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Abstract. We perform a complete study of the gravitational lensing effect beyond the Born
approximation on the Cosmic Microwave Background (CMB) anisotropies using a multiple-
lens raytracing technique through cosmological N-body simulations of the DEMNUni suite.
The impact of second order effects accounting for the non-linear evolution of large-scale struc-
tures is evaluated propagating for the first time the full CMB lensing jacobian together with
the light rays trajectory. We carefully investigate the robustness of our approach against
several numerical effects in the raytracing procedure and in the N-body simulation itself, and
find no evidence of large contaminations. We discuss the impact of beyond-Born corrections
on lensed CMB observables, and compare our results with recent analytical predictions that
appeared in the literature, finding a good agreement, and extend these results to smaller
angular scales. We measure the gravitationally-induced CMB polarization rotation that ap-
pears at second order, and compare this result with the latest analytical predictions. We then
present the detection prospect of beyond-Born effects with the future CMB-S4 experiment.
We show that corrections to the temperature power spectrum can be measured only if a good
control of the extragalactic foregrounds is achieved. Conversely, the beyond-Born corrections
on E and B-modes power spectra will be much more difficult to detect.
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1 Introduction

The Cosmic Microwave Background (CMB) is now firmly established as one of the most im-
portant cosmological probe, and has been spectacularly exploited to very high sensitivity and
accuracy by the recent Planck satellite mission [1, 2] and current generation of suborbital
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experiments. In parallel to the studies on the primordial signal for cosmological applica-
tions, the attention of the community has swiftly moved towards the effects imprinted at
later stages of the Universe evolution on the CMB, the so-called secondary anisotropies. The
weak gravitational lensing of CMB anisotropies stands as the primary example of such group
and consists in a modification of the geodesic path of the CMB light coming from the last
scattering surface induced by growing matter inhomogeneities.
The first robust detections of such effect have been achieved using CMB temperature data
only by ACT [3] and SPT [4, 5], and later confirmed by Planck with a significance greater
than 25σ [6]. Only recently, however, the evidence of lensing was detected for the first
time in polarization data by POLARBEAR [7, 8], SPTpol [9], ACTpol [10] and recently
BICEP2/Keck Array [11]. Being sensitive to the whole matter distribution along the line
of sight, CMB lensing can be used for cosmological analysis to infer information about the
Large Scale Structure (LSS) distribution and thus on the parameters that govern the physics
of structure formation at intermediate and late time like (e.g. the dark energy (DE) and
massive neutrinos properties). Direct measurements of CMB lensing can be improved and
complemented by the cross correlation analysis with observations of the actual lenses in LSS
surveys as independent tracers of the matter distribution. This approach has already been
exploited to obtained astrophysical and cosmological information [9, 12–18]. However, a ma-
jor improvement is expected for this field in the forthcoming years when the next generation
of high sensitivity CMB polarization experiments (Simons Array [19], AdvACTpol [20], SPT-
3G [21] and ultimately CMB-S4 [22]) together with the next generation of galaxy surveys
DESI [23], LSST [24] and the ESA Euclid satellite [25] will start observing the sky.

The exponentially growing quality of CMB and galaxy surveys data requires a great
effort to simulate and make theoretical predictions for the cosmological observables with the
highest possible accuracy. In particular it will be crucial to take into account second-order
effects and non-linear evolution of the large-scale structures at the same time. Several recent
theoretical works [26–30] studied the impact of the relaxation of the Born approximation to
CMB lensing and lensed CMB anisotropies adopting the perturbative approach to the lens
equation presented in [31–33]. Similar studies have also been performed in the context of
weak lensing (see e.g. [34, 35]). Analytical and numerical studies on the impact of the non-
linear evolution of the matter distribution on several aspect of CMB lensing have also made
significant progresses [29, 36–38]. At the numerical level, ray-tracing through large, high-
resolution N-Body numerical simulations is still the best tool we have to analyze the signal
up to the full non-linear scales. Despite the problem can be solved exactly [39], even though on
limited sky fractions, a cheaper yet accurate and popular approach consists in extracting the
lensing observables by photon ray-tracing along “unperturbed”, i.e. undeflected light paths
in the so-called Born approximation (e.g. [40–42]). Approximated methods based on halo
model formalism have also been recently proposed in this context [43]. In particular, [44, 45]
applied techniques based on the Born approximation to study a set of N-Body simulation with
different cosmologies and dark energy and/or massive neutrinos scenarios and investigate the
variation of the lensing pattern with respect to the standard ΛCDM model on the full sky.
However, when facing the challenge of producing accurate and realistic simulations of the
lensing effect, we must take into account that each light ray undergoes several deflections
due to matter inhomogeneities. In this context, we should therefore replace the modeling
through a single effective deflection adopted in the Born approximation by a multiple-lens
(ML) approach. In the latter case, large volumes of matter are projected onto a series of lens
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planes [46–53] so that the continuous deflection experienced by a light ray is approximated by
finite deflections at each of the mass planes. Faster approaches based on A ML algorithm for
CMB lensing application were first sketched in [54]. In [55] we presented the first generalized
implementation of this algorithm through large N-body simulations and applied it to study
the lensing effect on both CMB temperature and polarization anisotropies.
Motivated by the recent theoretical results and to address concerns on the capability of our
numerical setup to resolve beyond Born corrections in CMB lensing expressed in [26], in
this work we expanded and improved the algorithm of [55]. In particular we modified the
ray-tracing code to explore and characterize the full set of lensing observables derived with
the ML method up to arcminute scales, where corrections and impact of non-linear effects
are most noticeable and beyond the limit of [55].
The paper is organized as follows. In Sec. 2 we introduce the theoretical background and
notation used for our lensing algorithm while in Sec. 3 we discusse our ray-tracing technique
emphasizing the improvements made from the previous version of the algorithm. In Sec.
4 we discusse the properties of the lensing observables extracted from our simulation with
particular emphasis on stability, accuracy and reliability of the signal for different simulation
setups. In Sec. 5 and 6 we compare the results of our simulations with analytical predictions
for the lensing observables beyond Born approximation as well as their impact on lensed
CMB observables and discuss perspective for the measurements of these corrections in future
data sets. The last section draws the conclusions.

2 Theory

2.1 Gravitational light deflection

In this Section we briefly introduce the relevant quantities of weak lensing used in the rest
of this paper. A detailed description of the weak lensing formalism is summarized in several
reviews [56, 57] and recent articles [47, 49, 50, 54, 55] therefore we refer the reader to these
papers for further details.
In weak lensing formalism, the effect of deflections of light rays along the entire line of sight
is described by the lens equation, which maps the final position (t,β, χ) of the ray to the
position of its source θ, i.e.

βi(θ, χ) = θi −
2

c2

∫ χ

0

fK(χ− χ′)
fK(χ)fK(χ′)

Ψ,βi
(
β(θ, χ′), χ′

)
dχ′, (2.1)

where Ψ(t,β, χ) is a gravitational potential located on the photon path and ,βi its spatial
derivative with respect to the photon’s position β. Here fK(χ) is the standard angular
diameter distance for a universe with curvature K. The relative position of nearby light rays
is quantified by the derivative of the equation above

Aij(θ, χ) ≡ ∂βi(θ, χ)

∂θj
=

= δKij −
2

c2

∫ χ

0

fK(χ− χ′)
fK(χ)fK(χ′)

Ψ,βiβk
(
β(θ, χ′), χ′

)
Akj(θ, χ

′)dχ′,

(2.2)

where δKij is the Kronecker delta. The image distortions of light sources are described by the

magnification matrix1 A(θ, χ) ≡ {Aij(θ, χ)}, which holds the information of the mapping

1We will refer to the A matrix as magnification matrix, lensing jacobian or distortion tensor as synonyms
in the following.
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induced by lensing between the original image and the one at the current position on the
lens plane. Note that the gravitational potential Ψ is evaluated at the ray angular position
β(θ, χ), while the distortion itself - which is present at the r.h.s of Eq. (2.2) and describes the
lens-lens coupling - is computed at the “background” position θ. The magnification matrix
A is typically decomposed into four fields describing how the light rays coming from a source
at χ ≡ χs are transformed by the passage through the matter distribution,

Aij ≡
(

cosω sinω
− sinω cosω

)(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
≈
(

1− κ− γ1 −γ2 + ω
−γ2 − ω 1− κ+ γ1

)
, (2.3)

where we assumed that the image rotation angle ω(θ, χs) which defines the rotation of the
lensed image, is small, and we can work in the weak lensing regime. The field κ(θ, χs) is
referred to as the convergence while γ(θ, χs) = γ1(θ, χs) + iγ2(θ, χs) defines the complex
shear, describing the shearing of the image along the two orthogonal directions of the basis,
and can be decomposed into a curl-free part, the shear E-modes γε(θ, χs) and a divergence-
free one, the shear B-modes γβ(θ, χs).
In the so-called Born approximation [49, 58], the lens equation can be integrated over the
unperturbed, unlensed photon paths (θ, χ), therefore dropping in Eqs. 2.1, 2.2 the dependence
over the lensed position β. While absent in first order weak lensing approximation, shear
B-modes are generated if we take into account the full non-linear equation at higher order
[26, 59]. Modern surveys [60] can detect the presence of B-modes in the shear field and
although these are mainly used as a monitor for systematic effects in weak-lensing data,
this signal could also be used for cosmological applications such as e.g. testing anisotropic
cosmological models [61].
An additional assumption usually made is to consider negligible the coupling between lenses
at two different redshifts. Unlike the correction to the Born approximation, the lens-lens
coupling results in both B-mode generation and a net rotation of galaxy images, which has
also been measured in numerical simulations [47].
The presence of these effects authorizes the introduction of an auxiliary curl potential Ω(θ)eff ,
such that the deflection angle may be expressed as a combination of the standard gradient
contribution from a scalar field ψ(θ)eff , and a curl contribution [59]:

β(θ, χs) = θ −∇ψ −∇× Ω, (2.4)

where we defined the two-dimensional curl (∇ × Ω)i = εij∂Ω and dropped the spatial de-
pendence of the potentials for sake of clarity. This potential Ωeff has to be intended as an
“effective” Born-like potential, integrated along the line of sight, that encodes all the in-
formation about the rotation of the image as curl-like patterns are originated in the signal
through multiple deflections. All the quantities above can be treated on the sphere using
the spin-s spherical harmonic decomposition of the full-sky [50, 62]. In addition, combining
results from [62] and [63], we can derive consistency relations between the components of the
magnification matrix and the effective potentials (see Appendix A for further details).

2.2 Multiple-lens-plane approach

Following [54, 55] we note that the Eqs. (2.1),(2.2) can be discretized by dividing the interval
between the observer and the source into concentric N spherical shells, each of comoving
thickness ∆χ, denoted by χk as the comoving distance to the middle of the k-th shell and
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its related redshift zk. A photon incoming on the k-th shell at χk is deflected due to the
presence of matter by an angle α(k), which can be approximated by

α(k) =
2

c2fK(χk)

∫ χk+∆χ/2

χk−∆χ/2
∇βΨ(β(θ, χ̃), χ̃)dχ̃ = ∇βΦ(k)(β(θ, χk), χk), (2.5)

where we have defined the 2-D gravitational potential on the sphere as

Φ(k)(β(θ, χk), χk) =
2

c2fK(χk)

∫ χk+∆χ/2

χk−∆χ/2
Ψ(β(θ, χ̃), χ̃)dχ̃. (2.6)

Here, the notation (β(θ, χk), χk) means that the potential is evaluated at the conformal look-
back time χk, when the photon, coming from a source at distance χs from the observer at
position θ on the celestial sphere, was at the position β(k). The second derivatives can be
combined into the shear matrix U:

U
(k)
ij =

∂2Ψ(k)(β(k))

∂β
(k)
i ∂β

(k)
j

=
∂α

(k)
i (β(k))

∂β
(k)
j

, (2.7)

being α(k) the lensing angle for the k-th shell. In case of the full-sky analysis the partial
derivative operators have to be promoted to covariant derivatives [50]. The lensing potential
for each matter shell k is the solution of the Poisson equation, i.e.

∇2
n̂Φ(k)(β(k)) = 2K(k)(β(k)), (2.8)

where the convergence field K(k) at the k-th shell is

K(k)(β(k)) =
4πG

c2

DA(χk)

(1 + zk)2
∆

(k)
Σ (β(k)). (2.9)

and ∆
(k)
Σ (n̂) is the (projected) surface mass overdensity, as in [54, 55]. In Eq. (2.8) we dropped

the term containing the derivatives in the radial direction, ignoring thus long wavelength
fluctuations along the line-of-sight via the Limber approximation [47, 50]. As noted in [55],
the results of this approximation are particularly evident if we look at the angular power
spectrum for the lensing potential of each single matter shell. However, if we look at the
overall effect after a sufficiently long photon path, the partial derivatives in the transverse
plane commute with the integral evaluated along the whole line of sight, resulting in the
cancellation of line-of-sight modes as required in the Limber approximation of the integral
[50, 54, 55, 64]. The lensing potential on the sphere is related to K(k) via Eq. (2.8), and it can
be easily computed by expanding both sides of the Poisson equation in spherical harmonics.
The quantity K(k) is directly computed when the matter distribution in the shell is radially
projected onto the spherical map, as explained in Sec. 3.2.
Given the deflection angle at each lens-plane, we can trace back the light coming from a
source at position (θ, χs) to the observer after N deflections:

β(θ, χs) = θ −
N−1∑
i=0

fK(χs − χk)
fK(χs)

α(k)(β(k)). (2.10)
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We can easily discretize the Eq. (2.2) as

ANij (θ, χN ) = δKij −
N−1∑
k=0

Dk,N

DN
U

(k)
ip (β(k), χk)A

(k)
pj (θ, χk), (2.11)

where we defined for simplicity Dk,N = fK(χN − χk), Dk = fK(χk) while N is the number
of planes necessary to reach the source at comoving distance χN . The method in Eq. (2.11)
becomes computationally unfeasible very quickly, especially when we have a large number
of lens planes covering a wide sky fraction. It, in fact, requires that for each k-th iteration
all the information of the k − 1 deflections is kept. This becomes particularly problematic
in the case of CMB where the source plane is located at very high redshift and at least 50
(or more) iterations are required to model the path of CMB photons. [49, 65] proposed a
more efficient method that requires the combination of only two previous lens-planes instead
of the whole set as Eq. (2.11). The method has been validated on the full-sky in [50]. The
angular position β(k) at the k-th shell is a function of its two previous positions β(k−2) and
β(k−1) as

β(k) =

(
1− Dk−1

Dk

Dk−2,k

Dk−2,k−1

)
β(k−2)+

Dk−1

Dk

Dk−2,k

Dk−2,k−1
β(k−1)−Dk−1,k

Dk
α(k−1)(β(k−1)), (2.12)

and, by differentiating with respect to θ as in Eq. (2.2), we obtain the recurrence relation
for the magnification matrix [49, 50] as well:

A
(k)
ij =

(
1− Dk−1

Dk

Dk−2,k

Dk−2,k−1

)
A

(k−2)
ij +

Dk−1

Dk

Dk−2,k

Dk−2,k−1
A

(k−1)
ij −Dk−1,k

Dk
U

(k−1)
ip A

(k−1)
pj . (2.13)

These relations require fewer arithmetic operations and memory usage than the standard
discretization of Eq. (2.11), therefore allowing us to compute iteratively the magnification
matrix for each light-rays from the observer to any source. In the following we will also make
use of the so-called magnification matrix in the first order approximation [49] to assess the
impact of the second-order effects and to distinguish those from numerical effects. In the
multiple-lens formalism this takes the form

A
(N),1st
ij (θ, χs) = δKij −

N−1∑
k=0

Dk,N

DN
U

(k)
ij (θ, χk). (2.14)

3 The Algorithm

A detailed outline of the algorithm, including the construction of the past light-cone and the
map-making procedure, has been given in [55]. In the following, we summarized the map-
making procedure to produce lensing planes and the numerical and improvements specific to
this work.

3.1 N-body simulation

The results reported in this were derived using the reference ΛCDM simulation belonging to
the “Dark Energy and Massive Neutrino Universe” (DEMNUni) simulation project. We refer
the reader to [45, 66] for a more detailed description of the simulations and for an extended
discussion on the physical results issued by the project. The DEMNUni suite consists in
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a baseline ΛCDM model, and three modified ΛCDM cosmologies characterized by three
active neutrinos2 with different values of their total mass

∑
mν . All these simulations share

the same total matter density Ωm, as well as the same amplitude of primordial curvature
perturbations and are based on a Planck-2013 cosmology [1]:

{Ωdm,Ωb,ΩΛ, ns, σ8, H0} = {0.27, 0.05, 0.68, 0.96, 0.83, 67 Km/s/Mpc}.

The employed ΛCDM simulation follows the evolution of 20483 CDM particles in a cubic
comoving volume (2 h−1Gpc)3 from redshift z = 99 to the present epoch (see e.g. Fig. 3).
Being z = 99 the highest redshift probed by the simulation, the theoretical curves
used for comparisons with numerical results in the following include contributions
from matter perturbations z ≤ 99. The mass resolution of the simulation at z = 0 is
MCDM = 8.27 × 1010M�/h and the gravitational softening length is set to εs = 20 kpc/h
corresponding to 0.04 times the mean linear inter-particle separation. The simulation was
carried out using a modified TreePM version of GADGET-33 [69], specifically developed to
include all the additional physical effects that characterize different neutrino models [70].
This version of GADGET-3 follows the evolution of CDM and neutrino particles, treating them
as two distinct sets of collisionless particles. Moreover, to test the effect the N-Body resolution
has on our results (see Sec. 4.4), we considered a Millennium-like numerical simulation, with
the same background cosmology and amplitude of primordial curvature perturbations as
described before. In this case the 20483 CDM particles populate a box with comoving side of
500 Mpc/h and a mass resolution, for a DM particle at z = 0, of MCDM = 8.27× 108M�/h.

3.2 Map making

Starting from different snapshots in time of the N-body simulation we reconstructed the full-
sky past lightcone of the observer back to the maximum redshift available in the simulation
(in our case zmax = 99). Because the size of the simulation box is limited, we need to
replicate the box volume several times in space to fill the entire observable volume between
the observer and zmax. In order to avoid the repetition of the same structures along the
line of sight and to mitigate the deficit of lensing power on angular scales comparable to the
boxsize, we employed a specific randomization framework. We refer the reader to [55, 71]
and references therein for a further discussion on this topic. Following [42, 55, 58], we
divided the volume up to zmax into large spherical shells, each of thickness comparable to the
simulation boxsize. All the simulation boxes falling into the same larger shell undergo the
same coherent randomization process, i.e. they are all translated and rotated with the same
random vectors generating an homogeneous coordinate transformation throughout the 3D
matter shell. The coordinate transformation however changes from (large) shell to shell. We
enforced the periodic boundary conditions when performing box randomization to guarantee
a smooth matter distribution at the box edges and minimize numerical artifacts due to
potential matter discontinuities at the boundaries. The particles that fall within the radius
of the k-th spherical shell of width δχ, (χk−δχ/2, χk+δχ/2) are considered part of the shell,
where δχ is the chosen average comoving thickness of the spherical shells. For our baseline
setup δχ = 150Mpc/h.
Following the scheme proposed in [54, 55], we then converted the position of a particle of

2The simulations do not account for an effective neutrino number Neff > 3. For example, neutrino
isocurvature perturbations could produce larger Neff and thus affect galaxy and CMB power spectra [67].
However, these are excluded by present data (see e.g. [68]).

3http://www.mpa-garching.mpg.de/gadget
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mass m belonging to a given matter shell into its angular position on the 2D sphere assuming
a HEALPix 4 pixelization scheme. These maps are then projected into surface matter density
maps Σθ assuming that in each pixel p Σθ

p =
∑n

0 mi/∆Ωpix, where n is the number of particles
per pixel and ∆Ωpix its area in steradians. For the results described in this paper we used
maps having an angular resolution of 52 arcsec corresponding to a NSIDE parameter 4096.

3.2.1 Systematics tests

Similarly to what was done in [55], we performed several systematic test to assess the impact
of possible systematic effect in the map-making procedure. The results of these tests are
shown in Fig. 1. We checked that the amount of mass present in each mass sheet was
consistent with the amount of total mass expected from the cosmology and found differences
of sub percent level on almost all shells and no greater than 2% at the lowest redshifts bin. We
also checked the distribution of the surface mass density and found consistency with previous
numerical work. The mass distribution is in fact well described by Gaussian or log-normal
probability density function (PDF) at high redshift with a tail in the ultra-nonlinear regime
well fitted by the phenomenological Das and Ostriker model [72] with smoothing scale set to
the variance of each map.
Once the surface mass density had been computed, we extracted the k-th shell surface mass

density contrast ∆
(k)

Σθ
(n̂) = Σθ(n̂) − 〈Σθ〉 and the convergence maps K(k)(n̂) (see Eq. (2.9))

that will be used in the following.

3.3 Raytracing and remapping

In order to propagate the CMB photons through the different shells we used in [55] a pixel-
based approach exploiting the publicly available code LensPix [73]. For this work, we changed
this part of the algorithm and adopted a modified version of the lenS2HAT code [74]. In par-
ticular we implemented the raytracing algorithm of Eq. (2.12) and Eq. (2.13) while carefully
preserving the optimal data and workload distribution of the original algorithm.

The algorithm operates as follow. Starting from the convergence harmonic coefficients K
(k)
`m

it extracts the lensing potential of each shell solving the Poisson equation in the harmonic

domain as ψ
(k)
`m = −2K

(k)
`m/[`(` + 1)]. It then computes the deflection field for each lensing

plane α(k) assuming the deflection field as a purely gradient field (i.e. a spin-1 curl-free vector
field) having E and B decomposition

1α
E
`m

(k) =
√
`(`+ 1)ψ

(k)
`m 1α

B
`m

(k) = 0. (3.1)

Note that the lensing potential ψ is simply the 2-D gravitational potential of Eq (2.6) mul-
tiplied by a geometrical lensing weight fK(χs − χk)/fK(χs). Once the deflection field is
obtained, it remaps the CMB field as

β(k) = β(k−1) + d(k) (3.2)

where β(k−1) represents the position of an incoming CMB photons on the k-th lensing plane
and d(k) the total deflection field at each k-th lensing plane. This takes into account the
deflection field α(k) and the incoming direction of the photon with respect to the normal to
the surface ξ(k) so that d(k) = α(k) + ξ(k). In the code, we adopted the algorithm of [54] to

4http://healpix.sourceforge.net
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Figure 1: PDF of the normalized surface mass density (Σ/〈Σ〉) of the mass planes extracted
from the DEMNUni simulations located at different redshift. The bottom right panel shows
the fractional difference between the total mass in each mass plane extracted from the DEM-
NUni simulation and the theoretical value expected from the Planck 2013 cosmology.

compute ξ(k), which can be shown to be equivalent to the recurrence equation of Eq. (2.12)5.
In the case k = 1, β(0) = θ i.e. the unlensed CMB photon position. Following [50] we

5We renamed ξ the β of [54] to avoid confusion with the notation adopted in the text so far.
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accounted for the change of the local tensor basis when parallel transporting the lensing
jacobian along the geodesic connecting the old and displaced position at each deflection
plane adopting the formalism of [75]. For sake of clarity we show in Fig. 2 the definition of
the angles adopted in the algorithm. Although algorithmically similar to LensPix, lenS2HAT

Figure 2: Definition of the quantities employed in the multiple-lens raytracing algorithm.

offers several advantages when performing full-sky raytracing simulation for application that
require the use of the highest possible angular resolution. The advantages lie mainly in
the nearly perfect scalability and the very low memory overhead inherited from the S2HAT

library6 [76–78]. These allow to manipulate maps and compute spherical harmonics at very
high resolution required by this specific application. The code is also very flexible as it works
for multiple pixelization schemes beyond the commonly used HEALPix. In particular, for this
work, we resampled the displacement field and performed the raytracing part on grids based
on the Equidistant Cylindrical Projection (ECP) pixelization [79]. Thanks to its symmetry
properties, this pixelization supports fast spherical harmonic transforms and nearly perfect
quadrature for band-limited functions, minimizing thus aliasing effects that may become
important in codes of this type.
lenS2HAT implements the raytracing using a simple yet powerful pixel-based lensing method
adopting an efficient Nearest Grid Points (NGP) assignment scheme to evaluate the source
plane (or, in this case the lensing plane) along the displaced direction. We thus assign to
every deflected direction a value of the sky signal computed at the nearest grid points defined
by the centers of a pixel of the assumed pixelization scheme. The NGP assignment is quick
and allows to control the accuracy of the method and the signal smoothing scale through the

6http://www.apc.univ-paris7.fr/APC_CS/Recherche/Adamis/MIDAS09/software/s2hat/s2hat.htm
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parameters defining the grid resolution alone. Interpolation methods on the sphere, though
helpful in cutting numerical costs, might modify the underlying signal and alter its statistical
properties especially at the smallest scales, where we expect the effects of our interest to lie.
We refer the reader to [74] for a further discussion on this topic together with an accurate
benchmark of lenS2HAT.

3.4 Derivatives computation on the sphere

In order to propagate the lensing jacobian together with the displaced photon direction
it is necessary to compute second derivatives together with first derivatives of the projected
gravitational potential (see Eq. 2.11, 2.10). It is possible to compute efficiently the derivatives
of this field on the sphere using the routine alm2mapspin_derv included in the S2HAT library.
This routine can compute the first partial derivatives of an arbitrary spin-s field on the
sphere, ∂θ, ∂φ, with respect to the spherical coordinates (θ, φ). The routine implements an
efficient recurrence relation for the Legendre polynomials part of the harmonics and for their
derivatives starting from their expression in terms of Wigner D-matrices [80]. This recurrence
is similar to the one implemented in the HEALPix library, where however only the spin-2 field
derivatives are available. Numerical tests conducted so far have shown that derivatives of
the same field on a sphere, computed with S2HAT or HEALPix, are equal within the numerical
error. Thanks to the capability of the routine to compute derivative for arbitrary spin-s field
it is possible to compute the second derivatives of the matter distribution at the same time
when computing the deflection field (see Eq. (3.1)). As shown in Appendix B in fact, the
second derivatives of the lensing potential can be naturally related to the first derivatives of
the spin-1 deflection field. Thus, the deflection field and the second derivative of the lensing
potential can be obtained with a single call to the spin-1 Legendre polynomial recurrence.
This minimizes the extra computational overhead required to compute the second derivatives
given that the Legendre polynomial recurrence is the heaviest part of each spherical harmonic
transform algorithm (see, e.g., [77, 78]). Once partial derivatives are available it is then
straightforward to extract the second covariant derivatives, which are the key quantity for a
full-sky formalism adopted in this work.

4 Simulation results

4.1 Lensing observables angular power spectra

The first problem that we addressed using our raytracing algorithm was the evaluation of the
full set of components of the CMB lensing jacobian. We thus set the position of our source
at the CMB last scattering surface (z∗ ≈ 1100) and propagated the light ray position to
redshift z = 0. For these runs we assumed that no lensing took place between the maximum
redshift covered by the DEMNUni simulation and the last scattering surface. One of the
free parameters of the algorithm, together with the spatial resolution of the simulation, is
the band-limit value `max adopted to solve the Poisson equation and extract the lensing

potential ψ
(k)
`m from each convergence map K(k) (see Sec. 3.3). The choice of this band-limit

defines effectively the Fourier modes Ψ(k) of the matter distribution that are included in the
simulation and thus can affect the precision of the results itself.
We decided to adopt a pragmatic approach to identify a suitable choice of band-limit for
this application and proceeded as follows. We first computed the expected theoretical CMB
lensing power spectrum for the Planck 2013 cosmology with CAMB and then evaluated the error
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introduced with respect to this reference quantity when the same calculation was performed
including only the modes k < kref of the matter power spectrum. We report the results of
this calculations for reference in Fig. 3. We set our goal to be the recovery of the effective
CMB lensing potential with roughly 1% precision up to ` ≈ 8000, thus we had to include
modes of the matter distribution up to kmax ≈ 5h/Mpc. Following this reasoning, we then
translated this constraint in the value of the band-limit parameter to be used at a given i-th

shell using the Limber approximation, i.e. `
(i)
max = `

(i),theory
max ≡ kmaxχi. However, it turned out

that for several shells `
(i)
max became higher than the band-limit supported by the HEALPix grid

where we sampled the K(k) field (`gridmax = 3·NSIDE). For these cases we set `
(i)
max = `gridmax while

we chose to fix `
(i)
max to a conservative reference value of 8192 if `

(i),theory
max < 8192. In Fig. 3 we

show the modes of the matter distribution effectively included in the raytracing simulation

as a function of redshift given the choice of `
(i)
max just presented. In Fig. 3 we also report

the corresponding precision on the lensing potential obtained with the same choice of band-
limit. As it can be seen from these figures, the optimized procedure improves the achievable
precision at ` = 8000 from the 6% obtained assuming the same band-limit `max = 8192 for all
shells to the targeted 1% level. We, in fact, cannot resolve modes k < 5 at all redshift because
we are limited by the band-limit imposed by the resolution of our convergence maps and the
optimized band-limit mitigates the impact of lack of power on those scales. This problem
could be bypassed either fixing a band-limit to higher value (increasing the computational
cost) or producing convergence maps at higher HEALPix resolution. The latter option would
in fact allow to solve the Poisson equation at higher multipoles. As it will be shown in the
next sections, however, we found no indication that this baseline setup suffers from a lack of
power at small angular scales, and therefore we decided not to pursue this option due to its
higher computational cost.

Figure 3: Left : fractional difference between the lensing potential angular power spectrum
as recovered by CAMB using modes up to k = 100 and the same signal computed with a reduced
wavenumber range k < kmax. Black horizontal lines show the 1% precision threshold. Right :
maximum wavenumber kmax ≈ `max/χ(z) included in the simulation as a function of redshift
for different value of band-limit. The variable `max case is the reference option used in this
work. The softening length scale of our N-Body simulation is shown as a black solid line.

Once ψ
(k)
`m had been obtained, we converted them into Fourier modes of the deflection

field and resampled the deflection field and all its second derivatives required by the algorithm
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on a very high resolution ECP grid on which we later performed the raytracing step. We
note that this part of the algorithm is the most computationally expensive step and therefore
a more careful optimization of the choice of the band-limit parameter according to the users
needs is crucial to reduce the computational cost of these kind of simulations.
In the following sections we will show results derived employing ECP grids characterized by
the same number of isolatitude rings on the sphere Nθ and number of pixel per isolatitude
ring Nφ. The map resolution is therefore non uniform across the sky (with smaller pixels
close to the poles and bigger close to the equator) but the area of the coarser pixels is well

approximated by θres =
√

4π
Npix

. We thus express the map resolution in terms of the parameter√
Npix =

√
Nθ ·Nφ. In Fig. 4 we show the angular power spectrum of the different lensing

observables extracted from the CMB lensing jacobian at z = 0 – convergence, Cκκ` , rotation

Cωω` and E- and B-modes of lensing shear, Cεε` , Cββ` . For these simulations we employed an
ECP grid with

√
Npix = 262144 which corresponds to θres ≈ 3′′ to derive these results. The

previous set of parameters represents the highest setup in terms of resolution and band-limit
shown in this paper, although we tested that setups with

√
Npix = 524288 are achievable

with the current numerical implementation of the code.
The simulated convergence and E-modes power spectra are in good agreement with the
HALOFIT based results derived with CAMB. For the purpose of comparing the two quantities
we restricted the integration of the matter evolution in the redshift range covered by the
N-body simulation. The accuracy of the results is compatible with the uncertainties proper
of the HALOFIT fitting formulae [81]. Matter perturbation on scales larger than the box-size
of the simulation used to construct the lightcone should only be partially recovered by the
stacking procedure employed in the map-making step [55]. However simulations having a
box-size of 2Gpc like the ones of the DEMNUni suite seem to reproduce well the convergence
power spectrum at large angular scales for all practical purposes.
In Fig. 4 we can also observe a non-zero image rotation Cωω` and shear B-modes Cββ` power
spectrum which are due to multiple deflections of photons and are a pure imprint of beyond-
Born corrections properly resolved by our simulations. We cross-checked this fact performing
the raytracing with the same numerical setup but propagating the CMB lensing jacobian at
first odder, i.e. in the Born approximation (Eq. (2.14)). The shear B-modes extracted from
the first-order simulations are shown in Fig. 4 together with the beyond-Born result and they
are consistent with numerical noise. We note that the second mixed covariant derivatives of
a scalar field on the sphere commute, therefore we did not show the image rotation at first-
order because it is identically zero by construction. All these results answer and confute the
statement made in [26] according to which the multiple lens approach is not able to properly
resolve beyond-Born corrections.

4.2 Consistency tests

We assessed the consistency of our results and the potential presence of numerical artifacts
in two ways. First, we tested if the consistency relations between the components of the
lensing jacobian were satisfied (see Appendix A). In addition, we tested if these also satisfied
the consistency relation that can be derived between the E and B-modes of the effective
displacement field of the rays. Following the notation in Eq. (3.2) we can define the effective
displacement field deff after N deflections as

βN = θ − deff (4.1)
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Figure 4: Left : angular power spectra for CMB lensing observables κκ (blue), εε (green),
ωω (cyan) and ββ (red). The reference convergence angular power spectrum as computed by
CAMB is shown in black. Right : Born (green) and beyond-Born (blue) shear B-modes derived
from the DEMNUni simulations.

where θ is the photon un-displaced direction. Because we know the initial and final position
of the simulated light rays, it is possible to invert the equation above using spherical triangles
identities [73] and derive deff . We can extract the effective potentials of 2.4 from the E/B
decomposition of this vector (i.e. spin-1) field as

deff,E
`m =

√
`(`+ 1)ψeff

`m deff,B
`m =

√
`(`+ 1)Ωeff

`m, (4.2)

In Fig. 5 we show the maps of the effective potentials extracted from our simulations7.

The second test we performed was computing cross power spectra of lensing observables
that are supposed to be null in absence of systematics (see Appendix A). In particular we
looked at combinations of κ×β, ε×β, ω×ε, κ×ω for the magnification matrix, and ψ×Ω for
the lensing potentials fields themselves. In Fig. 6 we show a selection of these cross-spectra
omitting the ones that can be derived using the lensing consistency relations. All are clearly
consistent with a null spectrum with no significant trend at all scales. In order to test the
consistency relations between lensing observables we adopted a cross-spectra technique and
focused on cross-spectra combinations κ×ε and ω×β. As it can be derived using the formulae
in Appendix A, these cross-spectra can be constructed from the angular power spectra of the
lensing fields themselves, as

Cκε` = Cκκ`

√
(`+ 2)(`− 1)

`(`+ 1)
, (4.3)

Cωβ` = Cωω`

√
(`+ 2)(`− 1)

`(`+ 1)
, (4.4)

where the angular power spectra on the r.h.s. of the equations is computed directly from
simulated maps. A similar construction can be obtained instead using the effective lensing

7From now on we will drop the eff superscript for the effective scalar potentials for sake of brevity.
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Figure 5: Maps of the effective CMB lensing potential ψeff (top) and curl potential Ωeff (bot-
tom). The potentials were extracted with the ML approach from the effective displacement
of CMB photons in the DEMNUni simulation.

potentials, as

Cκε` =
1

4
(`+ 1)`

√
(`+ 2)(`+ 1)`(`− 1)Cψψ` , (4.5)

Cωβ` =
1

4
(`+ 1)`

√
(`+ 2)(`+ 1)`(`− 1)CΩΩ

` .

In Fig. 7, we compare cross-spectra as extracted from simulations with the two analytical
constructions of Eqs. (4.3),(4.5). We can see that the consistency relation involving the
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Figure 6: Angular cross-spectra for different lensing observables combinations. Black hori-
zontal shows the zero line reference.

gradient-like components is recovered with exquisite accuracy (below 0.1%) for both κ and
ε and ε and ψ. Conversely, the consistency relation between the shear B-modes and the
rotation field does not reach the same level of accuracy, nevertheless it is satisfied at the
1% level at small angular scale and is better than numerical results presented so far in the
literature (see e.g. [50]). The consistency relation derived using the Ω effective potential is
satisfied at the 10% level and we can see a clear excess of power at small-scales (` > 1000).
As discussed in the following, the stability of the results of the deff,B and shear B-modes with
respect to the choice of numerical setup gives an indication that the cause of this discrepancy
is likely purely numerical. A residual of aliasing effect might in fact be present in the shear
and deff,B affecting thus the consistency relation involving these two quantities. As explained
in [74], the B-modes of spin fields are much more sensitive to numerical effects than the scalar
quantities, and controlling residual resolution effects may become crucial.

Figure 7: Top left : Angular cross-power spectra κε constructed by analytical expression
compared with the one extracted from simulations of magnification matrix κ × ε (red line).
Green and blue line represent angular cross- spectra constructed from power spectra of κκ
and lensing potential ψψ, respectively. Top right : angular cross-power spectrum for the
rotation fields ωβ. Bottom: fractional difference between the analytical constructions and
the recovered cross spectra.
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4.3 Testing resolution effects

We additionally tested the stability of the simulated κ, γ and ω maps with respect to dif-
ferent numerical parameters used for the raytracing. In Fig. 8 we show the effect of the
map resolution used in the raytracing on the reconstructed angular power spectra of the
lensing observables. The panels show the fractional difference between results of raytracing
performed at progressively higher spatial resolution but keeping the same band-limits choice
discussed in Sec. 4.1. For the kind of resolution considered for this test we recovered a percent
level precision on κ and ω already using a resolution of

√
Npix = 65538 at scales ` ≈ 5000.

This level of precision reaches the sub-percent level on ` < 8000 using our default numeri-
cal setup. However, a compromise solution between accuracy and computing sustainability
could be identified for the case ECP

√
Npix = 131072, where the reconstruction is well within

percent level with respect to the highest resolution case up to ` . 8000.

Figure 8: Left : Fractional difference of convergence angular power spectrum, Cκκ` obtained

fixing the band-limit and varying the spatial resolution of the raytracing from
√
N

(i)
pix and√

N
(i+1)
pix where

√
N

(i)
pix ∈ {32768, 65536, 131072, 262144}. Right : same as the right power but

for the rotation power spectrum. Cωω`

As it can be expected from the results of the previous sections, similar conclusions can
be drawn for the shear E and B-modes and dE,eff , showing that the code is able to simulate
the expected signal with a high precision. We note however that the B-modes of the effective
displacement did not reach a numerical stability with the same level of precision. For this
field the numerical convergence between the cases adopting a resolution of

√
Npix = 131072

and
√
Npix = 262144 is of the order of 10%. As confirmed by the consistency relation analysis

of the previous section, this field seems to be the most sensitive to resolution effects. Even
though this level of precision is likely enough for all practical applications, we conservatively
decided not to use this quantity for the scientific analysis of the following sections and derive
the effective displacement from the ψ − κ and Ω− ω consistency relations.

4.4 Testing the N-Body simulation

Since beyond-Born effects are expected to show up as small angular scales where non-linear
scales of the matter distribution contribute the most, it is important to quantify the impact
of the resolution of the N-Body itself on the final result. In analogy to what we did in our
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previous work [55], we first characterized the impact of the shot-noise generated from the
discrete matter distribution inside the box after projection on the 2D sphere. We used for
this purpose Monte Carlo Gaussian realization of the surface mass density field derived from
the shot-noise power spectra in each shell [51]

C
κκ,Shot-noise(k)
` =

9H4
0 Ω2

m,0

4c4
δχ

1

n̄k

(
χs − χk
χsχk

)2

(4.6)

where n̄k is the particle density in the k-th shell. We then used these maps as an input
of the raytracing algorithm and propagated the shot-noise induced uncertainties on all the
simulated lensing fields. In Fig. 9 we show the shot-noise contribution to κ and ω. From
this analysis it is evident that the excess of power at small angular scales that is observed in
the recovered convergence power spectrum when compared with the CAMB results based on
HALOFIT, is compatible with a noise bias induced by the simulation shot noise. We note
however that even if the shot-noise affects at 10% level the convergence and shear E-modes, it
is negligible for the rotation and shear B-modes. This can be explained as the physical origin
of those signals is the coupling of subsequent deflections along the line of sight. A random
realization of the shot noise has in fact a very small probability to replicate such lens-lens
configuration, which is indeed a peculiar and interesting feature of the matter distribution
from which the rotation field arises. In addition, we also investigated whether the simulation

Figure 9: Top: Angular power spectrum for the scalar field convergence (left) κ and rotation
(right) ω, both signal and shot-noise contribution. Black line is the CAMB reference.

resolution for high value of k significantly affected our results. In particular we used as a
benchmark case a Millennium-like simulation (500 Mpc boxsize, 20483 dark matter particles)
that adopts the same background cosmology and amplitude of matter perturbations of the
baseline N-Body simulation described so far but having different initial conditions. In Fig. 10,
we show the convergence and rotation power spectrum extracted from the Millennium-like
and the baseline simulation. Even though it was not possible to run the Millennium-like
simulation with the same initial conditions of our baseline setup, the agreement between the
results recovered with these two simulations is remarkable. In particular we can see that dark
matter halos of lower mass resolved in the Millennium-like simulation impact the convergence
and rotation power spectrum below the 1% level for ` > 1000. The only noticeable difference
appears at large angular scales where the Millennium-like based results display a lack of
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power. This is expected since the box size is four times smaller than the standard case,
resulting in a more pronounced lack of power on scales larger than the boxsize, as noted in
[42, 55]

Figure 10: Left : angular power spectrum of lensing convergence (solid) and rotation
(dashed) fields obtained from the DEMNUni simulation. Results obtained with a Millennium-
like N-body simulation are displayed in red. Right : binned fractional difference of power
spectra obtained with the DEMNUni and Millennium-like simulations. Error bar represent
the error on the mean of points following within the bin.

4.5 Algorithm robustness

A standard back-of-the-envelope calculation predicts that a CMB photon undergoes a total
of about 50 independent deflections from large scale lenses (i.e. of 300h−1Mpc) during its
journey from the last scattering surface towards us [57]. However, when considering lensing on
smaller scales, there could be more deflections along the line of sight and thus it is important
to test the stability of the simulation results against the number of employed lensing planes.
We note that for an accurate modeling of post-Born correction, a relatively low number of
planes could be sufficient. Post-Born effects require, in fact, a fairly large separation between
the background and forward planes to have any impact on the lensing signal. There are no
post-Born effects for lenses right next to each other, i.e the fK(χk+1 − χk) factor of (2.10)
approaches zero.
In the previous sections we presented the results of raytracing simulations employing 62
lensing planes as a reference setup. This number corresponds to the number of N-body
snapshot at our disposal and thus limits the number of randomization the we have to perform
in order to fill the full past lightcone. To assess the robustness of the results with respect
to this specific choice in the number of lensing planes, we constructed the same lightcone
realization employed throughout this work but then adopted a thinner matter shells slicing.
In the benchmark case, the 62 outputs of the simulation have been translated into 62 matter
shells of (average) comoving width of about 150 Mpc/h. Instead, for this test, we sliced
the lightcone into 141 matter shells of (average) comoving width of about 50 Mpc/h. This
scenario traces exactly the same matter distribution and evolution as the benchmark case,
but it models the lensing signal with an increased number of deflections. In Fig. 11 we
compared the results obtained with these two approaches. We found that the convergence
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signal is stable at better than 0.5% level, however, the rotation signal changes by a factor
of 1.5 % on scales close to ` = 8000. The latter is expected, because if we increase the
number of deflections, we expect the signal that depends on the lens-lens configuration to
increase as well. However such difference is barely above the amplitude of the cosmic variance
at those scales and the number of lens planes increased at the same time by more than a
factor of 2. The number of lens planes employed in our baseline simulation setup seems
therefore sufficient to resolve beyond-Born corrections, induced by the lens-lens coupling,
with reasonable accuracy.

Figure 11: Fractional difference for the angular power spectra of the convergence (left)
and rotation (right) obtained using 62 lens-planes (150 Mpc/h width matter shells) and for
an increased number of lens-planes (141) obtained slicing the lightcone in 50 Mpc/h width
matter shells.

5 Comparison with theoretical predictions

After having confirmed the robustness of our result from a numerical point of view, in this sec-
tion we compared the recovered signal with theoretical predictions based on the perturbative
approach to the lens equation and beyond-Born correction [27–31, 33, 59].

5.1 Convergence corrections

As noted in [55] and confirmed analytically by [27] (hereafter PL16), the impact of beyond-
Born corrections on the CMB lensing convergence signal is small and the first-order result
dominates. A direct and accurate comparison between analytical predictions and numeri-
cal results is not straightforward because differences might be easily hidden in the cosmic
variance scatter. The latter cannot be reduced given the impossibility of performing a full
Monte Carlo analysis with N-body simulation of the size employed in this work. In Fig. 12
we compared the fractional difference of the lensing convergence power spectrum beyond-
Born and the first-order result with the theoretical prediction computed with the numerical
implementation of the perturbative corrections presented in PL168. Despite the fact that it
was not possible to investigate quantitatively the agreement ` by ` for the reasons outlined

8http://cmbant.github.io/notebooks
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above, the binned version of these curves shows a good agreement between simulations and
analytical predictions, with a clear trend of an increase of power at small angular scales and
a deficit of power at multipoles of few hundreds.
For sake of completeness we investigated the impact of beyond-Born corrections also in the
real domain. In particular, we looked at the moments of the convergence maps obtained
in the first-order approximation κ1st and in the beyond-Born regime κML. The quantity
∆σ2

κ = σ2
κML − σ2

κ1st can in fact be directly connected to the beyond-Born correction on the
convergence power spectrum ∆Cκκ` using the well-known relation between the variance of a
scalar field and its power spectrum

∆σ2,Theory
κ ≡

(
σ2
κML − σ2

κ1st

)Theory
=

`max∑
`=0

(2`+ 1)

4π
∆Cκκ` . (5.1)

We estimated the same quantity from the simulated κ1st, κML maps, ∆σ2,Sim
κ , and compared

it to the predictions of (5.1) derived using the analytical expectations for ∆Cκκ` . To minimize
the impact of numerical effects towards the end of the band-limit of the signal, we filtered the
simulated maps setting to zero all the ` > 8000 modes and fixed the upper limit of the sum
in Eq. (5.1) accordingly. We found that ∆σ2,Sim

κ = 7.25 · 10−6 and ∆σ2,Theory
κ = 7.00 · 10−6

respectively, thus the analytical predictions of beyond-Born correction match to a precision
of roughly 3% the results derived in the simulations for this specific realization of the matter
distribution.
The recent work of PL16 noted that beyond-Born corrections generate a non-negligible
amount of non-Gaussianities, in particular in the κκκ bispectrum, and that those might
be detected in the near future unlike corrections on Cκκ` . For this reason, we measured the
variation of skewness and kurtosis of the 1-point PDF of κ1st and κML. The 1-point PDF
of κML and κ1st are shown in Fig. 13 together with the Gaussian approximation of κ1st

defined as a Gaussian PDF having mean and variance equal to the one measured on the
simulated map itself. Both κML and κ1st PDF follow a Das and Ostriker model as it could
have been expected from the analysis of Sec. 3.2.1. As discussed above, the variances of the
two distributions are very similar. However their skewness and kurtosis change by a factor
of roughly 30% when beyond-Born corrections are considered (see table 1 for a summary of
these values). In particular, as shown in Fig. 13, the beyond-Born correction tends to modify
mainly the high and low ends of the distribution. In Fig. 14 we show the measurements of
the higher order moments of κML and κ1st and κshot−noise obtained filtering the maps in order
to retain only the modes ` ≤ `cut−off . We performed this test to assess whether large-scales
artifacts induced by the N-body boxsize replication (especially in the high redshift shells) or
shot noise effects dominated the values of the skewness and kurtosis of the map. As it is
visible from the figure, the higher order moments are dominated by non-Gaussianities located
at progressively smaller angular scale, consistent with non-linearities arising in the gravita-
tional evolution of the matter distribution. In particular comparing the values of skewness
and kurtosis of the first-order and ML maps we can clearly see the onset of the change in the
amount of non-Gaussianities due to beyond-Born corrections starting at scales ` ≈ 250 and a
negligible shot-noise contribution to these values for scales ` > 1000. Although a quantitative
assessment of the precision of the analytical predictions for the amount of non-Gaussianities
produced by beyond-Born corrections is beyond the scope of this paper, we qualitatively
confirm the findings of PL16: beyond-Born corrections affect more the non-Gaussian part
of κ than its power spectrum. PL16 also noted that the specific signature of beyond-Born
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corrections to the κκκ bispectrum depends on the specific triangle configuration and redshift.
The effect consists mainly in a combination of a reduced lensing efficiency generated by lens
coupling (which suppresses the bispectrum of the matter distribution) and additional distor-
tions due to deflections across the direction where the gravitational potential changes. These
two contributions have an opposite sign and their relative amplitude changes with redshift.
The results of our simulations suggest that the leading effect of beyond-Born corrections
consists in an overall suppression of the amount of non-Gaussianities in the CMB lensing
convergence. This result seems to agree with the naive expectations from the results of PL16
(see, e.g., their Fig. 4 where the beyond-Born κκκ bispectrum is mostly negative). However,
being the skewness the sum of all the configurations of the κκκ bispectrum, we cannot make
a quantitative statement on the validity of the analytical predictions of this signal. Thus, we
postpone a more quantitative analysis of this aspect on our simulated map to a future work.

Map Variance (10−3) Skewness Kurtosis

κ1st 8.465 0.370 0.554
κML 8.472 0.266 0.450
ω 6.87 · 10−3 3.184 · 10−3 3.185

κML shot-noise 1.070 1.289 · 10−3 −3.865 · 10−4

ω shot-noise 6.357 · 10−5 6.570 · 10−3 1.337

Table 1: Moments of the first-order and beyond-Born convergence and rotation maps
(together with moments of the corresponding shot-noise maps) obtained filtering modes
` > 8000.

Figure 12: Left : fractional difference of first-order and beyond-Born lensing convergence
power spectra. Black dashed line shows the analytical expectation for Planck 2013 cosmology.
Red bullet points show the binned version of this curve. Simulation results are displayed in
blue. Bullet points show the mean value inside each bin while error bars accounts from the
error on the mean itself. Right : analytical and simulation estimate of the rotation power
spectrum (top) and their fractional difference (bottom).
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Figure 13: Top: map of the κML field (left) and of κML− κ1st (right). Bottom: PDF of the
maps of the top panel (left). The dashed black line shows the Gaussian approximation to the
PDF defined by the variance of κ1st. The fractional difference between the PDF of κML and
κ1st is shown in the right panel. Beyond-Born corrections tend to reduce the higher order
moments of the PDF.

5.2 Lensing rotation corrections

One of the most characteristic signs of beyond-Born corrections is the introduction of an
image rotation field. In Fig. 12 we show the comparison between the analytical expectation
for the rotation power spectrum and the result extracted from the simulation. We note that,
despite the procedure devised to define the band-limits for the Poisson equation resolution
(see Sec. 4.1) was gauged on the estimation the κ field, ω is recovered with a similar level
of accuracy. The results of the simulation agree to better than 5% at all scales and to bet-
ter than 1% on scales around the rotation power spectrum peak. The largest discrepancy
with analytical results can be observed at large angular scales (` . 50). Few factors may
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Figure 14: Higher order moments of 1-point PDF of κ (left) and ω (right) maps including
power only on angular scales ` < `cut−off . Negative values are shown with empty markers.
Typical values for a shot-noise realization in these fields are shown in green.

be the reason of this discrepancy on top of the uncertainties in modeling of the non-linear
matter power spectrum. Analytical results have in fact been derived in flat-sky and using
the Limber approximation, which becomes less accurate in these regimes. At the same time
additional correlation may be introduced by boxsize replication during the map-making step
of the algorithm (see Sec. 3.2) and the excess might be related to this procedure.
Similarly to what we did in the previous section, we investigated whether the variance mea-
sured in the map matched the one computed from the theoretical Cωω` . We found that this
number agrees within 10%, with a contribution of the shot noise of 1% or less. On the
contrary, if we look at the 1-point PDF of the ω map in Fig. 15 we can see that the field is
significantly non-Gaussian and the observed distribution is peaked and with long tails (see
table 1 for the moments of the distribution). Unlike the convergence case, where higher
order moments never exceed a value of 1, the level of non-Gaussianities is significant. This
is an additional source of possible discrepancies with the analytical calculations that so far
have not addressed the impact of non-Gaussianities in the ω field alone. The skewness of
the ω map is much smaller than its kurtosis. For this reason we suppose that the major
contribution to the rotation field non-Gaussianities may come from the trispectrum. Since a
large and positive trispectrum is usually sign of highly non-linear and local effects [82], this
signature might be related to the presence of massive and clustered halos in the maps that
cause deviations from the purely weak lensing regime. This hypothesis should however be
investigated quantitatively with dedicated tests and we leave this analysis to future work.
We finally note that the typical level of kurtosis expected for a shot-noise realization follow-
ing the model used in Sec. 4.4 can account for 30-40% of the amplitude of the kurtosis (see
table 1). However, a simple analysis of the scale dependency of the kurtosis analogous to the
one of the previous section showed that the shot-noise contribution is negligible (few percent)
up to scales ` ≈ 2000 where the kurtosis is already significant and equal to 2 (see Fig. 14).
Despite the prospect of measuring ω from the reconstruction of curl-deflections of CMB lens-
ing are not promising [27, 83] - and thus analysis of its non-Gaussianities might not seem
useful for upcoming experiments - we note that a curl-like deflection is very efficient in gen-
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erating B-modes [84] and might leave a detectable imprint on top of the standard lensing
B-modes signal generated by the gradient mode. In particular, in the context of CMB lens-
ing, a significant level of non-Gaussianities in the curl mode may affect the estimators used
to reconstruct the CMB lensing and the curl deflection potential from CMB maps [85, 86].
These in fact look for non-Gaussian signatures in the CMB maps left by lensing assuming
the potentials are Gaussian. A first analysis of this aspect for the CMB lensing potential
reconstruction has been reported in [36]. A more detailed analysis might be important to
understand the ultimate precision limit with which the lensing-induced contribution to the
CMB B-modes signal can be subtracted from the measured signal to enhance the detection
of their primordial counterpart. This is in fact ultimately related to the presence of curl
deflections and to their peculiar statistical properties. [59, 87]. We will discuss these issues
in more details in the following section.
We finally note that despite κ and ω are uncorrelated at first-order and thus Cκω` = 0, these
fields are not independent. They in fact have a non-null κκω mixed bispectrum, as explained
in PL16. We discuss details of this correlation in Sec. 6.

Figure 15: Map of the ω field (left) and its PDF (right). The dashed black line shows the
Gaussian approximation of the PDF defined by the variance of the ω map itself.

6 Lensed CMB beyond-Born approximation

6.1 Methodology

In the previous sections we described the properties of the simulated CMB lensing convergence
and rotation fields including beyond-Born corrections. In this section we use these quantities
to evaluate the impact of beyond-Born corrections on the CMB observables commonly used
to estimate cosmological parameters, i.e. the angular power spectra of its temperature and
polarization anisotropies.
For this purpose, it is convenient to adopt an effective approach where CMB photons undergo
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a single deflection as done in the standard Born approach but using a deflection field deff

synthesized from the κML and ω. The spin-1 E and B harmonic coefficients of this field are

1d
E,eff
`m = −2

κML
`m√

`(`+ 1)
1d

B,eff
`m = −2

ω`m√
`(`+ 1)

. (6.1)

Because the consistency relations between κML and ψ, as well as ω and Ω, are satisfied with
good accuracy (see Sec. 4.2), this is equivalent to using the deff field but minimizing the
impact of residual aliasing. Moreover this procedure is analogous to propagating the CMB
sky through the shells as done in [55]. However, it allows to minimize the numerical effects
induced by the pixel remapping operation that otherwise would have to be performed each
time the ray trajectory is deflected by a lens plane in the multiple lens approach (see discussion
in [55, 74]). A snapshot of the deff field is shown in Fig. 16. For sake of completeness, we note

Figure 16: Magnitude of the deflection field generated from the gradient-like (left) and
curl-like (right) deflections evaluated from the effective lensing and curl potentials of the
DEMNUni simulation.

that when we lens CMB polarization we have to take into account the parallel transport of
the basis of the tangent plane between the unlensed and lensed direction on the 2-sphere each
time a light ray is deflected. This is a direct consequence of the fact that CMB polarization
is a spin-2 field defined on the sphere. The parallel transport operation can be recast as a
rotation of the components of the polarization field after each deflection by a proper angle
δ, which is used to rotate the polarization components back into the initial reference frame.
This angle can be expressed in terms of the deflection field components and the incoming
direction of the light ray [73, 75]. Every time we computed a ray deflection at each lensing
plane in the raytracing, we evaluated at the same time the corresponding rotation angle δ(i),
and then updated subsequently a global effective rotation angle δraytracing that describes the
total rotation of the polarization components after the i-th deflection. To compute δ(i), we
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adopted the formulae presented in the appendix of [73] and used the deflection field d(i)

defined in Sec. 3.3. This takes into account the incidence angle and the actual deflection
at the plane crossing and it is equal to the effective displacement of the angular position
of the ray seen by an observer. In the following we will compare δraytracing with the angle
derived solely from the parallel transport of the ray from its unlensed to its final direction.
We compute the latter using the effective displacement described above, and denote this
quantity as δtransport in the following. We will comment more on this point in the following
sections.
Finally, we extracted the deflection field deff−1st using the effective lensing potential recovered
from the first-order convergence. This deflection field is used to derive the lensed CMB power
spectra that serve as a benchmark for the results based on the Born approximation.

6.2 Impact on lensed CMB power spectra

Once we extracted the effective displacement field, we lensed the incoming CMB photons
using the pixel based method implemented in the lenS2HAT code [74] with an oversampling
factor of 8. For these simulations we filtered all the power in the displacement field for scales
` > 8000 and set the band-limit for the unlensed CMB to `CMB

max = 8000. This setup is
sufficient to obtain 0.1% accuracy on the lensed temperature, E and B-modes power spectra
up to ` ≈ 6000 [74].
In order to measure the impact of the beyond-Born corrections, we produced a set of simulated
CMB maps where we lensed 100 independent unlensed Gaussian CMB realizations using
four different deflection fields: deff , deff−grad, deff−curl and deff−1st. deff−grad and deff−curl, in
particular, were computed setting either B or E modes to zero respectively in Eq. (6.1). The
CMB maps lensed with deff−1st are instead used as reference quantities for results based on
the Born approximation. We then compared each of the lensed CMB power spectra computed
with the four different displacements in order to isolate the impact of specific beyond-Born
corrections.
Following [27, 29, 30] we can classify the corrections to the lensed CMB power spectra into
two types. The first involves corrections to the deflection field, which can be further divided
into the contributions coming from the beyond-Born curl and gradient components of the
deflection, or contributions from the higher order correlations of the two effective lensing
and curl potentials. Since the consistency relations are valid, and following the terminology
of PL16, we refer to these higher order effects as κκκ and κκω (or mixed) bispectra. In
our simulations, lensed CMB maps obtained with deff hold all beyond-Born effects coming
from the combined action of both gradient and curl deflections as well as their higher order
correlations κκκ and κκω. deff−grad and deff−curl contain only beyond-Born corrections on the
gradient deflections (including the effect of κκκ bispectrum) and curl deflections respectively.
The second type of beyond-Born corrections affects only the polarization field and it consists
in the rotation of the polarization tensor about its propagation direction by an angle βrotation.
This effect appears when considering gravitational perturbations induced by higher-order
scalar perturbations or vector and tensor perturbations at all perturbative orders [88]. The
total beyond-Born lensed polarization field P̃ ≡ Q̃+ iŨ , where Q and U are the CMB Stokes
parameters, is then related to the unlensed field P as

P̃ (θ) = e−2iβrotation
[
e−2iδtransport

P (θ − deff)
]
. (6.2)

In the following, we denote with the superscript rotation the quantities including this addi-
tional rotation of the lensed polarization field. We measured βrotation from our simulation as
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the additional rotation of the coordinate basis on the sphere observed when performing ray-
tracing with respect to the rotation angle corresponding to the simple parallel transport of the
ray. Following the notation of the previous section, this reads βrotation = δraytracing−δtransport.
Because each CMB realization differs only by the lensing deflection used to lens the CMB, we
can isolate the effect of each type of correction computing simply fractional differences. For
the sake of brevity, we defined ∆x,y

z (CXY` ) as the difference between the lensed CMB power
spectrum CXY` obtained using the x and y deflection fields described above, divided by the
same CMB power spectrum obtained with the z deflection field. In particular, to display all
the beyond-Born corrections we focused on the following quantities:

1. ∆eff,eff−1st
eff−1st (CXY` ) shows the amplitude of all beyond-Born corrections on the deflection

field. These are shown as gray dots in Fig. 17.

2. ∆eff−grad,eff−1st
eff−1st (CXY` ) isolates the impact of the beyond-Born corrections on the deflec-

tion field coming from the convergence and κκκ bispectrum. Red diamonds mark this
contribution in Fig. 17.

3. ∆eff,eff−grad
eff−1st (CXY` ) isolates the impact of the beyond-Born curl deflection corrections as

well as the mixed κκω bispectrum. They are shown as blue squares in Fig. 17.

4. ∆eff+rotation,eff
eff (CXY` ) shows the impact of the polarization rotation only. Fig. 17 shows

this correction as pink dots. Here the superscript eff+rotation means that polarization
rotation effects have been applied on maps lensed with the deff field.

5. ∆eff+rotation,eff−1st
eff−1st (CXY` ) gives the impact of all the beyond-Born corrections with re-

spect to the first-order calculation. These are shown as black dots in Fig. 17.

We note that the ∆x,y
z (CXY` ) quantities do not account for the effects of the convergence

bispectrum due to LSS non-linearities. Because all the deflection fields are extracted from
the same fully non-linear matter distribution of the DEMNUni N-Body simulation, they all
contain the same amount of non-linearities. They differ only by how we model the bending
of the light-ray. Thus, the majority of this contribution of LSS non-Gaussianity is canceled
when computing any ∆x,y

z (CXY` ) quantity.
In Fig. 17 we show the average of the fractional differences of the lensed CMB power spectra
for each component of the beyond-Born corrections computed over 100 different realizations
of unlensed CMB. The beyond-Born deflection corrections on the power spectra reach the
0.2% level at ` ≈ 4000 for TT and TE power spectra. Measuring in detail those corrections
is challenging due to their oscillatory shape and our impossibility to run MC simulations
on a large set of N-body realizations. However, this is not the case for the corrections on
the B-modes power spectrum, because the amplitude of the corrections is larger and reaches
the 0.6% level at ` ≈ 4000. The amplitude of the beyond-Born convergence correction is
consistent in amplitude and shape with the one computed in [29, 30] for the angular scales
considered in these papers.
The contribution induced by curl-like deflection is negligible for the TT, EE and TE power
spectra but is important for the B-modes and accounts for 30% of the signal at small angular
scales. Thus, it cannot be neglected for an accurate analysis of the signal at ` & 1000.
Moreover, we confirm the findings of [29] concerning the impact of the κκω correction to

the B-modes power spectrum. In particular the difference between ∆eff,eff−grad
eff−1st (CBB` ) and
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the quantity CBB,eff−curl
` /CBB,eff−1st

`
9, which accounts for the curl deflection without the

contribution of κκω, is negligible for all practical purposes as discussed in the next section.
Furthermore, the amplitude of the βrotation correction on the polarization power spectra looks
negligible up to ` ≈ 6000, similarly to the recent analytical findings of [89]. We postpone a
more detailed discussion on this subject to Sec. 6.4.
In Fig. 18 and Fig. 19 we show a direct comparison of the results of our simulations with
the analytical predictions of [30] (hereafter MFDD). We found a good agreement between
those and our results for the beyond-Born deflection corrections including both the curl and
gradient components on all TT, EE and, in particular, for BB power spectra. In Fig. 18
we also show a comparison to the predictions adopting the non-perturbative method of [29]
for the TT and EE power spectra. This approach leads to a suppression of roughly a factor
of 2 of the corrections at small angular scales. However, on the TT power spectrum the
difference between the two analytical results is practically unobservable on all scales. On
the other hand, on the EE power spectrum, we can clearly observe a better agreement
with the non-perturbative theoretical predictions of [29] at ` & 2200. We note that both
the theoretical predictions shown in Fig. 19 include all the matter perturbations at z ≤
1100, while simulations include contributions from structures located at z ≤ 99. The good
agreement of the theoretical and numerical results shows that the contribution of structures
located at z ≥ 99 to the beyond-Born signal is negligible.
Because beyond-Born corrections become more important at progressively smaller angular
scales, via numerical simulations we were able to investigate them in more detail at `� 3000.
At these scales, the signal receives contributions from matter perturbations on scales where
the fitting formulae for the matter power spectrum and bispectrum used in the analytic
calculations are less accurate. We found that the beyond-Born deflection corrections reach
the 1% level at ` ≈ 6000 for all TT, EE and BB power spectra.
We finally note that the beyond-Born corrections do not modify the TB and EB power
spectrum at a sensible level. This is expected because lensing preserves parity, and we
verified that this is true even when beyond-Born corrections are included.

6.3 Zooming on lensed B-modes

The B-modes are the most sensitive signal to beyond-Born corrections and, despite some
contribution might become negligible at the power spectrum level, we tried to isolate them
on the map level. The most interesting one is the contribution of the mixed bispectrum κκω
(or, equivalently, ψψΩ). As noted in PL16, two specific contractions of the mixed bispectrum
can contribute to the large scales B-modes power spectrum. Following PL16 and adopting the
flat-sky approximation plus a second order Taylor expansion around the unlensed direction of
Eq. (6.2), we can write the lensed B-modes in Fourier space as the superposition of different
contributions

B̃(`)d
eff

= −
∫

d2`′

(2π)2
E(`′) sin(2ϕ``′)

[
`′ × `Ωeff(`− `′) + (`− `′) · `′ψ(`− `′)

]
− 1

2

∫
d2`1

(2π)2

∫
d2`2

(2π)2
sin(2ϕ`1`)E(`1)[`1 · `2ψ

eff(`2) + `1 × `2Ωeff(`2)]

× [`1 · (`1 + `2 − `)ψ(`− `1 − `2) + `1 × (`2 − `)Ωeff(`− `1 − `2)], (6.3)

9We denote here with CBB,eff−curl
` and CBB,eff−1st

` the B-modes power spectrum obtained with deff−curl

and deff−1st respectively.
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Figure 17: Impact of beyond-Born corrections on the lensed CMB power spectra with
respect to the first-order results (gray). Error bars show the standard deviation of 100 Mon-
tecarlo realization of lensed CMB sky using the DEMNUni lightcone and different unlensed
CMB sky. Single contributions to the total correction on C` coming from the different compo-
nents of the beyond-Born correction are highlighted in different colours. Polarization rotation
corrections are derived using the βrotation angle measured from the simulation (see Sec. 6.2).

Figure 18: Comparison of the analytical predictions of beyond-Born corrections of [30]
(black dashed) with numerical simulations of this work (solid dots) for the CMB temperature
(left), E-modes (right) power spectra. Error bars correspond to the MC mean dispersion.
The results of the non-perturbative calculations of [29] are shown as black solid lines. The
agreement between simulations and theoretical predictions is very good and improves when
including the non-perturbative results for the E-modes power spectra at small scales.

where ϕ``′ is the angle between the two Fourier modes ` and `′. The last equation corrects
a sign for the first-order Ω(`) term reported in the published version of PL16 that was
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Figure 19: Comparison of the analytical predictions of beyond-Born corrections on the B-
modes power spectrum of [30] (dashed black) with numerical simulations of this work (solid
dots). Error bars correspond to the MC mean dispersion. The top right and bottom panels
show the absolute value of the contributions to the lensed B-modes power spectrum extracted
from the simulations, and negative points are denoted with an empty dot. In the top right
panel we show the contributions induced by the curl deflections alone (cyan) and by the
previously neglected ΩΩψ bispectrum contribution. Additional higher-order contributions
to the lensed B-modes coming from contractions of the mixed bispectrum ψψΩ are shown
in the bottom panels. The so-called correlation term (Eq. (6.5)) is shown on the bottom
left panel while the so-called mixed term (Eq. (6.6)) is shown in the bottom right panel.
The theoretical predictions of the B-modes signal induced by Gaussian curl deflections alone
derived using the PL16 formalism and the CΩΩ

` extracted from the simulations is shown as
a black dotted line. B-modes generated by tensor perturbations having r = 10−6 are shown
as dashed black lines for reference in the top right and bottom panels.

later corrected in the latest version of the paper submitted to the arXiv10. We identify
with B̃(`)d

eff−grad
, B̃(`)d

eff−curl
, B̃(`)d

eff−1st
the B-modes obtained setting to zero the Ω or ψ

respectively in the deflection field or using the first-order lensing potential ψ1st, as explained
in the previous section. With these quantities in mind and assuming ψ and Ωeff are nearly
Gaussian, we can isolate the two contributions of the mixed bispectrum κκω to the B-modes

10version 3 or later at https://arxiv.org/abs/1605.05662
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power spectrum computing the following power spectra

∆ψΩ(`) ≡ B(`)eff −B(`)eff−grad −B(`)eff−curl (6.4)

CBB,corr
` = 〈B(`)∗,eff−gradB(`′)eff−curl〉 ∝ 〈ψψΩ + ψΩΩ

+ ψψΩΩ〉 ≈ 〈ψψΩ〉+ higher order (6.5)

CBB,mixed
` ≡ CBB,ψψΩ

` = 〈∆ψΩ(`)∗B(`′)eff−grad〉 ∝ 〈ψψΩ + ψΩψψ〉. (6.6)

CBB,ψΩΩ
` = 〈∆ψΩ(`)∗B(`′)eff−curl〉 ∝ 〈ψΩΩ + ψΩΩΩ〉. (6.7)

where we dropped the specific `-dependencies in the higher order terms to simplify the
notation. Following the convention adopted in PL16, we refer to CBB,corr

` as the correlation

term, and to CBB,mixed
` as the mixed term. In addition to these terms, we isolated an

additional contribution to the B-modes, CBB,ψΩΩ
` , which is related to the ψΩΩ bispectrum.

All these terms are shown in Fig. 20 together with the B-modes signal induced by the curl
deflection alone. CBB,corr

` and CBB,mixed
` can be compared with the results shown in Fig. 11 of

[27]. The mixed bispectrum contribution exceeds the signal induced by the curl deflections
alone, and displays an amplitude and a characteristic sign inversion at around ` ≈ 1500
in agreement with the findings of PL16. The CBB,corr

` term shows a good agreement with
PL16 for 150 ≤ ` ≤ 1500. At ` ≤ 150 we get a much higher contribution with respect
to the analytical results but we cannot disentangle if the discrepancy is due to numerical
errors in the analytical calculations or boxsize effects in our lightcone construction. The
sign of CBB,corr

` at 1500 . ` . 2000 disagrees with analytical prediction but the discrepancy
is driven by the higher order terms contributing to our measurements. The contribution
coming from ψΩΩ bispectrum is in fact non negligible and if we properly subtract it, we
recover a qualitative agreement with PL16. The situation is different for CBB,mixed

` . In

fact, if we consider ψ and Ω as Gaussian fields and recall that CψΩ
` = 0, the higher order

term 〈ψeffΩeffψeffψeff is approximately 0, providing thus a cleaner measurement of the mixed

bispectrum contribution. The same reasoning applies to CBB,ψΩΩ
` . Given their amplitude, we

do not expect any of these terms to affect significantly the inflationary B-modes estimation.
In fact, they partly cancel at large scales, besides their contribution being further suppressed
if a delensing procedure reducing the contribution of the ψ-related signal is applied. The
dominant contribution that can affect the estimation of r after delensing comes from the
presence of curl mode in the deflection. This generates a signal as high as the one produced by
primordial tensor perturbations with an amplitude r . 10−6 at ` ≈ 80, where the primordial
B-modes signal is expected to peak. This level of contamination is far from the sensitivity
of any future experiment proposed so far, but might affect any attempt to extract the tilt of
the primordial tensor perturbations power spectrum nT because those measurements require
an accurate lensing B-modes subtraction at smaller angular scales.

6.4 The impact of polarization rotation

Recently, two independent groups investigated the effect of the polarization rotation correc-
tions on lensed CMB power spectra. MFDD adopted a next-to-leading order formalism in
the light-cone gauge, and found that βrotation = ω up to second order in scalar perturbations.
This result seems to confirm the guess of [88] that derived the same result if deflections are
induced by vector or tensor perturbations at linear order, but speculated on its validity at
higher order in scalar perturbations. Conversely, [89] (hereafter LHC) adopted a different
approach based on the geometry of parallel transport, and found that βrotation is too small
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to have a significant impact on lensed CMB power spectra.
In Sec. 6.2 we showed that the polarization rotation correction computed using the βrotation

extracted from our simulations is essentially an unobservable effect. In Fig. 20 we show a
comparison of the power spectrum of βrotation with the power spectrum of the lensing rotation
field ω extracted from our simulations. These should be equal in the MFDD approach. On
the other hand, LHC predicted the power spectrum βrotation to have a negative power-law
shape and an amplitude between 10−16 and 10−22 going from large to small angular scales

(see Fig. 6 in [89] or Fig. 21). The Cβ
rotationβrotation

` of our simulations differs from both these
predictions when computed on the full sky. It is in fact dominated by numerical noise at large
angular scales but displays an excess of power at ` & 1000 approaching the result of MFDD
while keeping a systematically lower amplitude. We verified that this result was stable with
respect to the choice of the raytracing resolution at 15% level. However, an accurate inspec-
tion of our βrotation maps showed us that the technique used to compute βrotation produces
values of the polarization rotation angle roughly 1000 times higher than the typical r.m.s of
the map for pixels located close to the poles. This effect is clearly unphysical, because the
βrotation field should be isotropic. Such systematic effect at the poles generated ringing in
harmonic domain, and was the responsible of the highly oscillatory behaviour of the full sky

Cβ
rotationβrotation

` . In order to mitigate these artifacts, we decided to mask the pixels having

colatitude 0 < θ < θcut and θcut < θ < π−θcut when computing Cβ
rotationβrotation

` . As it can be
seen in Fig. 20, once we masked a modest sky fraction around the poles (e.g. θcut = 0.5deg ),

Cβ
rotationβrotation

` changed significantly. This value remained stable at ` . 4000 if we masked
larger areas around the poles. This new result disagrees clearly with the results of MFDD. On

the other hand, in Fig. 21 we show a comparison between this new trend of Cβ
rotationβrotation

`

and the predictions of LHC. Despite a difference in the amplitude of βrotation of roughly

one order of magnitude, our measurement of Cβ
rotationβrotation

` shows a qualitative agreement
with the shape of LHC results. We also recover with good agreement the prediction of the
cross-correlation power spectrum between βrotation and ω (see Fig. 21). Despite this good
qualitative agreement, the fact that the results are sensitive to the details of the processing of
the maps suggests that a more precise measurement of βrotation might require a redefinition
of the technique used to isolate this effect. We plan to investigate this problem in more detail
in future work.
Keeping in mind the caveat just outlined and for the sake of completeness, we also checked
explicitly the validity of the calculations of MFDD for the lensed CMB power spectra. To
this purpose, we rotated the lensed CMB simulations described in the previous sections by
the lensing rotation angle ω extracted from the simulations, instead of βrotation. In Fig. 20
we show that this might indeed become the dominant effect on the power spectrum level,
and could increase the amplitude of the correction to 6% on the E-modes and to 11% on the
B-modes power spectrum at ` ≈ 6000. In Fig. 20 we also show a comparison of these results
with the theoretical prediction derived in MFDD for the polarization rotation correction.
In this scenario, the residual contribution to the large scale B-modes increased with respect
to the results shown in Fig. 19, and could reach the level of r ≈ 10−5. This value is still
below any foreseeable experimental target. We stress that this test does not validate the
βrotation = ω result of MFDD (which is disfavoured in light of the results discussed above),
but only their calculations of the lensed CMB power spectra at the correct perturbative level
if βrotation = ω.
Finally we note that the polarization rotation correction does not contribute to any isotropic

– 33 –



parity breaking that would create non-zero TB and EB correlations, because both ω and
βrotation have effectively zero mean11.

Figure 20: Top left: Cβ
rotationβrotation

` extracted from the simulation. We show the results
computed on the full sky and the one derived masking progressively larger regions around the

poles. Because Cβ
rotationβrotation

` = Cωω` according to [28], we show Cωω` of the simulations for
reference. Top right: residual B-modes signal induced by the curl deflection and polarization
rotation correction derived from simulations assuming βrotation = ω (purple). In the same
panel we show the signal generated by tensor perturbations with r = 10−5 and by curl deflec-
tions alone for reference. Bottom: impact of the beyond-Born corrections to the total lensed
E-modes (left) and B-modes (right) power spectrum assuming βrotation = ω. The results of
the simulations are shown as solid dots. The contributions of beyond-Born corrections to
the deflection field are shown as a black dashed line, and, in particular, we show the pertur-
bative results for the B-modes (see Fig. 19) and the non-perturbative one for the E-modes
(see Fig 18). The contribution of the polarization rotation alone is shown as a dashed blue
line. The total correction corresponding to the sum of deflection and polarization rotation
corrections is shown as a dashed green line. The binned version of this curve is shown with
red markers.

11An analogous mechanism can arise in the context of CMB polarization experiments if the orientation of
polarized detectors on the sky is misestimated [90].

– 34 –



Figure 21: Comparison between the predictions of [89] for Cβ
rotationβrotation

` (left) and

Cβ
rotationω

` cross-correlation (right) with the results of our simulations. Empty dots and
dashed line denote negative values. The error bars on the right panel correspond to the error
on the mean computed in each bin of multipoles.

6.5 Detection perspectives

The future generation of CMB experiments, such as CMB-S4, will produce high resolution
maps of CMB polarization over a large fraction of the sky (nearly 50%). Assuming the level
of signal extracted from our simulations, these corrections might not be negligible [91]. We
expect that for an experiment similar to [22], with 1.4µK-arcmin polarization sensitivity,
1 arcmin FWHM angular resolution, and observing a range of angular scales 30 ≤ ` ≤
5000, beyond-Born correction on TT, EE and BB power spectra could be measured with
a cumulative signal to noise ratio (S/N) of 4.8, 0.5, 0.7 respectively, if we consider both
the βrotation and deflection corrections extracted from the simulations (as well as the same
input cosmology used for the N-body simulation12. Even in the most optimistic case where
βrotation = ω (and thus the impact of the total beyond-Born corrections on the polarization
power spectra is higher), the S/N for the corrections on EE and BB power spectra would be
1.4 and 2.2, respectively. Thus, in practice, a robust detection of post-Born corrections on
the lensed CMB power spectra will be challenging as will highly depend on the capability to
control the impact of extragalactic foreground to the required level of precision and accuracy.
This is true especially for the TT power spectrum, where both the signal and the extragalactic
contaminations are more important. We note that a realistic forecast of the detectability of
these corrections is also complicated by the uncertainties in the modeling of the non-linear
matter power spectrum and by degeneracies with other cosmological parameters affecting
the CMB small-scale power (see e.g. [91] for a discussion on post-Born correction and Neff

measurement).
A direct detection of the corrections on the Cκκ` , or a direct reconstruction of the lensing curl
potential Ω, will be extremely challenging for upcoming experiments [27, 83]. For the curl
potential extracted from the simulations, in particular, the cumulative signal to noise for its

12We assumed a Gaussian covariance for the B-modes power spectrum degraded by a scale-independent
factor 1.2 to take into account the non-Gaussian component of the covariance introduced by weak lensing
[92]).
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direct reconstruction will only be 1.2, assuming a simplified Gaussian reconstruction noise as
in [93]. Given the amplitude of the effect measured in the simulation, the detection of any
βrotation contribution on lensed CMB power spectra is not feasible. We discuss this issue in
more detail in appendix C.

7 Conclusions

In this paper we presented an improvement of the raytracing algorithm through N-body sim-
ulations for CMB lensing presented in [55]. The modified method propagates the full CMB
lensing jacobian, deflecting light rays trajectories using a similar multiple-lens approach.
The improved numerical efficiency of the algorithm made possible a detailed analysis of the
second-order lensing effects due to the relaxation of the Born approximation on the con-
vergence, shear and lensing rotation fields at arcsecond resolution on the full sky. We also
improved the setup of the N-body simulation of [55] employing a simulation with larger box-
size and resolution included in the DEMNUni suite [45, 66].
We tested the robustness of our method against resolution effects in the raytracing and in
the N-body simulation used in this work, as well as against the number of employed lens
planes finding no evidence of numerical artifacts.
We showed that the effect of beyond-Born corrections on the statistical properties of both
the κ and ω field 1-point PDF and power spectra, as well as on non-Gaussian statistics. We
found a good agreement with theoretical predictions of [27] for the beyond-Born Cκκ` and
Cωω` power spectra and a qualitative confirmation that the beyond-Born corrections tend to
suppress the amount of non-Gaussianity in the κ field. However, we decided to postpone a
quantitative characterization of the κκκ and κκω bispectrum to future works.
We then used the lensing observables extracted from our raytracing simulation to evaluate
the effect of beyond-Born corrections on the lensed CMB power spectra up to ` ≈ 6000. We
compared these findings with recent analytical predictions including beyond-Born deflection
corrections of [29, 30], finding a very good agreement in the range of angular scales consid-
ered in that work (` . 3500) in particular for the B-modes power spectrum. We also found
that the non-perturbative approach of [29], which predicts a suppression of the amplitude
of beyond-Born corrections on lensed temperature and E-modes power spectra at ` & 2000,
describes the results of the simulation better than the calculations of [30]. We showed, for
the first time in the literature, the impact of the κωω bispectrum on the lensed B-modes
power spectrum, and found it to be comparable to the contribution of the curl-mode in the
deflection field at ` & 1000.
In addition, we measured the second-order gravitational rotation of CMB polarization, βrotation

directly from the simulations. Our results indicate that the impact of βrotation on lensed CMB

power spectra is negligible as found recently by [89]. We compared Cβ
rotationβrotation

` and the

cross-correlation Cβ
rotationω

` measured in our simulations with theoretical predictions of [30]
and [89]. Despite some differences in amplitude for both these observables still remain, we
found a good qualitative agreement with the prediction of [89]. We recovered the shape

and sign inversion of Cβ
rotationω

` and found a good qualitative agreement with the shape and

amplitude of Cβ
rotationβrotation

` once we masked the region around the poles of the βrotation

map in the power spectrum computation. These pixels present in fact an anomalously high
contribution which we interpreted as a consequence of a limitation of our approach to extract
βrotation. Because this effect is small and a direct reconstruction of βrotation field is essen-
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tially unfeasible, we decided to postpone the design of a more accurate simulation method of
βrotation to future work.
Finally, we discussed the possibility to detect the beyond-Born signatures with future high
sensitivity and high resolution CMB polarization experiments, such as CMB-S4. We showed
that the corrections to the temperature power spectrum could be detected with good sig-
nificance, although the extragalactic foregrounds will act as the main (probably definitive)
obstacle. The situation for the detection of beyond-Born corrections to E and B-modes power
spectra is conversely more challenging as the expected signal to noise is less than 2.
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A Weak lensing consistency relations

The full-sky magnification matrix can be written as

Aij = (1− κ)δKij − γij + ωεij

= δKij −
∑
`m

(
ψ`m∇i∇jY`m + Ω`mε

k
j∇i∇kY`m

)
, (A.1)
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where γij is a symmetric traceless tensor,

γij =

(
−γ1 −γ2

−γ2 γ1

)
, (A.2)

ωεij is the anti-symmetric part of Aij and (1 − κ)δKij is the non-zero trace part. The last
equality follows from the definition of Eq. (2.4). Comparing the identities in Eq. (A.1) and
applying the relations between derivatives of scalar and spin-s spherical harmonics of [62],
we get

κ =
1

2

∑
`m

`(`+ 1)ψ`mY`m (A.3)

ω =
1

2

∑
`m

`(`+ 1)Ω`mY`m (A.4)

γ ≡ γ1 ± iγ2 =
1

2

∑
`m

√
(`+ 2)!

(`− 2)!
(ψ`m ± iΩ`m)±2 Y`m. (A.5)

Being γ a spin-2 field, we can decompose it into E and B modes and therefore the following
relations between the harmonic coefficients hold:

Eγ`m ≡
1

2

√
(`+ 2)!

(`− 2)!
ψ`m, Bγ

`m ≡
1

2

√
(`+ 2)!

(`− 2)!
Ω`m. (A.6)

We can then easily obtain the relations between convergence (κ), rotation (ω), shear E (ε)
and B-modes (β) and lensing and curl-potential angular power spectra [62]:

Cκκ` =
1

4
`2(`+ 1)2Cψψ` , (A.7)

Cωω` =
1

4
`2(`+ 1)2CΩΩ

` , (A.8)

Cεε` =
1

`2(`+ 1)2

(`+ 2)!

(`− 2)!
Cκκ` , (A.9)

Cββ` =
1

`2(`+ 1)2

(`+ 2)!

(`− 2)!
Cωω` . (A.10)

The cross-spectra Cεβ` , Cωκ` , Cκβ` , Cωε` and Cψ
∗Ω

` are all zero at first order in perturbation
assuming that the Universe is statistically parity invariant [59]. Other cross spectra combi-
nation can be computed from the relations of harmonic coefficients provided above. Finally,
note that at small scales the factor

lim
`→∞

1

`2(`+ 1)2

(`+ 2)!

(`− 2)!
≈ 1, (A.11)

tends to one, thus the κ and ε and β and ω describe the same quantity [33, 59, 63].
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B Partial derivatives of an arbitrary spin-s field

Starting from spin-s spherical harmonics we can define their even and odd combination as
harmonics

sF
±(θ, φ) =

sY`m(θ, φ)± (−1)s −sY`m(θ, φ)

2
(B.1)

If we consider the case of a spin-1 field and dropping the (θ, φ) dependency for clarity we can
write an explicit expression for 1F

± applying the spin raising and lowering operators defined
in [94]

1F
+(θ, φ) =

−1√
`(`+ 1)

(∂θY`m(θ, φ)) =
−1√
`(`+ 1)

(∂θP`m(θ)`me
imφ) (B.2)

1F
−(θ, φ) =

m√
`(`+ 1)

Y`m(θ, φ)

sin θ
=

m√
`(`+ 1)

P`m(θ)`me
imφ

sin θ
(B.3)

where P`m(θ) are the scalar associated Legendre polynomials. In the following we dropped
the s index to identify scalar quantities. We recall that the harmonics sF

±
`m can be recast in

terms of spin-s associated Legendre polynomials sP`m(θ)

sF
±
`m(θ, φ) =sP

±
`m(θ)eimφ (B.4)

where sP
±
`m(θ) are odd and even combinations of the polynomials in analogy with Eq. (B.1).

We recall that for a spin-s complex field sη(θ, φ) = R(θ, φ) + iI(θ, φ) we have

R(θ, φ) = (−1)H
∑
`m

(sF
+
`m(θ, φ) sE`m + isF

−
`m(θ, φ) sB`m) (B.5)

I(θ, φ) = (−1)H
∑
`m

(sF
+
`m(θ, φ) sB`m − isF−`m(θ, φ) sE`m) (B.6)

where H defines the arbitrary right-handed and left handed polarization convention. We
assume H=1 in the following. In case of spin-1 field and assuming harmonic coefficients of
Eq. 3.1 we get

R(θ, φ) = −
∑
`m

(1P
+
`m(θ)ψ`m

√
`(`+ 1))eimφ =

∑
`m

∂θψ`mY`m ≡ ∂θψ(θ, φ) (B.7)

I(θ, φ) = i
∑
`m

(1P`m(θ)−ψ`m
√
`(`+ 1))eimφ (B.8)

=
∑
`m

im

sin θ
P`m(θ)

1√
`(`+ 1)

√
`(`+ 1)ψ`me

imφ ≡ 1

sin θ
∂φψ(θ, φ)

thus the derivatives of this spin-1 field give

∂θR(θ, φ) =
∂2

∂θ2
ψ(θ, φ) (B.9)

∂φR(θ, φ) =
∂2

∂φ∂θ
ψ(θ, φ) (B.10)

∂θI(θ, φ) =
∂

∂θ

(
1

sin θ
∂φψ(θ, φ)

)
(B.11)

∂φI(θ, φ) =
1

sin θ

∂2

∂φ2
ψ(θ, φ) (B.12)
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These are the expression of the partial derivatives of a spin-1 field computed by the S2HAT

routines used in this work. If the quantities in Eq. B.10 and B.12 are renormalized by
an additional factor 1/ sin θ we obtain the normalized version of the derivatives needed to
compute the magnification matrix.

C Detection of polarization rotation in future experiments

The direction dependent polarization rotation βrotation mimics the effect of a direction-
dependent cosmological birefringence process [95, 96], which generates coupling of CMB
harmonic coefficients E`m and B`′m′ with ` 6= `′,m 6= m′. Thus, future experiments aiming
at constraining parity violating processes - or primordial magnetic fields that can generate
anisotropic polarization rotation in the CMB - might have to deal with the beyond-Born
signal as a potential contaminant. The level of βrotation expected from the raytracing does
not seem to be of any concern. However, we checked if this was the case if βrotation = ω.
In order to compare the beyond-Born rotation signal with the expected sensitivity of future
experiments to anisotropic birefringence processes, we converted the observed level of vari-
ance of our ω map into the power spectrum amplitude Kαα of an equivalent scale invariant
anisotropic birefringence process α, i.e. `(` + 1)Cαα` /2π = Kαα = constant. This class of
models is commonly used in the literature to provide upper limits on anisotropic birefringence
and can be easily related to the amplitude of a scale invariant primordial magnetic field that
could source these kind of effect through Faraday rotation as [97, 98]

B1Mpc = 2.1× 102
( ν

30GHz

)2√
KααnG. (C.1)

In particular we found

Kαα =

∑5000
`=30

2`+1
4π Cωω`∑5000

`=30
2`+1

2`(`+1)

≈ 0.003 deg2 B1Mpc ≈ 4.8nG, (C.2)

where we included in the calculation only the scales measured by our CMB-S4-like setup.
The best constraint to date on Kαα has been set by the POLARBEAR experiment [99]
who reported a null detection of Kαα = 0.33 deg2 and a 95% confidence level upper limit
of Kαα ≤ 1.0 deg2. CMB-S4 is expected to improve the error bars on Cαα` by almost three
orders of magnitude [22] and constrain B1Mpc ≤ 0.6nG at 95% CL. Thus, this level of signal
might affect birefringence measurements in the upcoming years.
We also considered the possibility of accurately measuring βrotation in this case through ded-
icated EB and TB anisotropic birefringence estimators [96, 100] and found that the cumula-
tive S/N of those will be around 2. However, recently proposed complementary techniques
to measure rotation through radio galaxies polarization might also help in this process [101].
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[51] P. Fosalba, E. Gaztañaga, F. J. Castander and M. Manera, The onion universe: all sky
lightcone simulations in spherical shells, MNRAS 391 (Nov., 2008) 435–446, [0711.1540].

[52] M. Petkova, R. B. Metcalf and C. Giocoli, GLAMER - II. Multiple-plane gravitational
lensing, MNRAS 445 (Dec., 2014) 1954–1966, [1312.1536].

[53] A. Petri, Mocking the weak lensing universe: The LensTools Python computing package,
Astronomy and Computing 17 (Oct., 2016) 73–79, [1606.01903].

[54] S. Das and P. Bode, A Large Sky Simulation of the Gravitational Lensing of the Cosmic
Microwave Background, ApJ 682 (July, 2008) 1–13, [0711.3793].

[55] M. Calabrese, C. Carbone, G. Fabbian, M. Baldi and C. Baccigalupi, Multiple lensing of the
cosmic microwave background anisotropies, JCAP 3 (Mar., 2015) 49, [1409.7680].

– 43 –

https://doi.org/10.1103/PhysRevD.94.043519
https://arxiv.org/abs/1605.01392
https://doi.org/10.1103/PhysRevD.93.121301
https://arxiv.org/abs/1604.08578
https://arxiv.org/abs/1608.03169
https://doi.org/10.1111/j.1365-2966.2011.20023.x
https://arxiv.org/abs/1110.4894
https://doi.org/10.1111/j.1365-2966.2007.12615.x
https://arxiv.org/abs/0706.0849
https://doi.org/10.1046/j.1365-8711.1999.02714.x
https://doi.org/10.1046/j.1365-8711.1999.02714.x
https://arxiv.org/abs/astro-ph/9810063
https://doi.org/10.1111/j.1365-2966.2009.14746.x
https://doi.org/10.1111/j.1365-2966.2009.14746.x
https://arxiv.org/abs/0810.4145
https://arxiv.org/abs/1701.02739
https://doi.org/10.1088/1475-7516/2013/09/004
https://arxiv.org/abs/1305.0829
https://doi.org/10.1088/1475-7516/2016/07/034
https://arxiv.org/abs/1605.02024
https://doi.org/10.1086/164709
https://doi.org/10.1086/308384
https://arxiv.org/abs/astro-ph/9901191
https://doi.org/10.1051/0004-6361:20077217
https://arxiv.org/abs/astro-ph/0702031
https://doi.org/10.1051/0004-6361/200811054
https://arxiv.org/abs/0809.5035
https://doi.org/10.1093/mnras/stt1352
https://doi.org/10.1111/j.1365-2966.2008.13910.x
https://arxiv.org/abs/0711.1540
https://doi.org/10.1093/mnras/stu1860
https://arxiv.org/abs/1312.1536
https://doi.org/10.1016/j.ascom.2016.06.001
https://arxiv.org/abs/1606.01903
https://doi.org/10.1086/589638
https://arxiv.org/abs/0711.3793
https://doi.org/10.1088/1475-7516/2015/03/049
https://arxiv.org/abs/1409.7680


[56] M. Bartelmann, TOPICAL REVIEW Gravitational lensing, Classical and Quantum Gravity
27 (Dec., 2010) 233001, [1010.3829].

[57] A. Lewis and A. Challinor, Weak gravitational lensing of the CMB, Physics Reports 429
(June, 2006) 1–65, [astro-ph/0601594].

[58] C. Carbone, V. Springel, C. Baccigalupi, M. Bartelmann and S. Matarrese, Full-sky maps for
gravitational lensing of the cosmic microwave background, MNRAS 388 (Aug., 2008)
1618–1626, [0711.2655].

[59] C. M. Hirata and U. Seljak, Reconstruction of lensing from the cosmic microwave background
polarization, Phys. Rev. D 68 (Oct., 2003) 083002, [astro-ph/0306354].

[60] U.-L. Pen, L. Van Waerbeke and Y. Mellier, Gravity and Nongravity Modes in the
VIRMOS-DESCART Weak-Lensing Survey, ApJ 567 (Mar., 2002) 31–36,
[astro-ph/0109182].

[61] T. S. Pereira, C. Pitrou and J.-P. Uzan, Weak-lensing B-modes as a probe of the isotropy of
the universe, A&A 585 (Jan., 2016) L3, [1503.01127].

[62] W. Hu, Weak lensing of the CMB: A harmonic approach, Phys. Rev. D 62 (Aug., 2000)
043007, [astro-ph/0001303].

[63] A. Stebbins, Weak Lensing On the Celestial Sphere, ArXiv Astrophysics e-prints (Sept., 1996)
, [astro-ph/9609149].

[64] B. Li, L. J. King, G.-B. Zhao and H. Zhao, An analytic ray-tracing algorithm for weak
lensing, MNRAS 415 (July, 2011) 881–892, [1012.1625].

[65] C. Vale and M. White, Simulating Weak Lensing by Large-Scale Structure, ApJ 592 (Aug.,
2003) 699–709, [astro-ph/0303555].

[66] E. Castorina, C. Carbone, J. Bel, E. Sefusatti and K. Dolag, DEMNUni: the clustering of
large-scale structures in the presence of massive neutrinos, JCAP 7 (July, 2015) 43,
[1505.07148].

[67] C. Carbone, A. Mangilli and L. Verde, Isocurvature modes and Baryon Acoustic Oscillations
II: gains from combining CMB and Large Scale Structure, JCAP 9 (Sept., 2011) 028,
[1107.1211].

[68] E. Di Valentino and A. Melchiorri, Planck constraints on neutrino isocurvature density
perturbations, Phys. Rev. D 90 (Oct., 2014) 083531, [1405.5418].

[69] V. Springel, The Cosmological simulation code GADGET-2, Mon. Not. Roy. Astron. Soc. 364
(2005) 1105–1134, [astro-ph/0505010].

[70] M. Viel, M. G. Haehnelt and V. Springel, The effect of neutrinos on the matter distribution as
probed by the Intergalactic Medium, JCAP 1006 (2010) 015, [1003.2422].

[71] V. Springel, M. White and L. Hernquist, Hydrodynamic Simulations of the Sunyaev-Zeldovich
Effect(s), ApJ 549 (Mar., 2001) 681–687, [astro-ph/0008133].

[72] S. Das and J. P. Ostriker, Testing a New Analytic Model for Gravitational Lensing
Probabilities, ApJ 645 (July, 2006) 1–16, [astro-ph/0512644].

[73] A. Lewis, Lensed CMB simulation and parameter estimation, Phys. Rev. D 71 (Apr., 2005)
083008, [astro-ph/0502469].

[74] G. Fabbian and R. Stompor, High-precision simulations of the weak lensing effect on cosmic
microwave background polarization, A&A 556 (Aug., 2013) A109, [1303.6550].

[75] A. Challinor and G. Chon, Geometry of weak lensing of CMB polarization, Phys. Rev. D 66
(Dec., 2002) 127301, [astro-ph/0301064].

– 44 –

https://doi.org/10.1088/0264-9381/27/23/233001
https://doi.org/10.1088/0264-9381/27/23/233001
https://arxiv.org/abs/1010.3829
https://doi.org/10.1016/j.physrep.2006.03.002
https://doi.org/10.1016/j.physrep.2006.03.002
https://arxiv.org/abs/astro-ph/0601594
https://doi.org/10.1111/j.1365-2966.2008.13544.x
https://doi.org/10.1111/j.1365-2966.2008.13544.x
https://arxiv.org/abs/0711.2655
https://doi.org/10.1103/PhysRevD.68.083002
https://arxiv.org/abs/astro-ph/0306354
https://doi.org/10.1086/338576
https://arxiv.org/abs/astro-ph/0109182
https://doi.org/10.1051/0004-6361/201527258
https://arxiv.org/abs/1503.01127
https://doi.org/10.1103/PhysRevD.62.043007
https://doi.org/10.1103/PhysRevD.62.043007
https://arxiv.org/abs/astro-ph/0001303
https://arxiv.org/abs/astro-ph/9609149
https://doi.org/10.1111/j.1365-2966.2011.18754.x
https://arxiv.org/abs/1012.1625
https://doi.org/10.1086/375867
https://doi.org/10.1086/375867
https://arxiv.org/abs/astro-ph/0303555
https://doi.org/10.1088/1475-7516/2015/07/043
https://arxiv.org/abs/1505.07148
https://doi.org/10.1088/1475-7516/2011/09/028
https://arxiv.org/abs/1107.1211
https://doi.org/10.1103/PhysRevD.90.083531
https://arxiv.org/abs/1405.5418
https://doi.org/10.1111/j.1365-2966.2005.09655.x
https://doi.org/10.1111/j.1365-2966.2005.09655.x
https://arxiv.org/abs/astro-ph/0505010
https://doi.org/10.1088/1475-7516/2010/06/015
https://arxiv.org/abs/1003.2422
https://doi.org/10.1086/319473
https://arxiv.org/abs/astro-ph/0008133
https://doi.org/10.1086/504032
https://arxiv.org/abs/astro-ph/0512644
https://doi.org/10.1103/PhysRevD.71.083008
https://doi.org/10.1103/PhysRevD.71.083008
https://arxiv.org/abs/astro-ph/0502469
https://doi.org/10.1051/0004-6361/201321575
https://arxiv.org/abs/1303.6550
https://doi.org/10.1103/PhysRevD.66.127301
https://doi.org/10.1103/PhysRevD.66.127301
https://arxiv.org/abs/astro-ph/0301064


[76] I. Hupca, J. Falcou, L. Grigori and R. Stompor, Spherical harmonic transform with gpus, in
Euro-Par 2011: Parallel Processing Workshops, pp. 355–366, Springer, 2012.

[77] M. Szydlarski, P. Esterie, J. Falcou, L. Grigori and R. Stompor, Parallel Spherical Harmonic
Transforms on heterogeneous architectures (GPUs/multi-core CPUs),
arXiv:astro-ph/1106.0159 (June, 2011) , [1106.0159].

[78] G. Fabbian, M. Szydlarski, R. Stompor, L. Grigori and J. Falcou, Spherical Harmonic
Transforms with S2HAT (Scalable Spherical Harmonic Transform) Library, in Astronomical
Data Analysis Software and Systems XXI (P. Ballester, D. Egret and N. P. F. Lorente, eds.),
vol. 461 of Astronomical Society of the Pacific Conference Series, p. 61, Sept., 2012.

[79] P. F. Muciaccia, P. Natoli and N. Vittorio, Fast Spherical Harmonic Analysis: A Quick
Algorithm for Generating and/or Inverting Full-Sky, High-Resolution Cosmic Microwave
Background Anisotropy Maps, ApJ Letters 488 (Oct., 1997) L63–L66, [astro-ph/9703084].

[80] D. Varshalovich, A. Moskalev and V. Khersonskĭı, Quantum Theory of Angular Momentum:
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