
2018Publication Year

2020-09-29T10:46:54ZAcceptance in OA@INAF

An Efficient 2.5-D Finite-Element Approach Based on Transformation Optics for the 
Analysis of Elliptical Horns

Title

Gentili, Gian Guido; Khosronejad, Misagh; NESTI, Renzo; Pelosi, Giuseppe; 
Selleri, Stefano

Authors

10.1109/TAP.2018.2851289DOI

http://hdl.handle.net/20.500.12386/27521Handle

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATIONJournal

66Number



1

An Efficient 2.5D Finite Element Approach
Based on Transformation Optics for the Analysis

of Elliptical Horns
G.G. Gentili, M. Khosronejad, R. Nesti, G. Pelosi, S. Selleri

Abstract—This paper describes a new method to analyze ellip-
tical horns. The method is based on a coordinate transformation
that maps the elliptical shape to a circular shape, allowing to use
2.5D Body of Revolution (BoR) Finite Element Method (FEM)
formulation with a greatly improved efficiency over 3D methods.
Applications are shown to the analysis and design of shaped
arbitrary axial ratio horns.

Keywords: Finite Element Method, elliptical horns, body-of-
revolution.

I. INTRODUCTION

Rectangular and Elliptical horns are interesting solutions
when non symmetrical beams are needed, as in the case
of primary feed of shaped reflectors for earth coverage or
radars [1], [2], [3], [4], [5]. In some cases, when very low
cross-polar levels are required, e.g. when circular polarization
is used, the smooth-wall horn is replaced by a corrugated
horn or a dielectric core horn [2]. Radiation from elliptical
apertures have been also exploited for opposite reasons, i.e. to
symmetrize the main beam [6].

In spite of the superior performances of elliptical horns with
respect to rectangular horns in terms of side-lobes [5], the
difficulty in the analysis has always been an obstacle to the
full exploitation of such structures, even if closed formulas
have been found to represent the field radiated by elliptical
apertures [9]. Some papers dealing with modeling of radiation
from elliptical horns are available [7], [8], but, for a full-wave
analysis of elliptical horns, nowadays one must resort to full
3D techniques, such as 3D FEM [10], or Multiple Multipole
expansion [8] in conjunction with the Mode-Matching method.
These methods are CPU demanding, since a 3D discretization
of the overall structure must be carried out. Mode-matching
can be successfully used for the inner problem using Mathieu
functions to represent the modal fields [11], [12], and this is
probably the most efficient technique in case of corrugated
horns, but for smooth-walled horns it becomes quite ineffi-
cient, since the smooth wall must be discretized in a large
number of elliptical waveguide steps. Moreover, even in the
case of corrugated horns, coupling to the exterior problem is
an issue, since it requires coupling to some full 3D method to
represent the field outside.
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A further disadvantage limiting the use of elliptical horns
reported in the literature is its manufacturing [1]. However,
owing to technological improvements in classical processes
and to the advent of additive manufacturing techniques, the
realization of such structures is feasible and cheap [13], [14].

The purpose of this paper is therefore to discuss a very
efficient method developed for the analysis of elliptical horns.
The method is based on the concept of Transformations Optics
(TO) [15]. Thanks to the use of a very simple transformation,
the elliptical geometry is converted to a circular one, and
this is solved by a 2D FEM by a Body-of-Revolution (BoR)
formulation [16], [17]. The use of very few circular harmonics
allows an accurate representation of the original fields in the
elliptical geometry, leading to an extremely efficient code.

The formulation of the method is discussed in section II-
III, whereas in section IV we show some numerical results
and design examples. Finally, some conclusions are presented,
in which we enlighten some possible developments of the
technique.

II. TRANSFORMATIONS OPTICS

The concept of general coordinate transformations in the
frame of Maxwell’s equations is well known, and it found
application in, to cite a few, cloaking [18], antenna pattern
manipulation [19] and, in Finite-Differences or Finite-Element
analysis, to develop ”perfect” absorbing boundaries, the so-
called Perfectly Matched Layer (PML) [20].

Let’s assume to have a starting, or “original”, system of
coordinates (x′, y′, z′) and a second, or “transformed” system
of coordinates (x, y, z) linked by

x = x(x′, y′, z′) (1)
y = y(x′, y′, z′) (2)
z = z(x′, y′, z′) (3)

with an associated Jacobian matrix

J =


∂x
∂x′

∂x
∂y′

∂x
∂z′

∂y
∂x′

∂y
∂y′

∂y
∂z′

∂z
∂x′

∂z
∂y′

∂z
∂z′

 . (4)

If e′ and h′ are the solution of Maxwell’s equation for a
given problem in the original coordinate frame x′, y′, z′, with
material parameters characterized by tensors ε′ and µ′, then if
in the transformed frame (x, y, z) the material properties are
set to

εr =
Jε′rJ

T

det J
(5)
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µr =
Jµ′rJ

T

det J
(6)

the electric and magnetic fields e and h in frame (x, y, z) and
those in the original frame are related by

e′ = JTe (7)

h′ = JTh. (8)

The above transformations pave the way to a set of interesting
possible applications, but in our case the purpose is focused
to convert the elliptical geometry to a circular one, for which
efficient tools for the analysis can be applied. Let’s assume an
elliptical structure is present in the original frame, extending
from coordinate z′1 to z′2. The elliptical structure is character-
ized by z-dependent semiaxes a = a(z′) and b = b(z′) along
x′ and y′ respectively. The axial ratio is therefore dependent
on z′. This allows to include in the analysis structures whose
cross-section is variable, for example, from circular to ellipti-
cal.

Now we apply the following transformations:

x =
x′

sx(z′)

y =
y′

sy(z′)

z = z′

(9)

in which

sx(z) =


a(z1)
b(z1)

for z ≤ z1
a(z)
b(z1)

for z1 < z < z2
a(z2)
b(z1)

for z ≥ z2
(10)

sy(z) =


1 for z ≤ z1
b(z)
b(z1)

for z1 < z < z2
b(z2)
b(z1)

for z ≥ z2
(11)

where we used the fact that z′ = z. Transformations (9)–(11)
convert ellipses in (x′, y′) plane to circles in (x, y) plane with
radius b(z1). The Jacobian is

J =


1
sx

0 − x
sx

dsx
dz

0 1
sy
− y
sy

dsy
dz

0 0 1

 . (12)

It is straightforward to compute det(J) = 1
sxsy

and we find
from (5)-(6) that isotropic material parameters ε′r, µ

′
r in the

original frame transform, in frame (x, y, z), to the following
anisotropic parameters

εr = ε′rΛ (13)

µr = µ′rΛ (14)

with

Λ =

 sy
sx

+
sy
sx
d2xx

2 dxdyxy −sydxx
dxdyxy

sx
sy

+ sx
sy
d2yy

2 −sxdyy
−sydxx −sxdyy sxsy

 (15)

where dx = dsx
dz , dy =

dsy
dz .

We hence obtain a problem that is ‘equivalent’ to the
original problem, but the structure is now circular and filled
with anisotropic materials. Solving the problem in frame
(x, y, z) allows to easily derive the fields in the original frame.
It is clear that the set of transformation represented by (9)–
(11) has a great advantage: a BoR formulation based on a 2D
mesh can be used to solve the problem ([16], [17]). As shown
in the following sections, this provides a dramatic speed-up
with respect to full 3D analysis.

III. BOR-FEM FORMULATION

In order to apply BoR-FEM we switch to a cylindrical
coordinate system (ρ, φ, z) and express the anisotropy in
cylindrical coordinates:

Λcyl = RΛRT (16)

where

R =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 (17)

is the rotation matrix. Setting x = ρ cosφ, y = ρ sinφ one
finds that the terms in matrix Λcyl can be expressed as a sum
of products of functions of (ρ, z) times functions of φ. Setting
cosφ = cφ, sinφ = sφ one finds

Λρρ =
sy
sx
c2φ +

sy
sx
d2xρ

2c4φ + sx
sy
s2φ + sx

sy
d2yρ

2s4φ +

2dxdyρ
2c2φs

2
φ (18)

Λρφ =
(
sx
sy
− sy

sx

)
cφsφ + ρ2

(
sx
sy
d2y − dxdy

)
cφs

3
φ +

ρ2
(
− sysx d

2
x + dxdy

)
c3φsφ (19)

Λρz = −dxsyρc2φ − dysxρs2φ (20)

Λφφ = ρ2
(
sx
sy
d2y +

sy
sx
d2x − 2dxdy

)
c2φs

2
φ +

sx
sy
c2φ +

sy
sx
s2φ (21)

Λφz = ρ (dxsy − dysx) cφsφ (22)

Λzz = sxsy (23)

and omitted terms are readily found because of the symmetry
of Λ. Note that the generic component ξ, η of tensor Λcyl can
be expressed as

Λξ,η =
∑
k

Λ′(k)ξ,η(ρ, z)Λ′′(k)ξ,η(φ) (24)

and similarly, letting Λ−1 = V

Vξ,η =
∑
k

V ′(k)ξ,η(ρ, z)V ′′(k)ξ,η(φ) (25)

and this is very useful, since, as is shown in the following
section, 3D integrals can be split as a sum of surface integrals
(ρ, z) times integrals in φ.

We chose the electric-field formulation of FEM (but very
similar expressions are obtained for the magnetic field formu-
lation). The weak form suitable for FEM discretization is then
[10]

A(t, e)− k20B(t, e) = jωµ0C(t,h0) (26)
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where
A(t, e) =

∫
V

∇× t · µ−1r · ∇ × e dV (27)

B(t, e) =

∫
V

t · εr · e dV (28)

C(t,h) =

∫
∂V

t · (iν × h0) dS (29)

being k20 = ω2µ0ε0, t a generic testing function, e the
unknown electric field, h0 the applied magnetic field at the
boundary and iν the outward drawn normal unit vector.

We apply Galerkin’s method for the discretization of (26).
A set of expansion functions is introduced to represent the
electric field:

e =
∑
u

vutu (30)

and the same set is used for testing. We obtain a system of
linear equations that can be expressed as follows:(

A− k20B
)
v = jωµ0C. (31)

where we have grouped all expansion coefficients vu in vector
v and where, from (27)–(29)

A(u, v) =

∫
V

∇× tu · µ−1r · ∇ × tv dV (32)

B(u, v) =

∫
V

tu · εr · tv dV (33)

C(u) =

∫
∂V

tu · (iν × h0) dS. (34)

Using a normalized modal excitation at the input, we can
obtain the generalized impedance matrix Z description of the
scattering problem. It is obtained as:

Z = jωµ0C
T
(
A− ω2µ0ε0B

)−1
C (35)

and the generalized scattering matrix (GSM) as:

S = Zw(Z + Zw)−1(Z− Zw)Yw (36)

where Zw is the modal wave impedance and Yw = Z−1w .

A. Computation of matrix elements

In this section we present the details of the computation of
matrix elements. In order to take advantage of BoR geometry,
we express the electric field as

et(ρ, φ, z) =

M∑
m=1,3,5···

∑
q

vt,(m)
q τq(ρ, z)cmφ (37)

eφ(ρ, φ, z) =

M∑
m=1,3,5···

∑
q

vφ,(m)
q

Nq(ρ, z)

ρ
smφ (38)

where superscript ’t’ indicates transverse component (ρ-z
plane), superscript ’φ’ indicates φ component, τq are edge
elements vector basis functions [10], Nq are Lagrange nodal
elements, cmφ = cosm(φ − φ0) and smφ = sinm(φ − φ0)
represent the azimuthal dependence of the field expansion and
where vt,(m)

q and vφ,(m)
q are unknown expansion coefficients.

Setting φ0 = 0 or π/2 allows to analyze both possible polar-
izations at the input. Note that by symmetry considerations,
in the series of circular harmonics only odd terms are present.
Note also that the series has been truncated to a maximum
index M . Because of the excellent behavior for the isotropic
case, the functions used are the same as in [17].

We can now introduce a convenient matrix partitioning for
matrices A, B and C as follows

A =


A(1,1) A(1,3) . . . A(1,M)

A(3,1) A(3,3) . . . A(3,M)

. . . . . . . . . . . .
A(M,1) A(M,3) . . . A(M,M)

 (39)

B =


B(1,1) B(1,3) . . . B(1,M)

B(3,1) B(3,3) . . . B(3,M)

. . . . . . . . . . . .
B(M,1) B(M,3) . . . B(M,M)

 (40)

CT =
[
C(1) C(3) . . . C(M)

]
(41)

where each term represents a submatrix coupling two circular
harmonics. In the known term, each submatrix represents a
specific harmonic excitation. For a general TE/TM circular
waveguide expansion, the complete expression of the known
term is given in the appendix. The generic submatrix with
superscript (m,n) can be further partitioned as

A(m,n) =

[
A

(m,n)
tt A

(m,n)
tφ

A
(m,n)
φt A

(m,n)
φφ

]
(42)

B(m,n) =

[
B

(m,n)
tt B

(m,n)
tφ

B
(m,n)
φt B

(m,n)
φφ

]
(43)

C(m) =

[
C

(m)
t

C
(m)
φ

]
(44)

where the subscripts ’t’ or ’φ’ refer to testing (first subscript)
and expansion functions (second subscript) respectively ’t’-
directed (ρ-z plane) or ’φ’-directed.

From the specific testing/expansion function expressions we
obtain

∇× τqcmφ = −iρ
m

ρ
τz,qsmφ+

+iφ(∂zτρ,q − ∂ρτz,q)cmφ + iz
m

ρ
τρ,qsmφ =

= iρD
t,(m)
ρ,q smφ + iφD

t,(m)
φ,q cmφ + izD

t,(m)
z,q smφ

(45)

∇× iφ
Nq
ρ
smφ = −iρ

∂zNq
ρ

smφ + iz
∂ρNq
ρ

smφ =

= iρD
φ
ρ,qsmφ + izD

φ
z,qsmφ

(46)

where we introduced functions Dt,(m)
ξ,q and Dφ

ξ,q , representing
the ρ-z dependence of the generic ξ component of the curl
of τqcmφ and iφ(Nq/ρ)smφ respectively. Letting then µ′r = 1
we have µ−1r = Λ−1 = V and we can now define the generic
coefficient p, q in the characteristic matrices. For an easier
notation we use indexed coordinates ξ1 = ρ, ξ2 = φ, ξ3 = z.
Finally, we let gti,m and gφi,m represent cmφ or smφ according
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to the curl component in (45), (46). As an example, coefficient
p, q of matrix A

(m,n)
tt is then

A
(m,n)
tt (p, q) =

∑
i

∑
j

∑
k

∫
S

D
t,(m)
ξi,p

V ′(k)ξiξjD
t,(n)
ξj ,q

ρdρdz

·
∫ 2π

0

gti,mV
′′
(k)ξiξj

gtj,ndφ

(47)

therefore

A
(m,n)
tt (p, q) =

∑
i

∑
j

∑
k

ΩAtt

ijk (p, q)ΦAtt

ijk (m,n) (48)

in which ΩAtt

ijk represent integrals in (ρ, z) plane and ΦAtt

ijk are
integrals in φ. Surface integrals do not depend on m and n (a
part of multiplying constants) and they are used repeatedly to
build the entire matrices of FEM. The complete expressions for
the various matrix elements are shown in Appendix A. From
the previous expression, a further advantage of the present
approach is quite apparent: 3D integrals are reduced to 2D
integrals over a 2D mesh since integrals in φ can be obtained
analytically. Although this is not strictly necessary in the
computer implementation, it represents a dramatic speed-up
in the assembly of the final matrix system.

B. PML

Since we are mostly interested in radiating structures, ab-
sorbing PML conditions have been derived for the case of
cylindrical coordinates in an anisotropic medium. We followed
the approach outlined in [21], although in our case the material
is anisotropic and represented by symmetric tensors εr and µr.
In stretched cylindrical coordinates, the components of the curl
are

(∇× e)ρ =
1

ρ̃

∂ecz
∂φ
−
∂ecφ
∂z̃

(49)

(∇× e)φ =
∂ecρ
∂z̃
− ∂ecz

∂ρ̃
(50)

(∇× e)z =
1

ρ̃

[
∂(ρ̃ecφ)

∂ρ̃
−
∂ecρ
∂φ

]
(51)

where we defined the stretched coordinates as

ρ̃ = ρ0 +

∫ ρ

ρ0

Sρρ
′dρ′ (52)

z̃ = z0 +

∫ z

z0

Szz
′dz′ (53)

so that
∂

∂ρ̃
=

1

Sρ

∂

∂ρ
,

∂

∂z̃
=

1

Sz

∂

∂z
. (54)

Now since

−jωµ0µr,cyl · hc = ∇× ec (55)

if we define Sφ = ρ̃/ρ and

P =

SzSφ 0 0
0 SzSρ 0
0 0 SφSρ

 , (56)

Σ =

Sρ 0 0
0 Sφ 0
0 0 Sz

 (57)

virtually perfect absorbing PML are obtained with a material

εPML
r,cyl = Pεr,cylΣ

−1 = PΛΣ−1 (58)

µPML
r,cyl = PΛΣ−1. (59)

Eq. (58), (59) can be used in any anisotropic material in
which we wish to use a BoR-FEM formulation, as in our
case. The stretching parameters Sρ, Sφ and Sz have been
defined as in [16] and, as usual, accuracy is limited only by
numerical discretization. In all our simulated results we found
an excellent behavior of the previously defined PML.

C. Radiation

Radiation fields for the structure can be obtained by the
equivalence theorem [22]. Letting e, h be the fields obtained
by solving the BoR-FEM problem, the fields in the original
structure e′, h′ are obtained as

e′ = JTe (60)

h′ = JTh (61)

and points in the transformed domain x, y, z correspond to
x′ = sxx, y′ = syy, z′ = z. The equivalent surface currents
in the original frame are therefore

j′s = n′ × h′ (62)

m′s = −n′ × e′ (63)

where

n′ =
JTn

|JTn|
. (64)

Standard radiation integrals can be used to compute the
far field and the antenna parameters. Because of the BoR-
FEM formulation, the fields can be computed simply along
a line in the transformed domain and the equivalent sources
computation is therefore very fast. We have

e =
∑
m

∑
q

vt,(m)
q τqcmφ + iφ

∑
m

∑
q

vφ,(m)
q

Nq
ρ
smφ (65)

h = − 1

jωµ0
µ−1r

∑
m

∑
q

vt,(m)
q ∇× (τqcmφ)

− 1

jωµ0
µ−1r

∑
m

∑
q

vφ,(m)
q ∇×

(
iφ
Nq
ρ
smφ

)
. (66)
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Fig. 1. Reflection coefficient of gradually varying section resonator. Input
circular waveguide of radius 4 mm, resonator center semi-axes a = 12 mm,
b = 6 mm, total length 14 mm.

IV. RESULTS

In this section some results are shown for validation pur-
poses and to quantify the efficiency of the new method
discussed in this paper. All CPU times refer to a PC with
Intel i7 processor with 4 GHz clock rate and 64 Gb RAM.
The computer code for the analysis and design has been im-
plemented in MatlabTM. Further significant improvements are
expected with a more efficiency-oriented scientific language.
In the BoR-FEM implementation we used polynomial basis
functions up to degree 3, with a well defined relationship
between edge element order and nodal element order [17].
Accuracy is mainly related to three factors: element order
(1st, 2nd or 3rd), mesh size and maximum index of circular
harmonics M (it is recalled that only odd harmonics are used).
Mesh size is represented by mesh density F = λ0/hmax,
where hmax is the maximum edge length in the 2D mesh.

The first example we show is a resonator with gradually
elliptical cross-section. The structure is shown in the inset of
Fig. 1 (only 1/4 of the structure is shown). The total length of
the resonator is 14 mm, it is fed by a circular waveguide of
radius 4 mm and the resonator cross-section varies gradually
from circular to elliptical. At the center (z = 7 mm), the semi-
axes are a = 12 mm and b = 6 mm. The resonator is fed by
the x-polarized TE11 mode in the circular waveguide. In Fig. 1
we show a comparison with 3D FEM over a wide band. The
curve in Fig. 1 has been obtained with 2nd order elements,
F = 10, M = 5 and the agreement is excellent. The analysis
with our method took 0.16 sec/freq. In the figure, the mesh
used for the analysis is also shown.

In order to demonstrate the good convergence and accuracy
of the method, we show a reference table. The same structure
in Fig. 1 has been analyzed at 28 GHz by varying the element
order, the mesh density F and the maximum harmonic index
M . The convergence for parameter |S11| (in dB) in the various
cases is shown in Tab. I.

As a general observation, we found that, as expected, 1st
order elements provide very slow convergence, whereas 3rd
order elements perform best in terms of accuracy and effi-
ciency [23]. As a quick comparison between the performance
of 2nd order elements and 3rd order elements, the CPU time

TABLE I
CONVERGENCE OF |S11| FOR THE STRUCTURE IN FIG. 1 AT 28 GHZ.

F = λ0/hmax , M MAXIMUM HARMONIC INDEX.

1st order F = 5 10 15 20
M = 1 −9.87 −19.28 −21.44 −23.16

3 −11.94 −35.57 −29.32 −24.12
5 −12.13 −35.33 −22.03 −18.78
7 −12.14 −34.37 −21.63 −18.45
9 −12.14 −34.34 −21.62 −18.44
11 −12.14 −34.34 −21.61 −18.44

2nd order F = 5 10 15 20
M = 1 −23.58 −25.33 −25.84 −26.07

3 −25.90 −20.38 −19.62 −19.30
5 −20.42 −15.89 −15.26 −15.01
7 −20.14 −15.58 −14.96 −14.71
9 −20.13 −15.57 −14.95 −14.70
11 −20.13 −15.57 −14.95 −14.70

3rd order F = 5 10 15 20
M = 1 −26.69 −26.41 −26.48 −26.50

3 −19.73 −19.25 −18.98 −18.88
5 −15.63 −14.93 −14.72 −14.66
7 −15.33 −14.63 −14.42 −14.36
9 −15.33 −14.63 −14.42 −14.36
11 −15.33 −14.63 −14.42 −14.36

for 2nd order elements and F = 10 is roughly the same as
that of 3rd order elements and F = 6, but accuracy is better
for the latter.

A second example for validation refers to an elliptical horn
fed by a circular waveguide. The horn cross-section varies
gradually from circular to elliptical. The input radius is 4
mm, the output semi-axes are a = 20 mm and b = 10
mm and the horn length is 40 mm, corresponding to about
4λ at 26 GHz. The results for the scattering parameters of
the two TE11 modes are shown in Fig. 2. The insets in the
figure show the physical structure and the 2D mesh used for
the analysis. We analyzed both polarizations, pol. 1 indicating
x-directed electric field at the input and pol. 2, indicating y
directed electric field at the input. The 3D FEM analysis was
carried out with no symmetries and radiation boundaries have
been placed around the horn. Owing to the rather large size
of the model, the analysis took several hours, whereas with
the method discussed in this paper the complete frequency
response (20 points) was obtained in about eight minutes with
F = 8, M = 9 and 3rd order elements. The same results in
terms of scattering parameters could be obtained in 1 minute
setting M = 3, with no appreciable difference in the curve, but
an accurate computation of the radiation pattern requires more
circular harmonics. The comparison of the radiation patterns
is shown in Fig. 3 and 4. In spite of the imperfect behavior of
radiation boundary that causes some oscillations in the curves
obtained by 3D FEM, the agreement is good. For completeness
we also show in Fig. 5 a curve representing the most sensitive
radiation pattern as a function of M (φ = 0 plane, Pol. 2).
We note that a good convergence is obtained, a larger value
of M is required.

A. PML performance

The performance of the newly developed PML are summa-
rized in Fig. 6–7. An important parameter to be tested is the
distance d of PML from the structure (see the inset in Fig. 6).
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Fig. 2. Elliptical horn with axial ratio 2:1. Reflection coefficient for TEx
11

(Pol. 1) and TEy
11 (Pol. 2).

Fig. 3. Elliptical horn with axial ratio 2:1. Radiation pattern for TEx
11 (Pol.

1) at input.

Fig. 4. Elliptical horn with axial ratio 2:1. Radiation pattern for TEy
11 (Pol.

2) at input.

Fig. 5. Convergence of the most sensitive radiation pattern as a function of
the maximum index of circular harmonics.

Fig. 6. Convergence of the most sensitive radiation pattern as a function of
PML distance.

We show both horn pattern at 25.8 GHz, Pol. 2 (Fig. 6) and
the reflection coefficient (Fig. 7), all other radiation patterns
being less sensitive with respect to parameter d. One notes that
in spite of the visible differences in Fig. 6, the performance
of PML is very good. Reflection coefficient is also very stable
even for values of d as small as 0.2λ (Fig. 7). The final value
selected for computation is d = λ/2 as a good compromise
between efficiency and accuracy.

B. Design curves

For design purposes, we carried out a parametric analysis
on the relationship between gain and aperture size for different
horn lengths and for the cases a = 2b and a = 3b. The horn
is excited by a circular waveguide and its cross section aspect
ratio varies linearly from 1 to the final output aspect ratio.
Both polarizations are considered. The results are shown in
Fig. 8 for the case a = 2b and in Fig. 10 for the case a = 3b.
One notices the typical behavior of gain saturation because
of phase error, but also a rather different behavior of the
two polarizations. Similar curves have been derived for the
maximum cross-polar level, computed according to Ludwig
3rd definition on plane φ = 45◦ and they are show in Figs. 9–
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Fig. 7. Convergence of parameter S11 as a function of PML distance.

Fig. 8. Gain as a function of aperture size with horn length L as a parameter,
a = 2b.

11. In this case the difference between the two polarizations
is even more significant. Polarization 1 shows a much higher
level of cross-polar component and this is slowly increasing
with an increase in the normalized aperture size of the horn,
with a moderate effect of horn length.

V. CONCLUSIONS

A new method based on Transformation Optics and 2D-
FEM has been presented for the analysis of elliptical ge-
ometry structures. Application of the method to an elliptical
resonator with variable ellipticity and to elliptical horns has
demonstrated the accuracy and efficiency in the analysis.
Newly developed PML conditions contributed to the excellent
performance of the technique, with time reductions of 1 to
2 order of magnitudes with respect to full 3D techniques.
Some design curves have been presented for the case a = 2b,
showing both gain and cross-polar component.

Fig. 9. Maximum cross-polar level as a function of aperture size with horn
length L as a parameter, a = 2b.

Fig. 10. Gain as a function of aperture size with horn length L as a parameter,
a = 3b.

Fig. 11. Maximum cross-polar level as a function of aperture size with horn
length L as a parameter, a = 3b.
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APPENDIX

A. Matrix computation and storage

As shown in section III, FEM matrices are obtained as a
product of integrals in (ρ, z) plane, times integrals in φ. The
complete expression of the various terms is the following:

A
(m,n)
tt (p, q) =

∑
i

∑
j

∑
k

∫
S

D
t,(m)
ξi,p

V ′(k)ξiξjD
t,(n)
ξj ,q

ρdρdz

·
∫ 2π

0

gti,mV
′′
(k)ξiξj

gtj,ndφ

(67)

A
(m,n)
tφ (p, q) =

∑
i

∑
j

∑
k

∫
S

D
t,(m)
ξi,p

V ′(k)ξiξjD
φ
ξj ,q

ρdρdz

·
∫ 2π

0

gti,mV
′′
(k)ξiξj

gφj,ndφ

(68)

A
(m,n)
φt (p, q) =

∑
i

∑
j

∑
k

∫
S

Dφ
ξi,p

V ′(k)ξiξjD
t,(n)
ξj ,q

ρdρdz

·
∫ 2π

0

gφi,mV
′′
(k)ξiξj

gtj,ndφ

(69)

A
(m,n)
φφ (p, q) =

∑
i

∑
j

∑
k

∫
S

Dφ
ξi,p

V ′(k)ξiξjD
φ
ξj ,q

ρdρdz

·
∫ 2π

0

gφi,mV
′′
(k)ξiξj

gφj,ndφ.

(70)

Similarly, letting τξi,q be the ξi component of vector basis τq

B
(m,n)
tt (p, q) =

∑
i

∑
j

∑
k

∫
S

τξi,pΛ
′
(k)ξiξj

τξj ,qρdρdz

·
∫ 2π

0

cmφΛ′′(k)ξiξjcnφdφ

(71)

B
(m,n)
tφ (p, q) =

∑
i

∑
k

∫
S

τξi,pΛ
′
(k)ξiφ

Nqdρdz

·
∫ 2π

0

cmφΛ′′(k)ξiφsnφdφ

(72)

B
(m,n)
φt (p, q) =

∑
j

∑
k

∫
S

NqΛ
′
(k)φξj

τξj ,pdρdz

·
∫ 2π

0

smφΛ′′(k)φξjcnφdφ

(73)

B
(m,n)
φφ (p, q) =

∑
k

∫
S

NqΛ
′
(k)φφNq

1

ρ
dρdz

·
∫ 2π

0

smφΛ′′(k)φφsnφdφ.

(74)

B. Known term for circular waveguide excitation

The input magnetic field is expanded in circular waveguide
modes. The know term matrix is therefore, for TEmn modes

C
(m)
t (q) = −πAmnm

∫
P

τρ,qJm(χ′mnρ/b1)dρ (75)

C
(m)
φ (q) = πAmn

χ′mn
b1

∫
P

NqJ
′
m(χ′mnρ/b1)dρ (76)

where Jm is the 1st kind Bessel function of order m, χ′mn
is the n-th zero of its derivative and Amn = |π2 (χ2

mn −
m2)Jm(χ′mn)2|−1/2,. For TMmn modes, we have

C
(m)
t (q) = −πBmn

χmn
b1

∫
P

τρ,qJ
′
m(χmnρ/b1)ρdρ (77)

C
(m)
φ (q) = πBmnm

∫
P

Nq
ρ
Jm(χmnρ/b1)dρ (78)

where χmn is the n-th zero of Jm and Bmn =
|
√

π
2χmnJm+1(χmn)|−1. Finally, P indicates integral over

the port extension on the boundary. For an input elliptical
waveguide, the fields are expanded in circular harmonics, see
e.g. [24], [25].
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