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ABSTRACT
Observations of the redshifted 21 cm line from the epoch of reionization have recently mo-
tivated the construction of low-frequency radio arrays with highly redundant configurations.
These configurations provide an alternative calibration strategy – ‘redundant calibration’ –
and boost sensitivity on specific spatial scales. In this paper, we formulate calibration of re-
dundant interferometric arrays as a complex optimization problem. We solve this optimization
problem via the Levenberg–Marquardt algorithm. This calibration approach is more robust to
initial conditions than current algorithms and, by leveraging an approximate matrix inversion,
allows for further optimization and an efficient implementation (‘redundant STEFCAL’). We
also investigated using the preconditioned conjugate gradient method as an alternative to the
approximate matrix inverse, but found that its computational performance is not competitive
with respect to ‘redundant STEFCAL’. The efficient implementation of this new algorithm is
made publicly available.

Key words: instrumentation: interferometers – methods: data analysis – methods: numerical –
techniques: interferometric – cosmology: observations.

1 IN T RO D U C T I O N

The quest for the redshifted 21 cm line from the epoch of reion-
ization (EoR) is a frontier of modern observational cosmology and
has motivated the construction of a series of new interferometric
arrays operating at low frequencies over the last decade. EoR mea-
surements are challenging because of the intrinsic faintness of the
cosmological signal (see for instance, Furlanetto 2016; McQuinn
2016, for recent reviews) buried underneath foreground emission,
which is a few orders of magnitude brighter than the EoR anywhere
in the sky (e.g. Bernardi et al. 2009, 2010; Ghosh et al. 2012; Dil-
lon et al. 2014; Parsons et al. 2014). As miscalibrated foreground
emission leads to artefacts that can jeopardize the EoR signal (e.g.
Grobler et al. 2014; Barry et al. 2016; Ewall-Wice et al. 2017), an
exceptional interferometric calibration is required. Such calibration
needs accurate knowledge of both the sky emission and the instru-
mental response (e.g. Smirnov 2011b). A skymodel is required for
standard calibration as it would be an ill-posed problem if one tries
to directly solve for all of the unknowns, i.e. the antenna gains and
the uncorrupted visibilities, without first attempting to simplify the
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calibration problem. When the uncorrupted visibilities, however,
are predicted from a predefined skymodel, the problem simplifies
and becomes solvable. In contrast, if an array is deployed in a redun-
dant configuration, i.e. with receiving elements placed on regular
grids so that multiple baselines measure the same sky brightness
emission, we circumvent the need for a skymodel altogether. This
is true, since redundancy leads to fewer unknowns (i.e. the num-
ber of unique uv-modes) and if the array is redundant enough, it
reduces the number of unknowns to such an extent that the cal-
ibration problem becomes solvable without having to predict the
uncorrupted visibilities from a skymodel. Redundancy, therefore,
is a promising path to achieve highly accurate interferometric cal-
ibration (Noordam & De Bruyn 1982; Pearson & Readhead 1984;
Wieringa 1992; Liu et al. 2010; Noorishad et al. 2012; Marthi &
Chengalur 2014; Sievers 2017). Moreover, redundant configura-
tions provide a sensitivity boost on particular spatial scales that
can be tuned to be the highest signal-to-noise ratio (SNR) EoR
modes (Parsons et al. 2012; Dillon & Parsons 2016). These reasons
motivated the design and deployment of EoR arrays in redundant
configurations like the MIT-EoR (Zheng et al. 2014), the Precision
Array to Probe the Epoch of Reionization (Ali et al. 2015), and
the Hydrogen Epoch of Reionization Array (HERA; DeBoer et al.
2017).
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Redundant calibration and complex optimization 2411

Table 1. Notation and frequently used symbols.

x, x, and X Scalar, vector, and matrix
N Set of natural numbers
C Set of complex numbers
I Identity matrix
αpq, φpq, ζ pq, ξpq, and Indexing functions
ψpq : N

2 → N

x Conjugation
x,X Element-wise conjugation
x2 Square
‖x‖F Frobenius norm
X−1 Matrix inversion
� Hadamard product

(element-wise product)
XH Hermitian transpose
xT ,XT Transpose
〈x〉x Averaging over x
∂
∂z

Wirtinger derivative
x̃ A new quantity derived from x
x̂ Estimated quantity
x̆ Augmented vector [xT , xT ]T

i
√−1

N, B, L, and P Number of antennas, baselines,
redundant groups, and parameters

d, v, g, y, r , and n Data, predicted, antenna,
true visibility, residual,
and noise vector

z z = [gT , yT ]T

� Objective function
λ and ρ Damping factor and ρ = 1

1+λ

J Jacobian matrix
H JH J (Hessian matrix)
H Modified Hessian matrix
[X]ij Element ij of matrix X
xij Composite antenna index
xi Antenna or redundant group index
xk Iteration number
M Preconditioner matrix
m Number of non-zero entries

in a matrix
κ Spectral condition number

of a matrix
γ Sparsity factor of a matrix
x Parameter update
∃! There exists a unique

In this paper, we present a new algorithm to calibrate redun-
dant arrays based on the complex optimization formalism recently
introduced by Smirnov & Tasse (2015). With respect to current al-
gorithms, it is more robust to initial conditions, while remaining
comparatively fast. We also show that given certain approximations
this new algorithm reduces to the redundant calibration equivalent
of the STEFCAL algorithm (Salvini & Wijnholds 2014). We investi-
gate the speed-up that the preconditioned conjugate gradient (PCG)
method provides if it is employed by the new algorithm (Liu et al.
2010). A comparison between the computational complexity of the
optimized new algorithm and redundant STEFCAL is also performed.

A summary of the notation that is used within the paper is pre-
sented in Table 1. We also discuss the overset notation used within
the paper in a bit more detail below (we use x as an operand proxy
in this paper):

(i) x̃ – This notation is used to denote a new scalar value that was
derived from the scalar x using a proper mathematical definition.

(ii) x – This notation denotes the conjugation of its operand (the
conjugation of x). For the readers’ convenience, we will redefine
this operator when it is first used within the paper.

(iii) x̂ – This notation denotes that the quantity is an estimated
value.

(iv) x̆ – This notation denotes an augmented vector, i.e. x̆ =
[xT , xT ]T .

The paper is organized as follows: we review the complex calibra-
tion formalism by Smirnov & Tasse (2015) in Section 2, we extend
it to the redundant case in Section 3, we present some computational
complexity results in Section 4, and we present our conclusions in
Section 5.

2 W I RT I N G E R C A L I B R AT I O N

In a radio interferometer, the true sky visibilities ypq measured by a
baseline formed by antenna p and q are always ‘corrupted’ by the
non-ideal response of the receiver, which is often incorporated into a
single, receiver-based complex number g (i.e. an antenna gain). The
observed visibility dpq is therefore given by (Hamaker, Bregman &
Sault 1996; Sault, Hamaker & Bregman 1996; Smirnov 2011a)

dpq = gpgq ypq + npq, (1)

where x indicates complex conjugation and npq is the thermal noise
component. The real and imaginary components of the thermal
noise are normally distributed with a mean of zero and a standard
deviation σ :

σ ∝ Tsys√
ντ

, (2)

where Tsys is equal to the system temperature, ν is the observa-
tional bandwidth, and τ is the integration time per visibility.

Considering the number of visibilities B (i.e. baselines) measured
by an array of N elements B = N2−N

2 , equation (1) can be expressed
in the following vector form:

d = v + n, (3)

where

[d]αpq
= dpq, [v]αpq

= vpq = gpypqgq,

[n]αpq
= npq, (4)

and

αpq =
{

(q − p) + (p − 1)
(
N − 1

2 p
)

if p < q

0 otherwise
. (5)

The function αpq therefore maps composite antenna indices to
unique single indices, i.e.

{α12, α13, . . . , αN−1N } = {1, 2, . . . , B}. (6)

The vectors in equation (4) are column vectors of size B (i.e. p < q).
It is important to point out here that all of the mathematical defini-
tions in this paper assume that we are only considering composite
indices belonging to the set {rs|r < s}. For the sake of mathematical
completeness, however, αpq is defined for composite indices that do
not belong to this set. Also note that, while the indexing function
αpq does not attain the value zero, in practice the zero indexing
value does play a very important role in some of the definitions
used within this paper (see for example equation A10).

Radio interferometric calibration aims to determine the best es-
timate of g = [g1, g2, . . . , gN ]T in order to correct the data and,
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2412 T. L. Grobler et al.

following equation (3), can be formulated as a non-linear least-
squares optimization problem:

min
g

�(g) = min
g

‖r‖2
F = min

g
‖d − v(g)‖2

F, (7)

where � is the objective function, r is the residual vector, and ‖x‖F

denotes the Frobenius norm. In standard interferometric calibration,
ypq is assumed to be known at some level, for instance through the
observation of previously known calibration sources.

Non-linear least-squares problems are generally solved by us-
ing gradient-based minimization algorithms [i.e. Gauss–Newton
(GN) or Levenberg–Marquardt (LM)] that require the model [v in
equation (7)] to be differentiable towards each parameter. When
the least-squares problem is complex, it becomes less straightfor-
ward to apply these gradient-based minimization methods, as many
complex functions are not differentiable if the classic notion of
differentiation is used, i.e. ∂z

∂z
does not exist if z ∈ C.

In order to circumvent the differentiability conundrum associ-
ated with complex least-squares problems, standard interferometric
calibration divides the complex optimization problem into its real
and imaginary parts and solves for the real and imaginary parts of
the unknown model parameters separately. Smirnov & Tasse (2015)
showed, however, that this approach is not needed if complex cal-
culus (Wirtinger 1927) is adopted. The Wirtinger derivatives are
defined as

∂

∂z
= 1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z
= 1

2

(
∂

∂x
+ i

∂

∂y

)
, (8)

which lead to the following relations:

∂z

∂z
= 1,

∂z

∂z
= 0,

∂z

∂z
= 0,

∂z

∂z
= 1. (9)

If the gradient operator is defined using equation (8), the model
v now becomes analytic in both g and g, and equation (9) can
be used to derive the complex variants of the real-valued GN and
LM algorithms. In the complex GN and LM algorithms, complex
parameters and their conjugates are treated as separate variables.

Assuming that ypq is known, equation (7) is recast as (Smirnov
& Tasse 2015)

min
ğ

�( ğ) = min
ğ

‖r̆‖2
F = min

ğ
‖d̆ − v̆( ğ)‖2

F, (10)

where r̆ = [rT , rT ]T , d̆ = [dT , d
T

]T , v̆ = [vT , vT ]T , and ğ =
[gT , gT ]T .

The complex GN update is therefore defined as

 ğ = (JHJ)−1JH r̆, (11)

with

J =
[J 1 J 2

J 2 J 1

]
, (12)

and

[J 1]αpq ,i = ∂vpq

∂gi

, [J 2]αpq ,i = ∂vpq

∂gi

. (13)

The matrix J is generally referred to as the Jacobian1 matrix.
The complex LM update is very similar, the major difference

being the introduction of a damping parameter, λ:

 ğ = (JHJ + λD)−1JH r̆, (14)

where D = I�JHJ.

1 A matrix composed of first-order partial derivatives.

Table 2. The dimensions of the Ja-
cobian matrices, and their respective
sub-matrices, defined in Sections 2
and 3.

Matrix Dimension

Wirtinger calibration
J 2B × 2N
J 1 B × N
J 2 B × N

Redundant Wirtinger calibration
J 2B × P
J 1 B × (N + L)
J 2 B × (N + L)

In this paper, we use single subscript indices (e.g. i) to refer to a
specific antenna (or as will become apparent later a specific redun-
dant group) and composite subscript indices (e.g. pq) to refer to a
specific baseline. If these indices appear in the definition of matrix
elements, then their allowed ranges are determined by the dimension
of the matrix that is being defined (see Table 2). Furthermore, the
identity matrix is denoted by I. Moreover, the Hadamard2 product
and the Hermitian transpose are denoted by � and XH , respectively
(Liu & Trenkler 2008). Note the use of the Wirtinger derivatives in
equation (13). We will refer to JHJ as the Hessian3 matrix H and to
JHJ + λD as the modified Hessian matrix H throughout this paper
(Madsen, Nielsen & Tingleff 2004).

Equation (11) or (14) can now be used iteratively to update the
parameter vector ğ:

ğk+1 = ğk +  ğk, (15)

until convergence is reached.
In the case of the GN algorithm, the parameter update step sim-

plifies and becomes (Smirnov & Tasse 2015)

ğk+1 = (JHJ)−1JH d̆ + 1

2
ğk. (16)

Smirnov & Tasse (2015) realized that the diagonal entries of the
Hessian matrix H are much more significant than its off-diagonal
entries, i.e. H is nearly diagonal. By approximatingH by its diagonal
and substituting the approximate Hessian matrix, the LM parameter
update step becomes (Smirnov & Tasse 2015)

ğk+1 ≈ 1

1 + λ
H̃

−1
JH d̆ + λ

1 + λ
ğk,

= ρH̃
−1

JH d̆ + (1 − ρ) ğk, (17)

where ρ = 1
1+λ

. Note that equations (16) and (17) are not dependent
on r̆ .

Interestingly enough, if λ = 0 we obtain the odd parameter update
step of STEFCAL,4 and if λ = 1 (which corresponds to ρ = 1

2 ), we
obtain the even parameter update step of STEFCAL5 (Mitchell et al.
2008; Salvini & Wijnholds 2014). In the STEFCAL algorithm, the
measurement equation (equation 1) is linearized by assuming that
the gains are known, but that their conjugates are not. Under this as-
sumption, the system of equations become linear and the conjugates
of the gains can be obtained in a straightforward manner. Starting
from the latest value of the gain conjugates, an updated estimate of

2 Element-wise product.
3 A square matrix composed of second-order partial derivatives.
4 k ∈ {0, 2, . . . }.
5 k ∈ {1, 3, . . . }.
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Redundant calibration and complex optimization 2413

Figure 1. Three different redundant antenna layouts: hexagonal (top left), square (top middle), and regular east–west (top right) with their associated symmetric
redundancy geometry functions ζ pq (bottom panels). We used 91 antennas to construct the hexagonal layout, while 100 antennas were used in the square and
east–west layouts. In the case of the east–west layout, we only plot the positions of the first 10 antennas. The maximal numbers of redundant baseline groups L
that can be formed for the hexagonal, square, and east–west layouts are 165, 180, and 99, respectively. The analytic expressions of L for a hexagonal, square,
and east–west layout are L = 2N − 1

2

√
12N − 3 − 1

2 , L = 2N − 2
√

N , and L = N − 1, respectively.

the gains can be obtained iteratively until convergence is reached.
Alternating between solving and fixing different sets of parameters
(which is exactly what STEFCAL does) is referred to as the alternating
direction implicit (ADI) method. The STEFCAL algorithm reduces the
computational complexity of calibration from O(N3) to O(N2).

3 R E D U N DA N T W I RTI N G E R C A L I B R AT I O N

Interferometric baselines are redundant when they sample the ex-
act same visibilities in the uv-plane, i.e. if baseline pq and rs are
redundant, then ypq = yrs. A redundant array layout allows us to
solve for the unknown observed visibilities themselves in addition
to the antenna gains (see equation 4). This is true, since in the case
of a redundant layout, equation (4) is already an overdetermined
system even before having predicted visibilities from a pre-existing
skymodel.

It is convenient to group redundant visibilities together and label
each group using a single index rather than using their antenna
pairs as in equation (1). We introduce a function φ that maps the
antenna pair associated with a specific baseline to its corresponding
redundant baseline group, i.e. if baseline pq and rs are redundant,
then φpq = φrs (implying that they belong to the same group). To
be exact, φ maps the composite index pq to its group index only if
pq ∈ {rs|r ≤ s}. If pq �∈ {rs|r ≤ s}, then the composite index pq
is mapped to zero. The function φpq is, therefore, not symmetric.
Equation (1) can be rewritten for a redundant array as

dpq = gpgqyφpq + npq, (18)

with the same vector form as equation (3) if

[d]αpq
= dpq, [v]αpq

= vpq = gpyφpq gq,

[n]αpq
= npq, (19)

where the vectors in equation (19) are column vectors of size B (i.e.
p < q).

We also introduce the following symmetric variant of φpq:

ζpq =
{

φpq if p ≤ q

φqp if p > q
, (20)

and we will refer to ζ pq as the symmetric geometric function. It
is possible to construct a simple analytic expression for ζ pq for an
east–west regular array, i.e. ζ pq = |q − p|. It becomes, however,
increasingly difficult to construct analytic expressions of ζ pq for
more complicated array layouts. The empirically constructed sym-
metric geometry functions of three different redundant layouts are
displayed in Fig. 1. We denote the range of ζ pq with R(ζpq ). The
maximal element that ζ pq can ascertain is denoted by L and can
be interpreted as the greatest number of unique redundant baseline
groups that can be formed for a given array layout.

We can now formulate redundant calibration as a least-squares
problem:

min
z

�(z) = min
z

‖r‖2
F = min

z
‖d − v(z)‖2

F, (21)

where

g = [g1, . . . , gN ]T , y = [y1, . . . , yL]T ,

z = [gT , yT ]T . (22)

MNRAS 476, 2410–2420 (2018)
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2414 T. L. Grobler et al.

The number of model parameters to be solved for is now
P = 2(N + L), since redundant calibration is a complex problem.
Note that equation (21) is only solvable (i.e. the array is redundant
enough) if L + N ≤ B.

In the literature, equation (21) is solved by splitting the problem
into its real and imaginary parts. The real and imaginary parts of
the unknown parameters are then solved for separately (Wieringa
1992; Liu et al. 2010; Zheng et al. 2014). Currently, the above
is achieved by using the real-valued GN algorithm (Kurien et al.
2016). We, instead, intend to formulate the redundant calibration
problem using Wirtinger calculus and recast equation (21) as

min
z̆

‖r̆‖ = min
z̆

‖d̆ − v̆( z̆)‖, (23)

where z̆ = [zT , zT ]T .
We derive the complex Jacobian associated with equation (23) to

be

J =
[J 1 J 2

J 2 J 1

]
, (24)

where

[J 1]αpq ,i =

⎧⎪⎪⎨⎪⎪⎩
∂vpq

∂gi

if i ≤ N

∂vpq

∂yi−N

otherwise

, (25)

and

[J 2]αpq ,i =

⎧⎪⎪⎨⎪⎪⎩
∂vpq

∂gi

if i ≤ N

∂vpq

∂yi−N

otherwise

. (26)

Algorithm 1 Constructing J 1

1: p ← 1
2: while p ≤ N do
3: q ← p + 1
4: while q ≤ N do
5: α ← (q − p) + (p − 1)

(
N − 1

2

)
6: i ← 1
7: while i ≤ (N + L) do
8: if i ≤ N then
9: J 1[α, i] ← ∂vpq

∂gi

10: else
11: J 1[α, i] ← ∂vpq

∂yi−N

12: i ← i + 1
13: q ← q + 1

14: p ← p + 1

Note that we employ the same subscript indexing notation that
we used in Section 2 in equations (25) and (26). To further aid the
reader in understanding this indexing notation, we refer him/her to
Fig. 2 (also see Algorithm 1), which depicts a flow diagram of the
matrix construction procedure with which J 1 can be constructed.
The range of values the indices in equations (25) and (26) can attain
should also be clear to the reader after having inspected Fig. 2 and
Table 2.

We can now calculate the GN and LM updates to be

 z̆ = (JHJ)−1JH r̆ (27)

Figure 2. A flow chart representing the procedure one would follow to
partially construct the Jacobian matrix (i.e. J 1) associated with Wirtinger
redundant calibration. The red circle represents the start of the flow diagram.
The blue circle represents the end of the diagram. Blue diamonds denote
loop conditionals, while green diamonds denote simple conditionals. The
diagram elements following the red arrows just below a loop conditional
element all form part of the main body of the loop that has the conditional
statement of the aforementioned loop conditional element in its definition.
The pseudo-code associated with this flow diagram is given in Algorithm 1.

and

 z̆ = (JHJ + λD)−1JH r̆, (28)

respectively. As in Section 2, equation (27) can be used to iteratively
update our parameter vector:

z̆k+1 = z̆k +  z̆k. (29)

The analytic expressions for J, H, and JH r̆ can be found in Ap-
pendix A. Appendix A also contains two useful identities involving
J and H.

In the case of the GN algorithm, we can simplify equation (29)
even further. Replacing r̆ with d̆ − v̆ in equation (27) results in

 z̆ = (JHJ)−1JH (d̆ − v̆). (30)

If we substitute the first identity of equation (A20) into equation
(30) and we simplify the result, we obtain

 z̆ = (JHJ)−1JH d̆ − 1

3
z̆. (31)

If we use the above-simplified update in equation (29), it reduces
to

z̆k+1 = (JHJ)−1JH d̆ + 2

3
z̆k. (32)

Equation (32) is the redundant equivalent of equation (16), and it
shows us that in the case of redundant calibration, we can calculate
the GN parameter update step without calculating the residual.

Fig. 3 shows that the Hessian matrix H is nearly diagonal and
sparse for both the regular east–west and hexagonal layouts we
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Redundant calibration and complex optimization 2415

(a) Regular layout (b) Hexagonal layout

Figure 3. The number of analytic terms out of which the entries of the Hessian H consist for two different geometric layouts, namely a regular east–west grid
with N = 5 (left-hand panel) and a hexagonal grid with N = 7. The diagonal entries of these two Hessians are clearly more significant than their off-diagonal
entries. Moreover, these two Hessians also contain many zero entries. Note that the locations of the zero entries are dependent on the geometry of the array
layout.

considered. We therefore follow the approach of Smirnov & Tasse
(2015) and approximate the Hessian matrix H with its diagonal.
If we substitute JHJ with H̃ = H�I and replace r̆ with d̆ − v̆ in
equation (27), we obtain

 z̆ ≈ H̃
−1

JH (d̆ − v̆). (33)

Utilizing the second identity in equation (A20) allows us to simplify
equation (33) to

 z̆ ≈ H̃
−1

JH d̆ − z̆, (34)

which leads to

z̆k+1 ≈ H̃
−1

JH d̆. (35)

Using equation (28), we follow the same procedure and obtain a
similar result for LM

z̆k+1 ≈ 1

1 + λ
H̃

−1
JH d̆ + λ

1 + λ
z̆k, (36)

= ρH̃
−1

JH d̆ + (1 − ρ) z̆k. (37)

The analytic expression of JH d̆ will be very similar to the analytic
expression of JH r̆ , the only difference being that in equation (A18)
the letter r would be replaced by a d. If we substitute the analytic

expression of JH d̆ and H̃
−1

(which can easily be constructed using
Appendix A) into equation (37), we obtain the following two update
rules:

gk+1
i = ρ

∑
j �=i g

k
j ỹ

k
ij dij∑

j �=i |gk
j |2|yk

ζij
|2 + (1 − ρ)gk

i (38)

and

yk+1
i = ρ

∑
rs∈RSi

gk
r g

k
s drs∑

rs∈RSi
|gk

r |2|gk
s |2

+ (1 − ρ)yk
i . (39)

The index set RS i and the quantity ỹij are defined in equations
(A14) and (A19), respectively. The computational complexity of
inverting H̃ is O(P). We note that equation (38) is the gain estimator
associated with STEFCAL.

Equations (38) and (39) were obtained by Marthi & Chengalur
(2014) by taking the derivative of the objective function � relative to
the elements of g and y, setting the intermediate results to zero and
then solving for the unknown parameters (i.e. using the gradient
descent algorithm). We note that their derivation is less general.
The LM algorithm has better convergence properties than gradient
descent and encompasses the gradient descent algorithm as a special
case. In Appendix B, we show that equations (38) and (39) can also
be derived using the ADI method. For this reason, we refer to
the implementation of the pseudo-LM calibration scheme derived
above, i.e. equations (38) and (39), as redundant STEFCAL throughout
the rest of the paper. Interestingly, Marthi & Chengalur (2014) were
not the first to make use of the ADI method to perform redundant
calibration; a slower alternative ADI-based calibration algorithm is
presented in Wijnholds & Noorishad (2012).

The choice of the ρ parameter is somewhat unconstrained. In this
paper, we chose ρ by adopting the same strategy that is used by
STEFCAL and Marthi & Chengalur (2014), i.e. we chose ρ to be equal
to 1

3 (λ = 2). We also carried out simulations to validate this choice.
We generated a skymodel that comprised of 100 flat spectrum

sources distributed over a 3◦ by 3◦ sky patch. The flux density of
each source was drawn from a power-law distribution with a slope
of 2 and the source position was drawn from a uniform distribution.
We also made use of multiple fictitious telescope layouts each one
having a hexagonal geometry (see the upper-left image of Fig. 1 for
an example layout). The largest hexagonal array that we used has
217 antennas, with a minimum and maximum baseline of 20 and
320 m, respectively.

We corrupted visibilities by applying gain errors (see Tables 3
and 4) and calibrated the corrupted visibilities using redundant STE-
FCAL. Solutions were independently derived for each time-step and
channel for five realizations.

Note that our simulations are almost ideal as we did not include a
primary beam response, nor did we incorporate time and frequency
smearing into our simulation.

We also did not explicitly define our noise in terms of the integra-
tion time, channel bandwidth, and Tsys; we instead follow the same
approach described in Liu et al. (2010) and Marthi & Chengalur
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2416 T. L. Grobler et al.

Table 3. The gain error models used in this paper. We have used the symbol x here as a proxy as it can either refer to time slots or channels.
We either performed our simulations over multiple time slots and one frequency channel or one time slot and multiple frequency channels
(see Table 4). Moreover, c in the leftmost column denotes the speed of light. We adopted a sinusoidal error model, similar to the sinusoidal
error models used within MEQTREES (Noordam & Smirnov 2010), as well as a phase slope across frequency that mimics a real case of physical
delays between different antennas. In the first model, we model a gain error with amplitude around one and an additional phase error. In the
second model, we chose A in such a way that we do not unintentionally produce nonsensical gain values, i.e. a zero gain value. For the third
model, the value of τ was chosen so that the number of phase wraps that occur across the observing band is restricted to a realistic number.

Number tag 1 2 3
Model Sinusoidal: amplitude and phase Sinusoidal: real and imaginary parts Linear phase slope

Function (A + 1)ejP A cos(2πf x + B) + 1.5A + jC sin(2πf x + D) ejP

Parameters A = a cos(2πf x + b) f = 5 P = τx
P = c cos(2πf x + d) A, C ∼ U[0.5, 10] τ = l

c

f = 5 B,D ∼ U [0, 2π] l ∼ U[5, 50] (m)
a ∼ U[0.8, 0.9]
c ∼ U[0.5, 5]

b, d ∼ U [0, 2π]

Table 4. We generated results using two main setups. We either used one
frequency channel and multiple time slots or one time slot and multiple
frequency channels. The most important parameters used in realizing these
two major setups are presented here. We chose the observational frequency
band of setup 1 to coincide with the HERA array. To broaden the scope of
our analysis, we chose the observational frequency of our second setup to be
equal to 1.4 GHz, which is a typical observing frequency of the Westerbork
Synthesis Radio Telescope.

Setup 1 Setup 2

Num. channels 1024 1
ν-range 100–200 MHz 1.4 GHz
Num. time slots 1 50

Figure 4. We plot the percentage error β between the simulated visibilities
and the visibilities solved for by redundant STEFCAL for different SNR values
as a function of the number of antennas (N) in the array.

(2014) and make use of the definition of SNR to introduce noise
into our visibilities. We use the following definition of SNR (Liu
et al. 2010; Marthi & Chengalur 2014):

SNR = 10 log

( 〈v�v〉ν,t,pq

〈n�n〉ν,t,pq

)
, (40)

where 〈x〉ν,t,pq denotes averaging over frequency, time, and base-
line. It should be pointed out, however, that by producing visibilities
with different SNR values, we are effectively either changing our in-
tegration time or our channel bandwidth or both (assuming a single
Tsys value for our instrument).

Fig. 4 shows the simulation results as a function of SNR and
number of antennas. The accuracy of our solutions is quantified

through the percentage error

β = ‖v − v̂‖2
F

‖v‖2
F

, (41)

where v̂ is the redundant STEFCAL parameter estimate.
The error magnitude follows the expected behaviour, i.e. it de-

creases as a function of SNR and number of antennas N. Interest-
ingly, it reduces to a few per cent when N > 120 for essentially any
choice of SNR.

4 PC G M E T H O D

Liu et al. (2010) suggested that the execution speed of redundant
calibration could be reduced using the conjugate gradient (CG)
method (Hestenes & Stiefel 1952), which would be computationally
advantageous, since the Hessian matrix associated with redundant
calibration (see Fig. 3) is sparse (Reid 1971). In this section, we
study the computational complexity of the CG method when it
is used to invert the modified Hessian matrix (see equation 28),
in particular when preconditioning is used (i.e. the PCG method).
Interestingly, empirical tests suggest that the unmodified Hessian
itself is singular. It is therefore important to mention that the CG
method can pseudo-invert the unmodified Hessian as well, i.e. the
CG method can be directly applied to equation (27), because the
Hessian is a positive semi-definite Hermitian matrix and the vector
JH r̆ is an element of its column range (Lu & Chen 2018).

The computational complexity of the CG method is

O(
√

κm), (42)

where m denotes the number of non-zero entries and κ denotes the
spectral condition number of the matrix that is to be inverted. The
spectral condition number κ of the matrix A is defined as

κ(A) = ιmax

ιmin
, (43)

where ιmax and ιmin denote the largest and the smallest eigenvalue
of A, respectively.

Preconditioning is a technique used to improve the spectral con-
dition number of a matrix. Let us consider a generic system of linear
equations

Ax = b, (44)

and a positive-definite Hermitian matrix M so that

M−1Ax = M−1b. (45)
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Redundant calibration and complex optimization 2417

Figure 5. The graphs presented here were generated using the simulations discussed in Section 3. Left: spectral condition number κ of the modified Hessian
H as a function of N, before (magenta and red curves) and after (blue curve) preconditioning, at different SNR values. Right: number of major iterations
required by the CG method to invert H as a function of the number of antennas N in the array, before (magenta and red curves) and after preconditioning (blue
and green curves), at different SNR values. Both plots show that the Jacobian preconditioner definitely speeds up the CG method.

The matrix M is a good preconditioner if

κ(M−1A) � κ(A), (46)

i.e. if it lowers the condition number of a matrix. If A is a nearly
diagonal matrix, the Jacobian preconditioner is a natural choice of
M and can be computed as

M = A�I. (47)

In order to quantify the effectiveness of the CG method in redun-
dant calibration, we investigate the spectral condition number and
the sparsity of the modified Hessian H (i.e. λ = 2).

We generated simulated (i.e. corrupted) visibilities according to
models described in Table 3. We used the complex LM algorithm
described in Section 3 to calibrate the corrupted visibilities. To invert
the modified Hessian, we used the CG method, with and without
a Jacobian preconditioner. Fig. 5(a) shows us that preconditioning
reduces the condition number of H to a small constant value and
therefore effectively eliminates it from equation (42), i.e. equation
(42) reduces to

O(m). (48)

This result is confirmed by Fig. 5(b). Fig. 5(b) shows us that the
number of major iterations needed by the PCG method to invert H
is independent of the number of antennas in the array and that it is
much less than the dimension of H.

Let us now shift our attention towards the remaining factor m.
To get a useful idea of the computational complexity of CG, we
must relate m and P. This can be achieved by utilizing the modified
Hessian’s measure of sparsity γ :

γ =
(

1 − m

P 2

)
, (49)

where m is the number of non-zero entries in H and P2 is total
number of matrix elements.

For a regular east–west geometric configuration, the sparsity and
the asymptotic sparsity of H can be derived analytically:

γ = 5N2 − 7N + 3

8N2 − 8N + 2
γ∞ = lim

N→∞
γ = 5

8
. (50)

For more complicated array layouts, however, there is no straight-
forward analytical solution and we empirically determined the spar-
sity ratios for three different geometric layouts as a function of the
number antennas in the array (see Fig. 6a).

It now follows that

P c = m = (1 − γ )P 2, (51)

which leads to

c = logP (1 − γ ) + 2 c∞ = lim
N→∞

c = 2. (52)

The computational complexity is therefore asymptotically bounded
by O(P2), although it converges very slowly to its asymptotic value,
and in general is equal to O(Pc) (with c < 2). In the case of a
hexagonal geometric layout with N < 200, we have that c ∼ 1.7
(see Fig. 6b).

We are now finally able to compare the computational complexity
of redundant STEFCAL and the PCG method. Redundant STEFCAL is
computationally inexpensive as it just needs to invert a diagonal
matrix; however, the PCG inversion is accurate and, therefore, may
require fewer iterations, ultimately leading to a faster convergence.
We computed the theoretical number of redundant STEFCAL iterations
k in excess of the number of LM (implementing PCG) iterations
required for LM to outperform redundant STEFCAL

(k + k)P > kP c, k > k(P c−1 − 1). (53)

We then compared k with the empirically obtained average excess
number of iterations. The results are displayed in Fig. 7, which
shows that redundant STEFCAL outperforms the PCG method. We
note that, in this comparison, we have only taken into account the
cost of inverting H and ignored the cost of preconditioning.

5 C O N C L U S I O N

In this paper, we have formulated the calibration of redundant
interferometric arrays using the complex optimization formalism
(Smirnov & Tasse 2015). We derived the associated complex Jaco-
bian and the GN and LM parameter update steps. We also showed
that the LM parameter update step can be simplified to obtain
an ADI type of algorithm (Marthi & Chengalur 2014; Salvini
& Wijnholds 2014). Our code implementation of this algorithm
(redundant STEFCAL) is publicly available at https://github.com/
Trienko/heracommissioning/blob/master/code/stef.py. We note
that, in its current implementation, redundant STEFCAL does not solve
for the degeneracies inherent to redundant calibration (Zheng et al.
2014; Kurien et al. 2016; Dillon et al. 2017), which will be the
subject of future work. Compared to current redundant calibration
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Figure 6. Left: the sparsity ratio γ of the modified Hessian H as a function of the number of antennas N for a hexagonal (blue circles), square (green crosses),
and regular east–west (red circles) array geometry. The red dashed and black dotted lines show the analytical expression for γ and its limit for the regular
east–west grid case (see the text for details). Right: the order of the computational cost c for inverting H as a function of N for different array geometries (same
colour scheme as in the left-hand panel). The red dashed and black dotted lines are the analytical expression of c and its limit in the east–west regular grid case.

(a) Number of LM iterations required by redundant StEfCal
and PCG.

(b) Difference.

Figure 7. The graphs presented here were generated using the simulations discussed in Section 3. Left: number of LM iterations required by redundant STEFCAL

(green and blue curves) and the PCG (magenta and red curves) methods to converge to a parameter error tolerance of 10−6 whilst using different SNR values
as a function of the number of antennas N in the array. Right: average number of LM iterations (difference between the redundant STEFCAL and PCG curves in
the left-hand panel) saved (green and blue curve) by computing the full inverse with the PCG method whilst using different SNR values. The black curve is
k, the theoretical number of redundant STEFCAL iterations that are needed in excess of the number of LM iterations used for the LM algorithm to outperform
redundant STEFCAL. For the black curve, we assumed c = 1.7 and that k could be approximated with the magenta curve plotted in the left-hand panel.

algorithms, redundant STEFCAL is more robust to initial conditions
and allows for easier parallelization.

We investigated the computational cost of redundant STEFCAL and
compared it with the performance of the PCG method (as suggested
by Liu et al. 2010). We found that, although the PCG method greatly
improves the speed of redundant calibration, it still significantly
underperforms when compared to redundant STEFCAL.

The characteristics of redundant STEFCAL make it an appealing
calibration algorithm for large redundant arrays like HERA (DeBoer
et al. 2017), CHIME (Bandura et al. 2014), HIRAX (Newburgh et al.
2016), or even hybrid arrays like the MWA (Tingay et al. 2013) in
its updated phase.

6 FU T U R E O U T L O O K

We plan to apply redundant STEFCAL to HERA data in the near future.
The reason for applying redundant STEFCAL to real data is twofold.
First, we wish to validate the theoretical computational complexity
of redundant STEFCAL (derived earlier in the paper). Secondly, we
would like to test whether it could be used to calibrate HERA in

near-realtime. We are also interested in parallelizing our current
implementation and to see how much can be gained by doing so.
We would also like to conduct a perturbation analysis, similar to
the one conducted by Liu et al. (2010), to estimate the error that
is introduced into our estimated gains and visibilities when the
array contains baselines that are not perfectly redundant. We are
also interested in quantifying the error that is introduced into the
estimated gains and visibilities because of differing primary beam
patterns between array elements (Noorishad et al. 2012).
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A P P E N D I X A : D E R I VAT I O N O F R E D U N DA N T
W I RT I N G E R C A L I B R AT I O N

If we apply the definition in equation (24) to equation (23), we
obtain the following analytic result:

J =
[

M N

N M

]
, (A1)

where

M = [O P
]

(A2)

and

N = [Q 0
]
. (A3)

Moreover,

[O]αpq ,j =
{

yφpq gq if p = j

0 otherwise
, (A4)

[P]αpq ,j =
{

gpgq if φpq = j

0 otherwise
, (A5)

and

[Q]αpq ,j =
{

gpyφpq if q = j

0 otherwise
. (A6)

We use 0 to denote an all-zero matrix. It is now trivial to compute
the Hessian H by using equation (A1). If we substitute equation
(A1) into JHJ, we obtain

H = JHJ =
[
A B
B A

]
, (A7)

where

A =
[
C D
DH E

]
, B =

[
F G
GT 0

]
, (A8)

[C]ij =
{∑

k �=i |gk|2
∣∣yζik

∣∣2 if i = j

0 otherwise
, (A9)

[D]ij =
{

giyj

∣∣gψij

∣∣2 if ψij �= 0

0 otherwise
, (A10)

[E]ij =
{∑

rs∈RSi
|gr |2 |gs |2 if i = j

0 otherwise
, (A11)

[F]ij =
{

gigj

∣∣yζij

∣∣2 if i �= j

0 otherwise
, (A12)

and

[G]ij =
{

giyj

∣∣gξij

∣∣2 if ξij �= 0

0 otherwise
. (A13)

Moreover,

RS i = {rs ∈ N
2|(φrs = i)

}
, (A14)
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Table A1. The dimensions of the matrices
defined in Appendix A.

Matrix Dimension

J 2B × P
M B × (N + L)
N B × (N + L)
O B × N
P B × L
Q B × N
0 B × L

H P × P
A (N + L) × (N + L)
B (N + L) × (N + L)
C N × N
D N × L
E L × L
F N × N
G N × L
0 L × L

ξij =
{

p if ∃!p ∈ Ns.t .(φpi = j )
0 otherwise

, (A15)

and

ψij =
{

q if ∃!q ∈ Ns.t .(φiq = j )

0 otherwise
. (A16)

Furthermore, substituting equation (A1) into JH r̆ results in

JH r̆ =

⎡⎢⎢⎣
a
b
a
b

⎤⎥⎥⎦, (A17)

where

[a]i =
∑
k �=i

gkỹikrik, [b]i =
∑

rs∈RSi

grgsrrs , (A18)

and

ỹik =
{

yζik
if k > i

yζik
otherwise

. (A19)

Additionally, a and b are both column vectors. The lengths of a
and b are N and L, respectively. The dimensions of the matrices we
defined in this section are presented in Table A1.

Furthermore,

1

3
J z̆ = v̆, JH v̆ = (I�H) z̆. (A20)

The above identities can be trivially established by mechanically
showing that the left-hand side of each expression in equation (A20)
is equal to its right-hand side.

A P P E N D I X B : A D I

The basic skymodel-based STEFCAL update step is equal to the left-
most term in equation (38) (barring ρ; Salvini & Wijnholds 2014).
Assume without any loss of generality that the array is in an east–
west regular grid. Furthermore, assume that d (see equation 3) has
been reordered and that the result of this reordering is the following:

d̃ = [d12, . . . , dN−1,N , d13, . . . , dN−2,N , . . . , d1N

]T
. (B1)

The vector ñ should be interpreted in a similar manner.
Equation (3) can now be rewritten as

d̃ = J y + ñ, (B2)

if we assume that g and its conjugate are known vectors. In equation
(B2),

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1g2 0 · · · 0

g2g3 0 · · · 0

... 0 · · · 0

gN−1gN 0 · · · 0

0 g1g3 · · · 0

0
... · · · 0

0 gN−2gN · · · 0

0 0 · · · 0

...

0 0 · · · g1gN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B3)

We can now estimate y with

y = ( JH J)−1 JH d̃, (B4)

where

[ JH J]ij =
{∑

rs∈RSi
|gr |2|gs |2 if i = j

0 otherwise
, (B5)

and

[ JH d̃]i =
∑

rs∈RSi

grgsdrs . (B6)

Substituting equations (B5) and (B6) into equation (B4) and sim-
plifying the result leads to the leftmost term in equation (39) (if we
bar ρ and consider only the ith entry of y).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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