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ABSTRACT

Context. The interaction between the magnetic fields of late-type stars and their close-by planets may produce stellar flares as observed
in active binary systems. However, in spite of several claims, conclusive evidence is still lacking.
Aims. We estimate the magnetic energy available in the interaction using analytical models to provide an upper bound to the expected
flare energy.
Methods. We investigated three different mechanisms leading to magnetic energy release. The first two can release an energy up to
(0.2–1.2) B2

0R3/µ, where B0 is the surface field of the star, R its radius, and µ the magnetic permeability of the plasma. These two
mechanisms operate in young active stars whose coronae have closed magnetic field lines up to the distance of their close-by planets
that can trigger the energy release. The third mechanism operates in weakly or moderately active stars with a coronal field with
predominantly open field lines at the distance of their planets. The released energy is of the order of (0.002–0.1) B2

0R3/µ and depends
on the ratio of the planetary to the stellar fields, thus allowing an indirect measurement of the former when the latter is known.
Results. We compute the released energy for various separations of the planet and various stellar parameters finding the conditions
for the operation of the proposed mechanisms. An application to eight selected systems is presented.
Conclusions. The computed energies and dissipation timescales are in agreement with flare observations in the eccentric system
HD 17156 and in the circular systems HD 189733 and HD 179949. This kind of star–planet interaction can be unambiguously identified
by the higher flaring frequency expected close to periastron in eccentric systems.
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1. Introduction

Late-type main-sequence stars have surface magnetic fields that
extend into their outer atmospheres and stellar winds. These
magnetic fields can be studied in detail in our Sun (e.g. Priest
1984) and are detected in distant stars by means of spectropolari-
metric techniques (Donati & Landstreet 2009). In that case, they
are generally studied by detecting their effects, such as cool spots
in their photospheres, non-radiative heating of chromospheres
and coronae, and transient energy release events such as flares.

Many planets orbiting at distances between 0.02 and 0.15 AU
around late-type stars have been detected by means of stellar
radial velocity measurements or through their transits across
the discs of their stars. Giant planets with an orbital semima-
jor axis <∼0.1 AU and masses comparable with that of Jupiter are
called hot Jupiters and are efficiently detected by those methods.
Those with an orbital period longer than 7–10 days generally
have eccentric orbits, some of which have eccentricities higher
than 0.6–0.7 (Udry & Santos 2007). At those close separations,
these planets orbit inside the magnetic fields of the coronae of
their host stars or in the accelerating regions of their stellar
winds. Therefore, a fundamental question is how they interact
with a stellar corona or a wind and how the energy of the stellar
magnetic field is perturbed by their presence.

Rubenstein & Schaefer (2000) conjectured that close-by
planets may induce large flares in late-type stars by a mech-
anism similar to that observed in close binary systems with
late-type components, notably RS CVn and Algols. Their pro-
posal was motivated by the observations of superflares with
energies up to 1026–1031 J in some otherwise normal solar-type

stars (Schaefer et al. 2000). Indeed, close binary systems with
eccentric orbits provided evidence for a higher frequency of
flares at periastron. One of the best examples is the T Tauri
binary system V773 Tauri (Massi et al. 2002). Its very young
and highly magnetically active stars show giant magnetic loops
or coronal helmet streamers that extend up to ∼20–30 stellar radii
in radio VLBI maps (Massi et al. 2008) and interact strongly,
thereby producing intense flares preferentially at periastron.

In the case of hot Jupiters on eccentric orbits, one would
expect a similar phenomenon. Nevertheless, the present evi-
dence is not conclusive and still strongly debated owing to the
limited number of observations and the lower energy and fre-
quency of the flares. Maggio et al. (2015) observed a flare in
HD 17156 at the periastron during a simultaneous X-ray and
Ca II H&K monitoring campaign, while no similar activity was
observed at other orbital phases. However, the limited number
of observations did not allow a demonstration of the repeatabil-
ity of the flaring at that orbital phase. A campaign conducted on
HD 80606, which in principle should display a stronger effect,
failed to provide evidence of flaring activity close to periastron
(Figueira et al. 2016). In HD 189733, recurrent flares follow-
ing the egress of the hot Jupiter from the occultation have been
observed. In this system the orbit is circular, but the preferential
orbital phase of the flares stimulated conjectures on the star–
planet interaction mechanism(s) that could produce such flares
(Pillitteri et al. 2011, 2014a, 2015). However, flares can also
occur during planetary transits (e.g. Klocova et al. 2017; Cauley
et al. 2017) and their higher probability of occurrence close to
the occultation of the planet requires more observations to be
confirmed.
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For a better understanding of these phenomena, an estimate
of the energy made available to produce flares in the coronae
of the host stars during star–planet interaction is required. It
has been obtained by means of numerical magnetohydrodynamic
(MHD) models tailored on the parameters of specific star-planet
systems, thus requiring extrapolations to other cases. Moreover,
MHD models generally assume a circular orbit and a stationary
regime to simplify the numerical set-up and computations (e.g.
Cohen et al. 2009, 2011; Strugarek et al. 2015; Strugarek 2016).
Therefore, it is useful to introduce a general analytic formalism
to estimate the impact of close-in planets on the energy of the
coronal fields of their stars. For the sake of simplicity, two sce-
narios are considered. First, we study a planet orbiting inside
the closed corona of its star; this is the case in close-by planets
orbiting young T Tauri or zero-age main-sequence stars, which
are highly active and rapidly rotating with closed coronal loops
extending up to tens of stellar radii. Second, we study a planet
orbiting in the accelerating region of the wind of its star, where
the magnetic field lines are open and radially combed by the
wind flow; this applies to older stars with moderate or low levels
of activity because their magnetic fields are not strong enough to
confine the hot coronal plasma up to the distance of their plan-
ets. Our analytical models allow us to treat the case of close-in
planets with both circular and eccentric orbits for an application
to the above considered cases.

2. Models

2.1. Magnetic fields of stellar coronae

Models of the magnetic fields of the outer atmosphere of the
Sun, which are applicable also to other late-type stars, are
reviewed by, for example, Wiegelmann et al. (2017). The param-
eter β = 2µp/B2, i.e. the ratio of the thermal pressure p to the
magnetic pressure B2/2µ, where B is the magnetic field and µ
the magnetic permeability of the plasma, can be used to char-
acterize the MHD regime of the coronal plasma. In the lower
corona, the magnetic pressure dominates over the thermal pres-
sure (β < 1) and the field lines are typically closed, while in the
outer regions the pressure of the plasma prevails opening up the
field lines and accelerating the plasma to form the stellar wind.

The dependence of the parameter β on the radial distance
r from the centre of the star was studied in Sect. 2.1 of Lanza
(2012) via a simple magnetohydrostatic model; that work pro-
vides further details on this model. Assuming an isothermal
corona with a temperature T , that simple magnetohydrostatic
model gives β on the equatorial plane, where the effect of the
centrifugal force is maximum, as

β(r) = 2µp(R)B−2(r) exp
{
−

R
H0

[(
1 −

R
r

)
− εrot

(
1 −

r2

R2

)]}
, (1)

where R is the radius of the star, p(R) the plasma pressure at the
surface of the star, H0 = 5.1 × 107(T/106)(R/R�)2(M/M�)−1 m
the pressure scale height with T in K, and εrot = Ω2R3/(2GM)
the ratio of the centrifugal to the gravitation potential on the
equator of the star; here Ω is the angular velocity of the stellar
rotation, M the mass of the star, and G the gravitation constant.
The surface pressure p(R) = 2kBneT , where kB is the Boltzmann
constant and ne the electron density at the base of the corona, and
we assume a completely ionized hydrogen plasma. The depen-
dence of the magnetic field strength B(r) on the radial distance
r is a function of the adopted magnetic field model and is spec-
ified below. For example, in the case of a potential dipole field,
B(r) = B(R)(r/R)−3.

In the closed corona, we assume that the magnetic pressure
dominates over the gravity, plasma pressure, and kinetic energy
density 1

2ρv
2, where ρ is the density of the plasma and v its veloc-

ity. This is equivalent to β � 1 and v � vA ≡ B/
√
µρ, where vA

is the Alfven velocity. Under these hypotheses, we can assume
a magnetohydrostatic force-free model for the field (Priest 1984;
Wiegelmann et al. 2017), i.e.

∇ × B = αB, (2)

where the force-free parameter α is constant along each field
line as follows from ∇ · B = 0. In general, α changes from one
field line to the next in non-linear force-free field models, while
the case of constant α is referred to as that of linear force-free
models.

A basic constraint on the evolution of the magnetic field is
imposed by the conservation of the magnetic helicity that is the
volume integral of A · B, where A is the vector potential of
the magnetic field, i.e. B = ∇ × A (Woltjer 1958; Priest 1984).
For a field confined within a closed volume, this definition is
gauge invariant, but this is not the case for stellar magnetic fields
that cross the photosphere. The gauge invariance is restored by
introducing the relative magnetic helicity (HR) defined as the dif-
ference between the magnetic helicity of the given field and that
of the potential field with the same boundary conditions (Berger
& Field 1984; Berger 1985). The dissipation of the relative mag-
netic helicity in a stellar corona is extremely slow, so it can be
considered constant during the field evolution, even in the pres-
ence of magnetic reconnection (Berger 1984, 1985; Heyvaerts &
Priest 1984).

In a previous work, we discussed the linear force-free field
configurations, which are suitable to describe the coronae of
stars with close-by planets (Lanza 2009). In the present work,
we want to consider the case of non-linear force-free fields;
moreover, we assume that the planet has its own magnetic field.

2.2. Case of young and active stars

In young, rapidly rotating stars, the closed corona extends up to
several stellar radii. The observations of prominence-like struc-
tures, that is plasma condensations with temperature ≈104 K
producing absorption features moving across the Hα line pro-
file in AB Doradus, show that closed loops capable of confining
these relatively cool and dense structures up to ≈10 stellar radii
exist in that young star (Collier Cameron & Robinson 1989a;
Collier Cameron & Robinson 1989b; Collier Cameron et al.
1990). In addition to the case of V773 Tauri mentioned in Sect. 1,
this result supports the assumption of a corona with closed mag-
netic field lines up to the distance of close-by planets in the range
between 3 and 15 stellar radii. In Sects. 2.2.1 and 2.2.2, we focus
on such young and active stars assuming that β < 1 up to the dis-
tance of the planets, while we consider the case of stars with a
weaker field in Sect. 2.3.

2.2.1. Magnetic energy in open field configurations

The first mechanism to produce flares in active stars with close-
in planets is described in this section. This mechanism considers
the transition from a non-linear force-free field to a potential
magnetic field (α = 0) with the same boundary conditions at
the photosphere, where the energy EP of this potential field is
the absolute minimum energy for the given boundary conditions.
Given that the potential field has zero relative helicity by defini-
tion and that the helicity is conserved during the field evolution,
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the potential state is not accessible to the coronal field if its rel-
ative helicity is non-zero. In other words, the minimum energy
EP can be reached only if the non-linear field can get rid of all
of its relative helicity. Since helicity cannot be dissipated during
the field evolution, the only way to eliminate it is by pushing it
to the infinity by opening up all the field lines as discussed by,
for example, Flyer et al. (2004). The process that these authors
envisaged is based on the emergence of new magnetic flux from
the stellar convection zone that steadily increases the magnetic
helicity of the stellar corona until a threshold depending on the
boundary conditions is reached beyond which no stable force-
free equilibrium exists. At that point, the field erupts, producing a
major flare with an associated coronal mass ejection that carries
away helicity (cf. Zhang et al. 2006; Zhang & Flyer 2008). Since
the orbital motion of the planet produces a modulation of the
magnetic helicity of the stellar corona (Lanza 2012), the eruption
can be triggered by the planet itself, if the magnetic helicity of
the field gets sufficiently close to the threshold value. However,
this process can also operate in stars with no close-in planet,
where the flare occurs when the helicity threshold is reached in
the course of the field evolution produced by the emergence of
new magnetic flux. The difference in the case of the stars with a
close-in planet is the additional triggering mechanism associated
with the planet that can operate when it is closer to the star, that
is at the periastron of an eccentric orbit as observed in the case
of the very active binary V773 Tauri.

Considering, for simplicity, the case of an axisymmetric
force-free coronal field, the accumulation of magnetic helicity
leads to the formation of an azimuthal flux rope in the field con-
figuration that increases its magnetic energy up to the point at
which all the magnetic field lines can be opened. The minimum
energy of a field whose lines have one end on the photosphere
and the other at infinity, that is the minimum energy of an open
field with the same boundary conditions of the initial field, is
called the Aly energy (EA) of the field (see Aly 1991; Sturrock
1991; Low & Smith 1993; Flyer et al. 2004, and references
therein). In other words, the accumulation of helicity leads the
field to reach an energy equal to EA and at that point it can spon-
taneously erupt and get rid of all of its helicity. Next, the field
can relax to the potential minimum energy state and release the
maximum amount of magnetic energy, that is ∆Emax = EA − EP.
For the non-linear force-free fields considered by Flyer et al.
(2004) and Zhang et al. (2006), the photospheric boundary con-
ditions are those of a potential dipole field and EA = 1.6616EP.
To account for different boundary conditions, we now consider a
specific family of force-free fields that allow us an analytic for-
mulation of the problem and calculate their EA. In real cases,
only some part of the coronal field lines may open and relax to
the potential configuration. We considered the case of a com-
plete opening of all the field lines because we want to estimate
the maximum available energy.

In spite of the simplicity of the defining Eq. (2), force-free
fields are very complex mathematical objects and some simpli-
fying assumptions are required for their analytical treatment. We
considered the non-linear axisymmetric force-free model by Low
& Lou (1990) in the implementation given by Wolfson (1995)
that was already applied by Lanza (2012) to investigate star–
planet interactions. We henceforth, refer to the latter as the
Wolfson field, while Low & Lou fields refer to the more gen-
eral family of field configurations as introduced by Low & Lou
(1990).

Assuming a reference frame with the origin at the barycen-
tre of the star O and the polar axis ẑ along its rotation axis, the
components of the magnetic field in a spherical polar coordinate

system (r, θ, φ) are

B =
B0R2

r sin θ

[
1
r
∂A
∂θ

r̂ −
∂A
∂r
θ̂ +

1
R

Q(A)φ̂
]
, (3)

where B0 sets the intensity of the field at the surface of the star,
A(r, θ) is the flux function, and Q = Q(A) a scalar function that
has a different functional form according to the specifically con-
sidered family of fields. Both A and Q are non-dimensional in
our definition. The projections of the magnetic field lines in the
r-θ plane coincide with the lines of constant A because from
Eq. (3) it follows: B · ∇A = 0. Low & Lou (1990) consider a
separable flux function of the form

A(r, θ) = (r/R)−n f (x), (4)

where x ≡ cos θ, n is a positive constant, not necessarily an
integer, and f is given by the differential equation,

(1 − x2) f ′′(x) + n(n + 1) f (x) + λ2[ f (x)]1+2/n = 0, (5)

that is solved in [−1, 1] subject to the boundary conditions
f (−1) = f (1) = 0 with λ2 as an eigenvalue. All the field lines of
the Low & Lou fields are connected to the photosphere because
if there were a closed field line detached from the photosphere,
the continuous flux function A(r, θ) would have a local extremum
at least in one point internal to that line, i.e. there would be a
point where ∂A/∂r = ∂A/∂θ = 0. This is not allowed given the
mathematical form of A as specified in Eq. (4). Therefore, Low
& Lou fields have no azimuthal flux rope and their energy is
always lower than that of the corresponding Aly field, whatever
their boundary conditions, according to a theorem by Aly (1991)
(see Sect. 3 for some numerical examples). The scalar function
Q is given by

Q(A) = λA1+1/n, (6)

while the force-free parameter α is

α =
1
R

dQ
dA

=
λ

R
n + 1

n

( r
R

)−1
[ f (x)]1/n. (7)

We considered fields with 0 < n < 1 because they have the slow-
est decay with the distance (cf. Eq. (4)) and look for solutions of
the boundary value problem for f (x) that satisfy the conditions
f (−x) = f (x) in [−1, 1] and f ′(0) = 0, following the method
described by Wolfson (1995). The solution for n = 1 corresponds
to the potential dipole field, while that for n = 2 to a quadrupole
potential field. Solutions with 1 < n < 2 are generally character-
ized by a quadrupole topology, unless the azimuthal shear of the
magnetic footpoints between the pole and the equator exceeds
∼90◦ (Wolfson et al. 1996). Therefore, solutions with 0 < n < 1
are more suitable to represent the dipole-like configuration of
the large-scale solar and stellar coronae. In the case of solar-type
active stars, large-scale axisymmetric dipole-like configurations
have often been revealed by Zeeman Doppler Imaging (Donati
& Landstreet 2009; See et al. 2016), thus supporting our choice
of 0 < n < 1. By decreasing the parameter n towards zero, it is
possible to reproduce an increasing azimuthal shear of the foot-
points of the field lines at different latitudes as expected from
surface differential rotation, accompanied by a bulging out of the
field and a progressive localization of the electric current density
close to the equatorial plane (cf. Wolfson 1995; Wolfson et al.
1996). This allowed us to model large-scale fields with a sizeable
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toroidal component at the photosphere as indeed observed by
Petit et al. (2008) in stars rotating faster than ∼12 days.

The components of the Wolfson field are

Br = −B0(r/R)−(n+2) f ′(x),

Bθ = nB0(r/R)−(n+2) f (x)
sin θ

, (8)

Bφ = λB0(r/R)−(n+2) [ f (x)]1+1/n

sin θ
.

Fields with 0 < n < 1, i.e. topologically equivalent to a dipole
field, have a slower decay with distance from the star, while fields
topologically equivalent to higher order multipoles decrease
faster with distance making them much less relevant at the
typical star-planet separations.

The energy of any force-free field can be computed by means
of Eq. (79) of Sect. 40 of Chandrasekhar (1961), which can be
written for the space V outside a spherical star as∫

V

B2

2µ
dV =

1
2µ

R
∫

S (V)
(B2

r − B2
θ − B2

φ) dS , (9)

where S (V) is the surface of the star. By substituting Eqs. (8)
into Eq. (9) and considering that the field is independent of the
azimuthal coordinate φ, we find its magnetic energy

EM =
1

2µ

∫
V

B2 dV

=
π

µ
B2

0R3
∫ 1

−1

{
[ f ′(x)]2 − n2 [ f (x)]2

1 − x2 − λ
2 [ f (x)]2+2/n

1 − x2

}
dx.(10)

The minimum energy of the magnetic field in V is that of the
potential field with the same radial component over the surface
of the star Br = −B0 f ′(x). By applying the standard method to
solve the Laplace equation with a prescribed normal component
at the boundary of the domain V , we find

EP =
π

µ
B2

0R3
∞∑

l=1

2l + 1
2(l + 1)

[∫ 1

−1
f ′(x)Pl(x) dx

]2

, (11)

where Pl(x) is the Legendre polynomial of order l.
Given its importance in our model, we computed the EA for

the field with the photospheric boundary conditions of the Wolf-
son field. Following the method in Appendix A of Low & Smith
(1993), we find

EA =
π

µ
B2

0R3


∫ π

0
[ f ′(cos θ)]2 sin θ dθ −

∞∑
l=1

(4l + 1)l
2l + 1

J2
l

 , (12)

where

Jl ≡

∫ π

0
A∗(R, θ) P1

2l(cos θ) dθ, (13)

P1
2l(cos θ) = −dP2l(cos θ)/dθ is the associated Legendre function

of order 2l, and the flux function A∗(R, θ) at the surface of the star
is defined as (cf. Low & Smith 1993, Appendix A)

A∗(R, θ) =

{
1 + x − f (x), if x ≡ cos θ ≤ 0,
f (x) + x − 1, if x > 0. (14)

In the case of the Wolfson field, the energy is always lower than
the Aly limit and the spontaneous opening of all the field lines

is not possible (cf. Wolfson 1995). Nevertheless, we considered
the possibility of a transition from the Aly state to the potential
configuration for the Wolfson field to illustrate how the maxi-
mum energy available to produce a flare can exceed the limit
of ∆Emax = 0.662EP found by Flyer et al. (2004). This happens
because the photospheric boundary conditions of the Wolfson
fields are different from those of a potential dipole as assumed
by Flyer et al. (2004). Of course, the Wolfson fields need some
additional source of energy to reach the Aly state. It could be
provided, for example, by the gravitational energy stored in a
heavy plasma condensation in the corona (e.g. Low & Smith
1993; Lanza 2009), but this implies going beyond our force-free
approximation, so we do not investigate those additional sources
of energy.

In the process described in this section, we assumed that the
helicity modulation induced by the planet that triggers the field
eruption takes place on a typical timescale τp ∼ L/vrel, where L
is the typical length scale of the magnetic field and vrel the rela-
tive velocity of the planet to the field lines. We assumed that τp
is significantly longer than the Alfven transit time τA ∼ L/vA,
such that our magnetohydrostatic models can still be applied.
Once the instability is triggered, the timescale for the energy
release is comparable to the Alfven transit time across the stellar
corona because ideal MHD instabilities are generally invoked to
account for flares. This is because of their much shorter devel-
opment timescales in comparison to resistive instabilities in the
high-conductivity environment of the stellar coronae (Browning
et al. 2008; Lanza 2012). Typical values of τA range between
102 and 104 s in the coronae of stars with close-by planets (cf.
Sect. 3.1 in Lanza 2012, and Sect. 4 below).

2.2.2. Field confined into a finite volume

In addition to the mechanism introduced in Sect. 2.2.1, we con-
sidered another process that can lead to the release of magnetic
energy, although by a smaller amount. It occurs when the field
cannot get rid of its helicity by opening up its field lines. From
a physical point of view, the confinement can be achieved for
example through the weight of an overlying atmosphere (cf.
Appendix A in Zhang & Low 2003). Configurations with closed
field lines have been considered to explain the reduced angular
momentum loss rate of stars hosting hot Jupiters (Lanza 2010;
Maxted et al. 2015) and the stability of plasma condensations
in the coronae of stars hosting transiting planets (Lanza 2009,
2014)1. Numerical MHD simulations have confirmed that the
interaction of the coronal field with a close-by planet tends to
produce closed magnetic configurations (e.g. Cohen et al. 2009,
2010). In this case, a non-linear field can reach a minimum
energy configuration if it is confined between the photosphere
and some limit radius rL with its radial component vanishing
over the sphere r = rL, i.e. Br(rL, θ, φ) = 0. For this system,
the minimum energy configuration is a linear force-free field
with the same relative helicity of the initial non-linear field (cf.
Dixon et al. 1989; Wiegelmann & Sakurai 2012).

The transition from a non-linear to a linear force-free field in
a confined domain was considered by Zhang & Low (2003) to
estimate the free magnetic energy made available by the emer-
gence of new magnetic flux in a previous solar active region or
1 The latter were invoked to explain the observed correlation between
planet surface gravity and stellar chromospheric fluxes (Figueira et al.
2014; Fossati et al. 2015, 2017) because gravity rules the evaporation
rate of the planets and thus the amount of material available to form the
condensation that absorbs stellar flux in the chromospheric resonance
lines.
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by Régnier & Priest (2007) to compute the energy available to
power solar flares, in both cases finding a good agreement with
the observations. We note that linear force-free fields extending
to the infinity would have an infinite energy (Chandrasekhar &
Kendall 1957). Therefore, we needed to consider a linear field
within a confined domain. We followed an approach similar to
the above-mentioned works and assumed that the stellar coro-
nal field is confined within a sphere of radius rL. In the present
section, we illustrate how to compute the energy of the linear
field with the same boundary conditions and relative helicity of
a generic non-linear force-free field. The numerical results are
presented in Sect. 3 in the case of a specific non-linear field
for different values of the radius of the outer boundary r = rL.
We find that the energy of the linear field with the same relative
helicity is lower than the energy of the non-linear field only if
rL is larger than a certain value rE , which depends on the spe-
cific configuration of the non-linear field. In other words, only if
rL ≥ rE does the transition from the non-linear to the linear field
release energy and this can occur spontaneously.

The case when rE is smaller than the orbital separation of
the planet at the periastron a(1 − e), where a is the semimajor
axis and e the eccentricity of the orbit, is particularly relevant
because it gives a final linear field configuration leading to a min-
imum energy dissipation rate at the boundary of the planetary
magnetosphere. Specifically, the energy released by reconnec-
tion between the stellar coronal field and magnetic field of the
planet at the boundary of its magnetosphere is

dEM

dt
∝

B2
m

2µ
Aintvrel, (15)

where Bm is the field strength at the boundary of the mag-
netosphere, Aint the area of interaction comparable with the
cross-section of the magnetosphere, and vrel the relative veloc-
ity between the coronal magnetic field lines and those of the
planet magnetosphere (cf. Sect. 4.1 of Lanza 2009). Neglecting
the radius of the planetary magnetosphere in comparison to the
orbital separation, dEM/dt is minimized when the stellar field is
confined within a sphere of radius rL ≤ a(1 − e). In this case, the
coronal field lines simply slide over the planetary field lines with-
out any velocity component that pushes them towards each other
as in the case of a coronal field extending beyond the orbital dis-
tance. In other words, this closed configuration minimizes the
amount of magnetic energy transported into the reconnection
region per unit time, thus giving the lowest dissipation rate.

The coronal field is not static and we can assume that it
makes transitions from linear (and closed) to non-linear (and
partially open) force-free configurations and viceversa because
of the continuous pumping of relative helicity by the emergence
of new magnetic flux through the photosphere and the reconnec-
tion with the planetary field lines. The spontaneous formation of
current sheets inside the non-linear configurations (e.g. Parker
1994; Pontin & Huang 2012) or the perturbations by the planet
can trigger a transition to a linear state, thus promoting a global
energy release that can power a stellar flare. For example, the
planet can perturb a configuration close to the threshold for the
development of the kink instability as assumed by a flare model
proposed by Török & Kliem (2005). This triggering process is
not necessarily distinct from that discussed in Sect. 2.2.1 because
a kink-unstable configuration can be produced by the accumula-
tion of magnetic helicity in the stellar corona, which leads to an
increase of the twist of the field lines.

We then applied our model to compute the energy available
in the non-linear to linear field transition, that is when the field
cannot open its lines and get rid of its helicity.

To find the linear force-free field with the minimum energy
corresponding to an initial non-linear force-free field, we consid-
ered the linear field with the same radial component at the stellar
surface r = R, confined by the magnetic surface at r = rL, and
with the same HR of the non-linear field. These constraints are
sufficient to define uniquely the minimum energy field with its
constant force-free parameter α.

We started with the non-linear field and compute its HR. For
simplicity, we specialized our model to the case of a non-linear
axisymmetric field. In this case, we could apply a formula found
by Berger (1985) and Prasad et al. (2014), where the domain V
is the space outside the stellar surface, i.e. the sphere of radius
r = R as follows:

HR = 2
∫

V
AφBφ dV, (16)

where A is the vector potential of the non-linear field B, i.e.
B = ∇ × A. Considering the specific fields in Sect. 2.2.1, by
comparing this equation with Eq. (3) and noting that no quantity
depends on φ, we find

Aφ =
B0R2A(r, θ)

r sin θ
, (17)

where A(r, θ) is the flux function introduced in Eqs. (3) and (4).
By performing the integration over the volume V outside the star,
we find the relative helicity of the non-linear force-free field of
Wolfson as

HR(NLFF) =
2πB2

0R4λ

n

∫ 1

−1

[ f (x)]2+1/n

1 − x2 dx, (18)

that is the dimensional version of the analogous formula in
Prasad et al. (2014).

In the second step, we considered the generic axisymmet-
ric linear force-free field as given by Chandrasekhar & Kendall
(1957), i.e.

B =

∞∑
l=0

Bl, (19)

with

Bl = Sl + Tl , (20)

where Sl and Tl are the poloidal and toroidal components of the
field that are orthogonal to each other for a given order l as well
as orthogonal for different orders l and l′ (cf. Chandrasekhar
1961, App. III, Sect. 129); moreover, Sl = α−1∇× Tl with α con-
stant and independent of l. In the case of an axisymmetric field,
their expressions are

Sl =
l(l + 1)
αr

Zl(αr)Pl(x)r̂ −
1
αr

d
dr

[rZl(αr)]P1
l (x)θ̂

Tl = Zl(αr)P1
l (x)φ̂, (21)

where the functions Zl(αr) are given by

Zl(αr) =

(
π

2αr

)1/2 [
clJl+1/2(αr) + dlJ−(l+1/2)(αr)

]
, (22)
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here cl and dl are coefficients depending on the boundary con-
ditions and Jk is a Bessel function of the first kind of order
k.

We could evaluate the total energy of the field in the volume
V ′ between the concentric spheres r = R and r = rL by applying
the method in Chandrasekhar & Kendall (1957) and considering
that Br = Bφ = 0 for r = rL. For a generic order l, we find∫

V ′
S 2

l dV ′ =

∫
V ′

T 2
l dV ′ +

1
α

∫
S

Sl × Tl · r̂ dS , (23)

where S is the sphere r = R, i.e. the surface of the star. By
making use of this equation, summing over all the orders l, and
taking into account the orthogonality properties of the poloidal
and toroidal fields, we find the following expression for the total
magnetic energy of the linear force-free field in the volume V ′:

ELFF =
1

2µ

∞∑
l=1

(∫
V ′

2T 2
l dV ′ + εl

)
, (24)

where

εl ≡
2l + 1
l(l + 1)

πR3
∫ 1

−1
BlrPl dx

∫ 1

−1
BlθP1

l dx (25)

is the surface contribution to the energy of the order l that
appears in Eq. (23), Brl and Blθ being the radial and merid-
ional components of the poloidal field Sl evaluated at r = R,
respectively.

The relative helicity of the linear force-free field can be com-
puted by Eq. (16) choosing the gauge in which A = α−1B, that
gives

HR(LFF) =
2
α

∫
V ′

B2
φ dV ′ =

2
α

∞∑
l=0

∫
V ′

T 2
l dV ′. (26)

Substituting into Eq. (24), we obtained

ELFF =
1

2µ

αHR(LFF) +

∞∑
l=0

εl

 , (27)

which allows us to express the total energy of the linear
force-free field in terms of its relative helicity and the surface
contributions εl.

The integral giving the energy of the toroidal field can
be calculated by considering the orthogonality of the toroidal
fields with different l and those of the associated Legendre
polynomials, that is∫

V ′
B2
φ dV ′ = 4π

∞∑
l=0

l(l + 1)
2l + 1

∫ rL

R
r2[Zl(αr)]2 dr. (28)

The formulae given above allow us to find the linear force-
free field with the same relative helicity of an axisymmetric
non-linear field, bounded by the sphere r = rL, and with the same
radial component at the surface of the star. The latter bound-
ary condition is required by the continuity of the magnetic flux
across the surface of the star. It poses a constraint on the value of
Zl(αR) that together with the vanishing of the radial field at rL,
i.e. Z(αrL) = 0, can be used to find the coefficients cl and dl to
specify the radial functions Zl, if α is given. Specifically, cl and
dl are found by solving the linear system{

clJl+1/2(αR) + dlJ−(l+1/2)(αR) = pl
clJl+1/2(αrL) + dlJ−(l+1/2)(αrL) = 0, (29)

where

pl =

√
2
π

2l + 1
2l(l + 1)

(αR)3/2
∫ 1

−1
Br(R, x)Pl(x) dx, (30)

and Br(R, x) is the radial component of the non-linear force-free
field at the surface. In the case of the Wolfson field, Br(R, x) =
−B0 f ′(x) (cf. Eq. (8)).

To find the linear field with the same helicity HR of the
non-linear field, we iterated on the value of α until the condi-
tion HR(LFF) = HR(NLFF) is verified, using Eq. (26) to compute
HR(LFF) for a given α. Actually, there are infinite values of α
that satisfy the condition HR(LFF) = HR(NLFF), as illustrated by
Berger (1985). This happens because both the energy and rela-
tive helicity of the linear field diverge for the values α = αe that
make Z(αeR) = 0. These values can be considered the eigenval-
ues of our problem. The plots of the energy and relative helicity
vs. α show an infinite number of branches along which HR(LFF)
takes all the values between a minimum and infinity (cf. Fig. 1
in Berger 1985, and Fig. 3 in Sect. 3). We always considered
the first of those branches that starts from zero relative helicity
because the other branches have increasingly larger minima of
HR(LFF), which sometimes makes it impossible to find a solution
to our problem.

In addition to the Wolfson fields or the Low & Lou fields,
other non-linear force-free field models have been introduced in
the literature (e.g. Titov & Démoulin 1999; Flyer et al. 2004).
The axisymmetric fields of Flyer et al. (2004) are particularly
suitable to describe the large-scale magnetic configuration of the
stellar field at the distance of close-by planets because they do
not decay rapidly with distance as in the case of localized fields
and can allow for the presence of a flux rope. However, these
authors assume a dipolar photospheric boundary condition and
their fields can be treated only numerically, so we limited our-
selves to the case of Wolfson fields that allow for more general
boundary conditions and can be treated in a fully analytic way.
Moreover, Low & Lou fields provide an approximate asymptotic
representation of the fields of Flyer et al. when they have no
azimuthal magnetic flux rope (Flyer et al. 2004; Lanza 2012),
given that their ∂A(r, θ)/∂r has a constant negative sign, whereas
the partial derivatives of A(r, θ) vanish on the axis of a flux rope
(cf. Sect. 2.2.1). On the other hand, when an azimuthal rope
of magnetic flux is present, the energy of the field is generally
greater than in the case without a flux rope for the same bound-
ary conditions (cf. Figs. 7 and 8 in Flyer et al. (2004)). Therefore,
our simple model provides a lower limit for the energy that can
be released in the transition between the non-linear Flyer et al.
dipole-like fields and the linear force-free fields, when the former
do not have enough energy to open up all their field lines.

For the mechanism introduced in this Section, we again
assumed that the timescale of the triggering associated with the
planet τp is much longer than the Alfven transit time τA across
the field configuration in order for our magnetostatic approx-
imation to be valid. On the other hand, the timescale of the
dissipation of the magnetic helicity by ideal MHD instabilities
and reconnection processes is much longer than τA (cf. Sect. 2.4
in Lanza 2012; Berger 1984), thus conserving the relative helic-
ity during the considered field transitions that led to an energy
release without opening up the field lines.

2.3. Case of weakly active stars

The models discussed so far are mainly suited for application to
very active stars with closed coronal field lines up to the distance
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of their close-by planets. In the case of moderately or weakly
active stars, such as the majority of planet hosts, we refer to
the model by See et al. (2017) who has assumed that the coro-
nal field is potential and has closed field lines up to a radius
r = rSS, which defines the so-called source-surface of the stel-
lar wind (cf. Altschuler & Newkirk 1969). On that surface the
potential is constant, so the outer field is purely radial and it is
also assumed to remain so for r > rSS. For the Sun, rSS ∼ 2.5 R,
while for stars with spectropolarimetric detections of the surface
fields, See et al. (2017) have adopted rSS ∼ 3.4 R because their
field strengths B0 range between the solar value (≈1–3 G) and
approximately 10 times the solar value. Therefore, it is justified
to assume that the field lines are open and radially directed at
the typical orbital distances of close-by planets. Their deviation
from the radial direction induced by the rotation of the star, lead-
ing to the formation of the Parker spiral of the interplanetary
field, is negligible at the distance of close-by planets (Weber &
Davis 1967). When the field is purely radial, its strength varies
as B(r) ∝ r−2.

In the case of a potential field, the configuration is always
in the state of absolute minimum energy for the given bound-
ary conditions and has a zero relative helicity (Berger & Field
1984). Therefore, no energy can be released by the mechanisms
considered in Sects. 2.2.1 and 2.2.2 and a different process must
be considered that we investigate in the next section.

2.3.1. Planetary magnetosphere and interaction with the
stellar field

We investigated the perturbation of the stellar potential field (cf.
Sect. 2.3) by the planetary magnetosphere to evaluate the energy
variation when the distance of the planet from the star changes
during its orbital motion or the planet moves through regions of
different field intensity. In the present model, the stellar field can
be non-axisymmetric (cf. Altschuler & Newkirk 1969), thus the
planet can encounter a region of relatively strong field, such as
a coronal streamer, during its motion through the outer stellar
corona.

Most of the parameters governing planetary magnetospheres
are presently unknown, notably we have no direct measurement
of the planetary magnetic fields yet (e.g. Vidotto et al. 2010;
Cauley et al. 2015; Rogers 2017). Therefore, we prefer to use
a very simplified model that assumes a prescribed geometry
for the magnetopause, that is the surface separating the plane-
tary magnetosphere from the stellar coronal or wind magnetic
field. This has been carried out, for example by Grießmeier et al.
(2004), who adopted a slightly modified version of the model
proposed by Voigt (1981) for the magnetosphere of the Earth;
Khodachenko et al. (2012), who assumed a paraboloid of rev-
olution to describe the magnetopause; and Lanza (2012), who
adopted a spherical surface.

We adopted a simplified version of the model by Voigt (1981)
because it can be adapted for both sub-Alfvenic and super-
Alfvenic flow regimes at the location of the exoplanets, while
other models, for instance that of Khodachenko et al. (2012),
were designed only for a super-Alfvenic regime. The regime of
the stellar wind at the distance of the exoplanets is not directly
measured, but extrapolations of the Weber & Davis (1967) model
and numerical simulations suggest that they are in a sub-Alfvenic
regime in most of the cases, i.e. the velocity of the stellar wind
vw is lower than the local Alfven velocity vA owing to the close
distance of the planets (Saur et al. 2013; Strugarek et al. 2015).
The regime observed in the Solar System is super-Alfvenic, that

is the wind velocity is faster than the local Alfven speed lead-
ing to the formation of a bow shock at the magnetopause in the
case of a magnetized planet. In this case, the magnetic field lines
of the stellar wind and planetary magnetosphere have no or little
connection and the magnetosphere can be considered an obstacle
to the wind flow.

On the other hand, in the sub-Alfvenic regime, there is no
shock at the surface of separation and the magnetic field lines
of the planet and the wind can partially reconnect, especially
when the stellar field is potential (cf. Lanza 2013). Perturbations
excited along those lines can travel back to the star because their
characteristic velocity is of the order of the Alfven velocity, thus
faster than the wind. Indeed, most of the energy of the perturba-
tion is channelled along the field lines giving rise to the so-called
Alfven wings (Preusse et al. 2006; Saur et al. 2013; Strugarek
et al. 2015). The power transported by the Alfven wings has
been computed by, for example, Saur et al. (2013). The magnetic
stresses produced by the orbital motion of the planet induce a
steady dissipation inside any loop interconnecting the star and
the planet as discussed by Lanza (2013). Nevertheless, since we
are interested in the processes that can store energy to be released
in stellar flares, we have not considered Alfven waves or energy
dissipation due to magnetic stresses because these processes are
usually steady and not impulsive, in contrast to the energy release
in a flare.

We focussed on the effect of the planetary magnetosphere on
the energy of the stellar outer field, neglecting the kinetic energy
of the stellar wind because it is of the order of (vw/vA)2 � 1
in the assumed sub-Alfvenic regime. For simplicity, we also
neglected the variation of the energy of the planetary magne-
tosphere during the orbital motion of the planet because the
magnetospheric field is not completely connected to the stel-
lar field (see below), thus its energy may not be available to
power a stellar flare. We anticipate that the energy of the stel-
lar coronal field is decreased by the presence of the planetary
magnetosphere, where the effect is more pronounced when the
planet comes closer to the star (see below Eq. (38)). Similarly,
the energy of the planetary magnetosphere decreases when the
planet gets closer to the star, as we show in Appendix A. In
other words, the total magnetic energy of the star-planet system
decreases when the planet comes closer to the star, making it
possible for the stellar coronal field to power a stellar flare.

Since the model by Voigt (1981) is magnetostatic, we cannot
include the effects of the Alfven waves in our model, but we
can consider the reconnection between the stellar magnetic field
and that of the planet. If we indicate with Ve the volume outside
the star and the planetary magnetosphere of volume Vm, that is
V = Ve ∪ Vm, the magnetic field Be in Ve can be written as (cf.
Eq. (3.23) of Voigt 1981)

Be = B + (1 −Cimf)Bcfi + CdBs, (31)

where B is the unperturbed stellar field, i.e. without the mag-
netosphere, Bcfi the field produced by the Chapman-Ferraro
currents that flow inside the infinitesimally thin magnetopause,
Bs the field inside the magnetosphere that includes the field of
the planetary dynamo and that of the ionospheric currents and
currents in the magnetospheric tail, Cimf and Cd are numerical
coefficients between 0 and 1 that specify the efficiency of the
reconnection between the stellar field and planetary field across
the magnetopause. In the simplified model by Voigt (1981), both
coefficients were assumed to be constant and were used to spec-
ify the boundary conditions at the magnetopause to compute the
Chapman-Ferraro fields. For the Earth magnetosphere, a fit to
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the observations gives Cimf ∼ 0.9 and Cd ∼ 0.1. This low value
of Cd was obtained in the super-Alfvenic regime characteristic
of the magnetosphere of the Earth, while most of the close-by
exoplanets are in a sub-Alfvenic regime. Nevertheless, to sim-
plify our treatment, we assumed Cd = 0, which corresponds to
assume that the flux of the internal field Bs across the boundary
of the magnetosphere is zero, thus avoiding problems associated
with our ignorance of the planetary field and ionospheric and
tail currents in the case of exoplanets. Our assumption Cd = 0
affects the field in the volume Ve outside the magnetopause, but it
does not prevent the formation of the magnetopause itself with its
Ferraro-Chapman currents, provided that the magnetic field lines
of the magnetospheric field Bs remain confined into the magne-
topause. Conversely, by assuming Cimf , 0, we included the flux
of the stellar field B across the magnetopause and allowed for its
effects on the Chapman-Ferraro field outside the magnetopause.
The parameter Cimf and Cd in a more general Voigt model, can
vary either because of the changing distance along an eccen-
tric orbit, because the planet encounters different regions of the
stellar wind corresponding to sub- or super-Alfvenic regimes, or
because of the time variability of the wind itself (cf. Cohen et al.
2014; Strugarek et al. 2015; Nicholson et al. 2016). Our formulae
remain valid with the instantaneous value of Cimf provided that
the timescale of the parameter change is much longer than the
Alfven transit time across the magnetosphere.

The energy Ee of the stellar field in the volume Ve is given
by

2µEe =

∫
Ve

B2
e dV =

∫
Ve

[B − (1 −Cimf)∇ucfi]2dV

=

∫
Ve

B2 dV−(1 −Cimf)
∫

Ve

∇ucfi · [2B − (1 −Cimf)∇ucfi] dV,

(32)

where ucfi is the potential generated by the Chapman-Ferraro
currents outside the magnetopause such that Bcfi = −∇ucfi. This
potential satisfies the Laplace equation ∇2ucfi = 0 with closed
boundary conditions on the surface S m of the magnetopause,
i.e. ∂ucfi/∂n = B · n̂, where n̂ is the normal to S m (cf. Sect. 3
of Voigt 1981). Using identities for the divergence of a vec-
tor field, we find that ∇ · {ucfi [2B − (1 −Cimf)∇ucfi]} = ∇ucfi ·

[2B − (1 −Cimf)∇ucfi] because B is solenoidal and ucfi satis-
fies the Laplace equation. Therefore, we can use the divergence
theorem to rewrite Eq. (32) as

2µEe =

∫
Ve

B2 dV

− (1 −Cimf)
∫

S (Ve)
ucfi [2B − (1 −Cimf)∇ucfi] · n̂dS

=

∫
Ve

B2 dV − (1 −C2
imf)

∫
S m

ucfiB · n̂dS , (33)

where we made use of the boundary condition for ucfi and consid-
ered its rapid decay with distance from the planet. This makes the
contribution of the integral on the surface of the star negligible
leaving only the integral on the surface S m of the magnetosphere
when we consider the integral over the whole boundary S (Ve) of
the volume Ve.

The magnetopause has a fixed geometry in our model con-
sisting of a hemispherical head and a cylindrical tail with the
same radius of the hemisphere Rm (see Fig. 1). Grießmeier et al.
(2004) assumed that Rm = 2Rst, where Rst is the stand-off

Fig. 1. Cross section of the magnetosphere in the model by Voigt (1981).
The radii of the hemispherical head and of the cylindrical tail are equal
and are indicated with Rm, while the radius of the planet is Rpl and its
cross section is indicated by the dotted line. The cylindrical radius ρ
from the axis of the tail and abscissa s along the same axis are noted.
The centre of the planet P is shifted towards the star by a distance b with
respect to the centre C of the head of the magnetosphere. The stand-off
distance, Rst = Rm − b, is the length of the segment PV , where V is the
vertex of the magnetosphere pointing towards the star. The distance r
from the planet and the distance from the orbital plane z are indicated
on the plot box in units of the planet radius.

distance of the magnetopause from the centre of the planet
that in our model is Rst = Rm − b, where b is the separa-
tion between the centre of the planet and that of the head
of the magnetosphere. The stand-off distance is obtained by
equating the magnetic pressure on both sides of the magne-
topause, i.e. B2(rp) = B2

s (Rst), where rp is the position vector
of the planet. Following Grießmeier et al. (2004), we assumed
Bs(d) = 2 f0Bp(d), where d is the distance from the barycentre of
the planet, f0 a shape factor, and Bp ∝ d−3 the planetary mag-
netic field that we assumed to decay as a dipolar field with the
distance. The shape factor would be f0 = 1.5 for an ideal mag-
netosphere, but f0 = 1.16 gives a more realistic geometry and
is used here (Grießmeier et al. 2004). By applying this simple
model, we obtain

Rm = 2 (2 f0)1/3
[

Bpl

B(rp)

]1/3

Rpl, (34)

where Bpl is the magnetic field strength at the pole of the planet
and Rpl its radius.

By solving the Laplace equation with the boundary condition
specified above, we obtain the potential ucfi and we can com-
pute the energy with Eq. (33). The expression of ucfi is given in
terms of the stellar field B by Eqs. (5.15) and (5.30) of Voigt
(1981) for the hemispherical head and tail of the magnetosphere,
respectively. These equations can be recast in the form

ucfi =

 1
2 (B · r̂)

(
R3

m/r
2
)

for the hemispherical head,
(B · ρ̂)

(
R2

m/ρ
)

for the cylindrical tail,
(35)

where r is the radius vector from the centre of the hemispherical
head and ρ the cylindrical radius from the axis of the cylindrical
tail of the magnetosphere. We note that r̂ and ρ̂ are opposite
to the local unit normal n̂ on the hemispherical head and the
cylindrical tail in Eq. (33), respectively.
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By substituting Eq. (35) into Eq. (33) and integrating over
the head and the tail of the magnetosphere, we find

2µEe =

∫
Ve

B2 dV

− (1 −C2
imf)

π3 B2(rp)R3
m + πR2

m cos2 ξ

∫ ∞

rp

B2(s) ds
 , (36)

where ξ is the angle between the direction of the north pole of the
planet and that of the stellar field at the position of the barycen-
tre of the planet rp; when the field is directed from the star to the
planet ξ = π/2, while when it is oppositely directed ξ = −π/2
(cf. Sect. 4, Voigt 1981); the coordinate s is the distance along the
axis of the cylindrical magnetotail with s = rp coinciding with
the barycentre of the planet. In deriving Eq. (36), we assumed
that the stellar field B is uniform over the head of the magneto-
sphere and each section of its tail orthogonal to the axis of the
cylinder, while it varies along the tail axis ŝ. However, the stel-
lar field can be inhomogeneous over larger length scales, thus
leading to an energy variation during the orbital motion of the
planet.

Specifically, we find an energy variation with respect to the
unperturbed situation, i.e. that of a star without any planet, but
with the same coronal field,

2µ∆E = − π

{(
1 −

1
3

C2
imf

)
R3

mB2(rp)

+
[(

1 + (1 −C2
imf)

)
cos2 ξ

]
R2

m

∫ ∞

rp

B2(s) ds
 . (37)

The variation of the strength of the stellar field with the dis-
tance from the star r depends on the configuration of the field
itself as we discussed in Sect. 2.2.1 and 2.3. In the case of
young and very active stars, we can use the Wolfson field model
that gives B(r) = B0(r/R)−(n+2) with 0 < n < 1, where B0 is
the field at the surface of the star r = R; while for the field of
old and weakly active stars beyond the source surface of their
stellar wind, B(r) = B(rss)(r/rss)−2. Therefore, we may write
B(r) = B(rp)(r/rp)−(n+2), where 0 ≤ n < 1 allows for both of
these different models. The case n = 0 in the Wolfson model
corresponds to the radially directed field of a split monopole,
that is the same configuration as in the source-surface model of
the wind field (cf. Wolfson 1995).

Evaluating the integral in Eq. (37), we finally find

2µ∆E = − πR3
mB2(rp)

{(
1 −

1
3

C2
imf

)
+

[
1 + (1 −C2

imf) cos2 ξ
] 1

2n + 3

(
rp

Rm

)}
. (38)

The energy variation is always negative, that is the planetary
magnetosphere decreases the energy in comparison to the unper-
turbed stellar field. The variation is dominated by the second
term in the outer braces because rp is significantly larger than
Rm. The maximum energy variation with respect to the star with-
out any planet is obtained when Cimf = 0 and cos ξ = 0, i.e. the
magnetosphere is closed with the stellar field that does not pene-
trate across the magnetopause and the field is radially directed
towards or away from the star (cf. Voigt 1981). For example,
the stellar field is radial in the quadrupolar configuration con-
sidered by Strugarek et al. (2015) or when the planet is inside a
coronal streamer. On the other hand, when the stellar field has

Table 1. Relative helicity HR(NLFF) and magnetic energy ENLFF of the
non-linear force-free field of Wolfson (1995) for various values of the
parameter n together with the energy Ep of the potential field and energy
EA of the Aly field with the same photospheric boundary conditions.

n HR(NLFF) ENLFF EP EA
(B2

0R4) (B2
0R3/µ) (B2

0R3/µ) (B2
0R3/µ)

0.1 15.9648 5.9239 2.9217 6.3194
0.25 12.2683 5.4719 3.2325 6.4139
0.5 8.2224 4.9031 3.6115 6.5928

a dipolar configuration parallel or antiparallel to the planetary
magnetic moment, cos2 ξ = 1, and the interconnection between
the planetary and the stellar field parameterized by Cimf plays a
relevant role. For given ξ and Cimf , considering the dependence
of Rm on the stellar field B(rp) in Eq. (34) and the dependence of
B(rp) on rp given above, we find ∆E ∝ (rp/R)−n−1, leading to the
maximum energy variation at the periastron along an eccentric
orbit.

It is interesting to compare the energy variation in Eq. (38)
with that obtained by Lanza (2012) for a closed spherical
magnetopause (cf. his Eq. (26)), that is

µ∆Esp = −πR3
mB2(rp). (39)

The ratio ∆E/∆Esp ∼ (rp/Rm)/(2n + 3) � 1 because rp � Rm.
The difference between the two models is due to the presence of
the magnetospheric tail in that of Voigt (1981). This leads to a
remarkably larger energy variation in the stellar field because it
has a larger volume than the spherical magnetosphere.

The timescale τr for the release of the energy in Eq. (38) is
equal to the time taken by the planet to cross the cross section of
the magnetosphere, i.e. τr ∼ 2Rm/vrel, where vrel is the relative
velocity between the planet and magnetic field lines of the star.
In the case of a prograde orbit, vrel ' vorb − Ωrp, where vorb is
the orbital velocity of the planet and Ω the angular velocity of
rotation of the star. If the stellar rotation period, Prot = 2π/Ω,
is significantly longer than the orbital period, Porb, then vrel '

vorb. Considering the planet at the periastron, where vorb is at its
maximum, and a stellar field given by B(rp) = B0(rp/R)−2, we
find

τr ≥
2
π

Porb(2 f0)1/3
( a
R

)−1/3 (1 − e)7/6

(1 + e)1/2

(
Bpl

B0

)1/3 (
Rpl

R

)
. (40)

3. Results

The theory introduced in Sect. 2.2.1 is applied to the Wolfson
field for three values of the index: n = 0.1, 0.25, and 0.5. The rel-
ative helicity HR(NLFF) and energy ENLFF of the non-linear field
and the energy of the potential field EP and of the Aly field EA
with the same boundary conditions are listed for the various val-
ues of n in Table 1, respectively. The energy ENLFF and helicity
HR(NLFF) are obtained from Eqs. (10) and (18), respectively, while
the values of EP and EA come from Eqs. (11)–(13) by truncating
the series at the order l = 50, respectively.

The helicity of the Wolfson field is higher for lower values of
n because the field has a greater shear. Its energy is always lower
than the Aly limit, thus the field cannot spontaneously open up
its field lines, get rid of its helicity, and make a transition to the
minimum energy potential configuration with the same photo-
spheric boundary conditions. The ratio EA/EP ranges between
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2.163 and 1.825 and decreases with increasing n. The case of the
fields of Flyer et al. (2004), which have the boundary conditions
of a potential dipole and EA/EP = 1.662, thus demonstrates the
crucial role played by the boundary conditions in establishing
the value of this ratio. As in Flyer et al. (2004), it is interesting
to consider the maximum upper bound Eabs for the energy of a
force-free field with a prescribed Br at the photosphere, that is
given by the first term in the r.h.s. of Eq. (9) (cf. Eq. (25) in Flyer
et al. 2004),

Eabs =
1

2µ
R

∫
S (V)

B2
r dS =

π

µ
R3B2

0

∫ π

0
[ f ′(cos θ)]2 sin θ dθ, (41)

in the case of the Wolfson field. We see that it is equal to the
first term appearing in the expression for the Aly energy, such
that EA < Eabs (cf. Eq. (12)). This upper bound is valid for any
force-free field, including those with an azimuthal flux rope and
depends only on the boundary conditions at the surface of the
star. In the case of the potential dipole boundary conditions of
the fields of Flyer et al. (2004), Eabs = 2EP. In the case of fields
with Wolfson’s boundary conditions, i.e. Br = −B0 f ′(cos θ), we
see that the ratio Eabs/EP ranges from 2.230 to 2.036 when n
increases from 0.1 to 0.5. Therefore, the excess energy that can
be stored in a force-free field with respect to the Aly limit is also
moderate for fields with Wolfson’s boundary conditions, even
in the eventuality that they had a flux rope; greater amounts of
energy can be stored only if there are additional energy sources
to confine the field.

Next, we considered the transition of the Wolfson field to
a linear force-free field that is confined within a radius rL with
the same relative helicity and photospheric boundary conditions,
as discussed in Sect. 2.2.2, and we computed the energy made
available in the transition.

To provide an illustration of the method, we chose a non-
linear Wolfson field with n = 0.5. The function f (x) and its
derivative f ′(x) with x = cos θ are obtained by solving the
boundary value problem as defined by Eq. (5) with the bound-
ary conditions f (−1) = f (1) = 0. The eigenvalue λ = 0.90743,
while the function f is plotted in Fig. 2 together with its
derivative.

The radial component of the magnetic field at the photo-
sphere is given by Br(R, x) = −B0 f ′(x) as follows from the
first of the Eqs. (8). The magnetic energy of the non-linear
field and its relative helicity are given in Table 1. To illustrate
the computation for a given bounding radius rL, we assumed
that the transition to the linear field occurs with rL = 7.0 R.
The linear field is given by the model of Chandrasekhar &
Kendall (1957) as introduced in Sect. 2.2.2. The value of the
force-free parameter α is not known a priori and is determined
by the condition that the relative helicity of the linear field
HR(LFF) be equal to the helicity of the non-linear Wolfson field
HR(NLLF).

To implement our method, we computed HR(LFF) and the
energy ELFF of the linear field for 200 values of α in the
range from 0.1 to 1.1 R−1, chosen to broadly encompass the
true unknown value. We truncated the series of the poloidal and
toroidal components at the order l = 50 and considered only the
odd values of l given that the non-linear field is antisymmetric
with respect to the equatorial plane of the star. For each order
1 ≤ l ≤ 50 and a given α, we solve Eq. (29) with pl given by
Eq. (30), where Br(R, x) = −B0 f ′(x), to find cl and dl. Then we
used Eqs. (21) and (22) to find the field components.

From the toroidal component Bφ, we evaluated the rela-
tive helicity by Eqs. (26) and (28) numerically integrating the

functions r2[Zl(αr)]2 in the interval [R, rL]. We computed the
energy of the linear field ELFF from Eq. (27), in which the sur-
face terms εl come from Eq. (25), after we computed the surface
field components from Eq. (21).

The relative helicity and magnetic energy are plotted vs. α
in Fig. 3 for α in the chosen range. It is so extended that the
first value of α corresponding to the solution of the homoge-
neous boundary value problem, i.e. Br(R, x) = Br(rL, x) = 0,
falls inside the interval as shown by the divergence of HR(LFF)

and ELFF for α = αe ∼ 0.65 R−1 (cf. Fig. 1 in Berger 1985).
Therefore, we consider only the first branch of the helicity plot
(solid line) to find the value of α = α0 that makes HR(LFF)(α0) =

HR(NLFF), thus obtaining α0 = 0.51769 R−1.
Having found α0, from the plot of ELFF vs. α (dashed line),

we determined the energy of the sought linear force-free field
with the same photospheric boundary conditions, outer bound-
ing surface at r = rL, and relative helicity as the considered
Wolfson field. The energy of the linear field is ELFF(α0) =
4.6534 B2

0R3/µ. Therefore, the magnetic energy released in the
transition that can power a stellar flare is ENLFF − ELFF(α0) =
0.2497 B2

0R3/µ.
In Fig. 4, we plot a meridional section of the field lines

of the non-linear Wolfson field with n = 0.5 and of the lin-
ear field with the same photospheric boundary conditions,
magnetic bounding surface at r = rL = 7.0 R, and HR(LFF) =
HR(NLFF).

The procedure outlined above for a specific value of rL can
be repeated for various values of the radius of the outer bound-
ary surface, thus obtaining the corresponding value of the energy
of the linear field ELFF vs. rL. The results of these calculations
are shown in Figs. 5, 6, and 7 for n = 0.1, 0.25, and 0.5, respec-
tively. We see that the energy of the linear field is greater than
the energy of the non-linear field when the boundary radius rL
is smaller than a certain radius rE that depends on the value of
n of the non-linear field. This implies that the transition from
the non-linear to the linear field can occur spontaneously only
if rL ≥ rE as anticipated in Sect. 2.2.2. The transition leads to a
state of minimum energy dissipation rate only if the periastron
distance of the planet is greater than rL. Therefore, we find that
this state can be reached only if a(1 − e) ≥ rE. For the specific
non-linear fields we considered, rE ranges between 4.5 R and
8.0 R, implying that very close-in planets produce a continuous
energy dissipation through reconnection between their own mag-
netic fields and the stellar coronal field (cf. Lanza 2009, 2012).
The value of rE can be remarkably different for other non-linear
field configurations.

When rL ≥ rE, the amount of energy that is released in the
transition from the Wolfson field to the linear field with the same
relative helicity and photospheric boundary conditions is plot-
ted in Fig. 8 vs. the radius rL of the outer boundary surface and
for different values of the parameter n. For a young star with a
strong magnetic field and a corona with an extension of 8–12 R,
the amount of energy that can be released to power a large flare is
between ∼0.3 and ∼0.8 B2

0R3/µ. This is comparable to the energy
released in the transition from the open Aly field to the mini-
mum energy potential field in the case of the non-linear fields
considered by Flyer et al. (2004).

Next, considering the case of older, weakly, or moderately
active stars, we evaluate the energy ∆E made available when
the planetary magnetosphere perturbs the stellar coronal field
that we assume to be radially directed away from the star. We
make use of Eqs. (34) and (38) considering the case of a closed
magnetosphere (Cimf = 0) and a radial field (cos ξ = 0) because
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Fig. 2. Function f (x) (solid line) and its derivative f ′(x) (dashed line)
vs. x = cos θ for the non-linear force-free field of Wolfson (1995) with
n = 0.5 as described in Sect. 2.2.1.

these maximize the energy perturbation. In Fig. 9, ∆E is plotted
vs. the distance of the planet rp for various values of the ratio
between the planetary and the stellar field intensities Bpl/B0 and
considering a typical hot Jupiter with a radius Rpl = 0.1 R.

The magnetic fields of hot Jupiters are highly uncertain
because only very indirect measures have been obtained so far,
ranging from 5–10 G to 20–25 G (Vidotto et al. 2010; Cauley
et al. 2015; Rogers 2017). Fields up to ∼100 G are predicted
by theoretical dynamo models, in particular for massive plan-
ets (Mpl ≥ 5 MJup) with ages younger than ≈1–2 Gyr (Reiners &
Christensen 2010). Given that the stellar magnetic field B0 ranges
between ∼1 and ∼10 G, we plot the energy differences for Bpl/B0
between 1 and 100.

The relative energy variations induced by a planetary magne-
tosphere are typically 1–2 orders of magnitude lower than those
produced by the other mechanisms discussed in the case of active
stars. However, while those mechanisms involve a global transi-
tion of the stellar coronal field, the energy release induced by
the magnetosphere can occur inside a radial field structure large
enough to embed the entire magnetosphere at the distance of the
planet. A large coronal streamer can be perturbed when, during
the orbital motion of the planet, it passes through the streamer,
thereby triggering the release of energy ∆E; this occurs because
the energy of the configuration with the embedded magneto-
sphere is lower than the energy of the streamer without this
embedded magnetosphere.

4. Applications

To illustrate the application of the results in Sect. 3 to spe-
cific planetary systems, eight representative cases have been
selected. Their names and relevant parameters are given in
Table 2 where we list, from the left to the right, the system
name, orbital period, semimajor axis, orbital eccentricity, mass
and radius of the planet, mass and radius of the star, surface
magnetic field, and reference for the field and rotation period.
We selected HD 17156 because it has a remarkably eccentric
orbit and showed flare activity at the periastron (Maggio et al.
2015); HD 80606 was suggested as a promising target for the
observation of enhanced activity, including flaring, at the peri-
astron, but the observations have not been able to reveal them
yet (Figueira et al. 2016); HD 189733 is a well-studied system
that exhibited repeated flaring possibly at a preferential orbital
phase (Pillitteri et al. 2014a, 2015); HD 179949 and τ Bootis
are F-type stars with hot Jupiters for which a star–planet inter-
action leading to chromospheric and photospheric hot spots has

Fig. 3. Relative helicity HR(LFF) (solid line) and energy ELFF (dashed
line) of the linear force-free field within the magnetic boundary surface
rL = 7.0 R vs. the force-free parameter α. The radial field at the photo-
sphere r = R is the same as for the non-linear field of Wolfson (1995)
with n = 0.5 discussed in Sect. 2.2.1. The absolute minimum energy
of the potential field with the same boundary conditions at the photo-
sphere EP is indicated by the horizontal dotted line. The relative helicity
HR(NLFF) of the non-linear field is indicated by the horizontal dash-dotted
line, while the vertical dash-dotted line gives the corresponding value
α0 of the parameter α and energy ELFF of the linear field with the same
relative helicity as the non-linear field (see the text).

been claimed, respectively (Shkolnik et al. 2005; Walker et al.
2008); V830 Tauri and TAP 26 are weak-line T Tauri stars with
very strong surface magnetic fields accompanied by hot Jupiters
(Donati et al. 2017; Yu et al. 2017), making them unique targets
to study star–planet interactions in very young systems because
their ages are ∼2 and ∼17 Myr, respectively; and finally, Kepler-
78 is an example of a very close-in planet around a late-type
star whose magnetic field has been measured by Moutou et al.
(2016). Note that conclusive evidence of magnetic star–planet
interaction is not available yet for these as well as for other sys-
tems. A critical discussion of the existing observations is beyond
the scope of the present work and can be found elsewhere (e.g.
Shkolnik et al. 2008; Miller et al. 2015). We considered these
systems because they can be useful testbeds for our models and
previous claims of star–planet interactions in some of these sys-
tems make them interesting for future observational campaigns.
In particular, an estimate of the energy available to produce flares
in their stars can provide guidance for those future observations.

For HD 17156 and HD 80606, the system parameters were
extracted from the exoplanets.org database (Han et al. 2014),
while the maximum intensity of the stellar surface field was
guessed considering hosts with the same spectral type and rota-
tion period (cf. Fares et al. 2013). The rotation period was
estimated from the projected rotation velocity v sin i and stellar
radius. Since these are transiting systems, their projected obliq-
uity λ was measured yielding values of 10◦ ± 5◦ for HD 17156
and 42◦ ± 8◦ for HD 80606. We approximated i ≈ 90◦ − λ to
estimate Prot for these systems.

For the other hosts, the parameters were extracted from exo-
planets.org, while the maximum magnetic field was measured
through spectropolarimetric techniques and we give the corre-
sponding reference in Table 2. The rotation period is given in
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Fig. 4. Projections of the magnetic field lines onto the meridional plane for the non-linear force-free model of Wolfson (1995) with n = 0.5 as
described in Sect. 2.2.1 (solid lines). The linear model with the same photospheric boundary conditions and magnetic helicity, confined within the
radius rL = 7.0 R, is shown for comparison (dotted lines). The magnetic bounding surface at r = rL is also shown (dashed line).

Fig. 5. Top panel: energy of the linear force-free field with outer bound-
ary surface at rL and the same relative helicity and boundary conditions
on the stellar surface as the non-linear Wolfson field with n = 0.1.
The solid line is a spline interpolation through the computed values as
indicated by the open diamonds. The energy of the non-linear field is
indicated by the horizontal dashed line. Bottom panel: the value of the
force-free parameter α0 of the linear field satisfying the above condi-
tions vs. the radius of the outer boundary surface. The solid line is a
spline interpolation through the computed values (open diamonds).

the same reference, often together with information on surface
differential rotation because detailed knowledge of stellar rota-
tion is needed to reconstruct maps of the photospheric magnetic
fields. The radius of the planets that do not transit their star (i.e.
HD 179949, τ Boo, V830 Tauri, and TAP 26) is assumed to be
equal to the radius of Jupiter.

In our model, the radius rL of the closed corona is the min-
imum between the radius where the parameter β = 1 on the

Fig. 6. As in Fig. 5, for the Wolfson field with n = 0.25.

equatorial plane of the star and the periastron distance of the
planet. To compute β(r) and the Alfven velocity, we assumed an
electron density at the base of the corona ne = 1014 m−3 and a
temperature T = 106 K for all our stars and applied Eq. (1) with
the magnetic field strength, as given by the Wolfson field for B0
given in Table 2, and considered the three values of the parameter
n = 0.1, 0.25, and 0.5. We chose these relatively low tempera-
ture and base density to have a closed corona (β < 1) extending
up to the periastron distance of our planets. On the other hand,
if we assumed T = 107 K with the same base density, only the
very active stars V830 Tauri and TAP 26 would have a closed
corona extending up to the distance of their planets (cf. Sect. 3.1
of Lanza 2012).

In Table 3, we list, from the left to the right, the name of the
system, parameter n, maximum radial extension of the closed
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Table 2. Parameters of the planetary systems chosen to illustrate the application of the present theory.

System name Porb a e Mpl Rpl M R B0 Prot Reference for B0 and Prot
(d) (AU) (MJ) (RJ) (M�) (R�) (G) (d)

HD 17156 21.2166 0.1632 0.682 3.30 1.02 1.28 1.51 3.0 27.2 Estimated
HD 80606 111.4370 0.4473 0.934 3.89 1.03 0.96 0.98 10.0 18.4 Estimated
HD 189733 2.2186 0.0310 0.0 1.14 1.14 0.81 0.76 36.0 11.94 Fares et al. (2010)
HD 179949 3.0925 0.0439 0.0 0.90 1.00 1.18 1.23 3.7 7.62 Fares et al. (2012)
τ Bootis 3.3124 0.0490 0.0 5.95 1.00 1.39 1.42 3.9 3.14 Mengel et al. (2016)
V830 Tauri 4.9270 0.0570 0.0 0.70 1.00 1.00 2.00 350.0 2.741 Donati et al. (2017)
TAP 26 10.7900 0.0968 0.0 2.03 1.00 1.04 1.17 120.0 0.714 Yu et al. (2017)
Kepler 78 0.3550 0.0092 0.0 0.01 0.10 0.81 0.74 16.0 12.59 Moutou et al. (2016)

Fig. 7. As in Fig. 5, for the Wolfson field with n = 0.5.

Fig. 8. Magnetic energy ∆E released in the transition from the non-
linear Wolfson field to the corresponding linear field vs. the boundary
radius rL of the latter. Different line styles indicate the different values
of the index n of the Wolfson field as labelled.

corona rL, Alfven transit time from the surface of the star to
the limit of the closed corona τA =

∫ rL

R [vA(r)]−1 dr, maximum
energy available in the case of the Wolfson field ∆Emax(W), and

Fig. 9. Magnetic energy difference ∆E between the stellar coronal field
without and with a planetary magnetosphere inside itself vs. the dis-
tance rp of the planet from the centre of its host star. The value of ∆E
is computed in the case of a closed magnetosphere (Cimf = 0) and a
potential stellar field directed radially by applying Eq. (38) with n = 0.
Different line styles refer to different values of the ratio of the planetary
to the stellar magnetic field Bpl/B0 as labelled. The radius of the planet
is assumed to be 0.1 R in all the cases.

maximum energy available in the case of the fields of Flyer et al.
(2004) ∆Emax(F).

The maximum extension of the closed corona rL is given by
the periastron distance of the planets in all the considered sys-
tems. The radial Alfven transit time across the closed corona τA
is of the order of 102–103 s in the case of weakly or moderately
active stars and of the order of 10–102 s in the case of the most
active stars. We note that τA would increase for coronae with a
higher base density or temperature.

The maximum available magnetic energy ∆Emax is computed
as the difference between the Aly energy and the energy of the
potential magnetic field with the same photospheric boundary
conditions. In the case of the fields of Flyer et al., these are inde-
pendent of n because their photospheric boundary conditions are
those of a potential dipole in all the cases. We recall that ∆Emax
is available if the field has enough energy to open up all its field
lines and get rid of all of its helicity. This is possible in the case
of the fields by Flyer et al. by a continuous accumulation of helic-
ity, but requires some additional source of energy in the case of
the Wolfson field. In the case of HD 17156, ∆Emax is comparable
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Table 3. Radial extension of the closed isothermal corona, Alfven transit time and maximum available magnetic energy for our systems with
ne = 1014 m−3 and T = 106 K.

System name n rL τA ∆Emax(W) ∆Emax(F)
(R) (s) (J) (J)

HD 17156 0.10 7.400 3.097e+03 2.808e+26 5.728e+25
0.25 7.400 3.778e+03 2.629e+26 5.728e+25
0.50 7.400 5.352e+03 2.464e+26 5.728e+25

HD 80606 0.10 6.471 2.957e+02 8.580e+26 1.750e+26
0.25 6.471 3.459e+02 8.034e+26 1.750e+26
0.50 6.471 4.574e+02 7.528e+26 1.750e+26

HD 189733 0.10 8.808 6.569e+01 5.105e+27 1.041e+27
0.25 8.808 7.975e+01 4.780e+27 1.041e+27
0.50 8.808 1.131e+02 4.479e+27 1.041e+27

HD 179949 0.10 7.695 1.304e+03 2.300e+26 4.692e+25
0.25 7.695 1.572e+03 2.153e+26 4.692e+25
0.50 7.695 2.191e+03 2.018e+26 4.692e+25

τ Bootis 0.10 7.412 1.110e+03 3.970e+26 8.099e+25
0.25 7.412 1.309e+03 3.717e+26 8.099e+25
0.50 7.412 1.760e+03 3.484e+26 8.099e+25

V830 Tauri 0.10 6.122 8.549e+01 8.934e+30 1.822e+30
0.25 6.122 1.030e+02 8.365e+30 1.822e+30
0.50 6.122 1.420e+02 7.839e+30 1.822e+30

TAP 26 0.10 17.771 1.613e+01 2.102e+29 4.289e+28
0.25 17.771 1.755e+01 1.969e+29 4.289e+28
0.50 17.771 2.043e+01 1.845e+29 4.289e+28

Kepler 78 0.10 2.656 4.982e+01 9.457e+26 1.929e+26
0.25 2.656 5.254e+01 8.855e+26 1.929e+26
0.50 2.656 5.764e+01 8.298e+26 1.929e+26

with the energy released in the largest solar flares ever observed
as expected given that this star has values of B0 and R similar to
those of the Sun. For the other stars, ∆Emax is higher by 1 to 4.5
orders of magnitude, mainly because of the stronger surface field
B0 (cf. Table 2).

In the case of the selected systems, rL > rE for the Wolfson
fields considered in Sect. 3, with a few exceptions. Therefore,
we can consider the transition from the non-linear Wolfson field
to a confined linear field and apply the theory in Sect. 2.2.2
and results in Fig. 8. In this way, we obtain the energy values
listed in Table 4. There we report, from the left to the right,
the name of the system, parameter n of the non-linear Wolfson
field, energy ∆E released in the transition from the non-linear
to the linear field with the same photospheric boundary condi-
tions and relative helicity (if positive), and mean available power
computed as ∆E/τA, where τA is taken from Table 3. The free
magnetic energy ∆E is significantly lower than the maximum
values ∆Emax in Table 3, but it is still more than enough to
account for the energy of the flares observed in HD 17156 or
HD 189733. Specifically, in the former case, Maggio et al. (2015)
estimated an emitted power of 5× 1019 W in the X-rays, while in
the latter case Pillitteri et al. (2014a) estimated a total flare energy
of the order of 1025 J. In the case of HD 179949, the mean power
is comparable or higher than that emitted by the chromospheric
hot spots possibly associated with the planet, estimated to be of
≈1020 W according to Shkolnik et al. (2005). An individual flare
was observed in the X-rays by Scandariato et al. (2013) with an
estimated energy of ≈5 × 1024 J, that is of the same order of
magnitude of the magnetic energy available in HD 179949. In
the case of the young stars V830 Tauri and TAP 26, the available
energy is 2–3 orders of magnitude higher than in the most pow-
erful solar flares, that is ∼1028–1029 J. For Kepler-78, we cannot

invoke our model to compute the available energy because its
planet is so close that rL < rE, thus the considered field transition
cannot release energy.

When the temperature of the corona is greater than (2–3)
×106 K or its base density is significantly higher than the value
assumed above, we have β > 1 for our moderately active stars at
the distance of their planets, such that they orbit in the coronal
region with open and radial field lines. In this case, we apply the
theory in Sect. 2.3.1 (cf. also Fig. 9) to compute the energy made
available by the perturbation produced by the planetary magneto-
sphere. The results for our systems are listed in Table 5 where we
report, from the left to the right, the name of the system, energy
released in the interaction ∆E, magnetospheric crossing time τr,
that is a measure of the timescale for energy release, and the
mean power available. The energy ∆E is computed by means of
Eq. (38) with Cimf = 0 and ξ = ± π/2 corresponding to a closed
magnetosphere and a radially directed stellar field to maximize
the variation. The magnetic field of the planet is also assumed to
be Bpl = 100 G to maximize the effect. The crossing timescale
comes from Eq. (40). The assumption that Prot � Porb is not
always verified for our systems (cf. Table 2), but this changes the
value of τr only by a factor ≤2, except in the case of τ Boo and
TAP 26. Therefore, it does not significantly affect the estimated
powers given the uncertainties in the values of the stellar and
planetary fields.

In general, the energy decrease due to the perturbation by the
planet magnetosphere is between one and three orders of magni-
tude lower than the energy released by the previous mechanisms
(cf. Tables 4 and 5). Therefore, the latter mechanisms dominate
over the former when they are operating.

The mean power produced by the magnetospheric perturba-
tion in the case of HD 17156 with the parameters in Table 2
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Table 4. Energy and mean power released in the transition from the
non-linear Wolfson field to the linear confined field with ne = 1014 m−3

and T = 106 K.

System name n ∆E ∆E/τA
(J) (W)

HD 17156 0.10 <0 –
0.25 1.6643e+25 4.4053e+21
0.50 2.2872e+25 4.2734e+21

HD 80606 0.10 <0 –
0.25 5.9791e+24 1.7288e+22
0.50 5.3181e+25 1.1626e+23

HD 189733 0.10 4.2689e+26 6.4985e+24
0.25 6.1350e+26 7.6930e+24
0.50 5.2962e+26 4.6846e+24

HD 179949 0.10 7.7896e+23 5.9732e+20
0.25 1.6910e+25 1.0759e+22
0.50 1.9935e+25 9.1002e+21

τ Bootis 0.10 < 0 –
0.25 2.3783e+25 1.8170e+22
0.50 3.2431e+25 1.8427e+22

V830 Tauri 0.10 <0 –
0.25 <0 –
0.50 4.7140e+29 3.3200e+27

TAP 26 0.10 8.5732e+28 5.3151e+27
0.25 6.7236e+28 3.8307e+27
0.50 3.8864e+28 1.9028e+27

Kepler 78 0.10 <0 –
0.25 <0 –
0.50 <0 –

can account for the flare observed by Maggio et al. (2015) in
the X-rays. If we assume a surface field of B0 = 1 G, as those
authors, the energy released, crossing timescale, and available
power become ∆E = 2.841 × 1023 J, τr = 3.515 × 104 s, and
8.084×1018 W, which are insufficient to account for the observa-
tions. Therefore, the models assuming a global transition of the
coronal field are preferred in this case. In the case of HD 189733,
we still find a total energy of the order of 1025 J with the present
model, similar to the energy of the flares observed by Pillitteri
et al. (2014a). For the chromospheric hot spots of HD 179949,
Shkolnik et al. (2005) estimated an emitted power of the order
of 1020 W, that is a factor of three greater than our estimate
in Table 5. Considering a stellar field B0 = 8 G, the energy
increases by a factor of ∼2.5 and gives a power comparable with
the observations. A field B0 ∼ 15 G is required to account for the
energy of the flare observed by Scandariato et al. (2013).

Finally, we note that in the case of the very close-by tel-
luric planet Kepler-78, the released energy is considerably lower
because the volume of its magnetosphere is significantly lower
than in the case of the hot Jupiters owing to its smaller radius,
closer distance, and relatively strong stellar field. However, the
available power is comparable with that of the hot spots of
HD 179949 making this system an interesting target to look for a
similar phenomenon.

5. Discussion and conclusions

Star–planet magnetic interactions are expected to produce stel-
lar flares. Although the observational evidence is not conclusive
yet, it is interesting to theoretically investigate possible mecha-
nisms that can provide energy for such flares and estimate the
maximum amount they can deliver. In the present study, we

Table 5. Energy released, crossing timescale, and mean available power
in the interaction between stellar coronal fields and magnetospheres of
our planets.

System name ∆E τr ∆E/τr
(J) (s) (W)

HD 17156 1.0159e+24 2.437e+04 4.168e+19
HD 80606 4.3575e+24 1.225e+04 3.557e+20
HD 189733 1.2519e+25 1.689e+04 7.414e+20
HD 179949 1.0353e+24 2.848e+04 3.635e+19
τ Bootis 1.2725e+24 2.621e+04 4.856e+19
V830 Tauri 6.0920e+26 6.588e+03 9.247e+22
TAP 26 1.5789e+25 2.470e+04 6.391e+20
Kepler 78 1.5777e+23 4.882e+02 3.232e+20

investigated three different mechanisms that can operate in stars
with different levels of magnetic activity.

The first mechanism assumes that the energy of the large-
scale stellar field is steadily increased together with its magnetic
helicity by the emergence of new magnetic flux from the interior
of the star, while the planet acts simply as a trigger to produce
the flare when the accumulated helicity gets close to a threshold
value. This mechanism can operate independent of the presence
of any planet, where the difference in the case of star–planet
interaction is the triggering action of the planet. The mecha-
nism considers a transition between an open field configuration
having the so-called Aly energy and the potential field with the
same photospheric boundary conditions, thus releasing the max-
imum amount of magnetic energy. Specifically, this mechanism
delivers an energy of the order of ∼(0.7–1.2)B2

0R3/µ, i.e. rang-
ing from 3 × 1026 J in the case of Sun-like stars to ∼1031 J in
the case of young stars with surface fields of ∼350 G, where the
specific value depends on the field configuration. This mecha-
nism preferentially operates in young stars with a closed corona
extending beyond the periastron distance of their close-in planets
because in that case the perturbation by the planet is maximum.

If the energy and helicity of the field are not large enough
to produce an eruption, the second mechanism can be relevant
because it is based on a transition from a non-linear field to a
minimum energy linear field with the same helicity. This sec-
ond mechanism can release a lower amount of energy than the
previous mechanism, i.e. up to (0.3–0.8) B0R3/µ for the typi-
cal separations of close-by planets (cf. Fig. 8). However, this is
still enough to account for the typical flare energy in late-type
stars. Again, the planet may act as a trigger, but this mechanism
can also operate in stars without companions. The closed lin-
ear field requires sufficient radial extension to obtain an energy
lower than that of the initial non-linear field with the same
helicity. This favours stars with an intense photospheric field
(B0 ≥ 100–300 G) because their closed loops can extend up to
several stellar radii. For this reason, young active stars with hot
Jupiters, such as V830 Tauri and TAP 26, are the ideal targets to
search for the energetic flares induced by star–planet magnetic
interaction through either of these two mechanisms. Systems
with eccentric orbits are the best potential candidates because
the interaction is expected to be maximum near the periastron,
allowing us to discriminate it from the ordinary flare activity of
the star not induced by the planet.

Finally, we considered a mechanism that operates in the
open-field corona of weakly or moderately active stars. It is
related to the energy perturbation produced by the planetary
magnetosphere, that is, it cannot operate in stars without close-by
planets. In this mechanism, the energy released ranges between
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∼0.002 and ∼0.1B2
0R3/µ, depending on the distance of the hot

Jupiter and the ratio of its magnetic field to the stellar field (cf.
Fig. 9). Therefore, our model can be used to estimate the planet
magnetic field when spectropolarimetric measurements of the
stellar field are available. This is not possible with the previous
two mechanisms in which the planet magnetosphere acts simply
as a trigger.

This third model can account for the energy of the flares
observed in HD 17156 and HD 189733. The energy is released
when the planet moves across a radial structure of the inhomo-
geneous stellar magnetic field such as a tall coronal streamer.
In the case of HD 80606, the predicted energy release is about
four times that of HD 17156, if its surface field is B0 ∼ 10 G,
which confirms that this system is worth a systematic moni-
toring for flaring activity close to periastron as suggested by
Figueira et al. (2016). A measurement of its coronal activity level
or photospheric magnetic field would be welcome to exclude
a pathologically weak surface field as in the case of WASP-18
(Pillitteri et al. 2014b) that could make its flares extremely weak,
sporadic, and undetectable. Indeed, the low level of chromo-
spheric activity (log R′HK = −5.06, Figueira et al. 2016), suggests
that HD 80606 is a rather inactive star.
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Appendix A: Energy of the magnetospheric field

We consider the energy of the field inside the planetary magne-
tosphere by adopting the model of Voigt (1981). For the sake of
simplicity, we assume that Cd = Cimf = 0 because this leads to
the maximum energy variation for the stellar coronal field (cf.
Eq. (38)). The case Cimf , 0 can be treated in a similar way, but
the calculations are somewhat more complicated, so we focus on
this simpler case.

The magnetic field inside the magnetosphere Bint is given by
(cf. Eqs. (3.14) and (3.22) in Voigt 1981)

Bint = Bs − ∇ucfs, (A.1)

where Bs is the field produced by the planetary dipole and the
current systems inside the magnetosphere that we assume to
be independent of the star–planet separation, while ucfs is the
potential of the inner Chapman-Ferraro field that satisfies the
boundary condition, ∂ucfs/∂n = Bs · n̂ (cf. Eq. (5.1) in Voigt
1981), where n̂ is the unit normal to the magnetopause. The
energy Em of the field inside the volume of the magnetosphere
Vm is

2µEm =

∫
Vm

(Bs − ∇ucfs)2 dV

=

∫
Vm

[B2
s − ∇ucfs · (2Bs − ∇ucfs)] dV. (A.2)

Since ∇ · [(2Bs −∇ucfs)ucfs] = ∇ucfs · (2Bs −∇ucfs) because Bs is
solenoidal and ucfs satisfies the Laplace equation, we can apply
the divergence theorem and find

2µEm =

∫
Vm

B2
s dV −

∫
S (Vm)

ucfs(Bs · n̂) dS , (A.3)

where S (Vm) is the surface of the magnetosphere and we make
use of the boundary condition (Bs − ∇ucfs) · n̂ = 0. Again, we
make use of the boundary condition,

2µEm =

∫
Vm

B2
s dV −

1
2

∫
S (Vm)

∂u2
cfs

∂n
dS . (A.4)

The linearity of the Laplace equation and the boundary condition
imply that ucfs and ∂ucfs/∂n are directly proportional to the field
strength Bs on the magnetopause, yielding ∂u2

cfs/∂n ∝ B2
s > 0

(the derivative of the inner potential ucfs along the outward nor-
mal n̂ has the same sign as ucfs; cf. Eqs. (5.11), (5.18), and
(5.27) in Voigt 1981, e.g. in the simple case of an aligned plan-
etary field, χ = ψ = 0 ⇒ f2(χ, ψ) = 0 in his Eq. (5.9)). We can
neglect the contribution of the planetary surface to the second
integral in the r.h.s. of Eq. (A.4) because ucfs is negligible there.
Therefore, we see that the second term in the r.h.s. of Eq. (A.4)
decreases when the planet comes closer to the star because the
radius Rm of the magnetosphere decreases (cf. Eq. (34)) and
Bs(Rm) ∝ R−γm , where γ ≥ 2. Also the first integral in the r.h.s.
of Eq. (A.4) decreases because the volume of the magnetosphere
Vm decreases. Since Eq. (38) gives a greater negative energy
value when the planet is closer to the star, we conclude that the
total magnetic energy of the star–planet system (i.e. the energy
of the stellar coronal field plus the energy of the magnetospheric
field) decreases when the planet moves closer to the star.
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