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Simulating the optical performances of the LCLS bendable
mirrors using a 2D physical optics approach

D. Spiga1,2, D. Cocco1, C. L. Hardin1, D. S. Morton1, M. L. Ng1

1SLAC National Accelerator Laboratory, 2575 Sand Hill Road, 94025 Menlo Park (USA)
2INAF – Brera Astronomical Observatory, Via Bianchi 46, 23807, Merate (Italy)

ABSTRACT

The Linac Coherent Light Source (LCLS), a US Department of Energy Office of Science X-ray facility operated
by the Stanford University, is being upgraded with a second source to provide eight beamlines (five existing
and three under construction) with either high-repetition or high-intensity pulses and highly coherent X-ray
beams. The photon transportation and distribution to each beamline relies on, among other elements, elliptically-
bendable mirrors, often in Kirkpatrick-Baez (K-B) configuration. One of the crucial tasks in beamline design and
performance prediction is the self-consistent simulation of the final point spread function of the complete optical
system, simultaneously accounting for diffractive effects, mirror deformations, and surface finishing defects.
Rather than using ray-tracing routines, which cannot manage diffractive effects, and rather than employing the
first-order scattering theory, which cannot be applied when the optical path differences exceed the radiation
wavelength, a wavefront propagation formalism can be used to treat all the aspects at the same time. For
example, the WISE code, initially developed for astronomical X-ray mirrors at INAF-OAB, and subsequently
used to simulate X-ray reflective systems at the Fermi light source, is now a part of the well-known OASYS
simulation package. In this paper, we extend the model to a two-dimensional imaging and show performance
simulations of two elliptical mirrors to form a complete Kirkpatrick-Baez system.

Keywords: Free-Electron Laser, LCLS, bendable mirrors, physical optics, diffraction

1. INTRODUCTION

The Linac Coherent Light Source (LCLS)1 at SLAC national accelerator laboratory is being upgraded to improve
its optical performances. A major reconstruction of the entire facility is already in progress, which will ultimately
endow it with an additional accelerator (LCLS-II) equipped with superconducting accelerator cavities, and so
bring the pulse repetition rate to about 1 MHz. For comparison, the currently operating source that employs
a copper accelerator reaches a 120 Hz pulse rate. It will be, in fact, the first X-ray free-electron laser able to
supply a uniformly-spaced train of pulses with programmable repetition rate.

As the two light sources will operate in parallel, the five existing beamlines will be maintained, plus three
additional beamlines (TMO, TXI, and NEH 2.2) that will be located in the near experimental hutch (NEH).2

The beam delivery to each beamline will be ensured by a front-end enclosure (FEE), equipped with bendable
mirrors and a variable line spacing grating. The FEE is committed to perform the photon flux delivery without
compromising its spatial and temporal coherence. To this end, the optical elements for moderating the beam shall
exhibit excellent surface finishing and profile accuracy. Any surface defect would, in fact, leave an imprint in the
wavefront propagation that will ultimately affect the coherence preservation and the final focusing performances
in the beamlines, which should be close to the diffraction limit in order to fulfill the science requirements. This
clearly sets stringent limits on the tolerances for the mirror fabrication.

The problem of determining the necessary and sufficient surface accuracy of optical components is probably
as ancient as optical science itself. Providing a definite solution to that problem is, nevertheless, quite hard. The
reason is that the propagation of X-rays is undulatory in nature, and the final focus in a chain of optical elements
illuminated by coherent radiation is the result of a diffractive process series that often returns unintuitive results.
The aberration imparted by a profile deformation always appears, for instance, mixed up with unavoidable
diffraction features stemming from the mirror aperture, or by diffraction from the mirror surface roughness.

e-mail: spigasan@slac.stanford.edu, phone: +1-650-924-3070

Adaptive X-Ray Optics V, edited by Daniele Spiga, Hidekazu Mimura, Proc. of SPIE Vol. 10761,
1076107 · © 2018 SPIE · CCC code: 0277-786X/18/$18 · doi: 10.1117/12.2323253

Proc. of SPIE Vol. 10761  1076107-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 9/18/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Sometimes, the beam diffraction can make the geometric aberrations irrelevant, or enhance them, depending
on their typical spatial scales and on the light wavelength λ. This makes not only the interpretation of tests,
but also setting certain surface tolerances, quite complicated. A proper beamline equipment thereby requires
simulation tools able to predict the impact of – either expected or measured – defects and misalignments of
reflective surfaces. Possible input data for this tool are provided by metrology instruments such as the long trace
profilometer (LTP),3 phase shift interferometers (PSI), or wavefront sensors4 to name a few.

In the past years, much effort was spent in preparing simulation tools that encompass the aspects of aperture
diffraction, geometric deformations (usually analyzed via ray-tracing methods), and surface diffraction (usually
treated via the first-order scattering theory).5 A 1D wavefront propagation tool, named WISE (Wavefront
propagatIon Simulation codE), was developed at INAF-OAB in recent years6,7 to self-consistently simulate the
expected performances in focusing optics for X-ray telescopes.8 WISE was proven to affordably reproduce the
focusing capabilities of Kirkpatrick-Baez (K-B) mirrors9 at the Fermi free electron laser.10 In addition, WISE has
become part of the OASYS (OrAnge SYnchrotron Suite) software package,11 enabling the capabilities of various
ray-tracing12–15 and wavefront propagation10,16,17 simulation codes into a graphic environment for practical use.

However, in optical systems where the incidence plane changes along the beam propagation – as it is the
case of K-B mirrors – a 2D simulation could be useful. The problem then becomes how to deal with the
complexity of the computation, especially when surface defects over small spatial periods need to be included in
the propagation, and the mirror surface to be processed is consequently represented by a very large matrix. As
we will see in Sect. 2, this is simplified under the Fresnel approximation, which allows us to considerably speed
up the computation, without strictly be in the far-field limit. This approach was, in fact, already adopted to
successfully model the performances of normal-incidence mirrors for ground-based telescopes.18 At a subsequent
time, it was extended to a grazing-incidence geometry for simulating the diffraction pattern generated by silicon
pore optics in the ATHENA X-ray telescope.19

In this paper, we adopt a similar method to approach 2D simulations of wavefront propagation in a coherent
X-ray beamline. In Sect. 2, we analytically describe the basic treatment of elliptical mirrors, and we extend
the reasoning to a double reflection, showing that the simulation can be extended to a sequence of mirrors. In
Sect. 3, we briefly discuss the simulation tool we are writing to simulate the X-ray propagation through the
optical element sequence (Sequential Code for Diffraction Simulation, SCDS). Finally, in Sect. 4, we review
some examples of computation for a K-B system, including deformations or measured surface defects. Further
developments of this work will include mirrors with different geometries and spectroscopic components, such as
reflection gratings.

2. PHYSICAL OPTICS TREATMENT OF ELLIPTICAL MIRRORS

2.1 General aspects

In this section we introduce the method we are adopting to perform the simulation of a beamline, regarded as a
sequential chain of diffractive elements. In fact, we will use either the ”reflective” or the ”diffractive” adjective
as synonyms, because – assuming a constant reflectivity of each mirror over its entire surface – the reflection of
X-rays by focusing surfaces can always be regarded as a diffractive process. In order to take advantage of the
Fourier transform and quickly compute the diffraction integrals, we will need to suppose the optical elements
to be separated by distances D that are much larger than the cross-sectional dimensions W of the diffractive
surfaces. This condition is known as Fresnel approximation and allows us to considerably simplify expressions of
the diffraction integrals, while still being less stringent than the Fraunhofer (far-field) regime.

A situation where the Fresnel approximation is not applicable is, for instance, the Wolter-I geometry20 used
in astronomical optics, in which the secondary segment is located a few millimeters (or less) past the primary
mirror. In this case, we could not simplify the diffraction integrals and so reduce them to Fourier transforms.
They can still be evaluated in a quite short time if the simulation is collapsed in the incidence plane of the
mirrors, ignoring sagittal deformations. This was the approach followed in the 1D simulation code WISE.10

However, at synchrotrons, FELs, and lab sources, the diffracting elements are more spaced apart and the
Fresnel approximation is usually applicable. In particular, we do not require that the Fresnel number F = W 2/λD
be very small (a condition required in the far-field limit). We also neglect obliquity factors and the variation of
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the 1/D dependence on the specific location on the mirror surface. This basically means that we can consider all
the components as phase plates that simply introduce phase changes over their aperture pupil, and offers us the
opportunity to perform 2D diffraction computations without excessively increasing the computational load. The
electric fields can therefore be computed at the mirror apertures in sequence, from the first to the last mirror of
the beamline.

For brevity, in this paper we limit ourselves to the case of two reflections on elliptic mirrors with orthogonal
orientations, which form the widespread K-B geometry. However, the method works regardless of the number of
mirrors and can also be applied to a complex beamline.

2.2 K-B mirrors: first diffraction

We model the primary and the secondary element of a K-B mirror separately. We consider the primary element
as vertical, i.e., a flawless, elliptical profile in the xy plane, and planar along the xz plane (Fig. 1A). Therefore,
the primary element only focuses in y direction and lets the beam diverge along z. Let the semi-major axis be
a and the semi-focal distance be c: we initially set the image point at the origin and the source on the x-axis,
at x = −2c. Following a widespread notation, we denote with p and q the distances from the source and the
image, respectively, to the mirror center. By definition of an ellipse, rays in the xy plane have a total optical
path d1 +d2 from the source to the image point, which equals (p+ q) = 2a regardless of d2 (r0 in the xy plane).

Figure 1. A) Initial reference frame used for the primary K-B element. The elliptical profile is described by the coordinates
x0 = −r0 cos θ0 and y0 = r0 sin θ0, where r0 = a(1 − e2)/(1 − e cos θ0), a is the semi-major axis, c the semi-focal distance,
and e = c/a the ellipticity. B) Equivalent diffraction geometry, schematizing the mirror as a phase plate.

The optical path reaching the generic (x0, y0, z0) location of the mirror is

d1 =
√

(−2c− x0)2 + y20 + z20 =
√

4c (c− r0 cos θ0) + r20 + z20 . (1)

Handling now the ellipse equation (see caption of Fig. 1), we obtain r0 cos θ0 = (r0 − a)/e + c and Eq. 1 turns
into

d1 =
√

4a (a− r0) + r20 + z20 =
√

(2a− r0)2 + z20 =
√

(p+ q − r0)2 + z20 : (2)

in the Fresnel approximation, we develop the square root in Eq. 2 at the first order, and we get

d1 ' p+ q − r0 +
z20

2(p+ q − r0)
. (3)
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To derive d2, we consider an optical path reaching a detection area, centered in the nominal focus and described
by the reference frame (y1, z1). The second distance, approximated at the first order, can be written as

d2 =
√
x20 + (y1 − y0)2 + (z1 − z0)2 ' r0 −

y0y1
r0
− z0z1

r0
+
y21 + z21

2r0
+

z20
2r0

, (4)

and we can now combine Eqs. 3 and 4 to obtain the total optical path:

OPD1 = d1 + d2 ' (p+ q)− y0y1
q
− z0z1

q
+ z20

(
1

2p
+

1

2q

)
+
y21 + z21

2q
, (5)

where we could set r0 ' q to a good approximation in all the denominators. For convenience, we now locate
the reference frame at the mirror aperture. This particular choice does not affect the optical paths (Fig. 1B),
but it will simplify the notation in the next steps. It can be also useful to rewrite Eq. 5 omitting unessential
phase constants and separating the incident OPD0 in the expression from the optical path shift (OPS1) due to
the mirror:

OPD1 =
z20 + y20

2p︸ ︷︷ ︸
OPD0

−y0y1
q
− z0z1

q
+
z20
2q
− y20

2p
+
y21 + z21

2q︸ ︷︷ ︸
OPS1

. (6)

Dubbing with E0(y0, z0) the electric field amplitude at the mirror aperture, the complex field diffracted to the
focal plane is provided by the Fresnel-Kirchoff integral:

E1(y1, z1) =
1

λq

∫
E0(y0, z0) e

2πi
λ OPD1 dy0dz0, (7)

that becomes, omitting obliquity factors,

E1(y1, z1) =
e
πi
λq (y

2
1+z

2
1)

λq

∫
e−

2πi
λq y0y1 e−

2πi
λq z0z1

[
E0(y0, z0) e

πi
λ z

2
0( 1
p+

1
q )
]

dy0dz0. (8)

Equation 8 is just the Fourier transform of the term enclosed in [ ] brackets, and can be regarded as the diffraction
through a phase plate, which introduced an OPS1 into the path of the incident wave. This allows us to regard
the mirror as a diffractive element along the x-axis (Fig. 1).

In the case of a Gaussian intensity wavefront, typical of FEL beams in the fundamental mode, we can set

E0(y0, z0) =
1

ω
√
π/2

exp

(
−y

2
0 + z20
ω2

)
, (9)

where the normalization constant was selected in order to normalize the electric field’s squared module to unity
on the y0z0 plane. The ω parameter can be connected to the source profile rms, ω0, via the relation ω ' λp/πω0,
which follows from the propagation theory of Gaussian beams under approximation ω � ω0. Using the last
relation and substituting Eq. 9, we can solve explicitly Eq. 8:

E1(y1, z1) =

√
π

λx1γ
e
πi
λx1

(y21+z
2
1) e

−
(

p
ω0q

)2
y21 e

−
(

π
λx1γ

)2
z21 , (10)

having set γ2 = ω−2 − πi(1/p+ 1/q)/λ. Equation 10, after some algebraic reworking, takes the form

E1(y1, z1) '
√

2

π

√
p

ω0q
exp

[
−
(
p y1
ω0q

)2

+ i
πy21
λq

] √
p

ω(p+ q)
exp

[
−
(

p z1
ω(p+ q)

)2

+ i
πz21

λ(p+ q)

]
: (11)

and as expected, the first factor in Eq. 11 describes the image of the Gaussian source, demagnified by a factor
q/p along y1. The second factor represents, in contrast, the unperturbed (diverging) propagation of the Gaussian
wavefront along the z1 axis.
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2.3 K-B mirrors: second diffraction

We now want to place the second (horizontal) K-B element in an intra-focal position of the vertical one, at a
generic distance x1 (Fig. 2). If we keep on mapping the second mirror aperture via the coordinates (y1, z1), we
just have to re-write Eq. 5 replacing q → x1, plus an additional OPD that keeps the y-focus as a distance q from
the primary mirror center, i.e., y20(1/2x1 − 1/2q). Furthermore, we change the notation p → p1 and q → q1 for
indicating the ellipse parameters of the first diffracting element. All this changes Eq. 8 into

E1(y1, z1) =
e
πi
λx1

(y21+z
2
1)

λx1

∫
e−

2πi
λx1

y0y1 e−
2πi
λx1

z0z1

[
E0(y0, z0) e

πi
λ

(
q1−x1
x1q1

y20+
p1+x1
x1p1

z20

)]
dy0dz0. (12)

Using Eq. 9, we can solve Eq. 12 in a few passages, obtaining

E1(y1, z1) =

√
π

ωλx1αyαz
e
πi
λx1

(y21+z
2
1) e

−
(

π
λx1αy

)2
y21 e

−
(

π
λx1αz

)2
z21 , (13)

where the two complex propagation constants αy and αz are provided by the relations:

α2
y =

1

ω2
− i

π

λx1

q1 − x1
q1

, (14)

α2
z =

1

ω2
− i

π

λx1

p1 + x1
p1

, (15)

and we also note that, if x1 = q1, then αy = 1/ω and Eq. 13 ultimately reduces to Eq. 10. Equation 13 describes
the electric field on the aperture pupil of the second K-B segment, but only if the wavefront from the source is
initially spherical, i.e. characterized by an OPD0 term as in Eq. 6.

Figure 2. A diffracting system equivalent to the two elements of a K-B mirror. Every mirror element is described by its
specific optical phase shift (OPS).

However, if we absorb the phase information of the incident wave into a more general complex incident field
E0(y0, z0), we can write a general expression for the field after the first diffraction,

E1(y1, z1) =
e
πi
λx1

(y21+z
2
1)

λx1

∫
e−

2πi
λx1

y0y1 e−
2πi
λx1

z0z1

[
E0(y0, z0) e

πi
λ

(
1
x1

− 1
p1

− 1
q1

)
y20 e

πi
λx1

z20

]
dy0dz0, (16)

where only the OPS1 terms (Eq. 6) appear in the exponents of the integrand. We now can compute the electric
field diffracted by the second (horizontal) K-B mirror element to focus, at x2 distance (Fig. 2). We simply move
the reference frame origin into the x1 coordinate and rewrite Eq. 16, after reversing the roles of y and z in the
integrand:

E2(y2, z2) =
e
πi
λx2

(y22+z
2
2)

λx2

∫
e−

2πi
λx2

y1y2 e−
2πi
λx2

z1z2

[
E1(y1, z1) e

πi
λ

(
1
x2

− 1
p2

− 1
q2

)
z21 e

πi
λx2

y21

]
dy1dz1. (17)
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The result can be extended to an arbitrary number of diffractions involving elliptical mirrors. If the K-B
is correctly configured to minimize astigmatism effects, then we shall have the conditions p2 = p1 + x1 and
q1 = q2 + x1 fulfilled. The image in seen in focus when x2 = q2. Finally, if the shape deviates from a perfect
ellipse, due to manufacturing errors or deliberate adaptation to wavefront, the deformation can be accounted for
in the computation (Eqs. 27 and 28, and Sect. 4.2).

In the case of a flawless, in-focus K-B system we can rewrite Eq. 17 as

E2(y2, z2) =
e
πi
λq2

(y22+z
2
2)

λq2

∫
e−

2πi
λq2

y1y2
[
E1(y1, z1) e−

πi
λp2

z21e
πi
λq2

y21
]

dy1dz1. (18)

Substituting the expression for E1 (Eq. 13), α2
y (Eq. 14), and α2

z (Eq. 15), one gets (after considerable handling):

E2(y2, z2) =

√
πe

πi
λq2

(y22+z
2
2)

λ2ωx1q2αyαz

∫
e−

2πi
λq2

y1y2 e−
2πi
λq2

z1z2 e
−
(
y1
βy

)2

e−( z1βz )
2

dy1dz1, (19)

where the two complex constants βy, βz are provided by

β2
y = ω2

(
q2
q1

)2
+ iλx1q2

πq1
β2
z = ω2

(
p2
p1

)2
+ iλx1p2

πp1
. (20)

Equation 19 can be solved immediately and, recalling the relation ω ' λp1/πω0, the final expression is

E2(y2, z2) =

√
2

π

√
p1
ω0q1

e
−
(

p1
ω0q1

)2
y22+i

πy22
λq1

√
p2
ω0q2

e
−
(

p2
ω0q2

)2
z22+i

πz22
λq2 , (21)

i.e., the Gaussian profile of the source, demagnified by a factor of q1/p1 along y and q2/p2 along z. We note that
– as expected – the squared module of Eq. 21 is normalized to 1, just like the one of the incident field.

3. NUMERICAL IMPLEMENTATION

While the behavior of an ideal K-B mirror can already be predicted analytically (Eq. 21), it might be interesting
to have available a numerical tool able to perform a sequential simulation of the real mirrors, including profile
and surface errors. This can be achieved by performing the integrations numerically. In particular, as they
essentially involve Fourier transforms, for which efficient routines exist in virtually all programming languages,
the computation can be made last only a few minutes using a commercial computer. Additionally, the results
shown in the previous section can be used to simulate a sequence of N elliptical mirrors labeled with n = 0,1,
. . . , N − 1, with either vertical (Eq. 16) or horizontal (Eq. 17) orientation. The final image is detected on a
simulated CCD in the N -th place of the sequence.

Figure 3. Schematic flow chart of SCDS. The first step consists in determining the optimal sampling and windowing of
the matrices including the physical apertures of the mirrors. To this end, the sampling rules (SR, Eqs. 22 through 25)
are used up to the incident wavefront. In the second step, the diffracted electric fields are computed in rapid sequence by
means of Fourier transforms (FT, Eqs. 27 and 28).

The Fourier transform efficiency is essentially determined by the size of the matrix to be processed. This
is in turn affected by two factors: the mirror aperture size and the mirror aperture sampling step (that can
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also be different along y and z). The n-th aperture pupil y-size, Wy,n, shall obviously include the full mirror
extent along y, Ymir,n. However, it should also be large enough to have the diffraction limit resolved by the
sampling step18,19 of the next aperture pupil, located at a distance xn+1. This condition basically ensures that
the diffraction pattern has sufficient detail to fully exploit the capabilities of the imaging system.

The n-th aperture pupil y-sampling step, δyn, is determined according to similar criteria: on a side, it should
be smaller than δyerr,n, the lateral scale of the finest surface defect that has to be included in the computation,
projected on the aperture pupil. On the other side, the sampling step should be sufficiently tight to enable
diffraction throughout the full field of the n+ 1-th aperture. Identical statements can be made for the aperture
size and sampling along z. We can therefore recapitulate the aforementioned requirements into the sampling
rules:

Wy,n = max

(
Ymir,n ;λ

xn+1

δyn+1

)
, (22)

Wz,n = max

(
Zmir,n ;λ

xn+1

δzn+1

)
, (23)

δyn = min

(
δyerr,n ;λ

xn+1

Wy,n+1

)
, (24)

δzn = min

(
δzerr,n ;λ

xn+1

Wz,n+1

)
, (25)

which allow us to recursively determine the full sequence of mirror apertures upstream (Fig. 3), from the final
detector (Wy,N , Wz,N , δyN , δzN ) to the wavefront incident onto the first mirror (Wy,0, Wz,0, δy0, δz0).

The second step (Fig. 3) consists in the downstream computation of the electric field from the 0-th to the N -th
aperture, using the Fourier transform based expressions. The construction of the apertures using the sampling
rules (Eqs. 22–25) then ensures that each simulated diffraction will be properly imaged to a resolution equal
or higher than requested by the next diffractive element and mapped over an area that is equal or larger than
the aperture of the next diffractive element. While having a larger aperture area can be simply managed by
trimming the aperture frame to the (Wy,n,Wz,n) size, a higher resolution will simply entail, at the subsequent
step, a diffraction map over an area larger than the designed aperture initially. The exceeding frame of the
diffracted pattern can therefore be trimmed harmlessly, before the next Fourier transform is carried out.

Imperfect mirrors can be simulated also. To this end, we denote with ε(yn, zn) the n-th mirror error map in
the sequence, either measured or modeled (e.g., from a power spectral density6) and projected onto the aperture
pupil. Then the electric field diffracted by the imperfect mirror is obtained from Eq. 16 and/or Eq. 17, after
multiplying the integrand into the complex pupil function:

Cerr(yn, zn) = exp

[
−2πi

λ
2ε(yn, zn) sin θn

]
, (26)

where θn is the grazing incidence angle, and the minus sign has been added to the exponent because a positive
elevation on the surface actually shortens the optical path. This method has already been adopted to account
for surface perturbations in near-normal incidence mirrors, with excellent agreement between experiment and
simulations in near-infrared light.18 It is essential, however, that the aperture pupil sampling step be tight
enough to have the lateral scale of surface defects duly represented in ε (Eqs. 24 and 25). With some minor
changes, this method can also be applied to diffractive-reflective components such as gratings. The ε(yn, zn)
function would simply represent the profile (blazed, laminar, . . . ) of the grating.

We can therefore generalize Eqs. 16 and 17 as follows:

E1(y1, z1) =
e
πi
λx1

(y21+z
2
1)

λx1
F̂T

[
E0(y0, z0)Cerr1(y0, z0) e

πi
λ

(
1
x1

− 1
f1

)
y20 e

πi
λx1

z20

]
, (27)

E2(y2, z2) =
e
πi
λx2

(y22+z
2
2)

λx2
F̂T

[
E1(y1, z1)Cerr2(y1, z1) e

πi
λ

(
1
x2

− 1
f2

)
z21 e

πi
λx2

y21

]
. (28)

Proc. of SPIE Vol. 10761  1076107-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 9/18/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



i
--

where we have shortly defined 1/f1 = 1/p1 + 1/q1, 1/f2 = 1/p2 + 1/q2, and we have explicitly indicated the
complex pupil functions of the mirror errors. We have coded this algorithm into SCDS and we have applied it
to the preliminary case of a K-B system. The simulation results are displayed in the next section.

4. SIMULATION RESULTS FOR A K-B MIRROR

4.1 Perfect system

The first example we show here essentially reproduces the analytical results obtained in Sect. 2.3. We have
considered the Gaussian beam at LCLS in the fundamental mode and simulated its incidence on a K-B mirror,
at 0.3, 0.7, and 1.0 keV. We have assumed realistic parameters for this example, but it should be kept in mind

A) First mirror B) Second mirror C) Final focus
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Figure 4. SCDS results for the LCLS Gaussian beam, focused by a K-B system, at three different energies. A) Vertical
mirror aperture, 5.3 mm × 5 mm. B) Horizontal mirror aperture, 5 mm × 5.3 mm. C) Nominal focus, image size
0.25 mm× 0.25 mm. Shades of color denote the normalized intensity, while white lines connect equal phase points:
consecutive lines are separated by a 6π phase difference.
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that this is just a test case. The two mirror elements have both a reflective surface that is 250 mm long and
5 mm wide, with a central incidence angle of 21 mrad. The first mirror, located upstream, has the reflective
surface oriented vertically, characterized by the parameters p1, q1. The second mirror is downstream and has
the ellipse parameters p2, q2. Because the source location depends on the X-ray energy and is always supposed
to be in the first mirror focus, p1 is made vary with the energy also. The mirror separation (x1 = 5120 mm
from center to center) is kept fixed in all the simulations, so p2 changes accordingly. In contrast, we assume the
final detector in fixed position: hence, q1 = 26000 mm and q2 = 20880 mm are kept constant throughout all the
simulations.

Energy p1 p2 Divergence Source Demag. source Image Collected
(keV) (mm) (mm) (µrad) (µm) (µm, h.× v.) (µm, h.× v.) power

0.3 keV 109160 114280 49.3 41.9 10.0× 7.7 19.0× 14.7 94%
0.7 keV 101760 106880 24.3 36.5 9.3× 7.2 9.5× 7.4 99%
1.0 keV 97660 102780 18.0 34.4 9.1× 7.0 8.4× 6.4 100%

Table 1. Summary of the parameter values used for simulating the perfect K-B system. The data are referred to the
superconducting accelerator being built at LCLS, and to the soft X-ray undulator. All the widths are FWHM values. At
0.7 and 1 keV, the discrepancies between the predicted and the simulated image width (Fig. 4, col. C) are smaller than
the pixel size (2 µm) adopted in the computation.

Owing to the self-diffraction of the Gaussian beam, the beam width on the first mirror aperture changes with
λ. The beam divergence FWHMs at each X-ray energy under test are listed in Table 1, along with the source
width and the expected image width from the demagnification ratios q1/p1, q2/p2. Assuming a final detector
area of 250 µm × 250 µm with 2 µm resolution in both directions, the computation of the focused image just
took ∼300 s per energy, using a commercial computer equipped with a 2.8 GHz processor and a 16 GB RAM.
The aperture sizes and resolutions were inferred from the sampling rules in Sect. 3, yielding a maximum matrix
size of 8500 × 8500, and a 0.6 µm resolution on the vertical mirror aperture.

The simulation results are shown in Fig. 4: the color scale describes the intensity distribution, whereas
the white lines describe the intersection of some wavefronts with the aperture planes. At 0.3 keV, the beam
is actually broader than the modeled mirror aperture (Fig. 4,A1), and part of the beam is not collected. As
a consequence of the Gaussian tail cut-offs, diffraction fringes became visible in the diffracted pattern on the
second aperture (Fig. 4,B1), and the doubly-diffracted image (Fig. 4,C1) appears rectangular instead of circular,
with some emerging diffraction fringes at the four sides. Therefore, the focal spot is considerably broader than
it would be expected from geometric considerations (Table 1).

At 0.7 keV and 1.0 keV (Fig. 4, rows 2 and 3), the beam is almost completely collected within the aperture
of both mirror segments. As it could be expected, no diffraction fringes are visible after the first diffraction or
in the final focus (Fig. 4,C2 and Fig. 4,C3). The latter reproduces, in fact, the Gaussian profile of the source,
including the typical distortion of K-B mirrors (anamorphism) caused by the different locations of the vertical
and the horizontal element. The image FWHMs are, in these two cases, very close to the ones of the demagnified
source (Table 1).

4.2 Deviation from perfect profile

As a further exercise, we have repeated the simulation at 0.7 keV including two kinds of profile errors: a tangential
profile measured by an LTP on a test mirror, and an hypothetic sagittal curvature error.

The tangential error profile under test (Fig. 5) is a quite smooth one: in fact, with a profile rms of 71 nm
and an incidence angle of 21 rad, the projected height is comparable with λ, so we cannot expect the geometric
optics to be applicable. Physical optics, however, has general validity and we can so assess easily the effect
of this perturbation on the focal spot. After resampling the profile at the actual aperture sampling steps and
using Eq. 26 to evaluate Cerr for both mirror segments, we obtained the diffraction patterns shown in Fig. 6,
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row 1. After the first diffraction (B1), the profile has considerably perturbed the Gaussian intensity, but also the
wavefronts appear deformed. The intensity now exhibits a modulation, almost completely along the incidence
plane (horizontal), superimposed to the usual Gaussian shape. After the second diffraction, the same modulation
has also appeared along the vertical axis, with enhanced high orders of diffraction around the central focus.

Figure 5. Mirror profile errors used in the simulation of Fig. 6, row 1.
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Figure 6. SCDS results for the LCLS Gaussian beam, focused by a K-B system, at 0.7 keV, examples of imperfect mirrors
(to be compared with Fig. 4). A) Vertical mirror aperture, 5.3 mm × 5 mm. B) Horizontal mirror aperture, 5 mm ×
5.3 mm. C) Nominal focus, image size 0.25 mm× 0.25 mm. 1) vertical and horizontal mirror with profile errors as shown
in Fig. 5. 2) vertical mirror segment with a sagittal radius of curvature of 50 m.

As for the second simulation, we have this time assumed no tangential defect. We have supposed that the
vertical mirror, instead of being planar along the sagittal direction, be laterally bent to a 50 m radius of curvature.
After turning this information into a height profile error ε, we have re-run the diffraction algorithm and obtained
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the diffraction patterns in Fig. 6, row 2. While no relevant change is seen after the first diffraction, the image in
focus (Fig. 6,C2) appears elongated vertically (FWHM = 42.5 µm) by the same amount that could be computed
from geometric optics (FWHM = 44 µm). The residual discrepancy is caused by the finite spatial sampling of
the modeled detector.

5. CONCLUSIONS

In this paper, we have shown how 2D simulation of a coherent X-ray wavefront propagation through a beam-
line can be achieved replacing the reflective elements with appropriate phase plates, and demanding all the
computation to a sequence of Fourier transforms. The involved approximations simply require that the optical
components be not too close to each other, a situation usually met in FEL beamlines. We have so far applied
the method to a K-B mirror system. The diffracted electric field after two reflections (Fig. 2) can be obtained
applying Eqs. 27 and 28 in sequence: if the aperture pupils are properly sized and sampled, the full computation
takes only a few minutes. After implementing the procedure in SCDS, we have reported some examples showing
how the numerical elaboration is working properly. Future work will be aimed at simulating the entire FEE of
LCLS-II and the beamlines, including reflection gratings and planar mirrors.
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