þ

which is easily computed taking into account that

∂l̄i
∅

∂xj� ¼ δij − l̄i
∅l̄

j
∅

jx� − xobsj
≡ Pðl̄∅Þij

jx� − xobsj
; ð65Þ

∂jx� − xobsj
∂xj� ¼ l̄j

∅;
∂r�
∂xj� ¼ nj�; ð66Þ

so that

∂ðr� · l̄∅Þ
∂xj� ¼ l̄j

∅ þ Pðl̄∅Þijr�i
jx� − xobsj

¼ l̄j
∅ þ rj� − l̄j

∅ðr� · l̄∅Þ
jx� − xobsj

;

ð67Þ
and

∂ðv · l̄∅Þ
∂xj� ¼ Pðl̄∅Þijvi

jx� − xobsj
¼ vj − l̄j

∅ðv · l̄∅Þ
jx� − xobsj

; ð68Þ

∂ðCâ · l̄∅Þ
∂xj� ¼ Pðl̄∅ÞijCâi

jx� − xobsj
¼ Cj

â − ðCâ · l̄∅Þl̄j
∅

jx� − xobsj
; ð69Þ

∂ðrobs · l̄∅Þ
∂xj� ¼ dj

jx� − xobsj
; ð70Þ

∂di
∂xj� ¼ −

1

jx� − xobsj
½l̄i

∅d
j þ ðrobs · l̄∅ÞPðl̄∅Þij�; ð71Þ

∂d
∂xj� ¼ −

robs · l̄∅

jx� − xobsj
dj

d
; ð72Þ

∂ð~v · dÞ
∂xj� ¼ −

ð~v · l̄∅Þdj þ ðrobs · l̄∅Þdjv
jx� − xobsj

; ð73Þ

∂ð~v · l̄∅Þ
∂xj� ¼ djv

jx� − xobsj
; ð74Þ

∂div
∂xj� ¼ −

1

jx� − xobsj
½l̄i

∅d
j
v þ ð~v · l̄∅ÞPðl̄∅Þij�: ð75Þ

The variations with respect to the attitude parameters is
straightforward. We list them in Appendix C.
Actually, each Gaia observation can be translated in the

measurement of an abscissa on the fx; yg focal plane which
can be modeled as a function fðx�; xC; xI; xGÞ of the stellar
coordinates xi�, as well as of those of the satellite attitude
xiC, instrumental xiI, and of another kind called global xiG.
Moreover, the attitude reconstruction requires the inclu-

sion of a certain number of across-scan measurements,
namely those of the coordinate orthogonal to the same plane.

GENERAL RELATIVISTIC OBSERVABLE FOR … PHYSICAL REVIEW D 96, 104030 (2017)

104030-9



Then, the actual observables of Gaia are:

cosϕ¼ cosψ ð1̂;kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− cos2ψ ð3̂;kÞ

q

¼ cosϕð0Þ þ ϵcosϕð1Þ þ ϵ2 cosϕð2Þ þ ϵ3 cosϕð3Þ ð76Þ
sinζ¼ cosψ ð3̂;kÞ

¼ cosψ ð0Þ
ð3̂;kÞ þ ϵcosψ ð1Þ

ð3̂;kÞ þ ϵ2 cosψ ð2Þ
ð3̂;kÞ þ ϵ3 cosψ ð3Þ

ð3̂;kÞ

ð77Þ

Let us consider the variation of the observable cosϕ with
respect to the parameters pi as

δ cosϕ ¼
X
k

∂ cosϕðpiÞ
∂pk

δpk; ð78Þ

The approximations of the across scan measurement are
directly given by (58) in the case â ¼ 3, while those along
the scan have the following expressions:

cosϕð0Þ ¼ fð0Þ
1̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðfð0Þ
3̂
Þ2

q ;

cosϕð1Þ

cosϕð0Þ ¼
fð1Þ
1̂

fð0Þ
1̂

þ cos2ϕð0Þ f
ð0Þ
3̂
fð1Þ
3̂

ðfð0Þ
1̂
Þ2

;

cosϕð2Þ

cosϕð0Þ ¼
fð2Þ
1̂

fð0Þ
1̂

þ cos2ϕð0Þ fð0Þ
3̂

ðfð0Þ
1̂
Þ3
ðfð1Þ

1̂
fð1Þ
3̂

þ fð0Þ
1̂
fð2Þ
3̂
Þ þ cos4ϕð0Þ ðfð1Þ

3̂
Þ2

2ðfð0Þ
1̂
Þ4
ð1þ 2ðfð0Þ

3̂
Þ2Þ;

cosϕð3Þ

cosϕð0Þ ¼
fð3Þ
1̂

fð0Þ
1̂

þ cos2ϕð0Þ fð0Þ
3̂

ðfð0Þ
1̂
Þ3
ðfð2Þ

1̂
fð1Þ
3̂

þ fð1Þ
1̂
fð2Þ
3̂

þ fð0Þ
1̂
fð3Þ
3̂
Þ þ cos4ϕð0Þ fð1Þ

3̂

2ðfð0Þ
1̂
Þ5
ð1þ 2ðfð0Þ

3̂
Þ2Þð2fð0Þ

1̂
fð2Þ
3̂

þ fð1Þ
1̂
fð1Þ
3̂
Þ

þ cos6ϕð0Þ f
ð0Þ
3̂
ðfð1Þ

3̂
Þ3

2ðfð0Þ
1̂
Þ6

ð3þ 2ðfð0Þ
3̂
Þ2Þ: ð79Þ

Finally, using the relationships listed in Appendix D, from Eq. (62) we find that the derivatives with respect to the
coordinates xi� of the star are

∂fð0Þâ

∂xj� ¼Cj
â−fð0Þâ l̄j

∅

jx�−xobsj
;

∂fð1Þâ

∂xj� ¼ vj− l̄j
∅ðv · l̄∅Þ

jx�−xobsj
fð0Þâ þðv · l̄∅Þ

∂fð0Þâ

∂xj� ;

∂fð2Þâ

∂xj� ¼Câ ·
∂l̄ð2Þ

obs

∂xj� þ1

2
½fð1Þâ þ3ðv · l̄∅Þfð0Þâ �v

j− l̄j
∅ðv · l̄∅Þ

jx�−xobsj
þ
�
hobsþðv · l̄∅Þ2−

v2

2

�∂fð0Þâ

∂xj� ;

∂fð3Þâ

∂xj� ¼Câ ·
∂l̄ð3Þ

obs

∂xj� þðv · l̄∅Þ
∂fð2Þâ

∂xj� þð3hobsfð0Þâ þfð2Þâ Þv
j− l̄j

∅ðv · l̄∅Þ
jx�−xobsj

þ ½3hobsðv · l̄∅Þþv · l̄ð2Þ
obs�

∂fð0Þâ

∂xj� þfð0Þâ

�
v ·

∂l̄ð2Þ
obs

∂xj�
�
;

ð80Þ

where (in units of GMðaÞ, dropping the summation symbol and the subscript (a), for simplicity)

CROSTA, GERALICO, LATTANZI, and VECCHIATO PHYSICAL REVIEW D 96, 104030 (2017)

104030-10



∂l̄ð2Þi
obs

∂xj� ¼−
2

d2
r�− robs

jx�−xobsj2
�
dil̄j

∅þ l̄i
∅d

jþ
�
Pðl̄∅Þij−2

didj

d2

�
ðrobs · l̄∅Þ

�
þ 2

d2
robs

jx�−xobsj
�
Pðl̄∅Þij−2

didj

d2

�

þ 2

d2
dinj�

jx�−xobsj
þ 1

jx�−xobsj
�
−3Pðl̄∅Þijþ2

didj

d2
þ2ðrobs · l̄∅Þ

l̄i
∅dj

d2

�
1

robs
;

∂l̄ð3Þi
obs

∂xj� ¼ 2

jx�−xobsj2
½divl̄j

∅þ l̄i
∅d

j
vþð~v · l̄∅ÞPðl̄∅Þij� ln

�
r� þðr� · l̄∅Þ

robsþðrobs · l̄∅Þ
�

−2
Pðl̄∅Þij
jx�−xobsj

�
ð~v · l̄∅Þ

�
1

robs
þ r�− robs
jx�−xobsj

robs · l̄∅

d2

�
−
~v ·d
d2

ðrobs · l̄∅Þ
�

1

robs
−2

robs
d2

þ2
r�− robs
jx�−xobsj

robs · l̄∅

d2

��

þ2
div

jx�−xobsj
�
n�m

�
δmj robs · l̄∅

b2
−

1

1þðn� · l̄∅Þ
�

Pðl̄∅Þmj

jx�−xobsj
þδmj

r�

��
− l̄j

∅

�
1

r� þðr� · l̄∅Þ
þ r�− robs
jx�−xobsj

robs · l̄∅

d2

�

þ dj

d2

�
r�− robs · l̄∅

jx�−xobsj
−2

robsðrobs · l̄∅Þ
d2

�
1−

r�−robs
jx�−xobsj

ðnobs · l̄∅Þ
���

−2
l̄i
∅

robsjx�−xobsj
��

djv−2dj
~v ·d
d2

��
1þ robsðrobs · l̄∅Þ

d2

�
r�− robs
jx�−xobsj

− ðnobs · l̄∅Þ
��

þ dj

d2
½2ð~v ·dÞþð~v · robsÞ�

�

þ4
di

d4jx�−xobsj
�
ð~v ·dÞðrobs · l̄∅Þ

�
l̄j
∅

r�−robs
jx�−xobsj

−nj�−
dj

robs

�

þ
�
ðrobs · l̄∅Þ2djv−4djr2obs

~v ·d
d2

��
r�− robs
jx�−xobsj
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: ð81Þ

Once the system is solved, in order to transform the
BCRS coordinates to those of the astrometric catalogue
ðα; δÞ at a given epoch t0, it is enough to apply the well-
known transformations

x� ¼
1

ϖ
ðcos α cos δ; sin α cos δ; sin δÞ; ð82Þ

where ϖ is the parallax, while the proper motion can be
deduced by a Taylor expansion of the first order

αðtÞ ¼ αðt0Þ þ μαðt − t0Þ þOðΔt2Þ; ð83Þ

δðtÞ ¼ δðt0Þ þ μδðt − t0Þ þOðΔt2Þ: ð84Þ

V. NUMERICAL TESTS ON THE INTRINSIC
CONSISTENCY OF THE ASTROMETRIC MODEL

The problem of the analytical comparison of the static
RAMOD solution (RAMOD3s) and the above models with
the others available in the literature has been already dealt
with in previous papers [25,26]. Nonetheless, the present
arrangement of the RAMOD formulas (RAMOD4a)
with the inclusion of the gravitational source velocity
contributions has been conceived in the mindset of an
application of this astrometric model to Gaia, and in
particular to its implementation in the GSR pipeline. In
this context it is mandatory to provide convincing proofs of

the consistency and of the reliability of the formulas also
from a numerical point of view, before proceeding with
their actual implementation.
In this regard, two kinds of numerical tests have been

performed to check the theoretical algorithms of this paper:
(1) the comparison of the predicted Gaia observable

with the one obtained by the GREMmodel (Klioner,
2003) used by the AGIS sphere reconstruction;

(2) the estimation of the astrometric unknowns of some
selected stars in a Gaia-like case specifically de-
signed to show the numerical differences between
the two astrometric models.

Both of these two different tests are needed to guarantee
the correctness of the resulting linearized observation
equations. The first one can show the differences between
GREM and RAMOD4a in the computation of the Along-
scan (AL) and Across-scan (AC) Gaia measurements, thus
testing the known terms side of the observations equations.
The second one, instead, requires the computation of the
coefficients of the linearized equation through Eqs. (76)–
(81), and therefore represents a test of the complete
equation, at least for its purely astrometric part.
For the known-terms test, we used samples from the

RDS-7-F Gaia simulated data (the same data set used for
testing AGIS), which provided the coordinates of the stars,
the ephemerides of the Solar System bodies, the position
and velocity of the satellite, and the time of each obser-
vation in the BCRS. These data are sufficient to compute
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the AL and AC measurements with the RAMOD4a model.
In this case, the numerical evaluation was done with
MAPLE, while the same data was used to compute also
the corresponding values for GREM using the standard
DPAC software.
The results show that the differences between these two

models is always well below the μas level, thus proving
their equivalence also from the numerical point of view at
the accuracy level required for Gaia. In Fig. 1 we took an
example in which Gaia is observing close to Jupiter, and
thus in the most challenging conditions from the point of
view of a relativistic astrometric model.
The simulated dataset provided also the estimation of the

so-called field angles η and ζ. These two quantities are
respectively the along-scan and across-scan angles taken
from the axis of the Field of View (FoV), and therefore they
give the same Gaia measurements of above since
ϕ ¼ ηþ Γ=2. Although not strictly necessary, we decided
to compare also these values with the RAMOD4a estima-
tions. Indeed, it was known that in the simulation they had
been computed using an older, and less accurate imple-
mentation of GREM. We therefore used these data to verify
this known issue. Fig. 1 is a plot of the differences of
RAMOD4a with the old GREM in comparison with those
of the new one previously shown, in which it can be seen
that the former are sistematically larger, as expected.
The results on the former differences, namely those

between RAMOD4a and the newer GREM, are shown also
in the histogram form of Fig. 2. In this case the average and
the median of these differences are sensible to a systematic

difference between these two models in a global sense,
which is of the order of a nano-arcsecond.
The goal of the second test was to have a numerical

evaluation of RAMOD4a that strictly regarded the accuracy
of this relativistic model with respect to GREM. In other
words, because of the goal of this paper, we purposedly
avoided any possible different source of numerical errors.
In particular
(1) it was supposed to have infinitely precise measure-

ments, thus avoiding to perturb the known terms
with a random noise that could mimick the Gaia
measurement error;

(2) in the real case, as recalled in Eqs. (63), (82), (83) the
values used as a starting point for the linearized
observation equation are affected by the so-called
catalog errors, which introduces further approxi-
mations since the expansion neglects terms of the
second order and above. These numerical approx-
imations are zeroed if, as it is always possible
with simulated data, one uses the true values instead
of the catalog ones for the starting point of the
expansion.

With these two assumptions, and if ϕobs and ϕcalc were
computed with the same astrometric model, the known
term would be identically zero. The expected solution
would therefore be zero, except for the standard round-off
errors of the algorithm used to solve the equation system.
In our case, however, we are in a sort of “double blind”

condition, and the known term is of the order of the
differences between the GREM model, used to compute
ϕobs, and the RAMOD4a, used to compute ϕcalc. The
residuals will thus be affected by such differences, in
addition to the previously mentioned round-off errors, and
the two models can be considered compatible at the Gaia
level of accuracy only if the solution is at least at the sub-
μas level.

FIG. 1. Differences between the AL measurements as predicted
by RAMOD4a and GREM, computed with the both the older and
less accurate version used in the DPAC software that produced
the simulated dataset (GASS, in blue) and with the newer version
(GREM, in red). In the case of GASS there are very few
observations with differences up to 10 μas which are not shown
here because the scale was cropped to �1 μas. The plot also
shows the elongation of the main perturbing bodies, reported on
the right axis, from the observed star. These results refer to an 8-
hours sample of observations around day 740 of the simulation.

FIG. 2. Histogram of the differences between the AL measure-
ments as predicted by RAMOD4a and GREM, computed with
the latest implementation of the DPAC software used by the
AGIS pipeline. These results refer to the same 8-hours sample of
the previous plot.
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The limited performances of MAPLE with respect to the
needed numerical calculations prevent a complete sphere
solution with a large number of stars. However, given the
goal of this section, that is for having a test that can prove
the reliability of the calculations and the numerical accu-
racy of RAMOD4a with respect to GREM in the sense
mentioned above, it is sufficient to use a very limited
number of stars.
We thus decided to limit the test to 4 stars, selected among

those which are mostly affected by the influence of Jupiter
and Saturn. When only the astrometric parameters are
reconstructed, each star can be treated independently from
each other. This implies that each star produces a system of
∼700 linear equations which has to be solved in the least-
squares sense, namely one has to invert the resulting 5 × 5
normal matrix to find the solution. The results are reported
in Table I, which shows that the residuals are at the
expected level.
In the context of the Gaia astrometric sphere

reconstruction discussed at the beginning of the previous
section, a complete verification demands the reduction of a
full sphere and the estimation of both astrometric and attitude
parameters. The size of such a task requires a fully optimized
implementation of the formulas above on parallel computers
in a high-performance computing environment. This is under
development as part of theDPAC-GSRpipeline [11] andwill
be reported in a forthcoming publication [10].

VI. CONCLUDING REMARKS

Missions like Gaia demand the proper treatment of
gravity when compiling stellar catalogues to microarc-
second accuracy. High-precision measurements, by
demanding suitable relativistic modeling, need to be
validated. In this regard, it is of capital importance to
allow the existence of different and cross-checked models
which exploit different solutions to interpret the same
experimental data. Indeed, the main Solar System curvature
perturbation, e.g. of the Sun, amounts approximately to
100 μ-as, which will cause the individual parallaxes to
quickly degrade beyond 1 kpc, while completely invali-
dating the most accurate calibration of primary distance
calibrators. This alone is sufficient reason for making a
theoretical and numerical comparison of the existing
approaches a necessity and set the scientific case for further
developments and applications.

The realization of the relativistic celestial sphere for
the Milky Way is a scientific validation of the absolute
parallaxes and proper motions in Gaia data and in their
ensuing scientific exploitation. Reaching 10 − 20 μas
accuracy on the individual parallax and annual proper
motions for bright stars (V < 16) is also key to perform-
ing what is possibly the largest GR experiment ever
attempted from space: given the number of celestial
objects (a real Galilean method applied on the sky) and
directions involved (the whole celestial sphere), one
billion light deflection measurements represent the larg-
est experiment in general relativity ever made with
astrometric methods since 1919. Moreover, using a fully
GR astrometric model will allow new tests of GR
predictions and a full probe of the Milky Way’s (outer)
halo (mass content and distribution) so that we can
compare the prediction of ΛCDM models on a local
scale. The GR correct picture of the Milky Way, as well
as the correct modeling of the measurements from within
the Solar System, is the only way to ensure a strong and
coherent laboratory against which fundamental physics
and the current formation/evolution model can be com-
pletely tested.
But all the above cannot be claimed without carefully

implementing, checking, and testing the basic starting
steps as shown in this paper. In fact, the actual Gaia
relativistic modeling for the inverse light-tracing repre-
sents the first stage toward the correct approach when
increasing the level of the measurement precision, requir-
ing us to refine consistently the perturbation terms of the
metric of the solar system, the solutions of the null
geodesic, the relativistic attitude, and so on. Preserving
the conceptual consistency to GR while extending the
complexity of the theoretical approaches to match the
high-accuracy observations without a solid test bed for
the numerical testing protocol and a detailed comparison
between the different methods could be very dangerous
for the scientific interpretation of the results and may lead
to unnecessary modifications of GR, the current standard
theory of gravity.
Relativistic astrometry extends beyond the scope of

Gaia: after Gaia, astrometry becomes part of the funda-
mental physics and, in particular, that of gravitation.
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TABLE I. Results of the single-star reconstruction for the four
chosen stars. The astrometric parameters solutions are expressed
in μas and μas=yr.

Star α (deg) δ (deg) dϖ dα cos δ dδ dμα cos δ dμδ

1 28.805 9.498 −0.008 −0.109 −0.059 −0.018 −0.021
2 28.722 10.799 −0.017 0.082 −0.153 −0.024 −0.024
3 28.955 10.452 0.009 −0.138 −0.034 −0.032 0.009
4 207.512 −8.528 0.020 −0.002 −0.004 −0.007 −0.017
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APPENDIX A: TIME RETARDED
CONSIDERATIONS

Consider the following canonical metric [18,29],

h00canðcT; XiÞ ¼ 4G
c2

X∞
l¼0

ð−1Þl
l!

∂L

�
MLðUÞ

R

�
;

h0icanðcT; XiÞ ¼ −
4G
c3

X∞
l¼1

ð−1Þl
l!

�
∂L−1

�
_MiL−1ðUÞ

R

�

þ l
lþ 1

εiab∂aL−1

�
SbL−1ðUÞ

R

��
;

hijcanðcT; XiÞ ¼ 4G
c4

X∞
l¼2

ð−1Þl
l!

�
∂L−2

�
M̈ijL−2ðUÞ

R

�

þ 2l
lþ 1

∂aL−2

�
εabði _SjÞbL−2ðUÞ

R

��
; ðA1Þ

where the multipole moments are Cartesian symmetric
and tracefree (STF) tensors, all of them evaluated at

the retarded time Tret ¼ T − R=c, R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δijXiXj

q
(the

overdot denoting differentiation with respect to Tret, and
∂L ¼ ∂l=ð∂Xa1∂Xa2…∂XalÞ). The distance R which
appears in the local metric (A1) can be written in
Lorentz invariant form as [29]

R ¼ ϵjημνuμðxν − xν0ðtretÞÞj
¼ γ½rðtretÞ − ϵ~v · rðtretÞ�
¼ ½rðtÞ2 þ ϵ2γ2ð~v · rðtÞÞ2�1=2; ðA2Þ

where ϵ ¼ 1=c, riðtretÞ ¼ xi − xiðtretÞ, riðtÞ ¼ xi − xiðtÞ,
and tret the retarded time in the global coordinate system.
The latter reads for arbitrary word lines as

tretðct; xiÞ ¼ t − ϵjx − x0ðtretÞj; ðA3Þ

which is an implicit relation between tret and t. In the case
of a body in uniform motion, it can be approximated as

tretðct; xiÞ ≈ t − ϵγ2½ϵrðtÞ · ~v þ ðrðtÞ2 − ϵ2ðrðtÞ × ~vÞ2Þ1=2�
¼ t − ϵrðtÞ − ϵ2 ~v · rðtÞ þOðϵ3Þ; ðA4Þ

which is related to Tret simply by Tret ¼ γ−1ðtret − t0Þ.
Note that the expressions (11) can be obtained using the

approximation in [24] performing a Taylor expansion
with respect to the time coordinate of the metric coefficient.
On the hypersurface corresponding to the time of obser-

vation, let us consider rðaÞ ¼ rðaÞ0 þ ~rðaÞ, where rðaÞ0 ¼
fxðtÞ − xðaÞðtÞ; yðtÞ − yðaÞðtÞ; zðtÞ − zðaÞðtÞg is the position
vector of the photon with respect to the body, but calculated

at the time t, and ~rðaÞ ¼ fxðaÞðtÞ−xðaÞðt0Þ;yðaÞðtÞ−yðaÞðt0Þ;
zðaÞðtÞ− zðaÞðt0Þg is the difference between the positions of
the body at the time t and at the retarded time t0.

The reduced distance rðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δijðri0 þ ~riÞðrj0 þ ~rjÞ

q
þ

OðhÞ in the metric adopted in [24], namely,

h00 ¼ 2
X
a

ϵ2
MðaÞ
rðaÞ

ð1þ nðaÞ · ~vðaÞÞ þOðϵ4Þ;

h0i ¼ −4
X
a

ϵ3
MðaÞ
rðaÞ

~viðaÞ þOðϵ5Þ;

hij ¼ 2
X
a

ϵ2
MðaÞ
rðaÞ

ð1þ nðaÞ · ~vðaÞÞδij þOðϵ4Þ; ðA5Þ

can be approximated on the hypersurface at t ¼ tobs as

rðaÞ ¼ r0

�
1þ r0 · ~r

r20

�
þO

�
~r2

r20

�
: ðA6Þ

Then, the final expression for the metric coefficient
h00 is

h00 ≃
X
a

ϵ2
2GMðaÞ

rðaÞ0

�
1þ vðaÞ · rðaÞ0

crðaÞ0

−
rðaÞ0 · ~rðaÞ

ðrðaÞ0 Þ2
�
: ðA7Þ

However, we stress that the quantities inside the paren-
theses are still functions of both the time t and of the

retarded time t0, that is vðaÞ ≡ vðaÞðt0Þ, rðaÞ0 ≡ rðaÞ0 ðtÞ and
~rðaÞ ≡ ~rðaÞðt; t0Þ. The dependence on t0 can be avoided with
a further Taylor expansion around t:

~ri¼ ~xiðtÞ− ~xiðt− r0ϵÞ¼ r0ϵ ~viðtÞþ
1

2
r20ϵ

2 ~aiðtÞþOðϵ3Þ
~viðt0Þ ¼ ~viðtÞ− ~aiðtÞr0ϵþOðϵ2Þ:

Inserting these expansions into term (A7), it is straight-
forward to show that the retarded approximated contri-
butions cancel out in the metric coefficient h00 up to the
ϵ3 order.

APPENDIX B: THE EXPRESSION OF LIGHT
TRAJECTORY BASIC INTEGRALS

The solutions of the null goedesic are given by Eq. (28),
where functions HðσÞ, HaðσÞ, and HaðσÞ, at the lowest
order, are
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HðσÞ ¼ GM½1þ ϵð~v · l̄∅Þ� ln
�
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robs þ ðrobs · l̄∅Þ
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and
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Note that HtðσÞ ¼ −δabHaðσÞ ~vb and HtðσÞ ¼ −δabHaðσÞ ~vb, since ∂th ¼ −~va∂ah, and

EðK; uÞ ¼ 1þGMϵ2½1þ ϵð~v · l̄∅Þ�
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being
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For a mass monopole one gets

HMðσÞ ¼ GM ln
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; ðB5Þ

where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ ðx · l̄∅Þ2

q
;

dr
dσ

¼ x · l̄∅

r
: ðB6Þ

Then, in the case of a static mass monopole, the solutions are

l̄0 ¼ 0;
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and

EðK; uÞ ¼ 1þ GMϵ2
�
1
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1
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�
þOðϵ4Þ: ðB8Þ

APPENDIX C: DERIVATIVES WITH RESPECT TO THE ATTITUDE PARAMETERS σi

From Eq. (62), we deduce
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ðv · l̄∅Þ2 −

v2

2

� ∂fð0Þâ

∂σj ;

∂fð3Þâ

∂σj ¼ ∂Câ

∂σj · l̄
ð3Þ
obs þ ðv · l̄∅Þ

∂fð2Þâ

∂σj þ 2hobs
∂fð1Þâ

∂σj þ ½hobsðv · l̄∅Þ þ v · l̄ð2Þ
obs�

∂fð0Þâ

∂σj ; ðC1Þ

with

∂C1
1̂

∂σ1 ¼ 32σ1ðσ22 þ σ23Þ
ð2 − ΣÞ3

∂C1
1̂

∂σ2 ¼ −
16σ2ðσ21 − σ22 − σ23 þ 1Þ

ð2 − ΣÞ3 ;
∂C1

1̂

∂σ3 ¼ −
16σ3ðσ21 − σ22 − σ23 þ 1Þ

ð2 − ΣÞ3 ;

∂C2
1̂

∂σ1 ¼ −
8½ð−3σ2 þ σ1σ3ÞΣþ 2σ2 − 4σ32 − 4σ2σ

2
3 þ 2σ1σ3�

ð2 − ΣÞ3 ;
∂C2

1̂

∂σ2 ¼ −
8½ðσ2σ3 þ σ1ÞΣþ 4σ1σ

2
2 þ 2σ2σ3 − 2σ1�

ð2 − ΣÞ3 ;

∂C2
1̂

∂σ3 ¼ −
4½Σ2 þ ð−2þ 2σ23ÞΣþ 8σ2σ3σ1 þ 4σ23�

ð2 − ΣÞ3 ;
∂C3

1̂

∂σ1 ¼ 8½ð3σ3 þ σ1σ2ÞΣ − 2σ3 þ 4σ3σ
2
2 þ 4σ33 þ 2σ1σ2�

ð2 − ΣÞ3 ;

∂C3
1̂

∂σ2 ¼ 4½Σ2 þ ð−2þ 2σ22ÞΣ − 8σ2σ3σ1 þ 4σ22�
ð2 − ΣÞ3 ;

∂C3
1̂

∂σ3 ¼ −
8½ðσ1 − σ2σ3ÞΣþ 4σ1σ

2
3 − 2σ2σ3 − 2σ1�

ð2 − ΣÞ3 ; ðC2Þ

and

∂C1
3̂

∂σ1 ¼ −
8½ð−3σ3 þ σ1σ2ÞΣþ 2σ3 − 4σ3σ

2
2 − 4σ33 þ 2σ1σ2�

ð2 − ΣÞ3 ;
∂C1

3̂

∂σ2 ¼ −
4½Σ2 þ ð−2þ 2σ22ÞΣþ 8σ2σ3σ1 þ 4σ22�

ð2 − ΣÞ3 ;

∂C1
3̂

∂σ3 ¼ −
8½ðσ2σ3 þ σ1ÞΣþ 4σ1σ

2
3 þ 2σ2σ3 − 2σ1�

ð2 − ΣÞ3 ;
∂C2

3̂

∂σ1 ¼ −
4½Σ2 þ ð4þ 2σ22 þ 2σ23ÞΣþ 8σ2σ3σ1 − 4þ 4σ22 þ 4σ23�

ð2 − ΣÞ3 ;

∂C2
3̂

∂σ2 ¼ 8½ð−σ3 þ σ1σ2ÞΣ − 4σ3σ
2
2 þ 2σ1σ2 þ 2σ3�

ð2 − ΣÞ3 ;
∂C2

3̂

∂σ3 ¼ 8½ð−σ2 þ σ1σ3ÞΣ − 4σ2σ
2
3 þ 2σ1σ3 þ 2σ2�

ð2 − ΣÞ3 ;

∂C3
3̂

∂σ1 ¼ 16σ1ðσ21 þ σ22 − σ23 − 1Þ
ð2 − ΣÞ3 ;

∂C3
3̂

∂σ2 ¼ 16σ2ðσ21 þ σ22 − σ23 − 1Þ
ð2 − ΣÞ3 ;

∂C3
3̂

∂σ3 ¼ 32σ3ðσ21 þ σ22Þ
ð2 − ΣÞ3 ; ðC3Þ

as from Eq. (56).
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APPENDIX D: APPROXIMATED RELATIONSHIPS FOR THE EXPRESSIONS OF THE DERIVATIVES

fð0Þ
1̂

cosϕð0Þ
∂cosϕð0Þ

∂pj
¼∂fð0Þ

1̂

∂pj
þcos2ϕð0Þf

ð0Þ
3̂

fð0Þ
1̂

∂fð0Þ
3̂

∂pj
;

fð0Þ
1̂

cosϕð0Þ
∂cosϕð1Þ

∂pj
¼∂fð1Þ

1̂

∂pj
þcos2ϕð0Þf

ð0Þ
3̂

fð0Þ
1̂

∂fð1Þ
3̂

∂pj
þcos2ϕð0Þf

ð0Þ
3̂
fð1Þ
3̂

ðfð0Þ
1̂
Þ2

∂fð0Þ
1̂

∂pj
þ
�
cos2ϕð0Þf

ð1Þ
3̂

fð0Þ
1̂

þfð0Þ
3̂
fð1Þ
1̂

ðfð0Þ
1̂
Þ2

þ3cos4ϕð0Þ ðf
ð0Þ
3̂
Þ2fð1Þ

3̂

ðfð0Þ
1̂
Þ3

�∂fð0Þ
3̂

∂pj
;

fð0Þ
1̂

cosϕð0Þ
∂cosϕð2Þ

∂pj
¼∂fð2Þ

1̂

∂pj
þcos2ϕð0Þf

ð0Þ
3̂

fð0Þ
1̂

∂fð2Þ
3̂

∂pj
þcos2ϕð0Þf

ð0Þ
3̂
fð1Þ
3̂

ðfð0Þ
1̂
Þ2

∂fð1Þ
1̂

∂pj

þ
�
cos2ϕð0Þf

ð0Þ
3̂
fð1Þ
1̂

ðfð0Þ
1̂
Þ2

þcos4ϕð0Þ fð1Þ
3̂

ðfð0Þ
1̂
Þ3
ð1þ2ðfð0Þ

3̂
Þ2Þ

�∂fð1Þ
3̂

∂pj

þ
�
cos2ϕð0Þf

ð0Þ
3̂
fð2Þ
3̂

ðfð0Þ
1̂
Þ2

þcos4ϕð0Þ ðf
ð1Þ
3̂
Þ2

ðfð0Þ
1̂
Þ4
�
1þ1

2
ðfð0Þ

3̂
Þ2
��∂fð0Þ

1̂

∂pj
þ
�
cos2ϕð0Þ

�
fð2Þ
3̂

fð0Þ
1̂

þfð1Þ
3̂
fð1Þ
1̂

ðfð0Þ
1̂
Þ2

þfð0Þ
3̂
fð2Þ
1̂

ðfð0Þ
1̂
Þ2
�

þ3cos4ϕð0Þ ðf
ð0Þ
3̂
Þ2

ðfð0Þ
1̂
Þ4
�
fð1Þ
1̂
fð1Þ
3̂

þfð0Þ
1̂
fð2Þ
3̂

þ2

3

fð0Þ
1̂

fð0Þ
3̂

ðfð1Þ
3̂
Þ2
�
þ5

2
cos6ϕð0Þf

ð0Þ
3̂
ðfð1Þ

3̂
Þ2

ðfð0Þ
1̂
Þ5

ð1þ2ðfð0Þ
3̂
Þ2Þ

�∂fð0Þ
3̂

∂pj
;

fð0Þ
1̂

cosϕð0Þ
∂ cosϕð3Þ

∂pj
¼ ∂fð3Þ

1̂

∂pj
þ cos2ϕð0Þf

ð0Þ
3̂

fð0Þ
1̂

∂fð3Þ
3̂

∂pj
þ cos2ϕð0Þf

ð0Þ
3̂
fð1Þ
3̂

ðfð0Þ
1̂
Þ2

∂fð2Þ
1̂
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þ
�
cos2ϕð0Þf

ð0Þ
3̂
fð1Þ
1̂
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1̂
Þ2
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3̂
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1̂
Þ3
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Þ2Þ
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3̂
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þ
�
cos2ϕð0Þf

ð0Þ
3̂
fð2Þ
3̂

ðfð0Þ
1̂
Þ2

þ cos4ϕð0Þ ðf
ð1Þ
3̂
Þ2

ðfð0Þ
1̂
Þ4
�
1þ1

2
ðfð0Þ

3̂
Þ2
��∂fð1Þ

1̂

∂pj

þ
�
cos2ϕð0Þf

ð0Þ
3̂
fð2Þ
1̂

ðfð0Þ
1̂
Þ2

þ cos4ϕð0Þ 1

ðfð0Þ
1̂
Þ4
ð1þ2ðfð0Þ

3̂
Þ2Þðfð2Þ

3̂
fð0Þ
1̂

þfð1Þ
1̂
fð1Þ
3̂
Þ

þ3

2
cos6ϕð0Þf

ð0Þ
3̂
ðfð1Þ

3̂
Þ2

ðfð0Þ
1̂
Þ5

ð3þ2ðfð0Þ
3̂
Þ2Þ

�∂fð1Þ
3̂

∂pj
þ
�
cos2ϕð0Þf

ð0Þ
3̂
fð3Þ
3̂

ðfð0Þ
1̂
Þ2

þ cos4ϕð0Þf
ð1Þ
3̂
fð2Þ
3̂

ðfð0Þ
1̂
Þ4

ð1þ2ðfð0Þ
3̂
Þ2Þ

þ1

2
cos6ϕð0Þf

ð0Þ
3̂
ðfð1Þ

3̂
Þ3

ðfð0Þ
1̂
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3̂
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1̂
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�
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1̂
Þ2
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3̂
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Þ
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Þ4
�
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Þ
�
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1̂
Þ6
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3̂
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3̂
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1̂
fð1Þ
3̂
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1̂
fð2Þ
3̂
Þþ3fð0Þ

1̂
ðfð1Þ

3̂
Þ2�

þ7

2
cos8ϕð0Þ ðf

ð0Þ
3̂
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Þ3
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