

Publication Year	2017
Acceptance in OA@INAF	2020-09-15T14:06:49Z
Title	The Chemistry of Protostellar Jet-Disk Systems
Authors	CODELLA, CLAUDIO
DOI	10.5281/zenodo.1116833
Handle	http://hdl.handle.net/20.500.12386/27377

The chemistry of protostellar jet-disk systems

C. Codella (INAF, OA Arcetri)

INAF - Arcetri

The launching and collimation of jets

MHD models predict that jets extract excess angular momentum from the star/disk system

X-wind

X-region

X-region

X-wind

X-region

Origin of the jet in the disk plane: 0.03 to a few AU Acceleration and collimation of jet: within 20-100 AU above the disk

Rotation is transferred to the jet from the disk

PPVI: Li et al.; Frank et al.

Ingredients for the Sun-like star formation recipe

Gueth & Guilloteau (1992), Codella et al. (2009)

Rapid heating (from ~ 10 K to a few 1000 K) and compression of the gas \rightarrow "Shock chemistry"

High-T chemistry: endothermic reactions

Ice sublimation & grain disruption

The gas acquires a chemical composition distinct from that of the unperturbed medium

accretion shock at disk-envelope interface

Lee et al. 2014. Sakai et al. 2014

The <u>interstellar</u> complex organic molecules (iCOMs) zoo

H₂CO

formaldehyde

HCOOH

formic acid

Gas-phase

CH₃OH

methanol

CH₃CHO

acetaldehyde

CH₃OCHO

methyl formate

formamide

CH₃COOH

acetic acid CH₃OCH₃

dimethyl ether

HCOCH₂OH

glycoaldehyde

Gas phase or surface chemistry?

Outflows/Jets shocks as chemical laboratories (as seen by NOEMA)

NH₂CHO (colour scale) detected towards the B1 bow structure....

Podio et al. (2016) Codella et al. (2017a) Feng et al. (2017)

eeds Of Life In Spac

.....Surprise surprise....

NH₂CHO looks anticorrelated wrt CH₃CHO.......

How ALMA can reveal a pristine jet/disk protostellar system

The inner 50 AU of a Sun-like protostar, as seen by ALMA

All the ingredients of the Sun-like star formation recipe imaged with a single spectral set-up:

- 1. The flattened (dust & molecules) envelope
- 2. The hot-corino (iCOMs) heated by the protostar
- 3. The forming disk
- 4. The hot and fast collimated jet
- 5. The cold, slow, and extended swept-up outflow
- 6. The cavity as interface between outflow and static cloud

Codella et al. (2014, 2016, 2017), Podio et al. (2015), Leurini et al. (2016), Bianchi et al. (2017), Tabone et al. (2017) See Bianchi et al. POSTER!

Upriver toward the launching radius

Where is the disk wind?

Lee et al. (2017ab)

We need to explore the inner 50 AU....

Lee et al. (2017)

Upriver toward the launching radius

iCOMs associated with

Codella et al. (2017b) Lee et al. (2017) Tabone et al. (2017)

iCOMs associated with the disk

Emission related with the extended rotating disk

Gas launched by the centrifugal barrier?
(Sakai et al. 2017)

Disk atmosphere? (Lee et al. 2017)

Conclusions

iCOMs ARE KEY TOOLS TO OBSERVE FUNDAMENTAL PROCESSES (ACCRETION, EJECTION) SCULPTING THE CRADLE WHERE A STAR (AND ITS PLANETARY SYSTEM) IS GOING TO FORM

Multiple (excitation) components;
We need (unbiased) spectral
surveys;
(sub-mm)
Large Programs needed....

The use of interferometers is a must: e.g. ALMA, NOEMA.