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Abstract

The Epoch of Reionization (EoR) is an uncharted era in our universe’s history during which the birth of the first
stars and galaxies led to the ionization of neutral hydrogen in the intergalactic medium. There are many
experiments investigating the EoR by tracing the 21 cm line of neutral hydrogen. Because this signal is very faint
and difficult to isolate, it is crucial to develop analysis techniques that maximize sensitivity and suppress
contaminants in data. It is also imperative to understand the trade-offs between different analysis methods and their
effects on power spectrum estimates. Specifically, with a statistical power spectrum detection in HERA’s
foreseeable future, it has become increasingly important to understand how certain analysis choices can lead to the
loss of the EoR signal. In this paper, we focus on signal loss associated with power spectrum estimation. We
describe the origin of this loss using both toy models and data taken by the 64-element configuration of the Donald
C. Backer Precision Array for Probing the Epoch of Reionization (PAPER). In particular, we highlight how
detailed investigations of signal loss have led to a revised, higher 21 cm power spectrum upper limit from PAPER-
64. Additionally, we summarize errors associated with power spectrum error estimation that were previously
unaccounted for. We focus on a subset of PAPER-64 data in this paper; revised power spectrum limits from the
PAPER experiment are presented in a forthcoming paper by Kolopanis et al. and supersede results from previously
published PAPER analyses.

Key words: dark ages, reionization, first stars – early universe – large-scale structure of universe – methods: data
analysis – methods: statistical – techniques: interferometric

1. Introduction

By about one billion years after the Big Bang (z∼ 6), the
first stars and galaxies are thought to have ionized all the
neutral hydrogen that dominated the baryonic matter content in
the universe. This transition period, during which the first
luminous structures formed from gravitational collapse and
began to emit intense radiation that ionized the cold neutral gas
into a plasma, is known as the Epoch of Reionization (EoR).
The EoR is a relatively unexplored era in our universe’s history
that spans the birth of the first stars to the full reionization of
the intergalactic medium (IGM). This epoch encodes important
information regarding the nature of the first galaxies and the
processes of structure formation. Direct measurements of the
EoR would unlock powerful characteristics about the IGM,
revealing connections between the matter distribution exhibited

via cosmic microwave background (CMB) studies and the
highly structured web of galaxies we observe today (for a
review, see Barkana & Loeb 2001; Furlanetto et al. 2006; Loeb
& Furlanetto 2013).
One promising technique to probe the EoR is to target the

21 cm wavelength signal that is emitted and absorbed by
neutral hydrogen via its spin-flip transition (Furlanetto
et al. 2006; Barkana & Loeb 2008; Morales & Wyithe 2010;
Pritchard & Loeb 2010, 2012). This technique is powerful
because it can be observed both spatially and as a function of
redshift—that is, the wavelength of the signal reaching our
telescopes can be directly mapped to a distance from where the
emission originated before stretching out as it traveled through
expanding space. Hence, 21 cm tomography offers a unique
window into both the spatial and temporal evolution of
ionization, temperature, and density fluctuations.
In addition to the first tentative detection of our Cosmic

Dawn (pre-reionization era) made by the Experiment to Detect
the Global EoR Signature (EDGES; Bowman & Rogers 2010;
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Bowman et al. 2018), there are several radio telescope
experiments that have succeeded in using the 21 cm signal
from hydrogen to place constraints on the brightness of the
signal. Examples of experiments investigating the mean
brightness temperature of the 21 cm signal relative to the
CMB are the Large Aperture Experiment to Detect the Dark
Ages (LEDA; Bernardi et al. 2016), the Dark Ages Radio
Explorer (DARE; Burns et al. 2012), the Sonda Cosmológica
de las Islas para la Detección de Hidrógeno NeutroSciHi
(SCI-HI; Voytek et al. 2014), the Broadband Instrument
for Global HydrOgen ReioNisation Signal (BIGHORNS;
Sokolowski et al. 2015), and the Shaped Antenna measurement
of the background RAdio Spectrum (SARAS; Patra et al.
2015). Radio interferometers that seek to measure statistical
power spectra include the Giant Meter-wave Radio Telescope
(GMRT; Paciga et al. 2013), the LOw Frequency ARray
(LOFAR; van Haarlem et al. 2013), the Murchison Widefield
Array (MWA; Tingay et al. 2013), the 21 Centimeter Array
(21CMA; Pen et al. 2004; Wu 2009), the Square Kilometer
Array (SKA; Koopmans et al. 2015), and the Donald C. Backer
Precision Array for Probing the Epoch of Reionization
(PAPER; Parsons et al. 2010). The Hydrogen Epoch of
Reionization Array (HERA), which is currently being built, is a
next-generation instrument that aims to combine lessons
learned from previous experiments and has a forecasted
sensitivity capable of a high-significance power spectrum
detection with an eventual 350 elements using current analysis
techniques (Pober et al. 2014; Dillon & Parsons 2016; Liu &
Parsons 2016; DeBoer et al. 2017).

The major challenge that faces all 21 cm experiments is
isolating a small signal that is buried underneath foregrounds
and instrumental systematics that are, when combined, four to
five orders of magnitude brighter (e.g., Santos et al. 2005; Ali
et al. 2008; de Oliveira-Costa et al. 2008; Jelić et al. 2008;
Bernardi et al. 2009, 2010, 2013; Ghosh et al. 2011; Pober
et al. 2013a; Dillon et al. 2014; Kohn et al. 2016). A clean
measurement therefore requires an intimate understanding of
how data analysis choices, which are often tailored to
maximize sensitivity and minimize contaminants, affect power
spectrum results. More specifically, it is imperative to develop
techniques that ensure the accurate extraction and recovery of
the EoR signal, despite the analysis method chosen and how
much loss (of both contaminants and the EoR signal)
accompanies the method. In this paper, we specifically discuss
signal loss—the loss of the cosmological signal—associated
with power spectrum estimation. This is an issue that is
essential to investigate for a robust 21 cm power spectrum
analysis and one that has motivated a revised PAPER analysis.
We first approach this topic from a broad perspective and then
perform a detailed case study using data from the 64-element
configuration of PAPER. In this study, we use a subset of
PAPER-64 data to illustrate our revised analysis methods, while
a related paper, M. Kolopanis et al. (2018, in preparation),
builds off of the methods in this paper to present revised
PAPER-64 results for multiple redshifts and baseline types.

Finally, we also highlight several additional errors made in
previous PAPER analyses, including those related to boot-
strapping and error estimation. This paper accompanies the
erratum of Ali et al. (2018) and adds to the growing foundation
of lessons that have been documented in, for example, Paciga
et al. (2013), Patil et al. (2016), and Jacobs et al. (2016) by the
GMRT, LOFAR, and MWA projects, respectively. These

lessons are imperative as the community as a whole moves
toward higher sensitivities and potential EoR detections.
This paper is organized into four main sections. In Section 2,

we use toy models to develop intuition about signal loss and its
origin and subtleties. In Section 3, we present a case study
using data from the PAPER-64 array, highlighting key changes
from the signal loss methods used in the published result in Ali
et al. (2015, hereafter A15), which previously underestimated
loss. In Section 4, we summarize additional lessons learned
since A15 that have shaped our revised analysis. Finally, we
conclude in Section 5.

2. Signal Loss Toy Models

Signal loss refers to attenuation of the target cosmological
signal in a power spectrum estimate. Certain analysis
techniques can cause this loss, and if the amount of loss is
not quantified accurately, it can lead to false nondetections and
overly aggressive upper limits. Determining whether an
analysis pipeline is lossy and, if so, estimating the amount of
loss has subtle challenges but is necessary to ensure the
accuracy of any result.
One type of signal loss can occur when weighting data by

itself. Broadly speaking, a data set can be weighted to
emphasize certain features and minimize others. For example,
one flavor of weighting employed by previous PAPER analyses
is inverse covariance weighting in frequency, which is a
generalized version of inverse variance weighting that also
takes into account frequency correlations (Liu & Tegmark
2011; Dillon et al. 2013, 2014, 2015; Liu et al. 2014a, 2014b).
Using such a technique enables the down-weighting of
contaminant modes that obey a different covariance structure
from that of cosmological modes. However, a challenge of
inverse covariance weighting is in estimating a covariance
matrix that is closest to the true covariance of the data; the
discrepancy between the two, as we will see, can have large
impacts on signal loss. In this paper, we focus specifically on
loss associated with the use of an empirically estimated
covariance matrix with the “optimal quadratic estimator (QE)”
formalism. This loss was significantly underestimated in
the A15 analysis and is the main reason motivating a revised
power spectrum result.

2.1. The QE Method

We begin with an overview of the QE formalism used for
power spectrum estimation. The goal of power spectrum
analysis is to produce an unbiased estimator of the EoR power
spectrum in the presence of both noise and foreground
emission. Prior to power spectrum estimation, the data will
often have been prepared to have minimal foregrounds by some
method of subtraction, so this foreground emission may appear
either directly (because it was not subtracted) or as a residual of
some subtraction process not in the power spectrum domain. If
an accurate estimate of the total covariance of the data is
known, including both the desired signal and any contaminants,
then the “optimal QE” formalism provides a method of
producing a minimum-variance, unbiased estimator of the
desired signal, as shown in Liu & Tegmark (2011), Trott et al.
(2012), Dillon et al. (2013, 2014, 2015), Liu et al. (2014a,
2014b, 2016), and Switzer et al. (2015).
Suppose that the measured visibilities for a single baseline in

Jy are arranged as a data vector, x. It has length Nt Nf, where Nt
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is the number of time integrations and Nf is the number of
frequency channels. The covariance of the data is given by

C xx S U, 1º á ñ = + ( )†

where the average over an ensemble of data realizations
produces the true covariance, and we further assume that it may
be written as the sum of the desired cosmological signal S and
other terms U.

We are interested in estimating the three-dimensional power
spectrum of the EoR. Visibilities are measurements of the
Fourier transform of the sky along two spatial dimensions
(using the flat-sky approximation), and since we are interested
in three-dimensional Fourier modes, we only need to take one
Fourier transform of our visibilities along the line-of-sight
dimension. We consider band powers Pα of the power
spectrum of x over some range in cosmological k, where α
indexes a waveband in kP (a cosmological wavenumber kP is
the Fourier dual to frequency under the delay approximation
(Parsons et al. 2012b), which is a good approximation for the
short baselines that PAPER analyzes). The fundamental
dependence of the covariance on the power spectrum band
powers Pα is encoded as

S
C

QP
P

P , 2å å=
¶
¶

º
a

a
a

a

a a ( )

where we define QC
P

º a¶
¶ a . In other words, Q describes the

response of the covariance to a change in the power spectrum,
relating a quadratic statistic of the data (the covariance) to a
quadratic statistic in Fourier space (the power spectrum).

The optimal QE prescription is then to compute

FP q b , 31å= -a

b

ab b b-   ( ) ( ) ( )

where F is the Fisher matrix (which determines errors on the
power spectrum estimate)

C Q C QF
1

2
tr , 41 1ºab a b- -( ) ( )

q is the unnormalized power spectrum estimate

x C Q C xq
1

2
, 51 1=a a- - ( )†

and b is the additive bias

UC Q Cb
1

2
tr . 61 1=a a- - ( ) ( )

The power spectrum estimator in Equation (3) is the minimum-
variance (smallest error bar) estimate of the power spectrum
subject to the constraint that it is also unbiased; that is, the
ensemble average of the estimator is equal to its true value,

P P 7á ñ =a a ( )

(Tegmark 1997; Bond et al. 1998).
Intuitively, the estimator must be capable of “suppressing” or

“removing” the effects of contaminants in order to obtain an
unbiased estimate of the power spectrum. By construction, the
subtraction of the residual foreground and noise bias
accomplishes this, removing any additive bias. However, the
C−1 piece of Equation (5) also has the effect of suppressing
residual foregrounds and noise in both the additive bias and any
contributions the residuals may have to the variance.

More specifically, the effect of the weighting in Equation (5)
is to project out the modes of U with a different covariance
structure than S in the power spectrum estimate, and the effect
of Equation (6) is to subtract out the remaining bias. Similar
effects for a realistic model of the EoR and foregrounds are
shown in Liu & Tegmark (2011).
If the covariance structure of the contaminants is sufficiently

different from the desired power spectrum, then the linear bias
term may be expected to be quite small, and it is only necessary
to know C and Qα, not U. Since the foregrounds are expected
to be strongly correlated between frequencies, whereas the EoR
is not, we expect different covariance structures and therefore a
small linear bias. Moreover, because the linear bias is always
positive and there is no multiplicative bias, the quadratic-only
term will always produce an estimate that is high relative to the
true value and can conservatively be interpreted as an upper
limit. These considerations, and the difficulty of obtaining an
estimate for U, motivate the neglect of the linear bias in the rest
of this analysis.
Motivated by the desire to retain the advantageous behavior

of suppressing contributions of U to estimates of the EoR
power spectrum, we note that is possible to define a modified
version of the QE where Equation (5) is replaced by

x RQ Rxq
1

2
, 8=a a ( )†

where R is a weighting matrix chosen by the data analyst. For
example, inverse covariance weighting (the optimal form of
QE) would set R≡ C−1 and a uniform-weighted case would
use R≡I, the identity matrix. Again, the matrix Qα encodes
the dependence of the covariance on the power spectrum but, in
practice, also does other things, including implementing a
transform of the frequency domain visibilities to k-space,
taking into account cosmological scalings, and converting the
visibilities from Jy to K.
With an appropriate normalization matrix M, the quantity

P Mq 9=  ( )

is a sensible estimate of the true power spectrum P.
To ensure that M correctly normalizes our power spectrum,

one may take the expectation value of Equation (9) to obtain

RQ RQ URQ R

URQ R

P M P

W P

1

2
tr

1

2
tr

1

2
tr , 10

å å

å å

á ñ= +

º +

a

bg

ag g b b

g

g

b

ab b

g

g

 ( ) ( )

( ) ( )

where Wαβ are elements of a window function matrix.
Considering the first term of this expression (again, we are
assuming that the linear bias term is significantly suppressed; if
this is not the case, we are simply assuming that we are setting
a conservative upper limit), if W ends up being the identity
matrix for our choices of R and M, then we recover
Equation (7) for the first term, and we have an estimator that
has no multiplicative matrix bias. However, Equation (7) is a
rather restrictive condition, and it is possible to violate it and
still have a sensible (and correctly normalized) power spectrum
estimate. In particular, as long as the rows of W sum to unity,
our power spectrum will be correctly normalized. Beyond this,
the data analyst has a choice for M , and for simplicity

3
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throughout this paper, we choose M to be diagonal. In a
preview of what is to come, we also stress that the derivation
that leads to Equation (10) assumes that R and x are not
correlated. If this assumption is violated, a simple application
of the (now incorrect) formulae in this section can result in an
improperly normalized power spectrum estimator that does not
conserve power, i.e., one that has signal loss.

Given the advantages of inverse covariance weighting, the
question arises of how one goes about estimating C. One
method is to empirically derive it from the data x itself. Similar
types of weightings that are based on variance information in
the data are done in Chang et al. (2010) and Switzer et al.
(2015). In previous PAPER analyses, one time-averages the
data to obtain

C xx xx , 11tº á ñ » á ñ ( )† †

assuming x 0tá ñ = (a reasonable assumption, since fringes
average to zero over a sufficient amount of time), where táñ
denotes a finite average over time. The weighting matrix for
our empirically estimated inverse covariance weighting is then

R C
1º - , where we use a hat symbol to distinguish the

empirical covariance from the true covariance C.
In the next three sections, we use toy models to investigate

the effects of weighting matrices on signal loss by experiment-
ing with different matrices R and examining their impact on the
resulting power spectrum estimates P. Our goal in experiment-
ing with weighting is to suppress foregrounds and investigate
EoR losses associated with them. We note that we purposely
take a thorough and pedagogical approach to describing the toy
model examples given in the next few sections. The specifics of
how signal loss appears in PAPER’s analysis is described in
Section 3.

As a brief preview, we summarize our findings in the
following sections here.

1. If the covariance matrix is estimated from the data, a
strong correlation between the estimated modes and the
data will in general produce an estimate of the signal
power spectrum that is strongly biased low relative to the
true value. In this context, this is what we call “signal
loss” (Section 2.2).

2. The effect of the bias is worsened when the number of
independent samples used to estimate the covariance
matrix is reduced (Section 2.3).

3. The rate at which empirical eigenvectors converge to
their true forms depends on the sample variance in the
empirical estimate and the shape of the empirical
eigenspectrum. In general, larger sample variances lead
to more loss (Section 2.3).

4. Knowing these things, there are some simple ways of
altering the empirical covariance matrix to decouple it
from the data and produce unbiased power spectrum
estimates (Section 2.4).

2.2. Empirical Inverse Covariance Weighting

Using a toy model, we will now build intuition into how
weighting by the inverse of the empirically estimated
covariance, C

1- , can give rise to signal loss. We construct a
simple data set that contains visibility data with 100 time
integrations and 20 frequency channels. This model represents

realistic dimensions of about 1 hr of PAPER data that might be
used for a power spectrum analysis. For PAPER-64 (both
the A15 analysis and our new analysis), we use ∼8 hr of data
(with channel widths of 0.5 MHz and integration times of 43 s),
but here we scale it down with no loss of generality.
We create mock visibilities, x, and assume a nontracking,

drift-scan observation. Hence, flat-spectrum sources (away
from zenith) lead to measured visibilities that oscillate in time
and frequency. We therefore form a mock visibility measure-
ment of a bright foreground signal, xFG, as a complex sinusoid
that varies smoothly in time and frequency, a simplistic but
realistic representation of a single bright source. We also create
a mock visibility measurement of an EoR signal, xEoR, as a
complex, Gaussian random signal. A more realistic EoR signal
would have a sloped power spectrum in p(k) (instead of flat, as
in the case of white noise), which could be simulated by
introducing frequency correlations into the mock EoR signal.
However, here we treat all k-values separately, so a simplistic

Figure 1. Our toy model data set to which we apply different weighting
schemes in order to investigate signal loss. We model a mock foreground-only
visibility with a sinusoid signal that varies smoothly in time and frequency. We
model a mock visibility of an EoR signal as a random Gaussian signal. We add
the two together to form x x xFG EoR= + . Real parts are shown here.

Figure 2. Estimated covariance matrices (top row) and inverse covariance-
weighted data (bottom row) for FG only (left), EoR only (middle), and FG +
EoR (right). Real parts are shown here.

4

The Astrophysical Journal, 868:26 (21pp), 2018 November 20 Cheng et al.



white noise approximation can be used. Our combined data
vector is then x x xFG EoR= + , to which we apply different
weighting schemes throughout Section 2. The three data
components are shown in Figure 1.

We compute the power spectrum of our toy model data set x
using Equations (8) and (9), with R C

1º - . Figure 2 shows the
estimated covariances of our toy model data sets, along with
the C

1- weighted data. The foreground sinusoid is clearly
visible in CFG

 . The power spectrum result is shown in green in
the left plot of Figure 3. Also plotted in the figure are the
uniform-weighted (R≡I) power spectra of the individual
components xFG (blue) and xEoR (red). As shown, our C

1-
weighted result successfully suppresses foregrounds, demon-
strated in Figure 3 by the missing foreground peak in the
weighted power spectrum estimate (green). It is also evident
that our result fails to recover the EoR signal—it exhibits the
correct shape, but the amplitude level is slightly low. It is this
behavior that we describe as signal loss.

As discussed in Section 2.1, this behavior is not expected in
the case where we use a true C−1 weighting. Rather, we would
obtain a nearly unbiased estimate of the power spectrum. The
key difference is that since C is estimated from the data, its
eigenvectors and eigenvalues are strongly coupled to the
particular data realization that was used to compute it, and this
coupling leads to loss.

For the case of an eigenmode that can be safely assumed to
be predominantly a foreground, its presence in the true
covariance matrix will result in the desired suppression via a
kind of projection; whether or not it is strongly correlated with
the actual data vector is irrelevant. However, in the case of an
empirically estimated covariance matrix, the eigenmodes of
CEoR
 will both be incorrect and can be correlated with the data.
If these incorrect eigenmodes are not correlated with the data, it
will lead to nonminimum variance estimates but will not
produce the suppression of the power spectrum amplitude as
seen in the left plot of Figure 3. As described in Section 3.1,
however, if CEoR

 is correlated with the data vector x, there is a
kind of projection of power in the nonforeground modes from
the resulting power spectrum estimate, thus producing an
estimate that is biased low. In short, if the covariance is
computed from the data itself, it carries the risk of overfitting

information in the data and introducing a multiplicative bias
(per k) to estimates of the signal.
The danger of an empirically estimated covariance matrix

comes mostly from not being able to describe the EoR-
dominated eigenmodes of C accurately, for which the EoR
signal is brighter than foregrounds. In such a case, the coupling
between these modes to the data realization leads to the
overfitting and subtraction of the EoR signal. More specifically,
the coupling between the estimated covariance and the data is
anticorrelated in nature (explained in more detail in
Section 3.1), which leads to loss. Misestimating C for EoR-
dominated eigenmodes is therefore more harmful than for
foreground-dominated modes, and since the lowest-valued
eigenmodes of an eigenspectrum are typically EoR-dominated,
using this part of the spectrum for weighting is most dangerous.
Armed with this information, we can tweak the covariance in

a simple way to suppress foregrounds and yield minimal signal
loss. Recall that our toy model foreground can be perfectly
described by a single eigenmode. Using the full data set’s
(foreground plus EoR signal) empirical covariance, we can
project out the zeroth eigenmode and then take the remaining
covariance to be the identity matrix. This decouples the
covariance from the data for the EoR modes. The resulting
power spectrum estimate for this case is shown in the right plot
of Figure 3. In this case, we recover the EoR signal,
demonstrating that if we can disentangle the foreground-
dominated modes and EoR-dominated modes, we can suppress
foregrounds with negligible signal loss.
Altering C as such is one specific example of a regulariza-

tion method for this toy model, in which we are changing C in
a way that reduces its coupling to the data realization. There are
several other simple ways to regularize C, and we will discuss
some in Section 2.4.

2.3. Fringe-rate Filtering

We have shown how signal loss can arise due to the coupling
of EoR-dominated eigenmodes to the data. We will next show
how this effect is exacerbated by reducing the total number of
independent samples in a data set.
A fringe-rate filter is an analysis technique designed to

maximize sensitivity by integrating in time (Parsons et al. 2016).

Figure 3. Resulting power spectrum estimates for the toy model simulation described in Section 2.2—foregrounds only (blue), EoR only (red), and weighted FG +
EoR data set (green). The power spectrum of the foregrounds peaks at a k-mode based on the frequency of the sinusoid used to create the mock foreground signal. In
the two panels, we compare using empirically estimated inverse covariance weighting, where C is derived from the data (left) and projecting out the zeroth eigenmode
only (right). In the former case, signal loss arises from the coupling of the eigenmodes of C to the data. There is negligible signal loss when all eigenmodes besides the
foreground one are no longer correlated with the data.
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Rather than a traditional boxcar average in time, a time-domain
filter can be designed to up-weight temporal modes consistent
with the sidereal motion on the sky while down-weighting
modes that are noise-like.

Because fringe-rate filtering is analogous to averaging in
time, it comes at the cost of reducing the total number of
independent samples in the data. With fewer independent
modes, it becomes more difficult for the empirical covariance
to estimate the true covariance matrix of the fringe-rate filtered
data. We can quantify this effect by evaluating a convergence
metric Ce ( ) for the empirical covariance, which we define as

C
C C

C
, 12

ij ij ij

ij ij

2

2

å
å

e º
-

( )
( )

( )

where C is the true covariance matrix. To compute this metric,
we draw different numbers of realizations (different draws of
Gaussian noise) of our toy model EoR measurement, xEoR, and
take their ensemble average. We then compare this to the “true”
covariance, which in our simulation is set to be the empirical
covariance after a large number (500) of realizations. As shown
in Figure 4, we perform this computation for a range of total
independent ensemble realizations (horizontal axis) and
number of independent samples in the data following time-
averaging, or “fringe-rate filtering” (different colors). With
more independent time samples (i.e., more realizations) in the
data, one converges to the true fringe-rate filtered covariance
more quickly.

The situation here with using a finite number of time samples
to estimate our covariance is analogous to a problem faced in
galaxy surveys, where the nonlinear covariance of the matter
power spectrum is estimated using a large—but finite—number
of expensive simulations. There, the limited number of
independent simulations results in inaccuracies in estimated
covariance matrices (Dodelson & Schneider 2013; Taylor &
Joachimi 2014), which in turn result in biases in the final
parameter constraints (Hartlap et al. 2007). In our case, the
empirically estimated covariances are used for estimating the
power spectrum, and as we discussed in the previous section

(and will argue more thoroughly in Section 3.1), couplings
between these covariances and the data can lead to power
spectrum estimates that are biased low—which is precisely
signal loss. In future work, it will be fruitful to investigate
whether advanced techniques from the galaxy survey literature
for estimating accurate covariance matrices can be successfully
adapted for 21 cm cosmology. These techniques include the
imposition of sparsity priors (Padmanabhan et al. 2016), the
fitting of theoretically motivated parametric forms (Pearson &
Samushia 2016), covariance tapering (Paz & Sánchez 2015),
marginalization over the true covariance (Sellentin & Heavens
2016), and shrinkage methods (Pope & Szapudi 2008; Joachimi
2017).
The overall convergence of the covariance is important, but

also noteworthy is the fact that different eigenvectors converge
to their true forms at different rates. This is illustrated by
Figure 5, which shows the convergence of eigenvectors in an
empirical estimate of a covariance matrix. For this particular
toy model, we construct a covariance whose true form
combines the same mock foreground from the previous toy
models with an EoR component that is modeled as a diagonal
matrix with eigenvalues spanning one order of magnitude
(more specifically, we construct the EoR covariance as a
diagonal matrix in the Fourier domain, where the signal is
expected to be uncorrelated; its Fourier transform is then the
true covariance of the EoR in the frequency domain, or CEoR).
For different numbers of realizations, we draw random EoR
signals that are consistent with CEoR, add them to the mock
foreground data, and compute the combined empirical
covariance by averaging over the realizations. The eigenvectors
of this empirical covariance are then compared to the true
eigenvectors v, where we use as a convergence metric ve ( ),
defined as

v v v , 13
i

N

i
2

f

åe º - ( ) ∣ ∣ ( )

where Nf is the number of frequencies (Equation (20)) in the
mock data. The eigenmode convergence curves in Figure 5 are

Figure 4. Convergence level, as defined by Equation (12), of empirically
estimated covariances of mock EoR signals with different numbers of
independent samples. In red, the mock EoR signal is comprised entirely of
independent samples (100 of them). Subsequent colors show time-averaged
signals. As the number of realizations increases, we see that the empirical
covariances approach the true covariances. With more independent samples,
the quicker an empirical covariance converges (i.e., the quicker it decouples
from the data), the less signal loss we would expect to result.

Figure 5. Convergence level, as defined by Equation (13), of empirically
estimated eigenvectors for different numbers of mock data realizations. The
colors range from the zeroth (highest eigenvalue) to 19th (lowest eigenvalue)
eigenmode, where they are ordered by eigenvalue in descending order. This
figure shows that the zeroth eigenmode converges the quickest, implying that
eigenvectors with eigenvalues that are substantially different than the rest (the
foreground-dominated mode has a much higher eigenvalue than the EoR
modes) are able to converge to the true eigenvectors the quickest. On the other
hand, eigenmodes 1–19 have similar eigenvalues and are slower to converge
because of degeneracies between them.
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ranked by eigenvalue, such that “eigenmode 0” illustrates the
convergence of the eigenvector with the largest eigenvalue,
“eigenmode 1” for the second-largest eigenvalue, and so on.
We see that the zeroth eigenmode—the mode describing the
foreground signal—is quickest to converge.

Our numerical test reveals that the convergence rates of
empirical eigenvectors are related to the sample variance in our
empirical estimate. In general, computing an empirical
covariance from a finite ensemble average means that the
empirical eigenmodes have sample variances. Consider first a
limiting case where all eigenvalues are equal. In such a
scenario, any linear combination of eigenvectors is also an
eigenvector, and thus there is no sensible way to define the
convergence of eigenvectors. In our current test, aside from the
zeroth mode, the eigenvalues have similar values but are not
precisely equal. Hence, there is a well-defined set of
eigenvectors to converge to. However, due to the sample
variance of our empirical covariance estimate, there may be
accidental degeneracies between modes, where some modes are
mixing and swapping with others. Therefore, the steeper an
eigenspectrum, the easier it is for the eigenmodes to decouple
from each other and approach their true forms. A particularly
drastic example of this can be seen in the behavior of mode 0
(the foreground mode), whose eigenvalue differs enough from
the others that it is able to converge reasonably quickly despite
substantial sample variance in our empirical covariance
estimate. To break degeneracies in the remaining modes,
however, requires many more realizations.

While the connection between the rate of convergence of an
empirical eigenvector with the sample variance of an
eigenspectrum is interesting, it is also important to note that
regardless of convergence rate, any mode that is coupled to the
data is susceptible to signal loss. The true eigenvectors are not
correlated with the data realizations; thus, if our empirical
eigenvectors are converged fully, there will not be any signal
loss. However, an unconverged eigenvector estimate will retain
some memory of the data realizations used in its generation,
leading to signal loss.

In the toy models throughout Section 2, we exploit the fact
that the strongest eigenmode (highest-eigenvalue mode) is
dominated by foregrounds in order to purposely incur signal
loss for that mode. Even for the case of real PAPER data
(Section 3), we make the assumption that the strongest
eigenmodes are likely the most contaminated by foregrounds.
However, in general, foregrounds need not be restricted to the
strongest eigenmodes, and as we have seen, it is really the
degeneracies between modes that determine how quickly they
converge, and hence how much signal loss can result.

With Figures 4 and 5 establishing the connection between
convergence rates (of empirical covariances and eigenvectors)
and number of realizations, we now turn back to our original
toy model used in Section 2.2, which is comprised of a mock
foreground and mock EoR signal. We mimic a fringe-rate filter
by averaging every four time integrations of our toy model data
set together, yielding 25 independent samples in time
(Figure 6). We choose these numbers so that the total number
of independent samples is similar to the number of frequency
channels; hence, our matrices will be full rank. We use this
“fringe-rate filtered” mock data for the remainder of Section 2.

The power spectrum results for this model are shown in
Figure 7, and as expected, there is a much larger amount of
signal loss for this time-averaged data set, since we do a worse

job estimating the true covariance. In addition, as a result of
having fewer independent samples, we obtain an estimate with
more scatter. This is evident by noticing that the green curve in
Figure 7 fails to trace the shape of the uniform-weighted EoR
power spectrum (red).
Using our toy model, we have seen that a sensitivity-driven

analysis technique like fringe-rate filtering has trade-offs of
signal loss and noisier estimates when using data-estimated
covariance matrices. Longer integrations increase sensitivity
but reduce the number of independent samples, resulting in
eigenmodes correlated with the data that can overfit signal
greatly. We note that a fringe-rate filter does have a range of
benefits, many described in Parsons et al. (2016), so it can still
be advantageous to use one despite the trade-offs.

2.4. Other Weighting Options

In Section 2.2, we showed one example of how altering C
can make the difference between nearly zero and some signal
loss. We will now use our toy model to describe several other
ways to tailor C in order to minimize signal loss. We choose
four independent regularization methods to highlight in this
section that have been chosen due to their simplicity in
implementation and straightforward interpretation. We illus-
trate the resulting power spectra for the different cases in
Figure 8. These examples are not meant to be taken as
suggested analysis methods but rather as illustrative cases.
As a first test, we model the covariance matrix of EoR as a

proof of concept that if perfect models are known, signal loss
can be avoided. We know that our simulated EoR signal should
have a covariance matrix that mimics the identity matrix, with
its variance encoded along the diagonal. We model CEoR as
such (i.e., the identity), instead of computing it based on xEoR

itself. Next, we add C CEoR FG+  (where C x x tFG FG FG= á ñ † ) to
obtain a final Creg

 (regularized empirical covariance matrix) to
use in weighting. In Figure 8 (upper left), we see that there is
negligible signal loss. This is because, by modeling CEoR, we
avoid overfitting EoR fluctuations in the data that our model
does not know about (but an empirically derived CEoR

 would
know about the fluctuations). In practice, such a weighting
option is not feasible, as it is difficult to model CEoR, and CFG

 is
unknown because we do not know how to separate out the
foregrounds from the EoR in our data.
The upper right panel in Figure 8 uses a regularization

method of setting C C Ireg gº +  , where γ=5 (an arbitrary
strength of I for the purpose of this toy model). By adding the
identity matrix, element-wise, we are weighting the diagonal
elements of the estimated covariance matrix more heavily than
those off diagonal. Since the identity component does not know
anything about the data realization, it alters the covariance to be
less coupled to the data, and there is no loss.
The lower left panel in Figure 8 minimizes signal loss by

only using the first three eigenmodes of the estimated
covariance. Recalling that our toy model foregrounds can be
described entirely by the zeroth eigenmode, this method
intentionally projects out the highest-valued modes only by
replacing all but the three highest weights in the eigenspectrum
with 1s (equal weights). Again, avoiding the overfitting of
EoR-dominated modes that are coupled to the data results in
negligible signal loss. While this case is illuminating for the toy
model, in practice, it is not obvious which eigenmodes are
foreground or EoR-dominated (and they could be mixed as
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well), so determining which subset of modes to down-weight is
not trivial. We experiment with this idea using PAPER data in
Section 3.3.

The last regularization scheme we are highlighting here is
setting C C Ireg º ◦ (element-wise multiplication), or inverse
variance weighting (i.e., keeping only the diagonal elements of
C). In the lower right panel of Figure 8, we see that this method
does not down-weight the foregrounds at all—this regulariza-
tion altered C in a way where it is no longer coupled to any of
the empirically estimated eigenmodes, including the fore-
ground-dominated one. To understand this, we recall that our
foregrounds are spread out in frequency and therefore have
nonnegligible frequency–frequency correlations. Multiplying
by the identity matrix element-wise results in a diagonal matrix,
meaning we do not have any correlation information. Because
of this, we do a poor job suppressing the foreground. But
because we decoupled the whole eigenspectrum from the data,
we also avoid signal loss. Although this method did not
successfully recover the EoR signal for this particular
simulation, it is important that we show that there are many
options for estimating a covariance matrix, and some may
down-weight certain eigenmodes more effectively than others
based on the spectral nature of the components in a data set.

In summary, we have shown how signal loss is caused by
weighting a data set by itself and, in particular, how estimated

covariances can overfit EoR modes when they are coupled to
data and not converged to their true forms. We have also seen
that there are trade-offs between a chosen weighting method, its
foreground-removal effectiveness, the number of independent
samples in a data set, and the amount of resulting signal loss.

3. Signal Loss in PAPER-64

We now turn to a detailed signal loss investigation using a
subset of the PAPER-64 data set from A15. In the previous
section, we showed how signal loss arises when weighting data
with empirically estimated covariances; in this section, we
highlight how the amount of this loss was underestimated in the
previous analysis. Additionally, we illustrate how we have
revised our analysis pipeline in light of our growing
understanding.
As a brief review, PAPER is a dedicated 21 cm experiment

located in the Karoo Desert in South Africa. The PAPER-64
configuration consists of 64 dual-polarization drift-scan
elements that are arranged in a grid layout. For our case study,
we focus solely on Stokes I estimated data (Moore et al. 2013)
from PAPER’s 30 m East/West baselines (Figure 9). All data
are compressed, calibrated (using self-calibration and redun-
dant calibration), delay-filtered (to remove foregrounds inside
the wedge), binned in local sidereal time (LST), and fringe-rate
filtered. For detailed information about the back-end system of
PAPER-64 and its observations and data reduction pipeline, we
refer the reader to Parsons et al. (2010) and A15. We note that
all data-processing steps are identical to those in A15 until after
the LST-binning step in Figure3 of A15.
The previously best published 21 cm upper limit result

from A15 placed a 2σ upper limit on Δ2(k), defined as

k
k

P k
2

, 142
3

2p
D =( ) ˆ ( ) ( )

of (22.4 mK)2 in the range 0.15Mpc−1 <k<0.5 h Mpc−1 at
z=8.4. The need to revise this limit stems mostly from
previously underestimated signal loss, which we address in this
section.
For the analysis in this paper, we use 8.1 hr of LST, namely

an R.A. range of 0.5–8.6 hr (A15 uses a slightly longer R.A.
range of 0–8.6 hr; we found that some early LSTs were more
severely foreground-contaminated). We also use only 10
baselines, a subset of the 51 total East/West baselines used
in A15, in order to illustrate our revised methods. All power
spectrum results are produced for a center frequency of
151MHz using a width of 10MHz (20 channels), identical to
the analysis in A15. In the case study in this paper, we only use
one baseline type instead of the three in A15, but M. Kolopanis
et al. (2018, in preparation) use the full data set presented
in A15 to revise the result and place limits on the EoR at
multiple redshifts (using a straightforward and not lossy
approach to avoid many of the issues that will be made clear
later on).
The most significant changes from A15 occur in our revised

power spectrum analysis, which is explained in the rest of this
paper, but we also note that the applied fringe-rate filter is also
slightly different. In A15, the applied filter was not equivalent
to the optimal fringe-rate filter (which is designed to maximize
power spectrum sensitivity). Instead, the optimal filter was
degraded slightly by widening it in fringe-rate space. This was
chosen in order to increase the number of independent modes
and reduce signal loss associated with the QE, though as we

Figure 6. Our “fringe-rate filtered” (time-averaged) toy model data set. We
average every four samples together, yielding 25 independent samples in time.
Real parts are shown here.

Figure 7. Resulting power spectrum estimate for the “fringe-rate filtered”
(time-averaged) toy model simulation—foregrounds only (blue), EoR only
(red), and weighted FG + EoR data set (green). We use empirically estimated
inverse covariance weighting, where C is computed from the data. There is a
larger amount of signal loss than for the nonaveraged data, a consequence of
weighting by eigenmodes that are more strongly coupled to the data due to
there being fewer independent modes in the data.
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will explain in the next section, this signal loss was still
underestimated. With the development of a new, robust method
for assessing signal loss, we choose to use the optimal filter in
order to maximize sensitivity. This filter is computed for a
fiducial 30 m baseline at 150MHz, the center frequency in our
band. The filter in both the fringe-rate domain and time domain
is shown in Figure 10.

Finally, we emphasize that the discussion that follows is
solely focused on signal loss associated with empirical
covariance weighting. As mentioned in Section 2, there are a
number of steps in our analysis pipeline that could lead to loss,
including gain calibration, delay filtering, and fringe-rate
filtering, which have been investigated at various levels of
detail in Parsons et al. (2014) and A15 but are clearly the
subject of future work. Here we only focus on the most
significant source of loss we have identified and note that

M. Kolopanis et al. (2018, in preparation) and other future
work will consider additional sources of signal loss and
exercise increased caution in reporting results.
We present our PAPER-64 signal loss investigation in three

parts. We first give an overview of our signal injection
framework that is used to estimate loss. In this framework (and
in A15), we inject simulated cosmological signals into our data
and test the recovery of those signals (an approach also taken
by Masui et al. 2013). As we will see, correlations between the
injected signals and the data are significant complicating factors
that were previously not taken into account. Next, we describe
our methodology in practice and detail how we map our
simulations into a posterior for the EoR signal. Finally, we
build off of the previous section by experimenting with
different regularization schemes on PAPER data in order to
minimize loss. Throughout each section, we also highlight
major differences from the signal loss computation used
in A15.

3.1. Signal Loss Methodology

In short, our method for estimating signal loss consists of
adding an EoR-like signal into visibility data and then
measuring how much of this injected signal would be
detectable given any attenuation of this signal by the (lossy)
data analysis pipeline. To capture the full statistical likelihood
of signal loss, one requires a quick way to generate many

Figure 8. Resulting power spectrum estimates for our “fringe-rate filtered” (time-averaged) toy model simulation—foregrounds only (blue), EoR only (red), and
weighted FG + EoR data set (green). We show four alternate weighting options that each minimize signal loss, including modeling the covariance matrix of EoR
(upper left), regularizing C by adding an identity matrix to it (upper right), using only the first three eigenmodes of C (lower left), and keeping only the diagonal
elements of C (lower right). The first case (upper left) is not feasible in practice, since we do not know CFG and CEoR like we do in the toy model.

Figure 9. PAPER-64 antenna layout. We use only 10 of the 30 m East/West
baselines for the analysis in this paper (i.e., a subset of the shortest horizontal
spacings).
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realizations of simulated 21 cm signal visibilities. Here we use
the same method as in A15, where mock Gaussian noise
visibilities (mock EoR signals) are filtered in time using an
optimal fringe-rate filter to retain only “sky-like” modes. Since
the optimal filter has a shape that matches the rate of the
sidereal motion of the sky, this transforms the Gaussian noise
into a measurement that PAPER could make. This signal is
then added to the visibility data.17

Mathematically, suppose that e is the mock injected EoR
signal (at some amplitude level). We do not know the true EoR
signal contained within our visibility data, x, so e takes on the
role of the true EoR signal (for which we measure its loss).
Furthermore, one can make the assumption that the true EoR
signal is small within our measured data, so the data vector x
itself is representative of mostly contaminants. Using this
assumption, the sum of x and e, defined as r,

r x e, 15= + ( )

can be thought of as the sum of contaminants plus EoR. The
quantity r then becomes the data set for which we are
measuring how much loss of e there is due to our power
spectrum pipeline.

We are interested in quantifying how much variance in e is
lost after weighting r and estimating the power spectrum
according to QE formalism. We investigate this by comparing
two quantities we call the input power spectrum and output
power spectrum, Pin

 and Pout
 , estimated using QE as

e IQ IeP M 16in inº
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where, for illustrative purposes and notational simplicity, we
have written these equations with scalar normalizations M,
even though, for our numerical results, we choose a diagonal
matrix normalization using M as in Equation (9).
The quantity Pin

 , defined by Equation (16), is a uniformly
weighted estimator of the power spectrum of e. It can be
considered the power spectrum of this particular realization of
the EoR; alternatively, it can be viewed as the true power
spectrum of the injected signal up to cosmic variance
fluctuations. The role of Pin

 in our analysis is to serve as a
reference for the power spectrum that would be measured if
there were no signal loss or other systematics. The input power
spectrum is then to be compared to Pout

 , which approximates
the (lossy) power spectrum estimate that is output by our
analysis pipeline prior to any signal loss adjustments.
Under this injection framework, we can begin to see

explicitly why there can be large signal loss. Expanding
Equation (17), Pout

 becomes

x e R Q R x e

x R Q R x e R Q R e
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Assuming Rr is symmetric, the two cross-terms (terms with one
copy of e and one copy of x) can be summed together as

x R Q R x e R Q R e

x R Q R e
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One of the key takeaways of this section is that the A15
analysis estimated signal loss by comparing only the signal-
only term (second term in Equation (19)) with Pin

 , whereas in
fact, the cross-term (third term in Equation (19)) can
substantially lower Pout

 . In order to investigate the effect of
each of these terms on signal loss, all three components are
plotted in Figure 11 for two cases: empirically estimated

inverse covariance weighting (R Cr r
1

º
- ) and uniform weight-

ing (Rr≡ I). We will now go into further detail and examine
the behavior of this equation in three different regimes of the
injected signal: very weak (left ends of the Pin axes in
Figure 11), very strong (right ends), and in between (middle
portions).
Small injection. In this regime, the cross-terms (red) behave

as noise averaged over a finite number of samples. Output
values are Gaussian distributed around zero, spanning a range
of values set by the injection level. This is because Rr

 is
dominated by the data x, avoiding correlations with e that can
lead to solely negative power (explained further below). In fact,
for the uniformly weighted case, the cross-term x IQ IeMx

a a† is
well modeled as a symmetric distribution with zero mean and
width P Pe x

  . We also note that in this regime, Pr
 (black)

approaches the data-only power spectrum value (gray), as
expected.
Large injection.When the injected signal is much larger than

the measured power spectrum, the data-only components can
be neglected, as they are many orders of magnitude smaller.

Figure 10. Top: normalized optimal power spectrum sensitivity weighting in
fringe-rate space for our fiducial baseline and Stokes I polarization beam.
Bottom: time-domain convolution kernel corresponding to the top panel. Real
and imaginary components are illustrated in cyan and magenta, respectively,
with the absolute amplitude in black. The fringe-rate filter acts as an integration
in time, increasing sensitivity but reducing the number of independent samples
in the data set.

17 One specific change from A15 is that we add this simulated signal—which
has been fringe-rate filtered once already in order to transform it into a “sky-
like” signal—into the analysis pipeline before a fringe-rate filter is applied to
the data (i.e., prior to the analysis step of fringe-rate filtering). Previously, the
addition was done after the fringe-rate filter analysis step. This change results in
an increased estimate of signal loss, likely due to the use of the fringe-rate filter
as a simulator. However, this pipeline difference, while significant, is not the
dominant reason why signal loss was underestimated in A15 (the dominant
reason is explained in the main text in Section 3.1).
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We include a description of this regime for completeness in our
discussion but note that the upper limits that we compute are
typically not determined by simulations in this regime (i.e., in
using an empirical weighting scheme, we have assumed that
the data are dominated by foregrounds rather than the
cosmological signal). However, it is useful as a check of our
system in a relatively simple case. As we can see from
Figure 11, the cross-terms (red) are small in comparison to the
signal-only term (green). Only here does the signal-only term
used in A15 dominate the total power output. We again see
that, in the empirical inverse covariance-weighted case, the
cross-terms behave as noise (positive and negative fluctuations
around zero mean). This is for the same reason as at small
injections—here Cr

 is dominated by the signal e. The cross-
correlation can again be modeled as a symmetric distribution of

zero mean and width P Pe x
  .

In between. When the injected signal is of a similar
amplitude to the data by itself, the situation becomes less
straightforward. We see that the weighted injected power
spectrum component mirrors the input power indicating little
loss (i.e., the green curve follows the dotted black line),
eventually departing from unity when the injected amplitude is
well above the level of the data power spectrum. However, in

this regime, the cross-term (red) has nearly the same amplitude
but with a negative sign. As explained below, this negativity is
the result of cross-correlating inverse covariance-weighted
terms. This negative component drives down the Pout

 estimator
(black). Again, we emphasize that in A15, signal loss was
computed by only looking at the second term in Equation (19)
(green), which incorrectly implies no loss at the data-only
power spectrum level. Ignoring the effect of the negative power
from the cross-terms is the main reason for underestimating
power spectrum limits in A15.
The source of the strong negative cross-term is not

immediately obvious; however, it is an explainable effect.
When Rr is taken to be Cr

1- , the third term of Equation (19) is a

cross-correlation between C xr
1- and C er

1- . As shown in
Switzer et al. (2015), this cross-correlation term is nonzero
and, in fact, negative in expectation. This negative cross-term
power arises from a coupling between the inverse of Cr

 and x.
Intuitively, we can see this by expanding the empirical
covariance of r=x+e,

C rr

xx xe ex ee , 20
r t

t t t t

=á ñ

= á ñ + á ñ + á ñ + á ñ



( )

†
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Figure 11. Illustration of the power spectrum amplitude of five different power spectrum terms, each a function of visibility data (x), simulated injected EoR signal
(e), or both (r). The figure shows how these quantities behave as the power level of the injected EoR signal increases (along the x-axis). The details of the simulation
used to generate the figure are explained in Section 3.2; here we sample a larger Pin range and fit smooth polynomials to our data points to make an illustrative
example. We emphasize that the output power spectrum in black ( PP rout = ) approximates the (lossy) power spectrum estimate that is output by our analysis pipeline
prior to any signal loss adjustments. Roughly speaking, it can be compared to the input signal level (Pin) to estimate the amount of signal loss. In the left panel,
empirical inverse covariance weighting is used in power spectrum estimation, as in A15. The dotted black diagonal line indicates perfect 1:1 input-to-output mapping
(no signal loss). The gray horizontal line is the power spectrum value of data alone, Px

 (it does not depend on injected power). The green signal–signal component is
the term used in A15 to estimate signal loss. It is significantly higher than Pr

 (black) when the cross-terms (red) are large and negative (black=green + red + blue).

In the regime where cross-correlations between signal and data are not dominant (small and large Pin), the cross-terms have a noise-like term with width P Pe x
  .

However, at power levels comparable to the data (middle region), the cross-terms can produce large, negative estimates due to couplings between x and e that affect
Cr
 . This causes the difference between the green curve (which exhibits negligible loss at the data-only power spectrum value) and the black curve (which exhibits ∼4
orders of magnitude of loss). Right: same power spectrum terms illustrated for the uniform-weighted case.
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where we can neglect the first term because x is small (i.e., the
large negative cross-term power in the left panel of Figure 11
occurs when the injected amplitude surpasses the level of the
data-only power spectrum). Without loss of generality, we will
assume an eigenbasis of e, so that ee tá ñ† is diagonal. The middle
two terms, however, can have power in their off-diagonal terms
due to the fact that, when averaging over a finite ensemble,
xe tá ñ† is not zero. As shown in Appendix C of Parsons et al.
(2014), to leading order, the inversion of a diagonal-dominant
matrix like Cr

 (from ee tá ñ† ) with smaller off-diagonal terms
results in a new diagonal-dominant matrix with negative off-
diagonal terms. These off-diagonal terms depend on both x and

e. Then, when Cr
1- is multiplied into x, the result is a vector

that is similar to x but contains a residual correlation to e from

the off-diagonal components of Cr
1- . The correlation is

negative because the product C xr
1- effectively squares the

x-dependence of the off-diagonal terms in Cr
1- while retaining

the negative sign that arose from the inversion of a diagonal-
dominant matrix.

In general. Another way to phrase the shortcomings of the
empirical inverse covariance estimator is that it is not properly
normalized. Signal loss due to couplings between the data and
their weightings arise because our unnormalized QE from
Equation (8) ceases to be a quadratic quantity and instead
contains higher-order powers of the data. However, the
normalization matrix M is derived assuming that the unnorma-
lized estimator is quadratic in the data. The power spectrum
estimate will therefore be incorrectly normalized, which
manifests as signal loss. We leave a full analytic solution for
M for future work, since our simulations already capture the
full phenomenology of signal loss and have the added benefit
of being more easily generalizable in the face of non-Gaussian
systematics.

3.2. Signal Loss in Practice

We now shift our attention toward computing upper limits
on the EoR signal for the fringe-rate filtered PAPER-64 data set
in a way that accounts for signal loss. While our methodology
outlined below is independent of weighting scheme, here we
demonstrate the computation using empirically estimated
inverse covariance weighting (R C

1º - ), the weighting
scheme used in A15 that leads to substantial loss.

One issue to address is how one incorporates the randomness
of Pout
 into our signal loss corrections. A different realization of

the mock EoR signal is injected with each bootstrap run,
causing the output to vary in three ways: noise variation from
the bootstraps, cosmic variation from generating multiple
realizations of the mock EoR signal, and variation caused by
whether the injected signal looks more or less “like” the data
(i.e., how much coupling there is, which affects how much loss
results).

For each injection level, the true Pin is simply the average of
our bootstrapped estimates Pin

 , since Pin,a is by construction an
unbiased estimator. Phrased in the context of Bayes’s rule, we
wish to find the posterior probability distribution p P Pin out

( ∣ ),
which is the probability of Pin given the uncorrected/measured
power spectrum estimate Pout

 . Bayes’s rule relates the posterior,
which we do not know, to the likelihood, which we can

forward-model. In other words,

p P P P P p P , 21in out out in inµ ( ∣ ) ( ∣ ) ( ) ( )

where  is the likelihood function defined as the distribution of
data plus signal injection (Pout

 ) given the injection Pin. We
construct this distribution by fixing Pin and simulating our
analysis pipeline for many realizations of the injected EoR
signal consistent with this power spectrum. The resulting
distribution is normalized such that the sum over Pout

 is unity,
and the whole process is then repeated for a different value of
Pin.
The implementation details of the injection process require

some more detailed explanation. In our code, we add a new
realization of EoR to each independent bootstrap of data (see
Section 4.1 for a description of PAPER’s bootstrapping
routine) with the goal of simultaneously capturing cosmic
variance, noise variance, and signal loss. To limit computing
time, we perform 20 realizations of each Pin level. We also run
50 total EoR injection levels, yielding Pin values that range
from ∼105 to ∼1011 mK2 (h−1 Mpc)3, resulting in a total of
1000 data points on our Pin versus Pout

 grid.
Going forward, we treat every k-value separately in order to

determine an upper limit on the EoR signal per k. We bin our
simulation outputs along the Pin axis (one bin per injection
level), and, since they are well approximated by a Gaussian
distribution in our numerical results, we smooth the distribution
of Pout
 values by fitting Gaussians for each bin based on its

mean and variance (and normalize them). Stitching all of them
together results in a two-dimensional transfer function: the
likelihood function in Bayes’s rule, namely P Pout in ( ∣ ). We then
have a choice for our prior, p(Pin), and we choose to invoke a
Jeffreys prior (Jaynes 1968) because it is a true uninformative
prior.
Finally, our transfer functions are shown in Figure 12 for

both the weighted (left) and unweighted (right) cases. Our
bootstrapped power spectrum outputs are shown as black
points, and the colored heat map overlaid on top is the
likelihood function modified by our prior. Although we only
show figures for one k-value, we note that the shape of the
transfer curve is similar for all k-values. We then invoke
Bayes’s interpretation and reinterpret it as the posterior
p P Pin out

( ∣ ), where we recall that Pout
 represents a (lossy) power

spectrum. To do this, we make a horizontal cut at the data value
Px
 (setting PP xout = ), shown by the gray solid line, to yield a
posterior distribution for the signal. We normalize this final
distribution and compute the 95% confidence interval (an upper
limit on EoR).
By-eye inspection of the transfer function in Figure 12 gives

a sense of what the signal loss result should be. The power
spectrum value of our data, Px

 , is marked by the solid gray
horizontal lines. From the left plot (empirically estimated
inverse covariance weighting), one can eyeball that a data value
of 105 mK2 (h−1 Mpc)3, for example, would map approxi-
mately to an upper limit of ∼109 mK2 (h−1 Mpc)3, implying a
signal loss factor of ∼104.
The loss-corrected power spectrum limit for empirically

estimated inverse covariance-weighted PAPER-64 data is
shown in Figure 13 (solid red), which we can compare to the
original lossy result (dashed red). Post–signal loss estimation,
the power spectrum limits are higher than both the theoretical
noise level (green) and uniform-weighted power spectrum
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(which is shown three ways: black and gray points are positive
and negative power spectrum values, respectively, with 2σ
error bars from bootstrapping; the solid blue line is the upper
limit on the EoR signal using the full signal injection

framework; and the shaded gray region shows the power
spectrum values with thermal noise errors). We elaborate on
this point in the next section and investigate alternate weighting
schemes to inverse covariance weighting, with the goal of

Figure 12. Signal loss transfer functions showing the relationship of Pin and Pout , as defined by Equations (16) and (17). Power spectra values (black points) are
generated for 20 realizations of e per signal injection level. Since our Pout values are well approximated by a Gaussian distribution, we fit Gaussians to each injection
level based on the mean and variance of the simulation outputs. This entire likelihood function is then multiplied by a Jeffreys prior for p(Pin), with the final result
shown as the colored heat maps on top of the points. Two cases are displayed: empirically estimated inverse covariance-weighted PAPER-64 data (left) and uniform-
weighted data (right). The dotted black diagonal lines mark a perfect unity mapping, and the solid gray horizontal line denotes the power spectrum value of the data Px


from which a posterior distribution for the signal is extracted. From these plots, it is clear that the weighted case results in ∼4 orders of magnitude of signal loss at the
data-only power spectrum value, whereas the uniform-weighted case does not exhibit loss. The general shapes of these transfer functions are also shown by the black
curves in Figure 11 for comparison.

Figure 13. Power spectrum of a subset of PAPER-64 data illustrating the use of empirical inverse covariance weighting. The solid red curve is the 2σ upper limit on
the EoR signal estimated from our signal injection framework using empirical inverse covariance weighting. Shown for comparison is the lossy limit prior to signal
loss estimation (dashed red). The theoretical 2σ thermal noise level prediction based on observational parameters is shown in green, and its calculation is detailed in
Section 4.2. Additionally, the power spectrum result for the uniform-weighted case is shown in three different ways: power spectrum values (black and gray points as
positive and negative values, respectively, with 2σ error bars from bootstrapping), the 2σ upper limit on the EoR signal using our full signal injection framework (solid
blue lines), and the measured power spectrum values with 2σ thermal noise errors (gray shaded regions). The vertical dashed black lines signify the horizon limit for
this analysis using 30 m baselines. In this example, we see that the lossy power spectrum limit is ∼4 orders of magnitude too low when using empirical inverse
covariance weighting.
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finding one that balances the aggressiveness of down-
weighting contaminants and minimizing the loss of the EoR
signal.

3.3. Minimizing Signal Loss

With a signal loss formalism established, we now have the
capability of experimenting with different weighting options
for R. Our goal here is to choose a weighting method that
successfully down-weights foregrounds and systematics in our
data without generating large amounts of signal loss, as we
have seen with the inverse covariance estimator. We have
found that the balance between the two is a delicate one and
requires a careful understanding and altering of empirical
covariances.

We saw in Section 2.4 how limiting the number of down-
weighted eigenmodes (i.e., flattening out part of the eigenspec-
trum and effectively decoupling the lowest-valued eigenmodes,
which are typically EoR-dominated, from the data) can help
minimize signal loss. We experiment with this idea on PAPER-
64 data, dialing the number of modes that are down-weighted
from zero (which is equivalent to identity-weighting, or the
uniform-weighted case) to 21 (which is the full inverse
covariance estimator). The power spectrum results for one k-
value, both before and after signal loss estimation, are shown in
the top panel of Figure 14. We see that the amount of signal
loss increases as weighting becomes more aggressive (dashed
red line). In other words, more EoR-dominated fluctuations are
being overfit and subtracted as more modes are down-
weighted. We also find that the power spectrum upper limit,
post–signal loss estimation, increases with the number of
down-weighted modes (solid red line). The more modes we use
in down-weighting, the stronger the coupling between the
weighting and the data and the greater the error we have in
estimating the power spectrum. Switzer et al. (2013) took a
similar approach in determining the optimal number of modes
to down-weight in GBT data, finding similar trends and noting
that removing too few modes is limited by residual foregrounds
and removing too many modes is limited by large error bars
and signal loss.

Optimistically, we expect there to be a “sweet spot” as we
dial our regularization knob: a level of regularization where
weighting is beneficial compared to uniform weighting (blue).
In other words, we would like a weighting scheme that down-
weights eigenmodes that predominantly describe foreground
modes but not EoR modes. We see in Figure 14 that this occurs
roughly when only the approximately three highest-valued
eigenmodes are down-weighted and the rest are given equal
weights (though for the case shown, weighting only slightly
outperforms uniform weighting). For a similar discussion of
projecting out modes (zeroing out eigenmodes, rather than just
ignoring their relative weightings, as we do in this study), see
Switzer et al. (2013).

We also saw in Section 2.4 how adding the identity matrix to
the empirical covariance can minimize signal loss. We
experiment with this idea as well, shown in the bottom panel of
Figure 14. The dashed red and solid red lines represent power
spectrum limits pre– and post–signal loss estimation, respec-
tively, as a function of the strength of I that is added to C,
quantified as a percentage of C ITr ( ) added to C. We
parameterize this “regularization strength” parameter as γ,
namely C C C ITrgº +  ( ) . From this plot, we see that only a
small percentage of CTr ( ) is needed to significantly reduce

loss. We expect that as the strength of I is increased (going to
the left), both of the red curves will approach the uniform-
weighted case. We also notice that the post–signal loss limit
hovers around the uniform-weighted limit for a large range of
regularization strengths, and while an overall trend from high-
to-low signal loss is seen as the strength increases, there does
not appear to be a clear “minimum” that produces the least loss.
In addition to our thermal noise prediction (green) and

uniform-weighted power spectrum limit (blue), one additional
horizontal line is shown in Figure 14 in both panels and
represents a third regularization technique. This line (black)
denotes the power spectrum value, post–signal loss estimation,
for inverse variance weighting (multiplying an identity matrix
element-wise to C). This result is single-valued and not a
function of the horizontal axis. We see that all three
regularization schemes shown (solid red top panel, solid red
bottom panel, black) perform similarly at their best (i.e., when
about three eigenmodes are down-weighted, in the case of the
top panel’s solid red curve). However, for the remainder of this
paper, we choose to use the weighting option of
C C I0.09 Tr+ ( ) , or γ=0.09, which we will denote as Ceff

 .
We choose this weighting scheme merely as a simple example
of regularizing PAPER-64 covariances, noting that the power
spectrum upper limit remains roughly constant for a broad
range of values of γ.
It is important to note that our signal injection methodology

for assessing loss makes the assumption that we know the true
signal’s strength and structure. Realistically, these details about
the EoR signal are unknown, and our signal loss framework is
limited by our simulations. Therefore, while this paper employs
this methodology as an example of one way of estimating
loss, M. Kolopanis et al. (2018, in preparation) use uniform
weightings in order to produce more trustworthy, straightfor-
ward power spectrum limits that do not suffer from loss.
The power spectrum result for our subset of PAPER-64 data

(using only one baseline separation type, 10 baselines, and Ceff
 )

using the analysis presented in this paper is shown in Figure 15.
Again, the solid red curve represents our upper limit on the
EoR signal using the full signal injection framework. The
uniform-weighted case is shown as the black and gray points,
which correspond to positive and negative power spectrum
values, respectively (with 2σ errors bars from bootstrapping). It
is also shown as an upper limit using the signal injection
framework (solid blue line), which is, interestingly, larger than
the errors computed from bootstrapping, likely because the full
injection framework takes into account additional sample
variance, whereas the bootstrapped errors do not. Finally, the
gray shaded regions combine the measured uniform-weighted
power spectrum values with thermal noise errors. We show this
power spectrum result as one example of how a simple
regularization of an empirical covariance matrix can minimize
signal loss, though we also note that this weighting does not
produce more stringent limits than the uniform-weighted case,
thus further motivating uniform weighting for M. Kolopanis
et al. (2018, in preparation).
In this section, we have shown three simple ways of

regularizing C to minimize signal loss using PAPER-64 data.
There are many other weighting schemes that we leave for
consideration in future work. For example, one could estimate
C using information from different subsets of baselines. For
redundant arrays, this might mean calculating C from a
different but similar baseline type, such as the ∼30 m diagonal
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PAPER baselines (instead of the horizontal E/W ones).
Alternatively, covariances could be estimated from all base-
lines except the two being cross-multiplied when forming a
power spectrum estimate. This method was used in Parsons
et al. (2014; a similar method was also used in Dillon et al.
2015) in order to avoid suppressing the 21 cm signal, and it is
worth noting that the PAPER-32 results are likely less impacted
by the issue of signal loss underestimation for this very reason
(however, they are affected by the error estimation issues
described in Section 4.2, so we also regard those results as
suspect and superseded by those of M. Kolopanis et al. 2018, in
preparation).

Another possible way to regularize C is to use information
from different ranges of LST. For example, one could calculate
C with data from LSTs where foregrounds are stronger (earlier
or later LSTs than the “foreground-quiet” range typically used
in forming power spectra). Doing so may yield a better
description of the foregrounds that we desire to down-weight,
especially if residual foreground chromaticity is instrumental in
origin and stable in time. Fundamentally, each of these
examples are similar in that they rely on a computation of C
from data that are similar but not exactly the same as the data
that are being down-weighted. Ideally, this would be effective
in down-weighting shared contaminants yet avoid signal loss

Figure 14. Power spectra 2σ upper limits for k=0.393 h Mpc−1 for fringe-rate filtered PAPER-64 data. Top: values are shown before (dashed red) and after (solid
red) signal loss estimation via our signal injection framework as a function of the number of eigenmodes of C that are down-weighted. This regularization knob is
tuned from zero modes on the left (i.e., unweighted) to 21 modes on the right (i.e., the full inverse covariance estimator). About 4 orders of magnitude of signal loss
results when using empirically estimated inverse covariance weighting. Bottom: power spectrum upper limits before (dashed red) and after (solid red) signal loss
estimation as a function of identity added to the empirical covariance. This regularization knob is tuned from γ=10−4 on the right (i.e., very little regularization) to
γ=1 on the left (see main text for the definition of γ). Also plotted in both panels for comparison are 2σ power spectrum upper limits for the uniform-weighted case
(blue) and inverse variance-weighted case (black); both are after signal loss estimation. Finally, a theoretical prediction for noise (2σ error) is plotted in green. In the
PAPER-64 analysis in this paper, we choose to use a regularization scheme of C C I C0.09 Treff º +  ( ) (γ = 0.09) as a simple example of regularization that
minimizes loss, and we note that the power spectrum limits using this type of regularization are roughly constant across a large range of values of γ.
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from overfitting EoR modes in the power spectrum data set
itself.

In Section 3, we have detailed several aspects of signal loss
in PAPER-64: how the loss arises, how it can be estimated
from an injection framework, and ways it can be minimized.
We again emphasize that these lessons learned about signal loss
are largely responsible for shaping our revised analysis of
PAPER data. In the remainder of this paper, we will transition
to other aspects of our analysis that have been revised
since A15.

4. Additional PAPER-64 Revisions

Underestimated signal loss is the main reason for the
revision of the power spectrum limits from A15. It is interesting
to note that—had all the other aspects of the original analysis
been correct—the underestimated limits may have been more
easily caught. Unfortunately, two related power spectrum
components, namely the error bars on the power spectrum data
points and the theoretical noise prediction, were also calculated
incorrectly.

In this section, we summarize multiple inconsistencies and
errors that have been found since the previous analysis in terms
of error estimation. We first describe updated methods
regarding bootstrapping, which determines the error bars on
our limits. We then highlight an updated calculation for the
theoretical noise sensitivity of PAPER-64 and illustrate how
our revised calculation has been verified through simulations.

4.1. Bootstrapping

Broadly speaking, we desire robust methods for determining
accurate confidence intervals for our measurements. For
PAPER’s analysis, we choose a data-driven method of error

estimation, computing error bars that have been derived from
the inherent variance of our measurements. A common
technique used to do this is bootstrapping, which we first
define below and then discuss its application to PAPER.
Bootstrapping uses sampling with replacement to estimate a

posterior distribution. For example, bootstrap measurements (of
power spectra, for example) can be made from different
random samples of data. Each of these bootstraps is a different
realization drawn from some underlying distribution, and
realizations are correlated with each other to a degree set by
the fraction of sampled points that are held in common between
them. Through the process of resampling and averaging along
different axes of a data set, such as along baselines or times, we
can estimate error bars for our results that represent the
underlying distribution of values that are allowed by our
measurements (Efron & Tibshirani 1994; Andrae 2010).
One major caveat of bootstrapping arises when working with

correlated data. If, for example, a data set has many repeated
values inside it, this would be reflected in each bootstrap. The
same value would be present multiple times within a bootstrap
and also between bootstraps, purely because it has a more
likely chance of being drawn if there are repeats of itself.
Therefore, bootstrapping correlated data results in a smaller
variation between bootstraps and hence underestimates errors.
This is precisely how errors were underestimated in PAPER-

64. Because of fringe-rate filtering, which averages data in time
to increase sensitivity, PAPER-64 data are correlated along the
time axis. Hence, there are fewer independent samples after
filtering, thus decreasing the variance of the bootstraps.
More specifically, the PAPER-64 pipeline outputs 20

bootstraps (over baselines), each a two-dimensional power
spectrum that is a function of k and time. In A15, a second
round of bootstrapping occurred over the time axis, and a total

Figure 15. Power spectrum of a subset of PAPER-64 data illustrating the use of Ceff
 to minimize signal loss. The solid red curve is the 2σ upper limit on the EoR

signal estimated from our signal injection framework. The theoretical 2σ thermal noise level prediction based on observational parameters is in green. Additionally, the
power spectrum result for the uniform-weighted case is shown in three different ways: power spectrum values (black and gray points as positive and negative values,
respectively, with 2σ error bars from bootstrapping), 2σ upper limit on the EoR signal using our full signal injection framework (solid blue lines), and measured power
spectrum values with 2σ thermal noise errors (gray shaded regions). The vertical dashed black lines signify the horizon limit for this analysis using 30 m baselines.
This power spectrum result does not use the full data set’s sensitivity as in A15 and M. Kolopanis et al. (2018, in preparation), though we include all analysis changes,
which have mostly stemmed from revisions regarding signal loss, bootstrapping, and the theoretical error computation. We see that the regularization scheme used
here produces limits similar to the unweighted limits.

16

The Astrophysical Journal, 868:26 (21pp), 2018 November 20 Cheng et al.



of 400 bootstraps were created in this step, each comprised of
randomly selected values sampled with replacement (i.e., each
of these bootstraps contained the same number of values as the
number of time integrations, which, at ∼700, greatly exceeds
the approximate number of independent samples after fringe-
rate filtering). Means were then taken of the values in each
bootstrap. Finally, power spectrum limits were computed by
taking the mean and standard deviation over all the bootstraps.
We emphasize again that in this previous analysis, the number
of elements sampled per bootstrap greatly exceeded the number
of independent LST samples, underestimating the errors. A
random draw of 700 measurements from this data set has many
repeated values, and the variance between hundreds of these
random samples is smaller than the true underlying variance of
the data.

Given our new understanding of the sensitivity of bootstraps
to the number of elements sampled, we have removed the
second bootstrapping step along time entirely and now simply
bootstrap over the baseline axis. Power spectrum 2σ errors
(computed from bootstrap variances) with and without this
bootstrapping change for a fringe-rate filtered noise simulation
are shown in Figure 16 in black and gray, respectively. The
estimates are uniformly weighted in order to disentangle
the effects of bootstrapping from signal loss. As shown in the
figure, when more elements are drawn for each bootstrap than
the number of independent samples (by oversampling elements
along the time axis), repeated values begin to crop up and the
apparent variation between bootstraps drops, resulting in limits
(gray) below the predicted noise level (green). Using the
revised bootstrapping method, where bootstrapping only occurs
over the baseline axis, the limits (black) are shown to agree
with the analytic prediction for noise. While Figure 16 implies
that errors computed prior to our bootstrapping change (gray)
are underestimated by a factor of ∼5 in mK2 for the noise
simulation (whose creation details are outlined in the next

section), in practice, this factor is lower for the case of real data
(a factor of ∼3 in mK2 instead), possibly due to the data being
less correlated in time than the fringe-rate filtered noise in the
simulation.
In addition to learning how sample independence affects

bootstrapped errors, we have made three additional changes to
our bootstrapping procedure since A15, summarized as
follows.

1. A second change to our bootstrapping procedure is that
we now bootstrap over baseline cross-products, instead of
the baselines themselves. In the previous analysis,
baselines were bootstrapped prior to forming cross power
spectra, and using this particular ordering of operations
(bootstrapping, then cross-multiplication) yields var-
iances that have been found to disagree with predicted
errors from bootstrapping using simulations. On the
contrary, bootstrapping over cross power spectra ensures
that we are estimating the variance of our quantity of
interest (i.e., the power spectrum). This change, while
fundamental in retaining the integrity of the bootstrapping
method in general, alters the resulting power spectrum
errors by factors of <2 in practice.

2. In A15, individual baselines were divided into five
independent groups, where no baselines were repeated in
each group. Then, baselines within each group were
averaged together, and the groups were cross-multiplied
to form power spectra. This grouping method was used to
reduce computational time. However, upon closer
examination, it has been found that the initial grouping
introduces an element of randomness into the final
measurements; more specifically, the power spectrum
value fluctuates depending on how baselines are assigned
into their initial groups. Our new approach removes this
element of randomness at the cost of computational
expense, as we now perform all baseline cross-products.

3. Finally, the last change from the A15 method is that our
power spectrum points (previously computed as the mean
of all bootstraps) are now computed as the power
spectrum estimate resulting from not bootstrapping at
all. More specifically, we compute one estimate without
sampling, and this estimate is propagated through our
signal loss computation (this estimate is Px

). The
difference between taking the mean of the bootstrapped
values and using the estimate from the no-bootstrapping
case is small, but doing the latter ensures that we are
forming results that reflect the estimate preferred by all
our data.

In summary, we have learned several lessons regarding
bootstrapping and revised our analysis procedure in order to
determine error bars that correctly reflect the variance in our
power spectrum estimates. Bootstrapping can be an effective
and straightforward way to estimate errors of a data set;
however, bootstrapping as a means of estimating power
spectrum errors from real fringe-rate filtered data requires
knowledge of the number of independent samples, which is not
always a trivial task. We have thus avoided this issue by
removing one of our bootstrap axes, as well as updating several
other details of our procedure to ensure accurate resampling
and error estimation.

Figure 16. The 2σ power spectrum errors (from bootstrap variances) for a
noise simulation (computed via Equation (27) using PAPER-64 observing
parameters) using two different bootstrapping methods. The noise is fringe-rate
filtered, and a weighting matrix of I (uniform-weighted) is used in order to
disentangle the effects of bootstrapping from signal loss. The bootstrapping
method used in A15 is shown in gray, where bootstrapping occurs along both
the baseline and time axes. This underestimates the errors by sampling more
values than independent ones in the data set (fringe-rate filtering reduces the
number of independent samples along time). We use the method illustrated by
the black curve in our updated analysis, where bootstrapping only occurs along
the baseline axis. We find that these revised limits agree with the 2σ analytic
prediction for noise (green).
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4.2. Theoretical Error Estimation

One useful way of cross-checking measured power spectrum
values and errors is to compute a theoretical estimation of
thermal noise based on observational parameters. Although a
theoretical model often differs from true errors, it is helpful to
understand the ideal case and the factors that affect its
sensitivity. Upon reanalysis of PAPER-64, we have discovered
that this estimate was also underestimated in previous analyses.

To compute our theoretical noise estimate, we use an
analytic sensitivity calculation. Through detailed studies using
several independently generated noise simulations, what we
found was that our simulations all agreed but were discrepant
with the previous calculations. The analytic calculation is only
an approximation and attempts to combine a large number of
pieces of information in an approximate way; however, when
reconsidering some of the approximations, the differences were
large enough (factors of 10 in some cases) to warrant a careful
investigation. What follows here is an accounting of the
differences that have been discovered. We note that our
theoretical error estimate, which is plotted as the solid green
curve in many of the previous power spectrum plots in this
paper, is computed with these changes accounted for.

The noise prediction n(k) (Parsons et al. 2012a; Pober
et al. 2013b) for a power spectral analysis of interferometric
21 cm data in temperature units is

N k
X Y T

N N t N N N2
. 22
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We will now explain each factor in Equation (22) and highlight
key differences from the numbers used in A15.

1. X2Y: conversion factors from observing coordinates (angles
on the sky and frequency) to cosmological coordinates
(comoving distances). For z=8.4, X2Y=5×1011 h−3

Mpc3 str−1 GHz−1.
2. effW : effective primary beam area in steradians (Parsons

et al. 2010; Pober et al. 2012). The effective beam area
changes with the application of a fringe-rate filter, since
different parts of the beam are up-weighted and down-
weighted. Using numbers from Table 1 in Parsons et al.
(2016), Ωeff=0.742/0.24 for an optimal fringe-rate filter
and the PAPER primary beam.

3. Tsys: system temperature defined as
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where ν are frequencies in GHz (Thompson et al. 2001).
We use a receiver temperature of 144 K, yielding
Tsys=431 K at 150MHz. This is lower than the Tsys
of 500 K used in A15 because of several small
miscalculation errors that were identified.18

4. 2 : factor in the denominator of the sensitivity equation
that comes from taking the real part of the power
spectrum estimates after cross-multiplying two indepen-
dent visibility measurements. In A15, a factor of 2 was
mistakenly used.

5. Nlst: number of independent LST bins that go into a
power spectrum estimation. The sensitivity scales as the

square root because we integrate incoherently over time.
For PAPER-64, Nlst=8.

6. Nseps: number of baseline separation types (where
baselines of a unique separation type have the same
orientation and length) averaged incoherently in a final
power spectrum estimate. For the analysis in this paper,
we only use one type of baseline (PAPER’s 30 m East/
West baselines). However, both the updated limits in
M. Kolopanis et al. (2018, in preparation) and the
sensitivity prediction in Figure 17 use three separation
types (Nseps= 3) to match A15.

7. tint: length of an independent integration of the data. It is
crucial to adapt this number if filtering is applied along
the time axis (i.e., a fringe-rate filter). We compute the
effective integration time of our fringe-rate filtered data
by scaling the original integration time ti using

t t
df

w f df

1
, 24iint 2

ò
ò

=
( )

( )

where ti=43 s, tint is the fringe-rate filtered integration
time, w is the fringe-rate profile, and the integral is taken
over all fringe rates. For PAPER-64, this number is
tint=3857 s.

8. Ndays: total number of days of data analyzed. In A15, this
number was set to 135. However, because we divide our
data in half (to form “even” and “odd” data sets, or
Ndata sets= 2), this number should reflect the number of
days in each individual data set instead of the total.
Additionally, this number should be adjusted to reflect the
actual number of cross-multiplications that occur between
data sets (“even” with “odd” and “odd” with “even,” but
not “odd” with “odd” or “even” with “even,” in order to

Figure 17. Updated prediction for the thermal noise level of PAPER-64 data
(black) in comparison to previously published sensitivity limits (gray), both
computed for the parameters and methods used in A15. Major factors that
contribute to the discrepancy are effW , Ndays, and Nbls, as in Equation (22) and
described in Section 4.2, which when combined decrease our sensitivity
(higher noise floor) by a factor of ∼7 in mK2.

18 For example, there was a missing square root in going from a variance to a
standard deviation.
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avoid noise biases). Finally, because our LST coverage is
not 100% complete (it does not overlap for every single
day), we incorporate an rms statistic in computing a
realistic value of Ndays. Our expression therefore becomes

N N N N , 25idays
2

data sets
2

data sets= á ñ -( ) ( )

where i indexes LST and frequency channel over all data
sets (Jacobs et al. 2015). For PAPER-64, our revised
estimate of Ndays is ∼47 days.

9. Nbls: number of baselines contributing to the sensitivity of
a power spectrum estimate. In A15, this number was the
total number of 30 m East/West baselines used in the
analysis. However, using the total number of baselines
(N _ 51bls total = ) neglects the fact that the A15 analysis
averages baselines into groups for computational speed-
up when cross-multiplying data. Our revised estimate for
the parameter is

N
N

N

N N_

2
, 26bls

bls total

gps

gps
2

gps
=

-
( )

where, in the A15 analysis, Ngps=5. Each baseline
group averages down linearly as the number of baselines
entering the group (N N_bls total gps) and then as the square

root of the number of cross-multiplied pairs
N N

2
gps
2

gps-⎛
⎝⎜

⎞
⎠⎟.

A revised A15 analysis should therefore use Nbls∼32
instead of 51, and this change is taken into account in
Figure 17. However, the analysis in this paper and
M. Kolopanis et al. (2018, in preparation) no longer
averages baselines into groups (Ngps= 1). For the subset
of data presented in this paper, Nbls=10.

10. Npols: number of polarizations averaged together. For the
case of Stokes I, Npols=2.

An additional factor of 2 is gained in sensitivity when
folding together positive and negative k-values to form Δ2(k).
Our revised sensitivity estimate for the A15 analysis of

PAPER-64 is shown in Figure 17. Together, the revised
parameters yield a decrease in sensitivity (higher noise floor)
by a factor of ∼7 in mK2.
To verify our thermal noise prediction, we form power

spectra estimates using a pure noise simulation. We create
Gaussian random noise assuming a constant Trcvr (translated
into Tsys via Equation (23)) but accounting for the true Ndays as
determined by LST sampling counts for each time and
frequency in the LST-binned data. We convert Tsys into an
rms variance statistic using

T
T

tN N
, 27rms

sys

days polsn
=

D D
( )

where Δν is the channel spacing, Δt is the integration time,
Ndays is the number of daily counts for a particular time and
frequency that went into our LST-binned set, and Npols is the
number of polarizations (two for Stokes I). This temperature
sets the variance of the Gaussian random noise.
Power spectrum results for the noise simulation, which uses

our full power spectrum pipeline, are shown in Figure 18. We
highlight that the bootstrapped data (black and gray points with
2σ error bars) and thermal noise prediction (solid green line)
show good agreement, as bootstrapping provides an accurate
estimate of the noise variance. However, the limits from the full
signal loss framework (weighted and unweighted in red and
blue, respectively) are inflated, likely due to the additional
inclusion of sample variance that comes from the EoR
simulations. While the noise simulation provides an important
indicator of the accuracy of our theoretical noise calculation,
we note that the calculation did not take into account additional
sources of error associated with earlier analysis steps (for
example, Trott & Wayth 2017 showed how calibration

Figure 18. Power spectrum for a noise simulation that mimics the noise level of a subset of PAPER-64 data, where the solid red curve is the 2σ upper limit on the EoR
signal estimated from our signal injection framework using Ceff

 . The theoretical 2σ thermal noise level prediction based on observational parameters (calculated by
Equation (22)) is in green. Additionally, the power spectrum result for the uniform-weighted case is shown in three different ways: power spectrum values (black and
gray points as positive and negative values, respectively, with 2σ error bars from bootstrapping), the 2σ upper limit on the EoR signal using our full signal injection
framework (solid blue line), and the measured power spectrum values with 2σ thermal noise errors (gray shaded regions). The vertical dashed black lines signify the
horizon limit for this analysis using 30 m baselines. We highlight that the bootstrapped data points and thermal noise prediction show good agreement, while the limits
from the full injection framework (red and blue) are inflated due to the additional inclusion of sample variance that comes from the injection simulations.
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specifically can add errors to visibilities). Additionally, we
recommend that future work investigate possible error correla-
tions between baseline pairs and any interaction effects
between signal and noise that may effect error calculations.
For these reasons, we interpret our noise prediction as the
sensitivity floor for our measurements.

5. Conclusion

Although current 21 cm published power spectrum upper
limits lie several orders of magnitude above predicted EoR
levels, ongoing analyses of deeper-sensitivity data sets from
PAPER, MWA, and LOFAR, as well as next-generation
instruments like HERA, are expected to continue to push
toward EoR sensitivities. As the field progresses toward a
detection, we have shown that it is crucial for future analyses to
have a rigorous understanding of signal loss in an analysis
pipeline and be able to accurately and robustly calculate both
power spectrum and theoretical errors.

In particular, in this paper, we have investigated the
subtleties and trade-offs of common 21 cm power spectrum
techniques on signal loss and error estimation, which can be
summarized as follows.

1. Substantial signal loss can result when weighting data
using empirically estimated covariances due to couplings
with the data realizations (Section 2). Loss of the 21 cm
signal is especially significant when fewer independent
modes exist in the data. Hence, there exists a trade-off
between sensitivity-driven time-averaging techniques
such as fringe-rate filtering and signal loss when using
empirically estimated covariances.

2. Signal injection and recovery simulations can be used to
quantify signal loss (Section 3.1). However, a signal-only
simulation (i.e., comparing a uniformly weighted versus
weighted power spectrum of EoR only) can under-
estimate loss by failing to account for correlations
between the data and signal that can be large and
negative.

3. Errors that are estimated via bootstrapping can be
underestimated if samples in the data set are significantly
correlated (Section 4.1). However, if the number of
independent samples in a data set is well-determined,
bootstrapping is a simple and accurate way of estimating
errors.

As a consequence of our investigations, we have also used a
subset of PAPER-64 data to make a new power spectrum
analysis. This serves as an illustrative example of using a signal
injection framework, correctly computing errors via boot-
strapping, and accurately estimating thermal noise. Our revised
PAPER-64 limits are presented in M. Kolopanis et al. (2018, in
preparation) and supersede all previously published PAPER
limits. Because of the many challenges associated with signal
loss and its estimation as described in this paper, M. Kolopanis
et al. (2018, in preparation) use a straightforward power
spectrum estimation approach that is not lossy. However, the
main reasons for a previously underestimated limit (Ali et al.
2018) and ways in which our new analysis differs can still be
summarized by the following.

1. Signal loss, previously found to be <2% in A15, was
underestimated by a factor of >1000 for the case of
empirically estimated inverse covariance weighting.

Using a regularized covariance weighting method can
minimize loss (Section 3.3). However, because a
regularized weighting method is not as aggressive as
the former, it produces limits that are still higher than the
lossy empirical inverse covariance limits. Underestimated
signal loss therefore represents the bulk of our revision.

2. Power spectrum errors, originally computed by boot-
strapping, were underestimated for the data by a factor of
∼2 in mK due to oversampling data whose effective
number of independent samples was reduced from fringe-
rate filtering (Section 4.1). Several other errors were also
found regarding error estimation, though with smaller
effects.

3. Several factors used in an analytic expression to predict
the noise level in PAPER-64 data were revised, yielding a
decrease in predicted sensitivity level by a factor of ∼3 in
mK (Section 4.2). We note that our sensitivity prediction
is revised by a factor less than our overall power
spectrum result, implying that if taken at face value, the
theoretical prediction for noise in A15 was too high for its
data points.

The future of 21 cm cosmology is exciting, as new
experiments have sensitivities that are expected to reach and
surpass EoR levels, improved foreground mitigation and
removal strategies are being developed, and simulations are
being designed to better understand instruments. On the power
spectrum analysis side, robust signal loss simulations and
precise error calculations will play critical roles in accurate
21 cm results. With strong foundations being established now,
it is safe to say that we can expect to learn much about
reionization and our early universe in the coming years.
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