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ABSTRACT
The clustering ratio is defined as the ratio between the correlation function and the variance of
the smoothed overdensity field. In � cold dark matter (�CDM) cosmologies without massive
neutrinos, it has already been proven to be independent of bias and redshift space distortions
on a range of linear scales. It therefore can provide us with a direct comparison of predictions
(for matter in real space) against measurements (from galaxies in redshift space). In this paper
we first extend the applicability of such properties to cosmologies that account for massive
neutrinos, by performing tests against simulated data. We then investigate the constraining
power of the clustering ratio on cosmological parameters such as the total neutrino mass
and the equation of state of dark energy. We analyse the joint posterior distribution of the
parameters that satisfy both measurements of the galaxy clustering ratio in the SDSS-DR12,
and the angular power spectra of cosmic microwave background temperature and polarization
anisotropies measured by the Planck satellite. We find the clustering ratio to be very sensitive
to the CDM density parameter, but less sensitive to the total neutrino mass. We also forecast
the constraining power the clustering ratio will achieve, predicting the amplitude of its errors
with a Euclid-like galaxy survey. First we compute parameter forecasts using the Planck
covariance matrix alone, then we add information from the clustering ratio. We find a significant
improvement on the constraint of all considered parameters, and in particular an improvement
of 40 per cent for the CDM density and 14 per cent for the total neutrino mass.

Key words: neutrinos – cosmological parameters – dark energy – large-scale structure of
Universe.

1 IN T RO D U C T I O N

Present-time as well as forthcoming galaxy surveys, while on the
one hand will allow us to reach unprecedented precision on the
measurement of the galaxy clustering in the universe, on the other
hand will challenge us to produce more accurate and reliable predic-
tions. The effect of massive neutrinos on the clustering properties
of galaxies, that in the past has been either neglected or considered
as a nuisance parameter, is nowadays regarded as one of the key
points to be included in the cosmological model in order for it to
reach the required accuracy. At the same time, while allowing for
more realistic predictions of cosmological observables, this process
also helps in shedding light on some open issues of fundamental
physics, such as the neutrino total mass or the hierarchy of their
mass splitting.

� E-mail: matteo.zennaro90@gmail.com

From the experimental measurements of neutrino flavour oscil-
lations, particle physics has been able to draw a constraint on the
mass splitting of the massive eigenstates of neutrinos, and set a
lower bound to the total neutrino mass, Mν = ∑

mν,i � 0.06 eV at
95 per cent level (Gonzalez-Garcia et al. 2012; Forero, Tórtola &
Valle 2014; Gonzalez-Garcia, Maltoni & Schwetz 2014; Esteban
et al. 2017).

On the other hand, the absolute scale of magnitude of neutrino
masses is still an open issue. Beta decay experiments such as the
ones carried out in Mainz and Troitsk have set as an upper limit at
95 per cent level on the electron neutrino mass of m(νe) < 2.2 eV
(Kraus et al. 2005). While future experiments like Katrin project
much higher sensitivities, on the order of 0.2 eV (Bonn et al. 2011),
present-day cosmology can already intervene in the debate about
neutrino mass.

Since neutrinos are light and weakly interacting, they decou-
ple from the background when still relativistic. Therefore, even
at late times they are characterized by large random velocities
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that prevent them from clustering on small scales. As a conse-
quence, neutrinos introduce a characteristic scale-dependent and
redshift-dependent suppression of the clustering, whose ampli-
tude depends on the value of their mass. In fact, the presence
of massive neutrinos influences the evolution of matter overden-
sities in the universe, depending on their mass. There have been
a large number of works extensively studying the interplay be-
tween cosmology and neutrino physics (see, for instance, Lesgour-
gues & Pastor 2006, 2012, 2014, and references therein). More-
over, in addition to the many constraints already obtained with
present-day cosmological data (see, for example, Cuesta, Niro &
Verde 2016; Vagnozzi et al. 2017), future surveys prospect even
more exciting results (Carbone et al. 2011b; Archidiacono et al.
2017).

As we aim to describe the clustering of galaxies in cosmologies
with massive neutrinos, we have to cope with the description of
the galaxy–matter bias. As a matter of fact, galaxies do not directly
probe the matter distribution in the universe, being in fact a discrete
sampling of its highest density peaks. We choose to describe galaxy
clustering through a recently introduced observable that, on suffi-
ciently large scales, does not depend on the galaxy–matter bias, the
clustering ratio (Bel & Marinoni 2014).

In standard � cold dark matter (�CDM) cosmologies, this ob-
servable has already been proved to be a reliable cosmological probe
for constraining cosmological parameters, being particularly sensi-
tive to the amount of matter in the universe, as shown in Bel et al.
(2014).

In this work we aim at studying how the clustering properties of
galaxies are modified by the presence of neutrinos, and in partic-
ular we want to extend the clustering ratio approach to cosmolo-
gies including massive neutrinos. By proving that this observable
maintains its properties, we want to exploit it to constrain the total
neutrino mass.

This paper will be organized as follows. In Section 2 we will
introduce the statistical observable we are going to use, the clus-
tering ratio, and its properties. We will show why this observable
can be considered unaffected either by the galaxy–matter bias on
linear scales and redshift-space distortions, and we will introduce
its estimators.

In Section 3 we will describe the effects of massive neutrinos
on the matter and galaxy clustering. We will introduce the ‘Dark
Energy and Massive Neutrino Universe’ (DEMNUni) simulations,
the set of cosmological simulations we use to test the properties
of the clustering ratio in a cosmology with massive neutrinos. Fi-
nally we will show that the properties of the clustering ratio hold
as well in cosmologies that include massive neutrinos, in particu-
lar confirming the independence of the clustering ratio from bias
and redshift-space distortions on linear scales in the DEMNUni
simulations.

Section 4 is devoted to presenting our results. We use measure-
ments of the clustering ratio in the Sloan Digital Sky Survey Data
Release 7 and 12 to draw a constraint on the total neutrino mass and
on the equation of state of dark energy. In particular we study the
joint posterior distribution of the parameters of the model, including
Mν and w, obtained from the clustering ratio measurement and the
latest cosmic microwave temperature and polarization anisotropy
data from the Planck satellite.

2 C LUSTERING R ATIO

In order to describe the statistical properties of the matter distribu-
tion in the universe, we use the overdensity field

δ(x, t) = ρ(x, t)

ρ̄(t)
− 1, (1)

where ρ(x, t) is the value of the matter density at each spatial
position, while ρ̄(t) represents the mean density of the universe.

This is assumed to be a random field with null mean. Information
on the distribution must therefore be sought in its higher order
statistics, such as the variance σ 2 = 〈δ2(x)〉c and the two-point
autocorrelation function ξ (r) = 〈δ(x)δ(x + r)〉c of the field. Here
〈·〉c denotes the cumulant moment, or connected expectation value
(Fry 1984).

In this work we will always consider the matter distribution
smoothed on a certain scale R by evaluating the density contrast
in spherical cells, i.e.

δR(x) =
∫

δ(x′)W
( |x − x′|

R

)
d3x′, (2)

where W is the spherical top-hat window function. As a conse-
quence, the variance and correlation function will be smoothed on
the same scale, and will be denoted σ 2

R and ξR(r).
An equivalent description of the statistical properties of the mat-

ter field can be obtained in Fourier space in terms of the matter
power spectrum. Starting from the Fourier transform of the matter
overdensity field,

δ̂(k) =
∫

d3x
(2π)3

e−ik·x δ(x), (3)

the matter density power spectrum is defined according to

〈δ̂(k1)δ̂(k2)〉 = δD(k1 + k2)P (k1), (4)

while the adimensional power spectrum can be written as
	2(k) = 4πP(k)k3. The variance and correlation function of the
matter field are linked to its power spectrum, representing in fact
different ways of filtering it. The variance is the integral over all the
modes, modulated by the Fourier transform of the filtering function
Ŵ ,

σ 2
R =

∫ ∞

0
	2(k)Ŵ 2(kR) d ln k, (5)

and the correlation function is, in addition, modulated by the zeroth
order spherical Bessel function j0(x) = sin (x)/x,

ξR(r) =
∫ ∞

0
	2(k)Ŵ 2(kR)j0(kr) d ln k. (6)

The explicit expression of Ŵ (kR) is

Ŵ (kR) = 3

kR
j1(kR) = 3

sin(kR) − kR cos(kR)

(kR)3
. (7)

Unfortunately, in practice, we are not able to directly access the mat-
ter power spectrum. The reason is that the galaxies we observe do
not directly probe the distribution of matter in the universe. In fact,
they represent a discrete biased sampling of the underlying matter
density field and the biasing function is, a priori, not known. A way
to overcome this problem is to refine the independent measurements
of the bias function through weak lensing surveys. Otherwise, one
can parametrize the bias adding additional nuisance parameters to
the model and, consequently, marginalize over them.

A completely different approach, however, is to seek new sta-
tistical observables, which can be considered to be unbiased by
construction. This is the path followed by Bel & Marinoni (2014)
by introducing the clustering ratio,

ηR(r) ≡ ξR(r)

σ 2
R

, (8)
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that is the ratio of the correlation function over the variance of the
smoothed field.

We assume that the relation between the matter density contrast
and the galaxy (or halo) density field is a local and deterministic
mapping, which is regular enough to allow a Taylor expansion (Fry
& Gaztanaga 1993) as

δg,R = F (δR) �
N∑

i=1

bi

i!
δi
R. (9)

Moreover we assume the growth of fluctuations to occur hierarchi-
cally (see Bernardeau et al. 2002; Bel & Marinoni 2012), so that
each higher order cumulant moment can be expressed according to
powers of the variance and two-point correlation function,

〈δn
R〉c = Snσ

2(n−1)
R ,

〈δn
i,Rδm

j,R〉c = CnmξR(r)σ 2(n+m−2)
R , (10)

the former applying to the one-point statistics and the latter to the
two-point ones.

It has been shown by Bel & Marinoni (2012) that the bias func-
tion only modifies the clustering ratio of galaxies at the next order
beyond the leading one and that it is not sensitive to third-order
bias

ηg,R(r) � ηR(r) + 1

2
c2

2ηR(r)ξR(r)

−
{

(S3,R − C12,R)c2 + 1

2
c2

2

}
ξR(r), (11)

where c2 ≡ b2/b1. By choosing a sufficiently large smoothing scale,
the higher order contribution in equation (11) becomes negligible
and we obtain

ηg,R(r) = ηR(r), (12)

meaning that in this case the clustering ratio of galaxies can be
directly compared to the clustering ratio predicted for the matter
distribution.

The local biasing model is not the best way of describing the bias
function between matter and haloes/galaxies (Mo & White 1996;
Sheth & Lemson 1999; Somerville et al. 2001; Casas-Miranda et al.
2002). It can be improved by introducing a non-local component
depending on the tidal field. However, it has been shown by Chan,
Scoccimarro & Sheth (2012) and by Bel, Hoffmann & Gaztañaga
(2015) that, when dealing with statistical quantities which are av-
eraged over all possible orientations, then the non-local component
is degenerate with the second order bias c2, thus expression (11)
remains valid and we do not consider non-local bias in our analysis.

On linear scales, the clustering ratio is expected to be indepen-
dent from redshift. Since, in a �CDM universe, we can write [nor-
malizing all quantities to the present time variance on the scale
r8 = 8 h−1 Mpc, σ 2

8 (z = 0)] the evolution of the variance and the
correlation function as

σ 2
R(z) = σ 2

8 (z = 0)D2(z)FR

ξR(r, z) = σ 2
8 (z = 0)D2(z)GR(r), (13)

where D(z) is the linear growth factor of matter density fluctuations
and

FR =
∫ ∞

0 	2(k)Ŵ 2(kR) d ln k∫ ∞
0 	2(k)Ŵ 2(kr8) d ln k

GR(r) =
∫ ∞

0 	2(k)Ŵ 2(kR)j0(kr) d ln k∫ ∞
0 	2(k)Ŵ 2(kr8) d ln k

,

depend only on the shape of the power spectrum. Hence, the clus-
tering ratio ξR(r)/σ 2

R = GR(r)/FR , does not depend on D(z), which
cancels outs.

In practice, we include weak non-linearities which introduce a
small, but nevertheless detectable, redshift dependence.

Measurements of the clustering of galaxies are not only biased
with respect to predictions for the matter field, but they also are
affected by the peculiar motion of galaxies. This motion introduces
a spurious velocity component (along the line of sight) that distorts
the redshift assigned to galaxies. Since, for the clustering ratio,
we are interested in large smoothing scales and separations, we
can focus on the linear scales, where the only effect is due to the
coherent motion of infall of galaxies towards the overdense regions
in the universe.

We can link the position of a galaxy (or dark matter halo) in real
space to its apparent position in redshift-space. Let us denote r as
the true comoving distance along the line of sight; in redshift space
it becomes

s = r + vp‖ (1 + z)

H (z)
êr , (14)

where vp‖ is the line-of-sight component of the peculiar velocity
and êr is the line-of-sight versor. Considering the Fourier space
decomposition of the density contrast, the relation linking its value
in redshift space to the one in real space (Kaiser 1987) is

δs(k) = (1 + f μ2)δ(k), (15)

where quantities in redshift space are expressed with the superscript
s and μ is the cosine of the angle between the wavemode k and
the line of sight. Here f is the so called growth rate, defined as the
logarithmic derivative of the growth factor of structures with respect
to the scale factor, f ≡ dln D/dln a. Averaging over all angles ϑ ,
the variance and the correlation function in redshift space result
modified by the same multiplicative factor

σ s 2
R = Kσ 2

R

ξ s
R(r) = KξR(r) (16)

where K = 1 + 2f/3 + f2/5 is the Kaiser factor. As a consequence,
the clustering ratio is unaffected by redshift-space distortions on
linear scales. This argument allows us to rewrite the identity (12)
as

ηs
g,R(r) ≡ ηR(r), (17)

meaning that, by properly choosing the smoothing scale R and
the correlation length r, measurements of the clustering ratio from
galaxies in redshift space can be directly compared to predictions
for the clustering ratio of matter in real space.

2.1 Estimators

The clustering ratio can be estimated from count-in-cells, where,
under the assumption of ergodicity, all ensemble averages become
spatial averages. We follow the counting process set up by Bel &
Marinoni (2012), we define the discrete density contrast as

δN,i = Ni

N̄
− 1, (18)

where Ni is the number of objects in the i-th cell and N̄ is the
mean number of objects per cell. The estimator of the variance is
therefore

σ̂ 2
R = 1

p

p∑
i=1

δ2
i (19)
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and the one of the correlation function is

ξ̂R(r) = 1

pq

p∑
i=1

q∑
j=1

δiδj (20)

leading to the definition of the estimator of the clustering ratio as

η̂R(r) = ξ̂R(r)

σ̂ 2
R

. (21)

Throughout this work we will often express the correlation length
r as a multiple of the smoothing scale, i.e. r = nR.

Since we are dealing with a discrete counting process, the shot
noise needs to be properly accounted for. We follow the approach
of Bel & Marinoni (2012) and correct the estimator of the variance
according to

σ̂ 2
R = 〈δ2

n(x)〉 − 1

N̄
= 1

p

p∑
i=1

δ2
i − 1

N̄
, (22)

where N̄ is the mean number of objects per cell. On the other hand,
the correlation function needs no correction, as long as the spheres
do not overlap.

2.2 Effects of massive neutrinos

We introduce massive neutrinos as a subdominant dark matter
component. For simplicity, we consider three degenerate massive
neutrinos, with total mass Mν = ∑

imν,i and present-day neu-
trino energy density in units of the critical density of the universe
�ν,0h2 = Mν/(93.14 eV). The neutrino fraction is usually expressed
with respect to the total matter as fν = �ν/�m. For a more com-
plete treatment of neutrinos in cosmology, we refer the reader to
Lesgourgues & Pastor (2006, 2012, 2014).

Neutrinos of sub-eV mass, which seem to be the most likely
candidates both from particle physics experiments and cosmology,
decouple from the primeval plasma when the weak interaction rate
drops below the expansion rate of the universe, at a time when the
background temperature is around T � 1 MeV. This corresponds to
a redshift 1 + zdec ∼ 109. Since the redshift of their non-relativistic
transition, obtained equating their rest-mass energy and their ther-
mal energy, is given by

1 + znr � 1890
mν,i

1 eV
, (23)

when neutrinos decouple, they are still relativistic. As a conse-
quence, since the momentum distribution of any species is frozen at
the time of decoupling, neutrino momenta keep following a Fermi–
Dirac distribution even after their non-relativistic transition, and
neutrinos end up being characterized by a large velocity disper-
sion. An effective description of the evolution of neutrinos can be
achieved employing a fluid approximation (Shoji & Komatsu 2010).
In this framework we can define a neutrino pressure, pν = wνρνc2,
computed integrating the momentum distribution. Such pressure is
characterized by an effective adiabatic speed of sound (Blas et al.
2014)

cs,i = 134.423 (1 + z)
1 eV

mν,i

km s−1, (24)

that represents the speed of propagation of neutrino density per-
turbations. Such speed of sound defines the minimum scale under
which neutrino perturbations cannot grow, called the free streaming

scale. It corresponds to a wavenumber

kFS(z) =
[

4πGρ̄a2

c2
s

]1/2

=
[

3

2

H 2�m(z)

(1 + z)2c2
s

]1/2

, (25)

or a proper wavelength

λFS = 2πa/kFS. (26)

At each redshift, neutrino density fluctuations of wavelength smaller
than the free streaming scale are suppressed, their gravitational col-
lapse being contrasted by the fluid pressure support. As a conse-
quence, neutrinos do not cluster on small scales and remain more
diffuse compared to the cold matter component.

Neutrino free streaming does not only affect the evolution of
neutrino perturbations, in fact it affects the evolution of all matter
density fluctuations. We can model the growth of matter fluctuations
employing a two-fluid approach (Blas et al. 2014; Zennaro et al.
2017). In this case, the solution of the equations of growth for the
neutrino and cold matter fluids are coupled,⎧⎨
⎩

δ̈cb + Hδ̇cb − 3
2H2�m {fνδν + (1 − fν)δcb} = 0

δ̈ν + Hδ̇ν − 3
2H2�m

{[
fν − k2

k2
FS

]
δν + (1 − fν)δcb

}
= 0,

(27)

where derivatives are taken with respect to conformal time,
dτ = dt/a, and both the Hubble function and the matter density
parameter are functions of time, H = H(τ ) and �m = �m(τ ).

The coupling of these equations requires the evolution of the
CDM density contrast to be scale dependent, unlike in standard
�CDM cosmologies. We therefore expect to find an observable
suppression even in the CDM+baryon power spectrum, starting
from the mode corresponding to the size of the free-streaming scale
at the time of the neutrino non-relativistic transition, knr = kFS(znr),
and affecting all the scales smaller than this one.

3 C LUSTERI NG R ATI O WI TH MASSI VE
N E U T R I N O S

In order to investigate the behaviour of the clustering ratio in cos-
mologies with massive neutrinos, i.e. whether it maintains all the
properties described in Section 2, we analyse the cosmological
simulations DEMNUni, presented in Castorina et al. (2015) and
Carbone, Petkova & Dolag (2016).

These simulations have been performed using the GADGET-III code
by Viel, Haehnelt & Springel (2010) based on the GADGET simulation
suite (Springel et al. 2001; Springel 2005). This version includes
three active neutrinos as an additional particle species.1

The DEMNUni project comprises two set of simulations. The
first one, which is the one considered in this work, includes four
simulations, each implementing a different neutrino mass. Besides
the reference �CDM simulation, which has Mν = 0 eV, the other
ones are characterized by Mν = {0.17, 0.30, 0.53} eV. The second
set includes 10 simulations, exploring different combinations of
neutrino masses and dynamical dark energy parameters.

All simulations share the same Planck-like cosmology, with Hub-
ble parameter H0 = 67 km s−1 Mpc−1, baryon density parameter

1 The simulations do not account for an effective neutrino number Neff > 3,
as possible neutrino isocurvature perturbations which could produce larger
Neff (therefore affecting galaxy and CMB statistics Carbone, Mangilli &
Verde 2011a) are currently excluded by present data (see e.g. Di Valentino
& Melchiorri 2014).
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Table 1. The cosmological parameters that vary among the four DEMNUni
simulations considered in this work, depending on the assumed neutrino total
mass.

�CDM NU0.17 NU0.30 NU0.53

Mν (eV) 0 0.17 0.30 0.53
�c 0.27 0.2659 0.2628 0.2573
σ 8, cc 0.846 0.813 0.786 0.740

�b = 0.05, primordial spectral index ns = 0.96, primordial ampli-
tude of scalar perturbations As = 2.1265 × 109 (at a pivotal scale
kp = 0.05 Mpc−1) and optical depth at the time of recombination
τ = 0.0925. The density parameter of the cold dark matter, �cdm,
is adjusted in each simulation, depending on the neutrino mass, so
that all simulations share the same total matter density parameter
�m = 0.32, see Table 1. Each simulation follows the evolution of
20483 CDM particles and, when present, 20483 neutrino particles,
in a comoving cube of 2 h−1 Gpc side. The mass of the CDM par-
ticle is ∼8 × 1010 h−1 M�, and changes slightly depending on the
value of �cdm. All simulations start at an initial redshift zin = 99
and reach z = 0 with 62 comoving outputs at different redshifts. In
this work we focus on the snapshots at redshift z = 0.485 51 and
z = 1.053 52.

Dark matter haloes have been identified through a Friend-of-
Friends (FoF) algorithm with linking length b = 0.2 and setting the
minimum number of particles needed to form a halo to 32. Thus,
the least massive haloes have mass of about 2.6 × 1012 h−1 M�.
In order to check the stability of our results regarding the choice
of the definition of a halo, we also have access to halo catalogues
where haloes have been identified using spherical overdensities. For
the purpose of this work we constructed halo catalogues in redshift
space by modifying the positions along the z direction according to
the projected velocity (properly converted in length) in that direction
(see equation 14).

Regarding error estimation, as they are very large simulations, a
jackknife method has been implemented by subdividing the box in
64 sub-cubes. The standard error on the measured value of ηR(r) is
then taken to be the dispersion obtained from the jackknife process

σ 2
ηR

= Nj − 1

Nj

Nj∑
i=1

[
ηR,i(r) − η̄R(r)

]2
, (28)

where Nj is the number of jackknife resamplings, in our case Nj = 64.
In the following, we first check the reliability of the clustering

ratio in the presence of massive neutrinos. In particular we are inter-
ested in proving that the identity ηz

R,g(r) ≡ ηR(r) still holds. To this
end, we must prove that the clustering ratio at the scales of interest
does not depend on the galaxy–matter bias (so that we can com-
pare predictions for matter and measurements from galaxies) and
that it is not affected by redshift-space distortions (to be safe when
comparing the real space predictions to measurements obtained in
a galaxy redshift survey).

3.1 Bias sensitivity

In order to test the independence of the clustering ratio from the
bias on linear scales, we divide the dark matter haloes in nine mass
bins, reported in Table 2. The various halo populations evolve in
a different way, therefore they present different biasing functions
with respect to the dark matter field. Thus, we will use the linear
bias bL to characterize each halo sample. In Table 3 we show how
both the FoFs and the spherical overdensities from the simulations

Table 2. Subdivision of the halo catalogues
in mass bins.

Bin Mass range (1012 h−1 M�)

0 0.58 ≤ M < 1.16
1 1.16 ≤ M < 2.32
2 2.32 ≤ M < 3.28
3 3.28 ≤ M < 4.64
4 4.64 ≤ M < 6.55
5 6.55 ≤ M < 9.26
6 9.26 ≤ M < 30
7 30 ≤ M < 100
8 M ≥ 100

populate these mass bins in the simulations. Due to the minimum
number of particle required to identify a halo, the first two mass
bins do not contain any. On the other hand, the only mass limit to
the spherical overdensities is given by the mass resolution of the
simulation, hence all the mass bins are populated.

In Fig. 1 we show the estimated correlation functions of each FoF
sample in the two extreme cases of Mν = 0 eV and Mν = 0.53 eV
(the same holds for the SOs as well).

We also represent the corresponding correlation function of the
cold matter field, which is used to estimate the linear bias bL char-
acterizing each halo sample:

bL ≡
√

ξFoF
R (nR)

ξR(nR)
. (29)

We find that our cut in mass does indeed correspond to different
tracers, with higher bias for higher mass objects. However, such
different halo populations still show a constant bias with respect to
scale, which allows us to fit the measured bias in Fig. 1 with flat
lines.

The independence of the FoF-matter bias from scale is confirmed
also in the massive neutrino case (Fig. 1, right). In particular, we
note here that the bias is generally higher when considering massive
neutrinos. This is due to the fact that, since they smooth the matter
distribution, neutrinos make haloes of a given mass rarer then in a
standard �CDM cosmology.

Secondly we compute the clustering ratio for both the FoFs and
the spherical overdensities at redshift z = 0.485 51 and z = 1.053 52.
In each of these cases, we analyse the �CDM simulation, which
does not include massive neutrinos, and the �CDMν simulations
with Mν = {0.17, 0.30, 0.53} eV. In the two plots in Fig. 2 we show
the clustering ratio for fixed smoothing radius R = 16 h−1 Mpc and
correlation length r = 2R in the same mass bins shown in Table 2
for the FoFs and spherical overdensities respectively. Points are
measurements in the simulations, while lines are the predictions
obtained from the cold matter power spectrum. The ratio between
measurements and predictions is in the bottom panel.

At z = 0.485 51, the measured clustering ratio in the bins with
masses <30.43 × 1012 h−1 M� agrees with the predictions for
the matter at 3 per cent level. Below 100 h−1 M� the agreement
is within 5 per cent. For objects with mass greater than this, we
observe a more scattered trend. We blame a lower statistical robust-
ness, due to fewer objects falling in these mass bins. In any case,
we do not observe any peculiar dependence of the clustering ratio
on the mass of the objects, confirming up to a few per cent accuracy
its independence on the bias at these scales.

At z = 1.053 52, for low-mass haloes (<1012 h−1 M�) the mea-
surements are still compatible with a deviation lower than 3 per cent.

MNRAS 477, 491–506 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/477/1/491/4935185 by Biblioteca di Scienze, U
niversità degli studi di Firenze user on 22 O

ctober 2020



496 M. Zennaro et al.

Table 3. Population of the nine mass bins for the FoF and spherical overdensities with respect to the critical density (SO) at redshift z = 0.485 51 and
z = 1.053 52.

bin 0 bin 1 bin 2 bin 3 bin 4 bin 5 bin 6 bin 7 bin 8

FoF z = 0.485 51 Mν = 0.00 eV 0 0 2902 221 3509 393 2402 274 1708 375 2878 557 758 008 145 410
Mν = 0.17 eV 0 0 3152 025 3178 910 2430 866 1667 315 2712 374 690 356 122 241
Mν = 0.30 eV 0 0 3116 471 3269 324 2263 001 1642 694 2589 654 634 844 104 539
Mν = 0.53 eV 0 0 3273 517 3026 718 2144 285 1501 769 2334 332 532 432 76 127

z = 1.053 52 Mν = 0.00 eV 0 0 2571 902 3039 264 2003 119 1358 767 2044 706 389 064 38 299
Mν = 0.17 eV 0 0 2713 196 2674 546 1958 721 1277 479 1836 860 328 973 28 852
Mν = 0.30 eV 0 0 2620 295 2674 912 1767 015 1218 810 1679 768 283 298 22 244
Mν = 0.53 eV 0 0 2619 539 2335 248 1570 202 1036 782 1386 909 206 588 13 059

SO z = 0.485 51 Mν = 0.00 eV 453 415 2973 241 2783 664 2361 431 1669 494 1210 036 2064 503 527 389 88 178
Mν = 0.17 eV 471 602 2993 986 2904 400 2118 437 1668 026 1166 042 1917 029 470 522 72 097
Mν = 0.30 eV 486 007 2997 527 2842 491 2159 522 1559 049 1112 575 1806 821 424 202 60 046
Mν = 0.53 eV 508 713 3259 563 2582 711 1956 593 1424 500 1014 066 1587 591 343 288 41 497

z = 1.053 52 Mν = 0.00 eV 363 148 2449 897 2433 901 2030 689 1373 779 952 365 1446 087 263 959 22 482
Mν = 0.17 eV 359 806 2376 103 2479 355 1766 898 1330 746 885 172 1280 841 218 832 16 462
Mν = 0.30 eV 354 938 2304 946 2374 992 1750 620 1206 312 819 053 1157 522 184 575 12 287
Mν = 0.53 eV 341 645 2359 735 2069 025 1500 656 1039 892 694 588 932 357 130 319 6 834

Figure 1. Correlation function of haloes identified in the simulation via the FoF halo-finder, in two different cosmologies. The left and right plots show
measurements in the �CDM and �CDMν (with Mν = 0.53 eV) cosmologies, respectively. In both cases, the left-hand panel is at redshift z = 0.485 51 and the
right one at z = 1.05352. In the top panel we show the correlation function measured in the mass bins presented in Table 2 (points) compared to the theoretical

smoothed cold matter correlation function (black solid line). The bottom panel shows the halo-matter bias for the FoF case, computed as b =
√

ξFoF
R (r)/ξR(r).

The linear bias in the simulation with massive neutrinos is larger than in the standard �CDM case, because, as neutrinos suppress structure clustering, massive
haloes become rarer. We fit the bias values with a straight line between R = 16 and 22 h−1Mpc. As the fit shows, the linear bias is compatible with the
scale-independent theoretical prediction.

However, the high-mass bins exhibit a stronger and systematic de-
pendence (with respect to the z ∼ 0.5 case), which seems to de-
pend on the neutrino mass. Despite the fact that in this large-mass
regime halo clustering might suffer from exclusion effects (Manera
& Gaztañaga 2011), leading to sub-Poisson shot noise, the observed
trend can be qualitatively predicted. Since the halo–halo two-point
correlation of regions which will eventually form haloes can be
predicted (assuming spherical collapse) in the initial configuration
of the density field, and given that the mass function is known, we
can derive the mass-dependence of the biasing coefficients and pre-
dict the halo two-point correlation function at a given redshift (see
Desjacques, Jeong & Schmidt 2016, for a detailed review). Within
this framework we obtain a prediction of the mass dependence of

the clustering ratio that qualitatively matches the trend observed in
Fig. 2. We use this as a diagnostic to make sure that we are well
within the mass range in which the clustering ratio is accurately
predicted. We conclude that this effect becomes worrisome only for
tracers with M > 3 × 1013 h−1 M� at redshift z ∼ 1 (correspond-
ing to tracers with linear bias around 3), while we are ultimately
interested in galaxies, whose masses and typical Lagrangian sizes
are by far smaller and whose redshift is mainly around z ∼ 0.5. As
a consequence, we can safely neglect this effect in the rest of our
present analysis.

As confirmed by Fig. 2 we find similar results for both the FoFs
and the SO, and therefore such results do not depend on the tracer
we choose to observe.
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Constraints from clustering ratio with neutrinos 497

Figure 2. Dependence of the clustering ratio on the mass of haloes identified via FoF (left-hand panel) and spherical overdensity (SO, right-hand panel) at
redshift z = 0.485 51 and z = 1.053 52 for all the neutrino masses. The smoothing radius is R = 16 h−1 Mpc and the correlation length is twice the smoothing
radius. Symbols with error bars show measurements in the simulations, while solid lines represent the theoretical expectation for the cold matter. In the bottom
panel we show the relative difference between the measurements and theoretical predictions, the shaded area represents a −5, +5 per cent deviation.

Finally, we claim that the clustering ratio is insensitive to the
bias on linear scales in a cosmology including massive neutrinos
irrespective of either the mass of the tracer or the nature of the tracer
itself or the total mass of neutrinos considered. This allows us to
directly compare real-space predictions of the matter clustering ratio
with real-space measurements of the clustering ratio of any biased
matter tracer, i.e. ηg, R(r) ≡ ηR(r).

3.2 Redshift space

In redshift space, as described in Section 2, the apparent position
of galaxies is modified according to the projection of their peculiar
velocity along the line of sight. This effect distorts the clustering
properties of the distribution and we thus expect its correlation
function and variance to be affected. However, we do not expect
redshift-space distortions to affect the clustering ratio on linear
scales (equation 17) as the effect cancels out into the ratio. In order
to verify the accuracy of this approximation we created the redshift
space catalogues of the FoFs and spherical overdensities in the
simulations, moving the positions of the tracers along an arbitrary
direction, chosen as the line-of-sight direction.

Having shown that the clustering ratio does not depend on the
way we define the haloes nor on their mass tracer, from now on
we focus on the dark matter halo catalogues identified with the FoF
algorithm and we compare the two extreme cases of Mν = 0 eV
and Mν = 0.53 eV. Note that we use the Mν = 0 simulation as
a reference for comparisons, since it has already been shown that
these properties are valid when neutrino are massless (see Bel &
Marinoni 2014; Bel et al. 2014).

Fig. 3 shows, at the scales of interest, the independence of the
clustering ratio from redshift-space distortions. The ratio between
measurements of the clustering ratio in redshift and in real space
is of order 1, either with and without massive neutrino, both at
z = 0.485 51 and z = 1.053 52.

In particular we show that we recover the results already obtained
in other works (Bel & Marinoni 2012) in the �CDM case. In the
case including massive neutrinos we find an agreement between

Figure 3. The clustering ratio smoothed on the scale R and at correlation
length r = nR, n = 2 as a function of the smoothing scale. We show in
red the measurements in the �CDM simulation and in blue the ones in the
simulation with the highest neutrino mass, Mν = 0.53 eV, which represent
the two extreme cases for the neutrino mass considered in this work. Filled
dots are measurements in real space, while empty dots represent redshift
space measurements. In the bottom panel the ratio between the clustering
ratio in redshift space over the real space case is shown. Since on linear
scales the monopole contribution coming from redshift-space distortions
enhances the correlation function and the variance by the same multiplicative
factor, we expect the clustering ratio to be unaffected. The ratio between
redshift and real space measurements is, in fact, of order 1 with an accuracy
better than 3 per cent. This trend is confirmed from measurements at redshift
z = 1.053 52 (right), being the matter growth more linear at higher redshifts.

redshift and real space measurements at 3 per cent level at redshift
z = 0.485 51 and at better than 1 per cent on scales R � 16 h−1 Mpc
at z = 1.053 52. In this case the accuracy is higher at higher redshift
as the growth of structures is more linear.
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Moreover we note that the agreement with predictions is better
for the simulation with massive neutrinos with respect to the �CDM
one. This is due to the fact that massive neutrinos lower the matter
fluctuations (see the values of σ 8, cc in Table 1) and therefore tend to
reduce the velocity dispersion, resulting in redshift-space distortions
that are more into the linear regime.

We therefore propose to use the clustering ratio as a cosmological
probe to constrain the parameters of the cosmological model. As a
matter of fact, the analysis of the simulations has shown that the
clustering ratio, besides being independent from the matter tracer
and the bias, is not affected by redshift-space distortions on linear
scales. This implies that equation (17), ηs

g,R(r) ≡ ηR , still holds in
the presence of massive neutrinos, allowing us to directly compare
clustering ratio measurements in redshift-survey galaxy catalogues
to the theoretical matter clustering ratio predictions.

4 R ESULTS

4.1 Optimization

In order to estimate and predict the clustering ratio of galaxies, we
need to choose two different scales: the smoothing scale R, i.e. the
radius of the spheres we use for counting objects, and the correlation
length r, that for simplicity we assume to be some multiple of the
smoothing scale, r = nR. Choosing the best combinations of R and
r is vital to maximize the information we can extract from this
statistical tool.

The smoothing scale R controls the scale under which we make
our observable blind to perturbations. A sufficiently large value
of R allows us to screen undesired non-linear effects, that would
compromise the effectiveness of the clustering ratio. On the other
hand, an excessively large smoothing scale can lead to more noisy
measurements, since in the same volume we can accommodate
fewer spheres. Moreover, if R is too large, the entire signal would
be screened and the measurement would become of little interest.

Also for the correlation length, choosing small values of R and n
implies coping with small-scale non-linearities, which risk to inval-
idate the identity expressed in equation (17). Large values of corre-
lation distances, however, would make it difficult to accommodate
enough couples of spheres in the volume to guarantee statistical ro-
bustness. An additional constraint comes from the strategy we adopt
to fill the volume with spheres and perform the count-in-cells. In
this framework, if the correlation length is below twice the smooth-
ing scales, r < 2R, the spheres of our motif of cells would overlap,
resulting in an additional shot-noise contribution. For this reason,
we only allow values of n ≥ 2.

The main information we want to extract is the total neutrino
mass. The sensitivity of the clustering ratio to this parameter can be
quantified as an effective signal-to-noise ratio, defined as

S/N = ην
R(r) − η�

R (r)

σ�
R

, (30)

where ην
R(r) is the clustering ratio measured in a simulation with

neutrino mass Mν , η�
R (r) is measured in the reference �CDM sim-

ulation and σ�
R is the uncertainty on the clustering ratio measured in

the �CDM simulation. This quantity estimates how much a massive
neutrino cosmology is distinguishable from a �CDM one, given the
typical errors on the measurements of the clustering ratio for the
specific volume and number density of tracers, as a function of R
and r. Fig. 4 shows the (n, R) plane, constructed as a grid with cor-
relation lengths n ∈ [2, 2.75] with step 	n = 0.05 and smoothing
scales R ∈ [15, 30] with step 	R = 1, all distances being expressed

Figure 4. The effect of neutrinos on the clustering ratio compared to a
�CDM cosmology. In the (n, R) plane, we plot colour contours correspond-
ing to (ηR(r, ν) − ηR(r, �CDM)/ση(�CDM). As expected, the sensitivity
to the neutrino total mass increases at small smoothing scales and correlation
lengths (red regions).

in units of h−1 Mpc. At each point on the grid a colour is associated,
representing the value of this effective signal-to-noise ratio. The
effect of massive neutrinos is, as expected, appreciable on small
scales (both small n and small R), and eventually becomes negligi-
ble moving towards large scales. While we want to maximize the
effects of neutrinos, we want to minimize errors. In particular, we
can define a theoretical error, that accounts for the combinations of
smoothing radii R and correlation lengths r where the assumptions
under which we can apply the identity expressed in equation (17)
break down. Such theoretical error can be quantified as

δth = ηR(r) − ηth
R (r)

ση

, (31)

where ηR(r) is the clustering ratio measured in the simulation with a
given cosmology, ηth

R (r) is the prediction obtained with a Boltzmann
code, and ση the uncertainty on the measurements. In Fig. 5 we show
as a colour map the values that we obtain for this theoretical error
in the same (n, R) plan introduced above. We can see that on very
small scales the effect of non-linearities is not negligible, and we
cannot use the clustering ratio as an unbiased observable.

From Figs 4 and 5 we see that we need to balance between the
requirement coming from the signal-to-noise ratio (that is maxi-
mum on small scales), and those from the theoretical errors (that is
minimum on large scales). We introduce, therefore, a way of com-
bining these pieces of information into a single colour map, which
we use to seek the sweet-spots, in this parameter space, where both
conditions are satisfied.

First, we define a combined percentage error (that accounts both
for statistical errors and discrepancies from the model) as

δcombined =
{

ην
R(r) − ην,th

R (r)

ην
R(r) − η�

R (r)

} {
σ�

η

ην
R(r) − η�

R (r)

}
. (32)

The quantity in the first parenthesis is related to how much the
statistical error is important with respect to the effects of neutrinos,
while the second parenthesis is a weight that accounts for the typical
uncertainty on the measurement in each bin of n and R. Finally, we
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Constraints from clustering ratio with neutrinos 499

Figure 5. Discrepancy between the clustering ratio measured in the simu-
lation and the theoretical prediction in the (n, R) plane. Colours represent the
quantity (ηR(r) − ηth

R (r))/σ (r)
R , the blue regions being the ones with the best

agreement with the predictions. Sufficiently large smoothing scales screen
the effects of the non-linear growth of perturbations, allowing us to exploit
the clustering ratio as a cosmological probe. By smoothing our distribution
on scales R > 19 h−1 Mpc, we ensure an agreement with the model better
then ∼1.5 standard deviations.

define the neutrino contrast as

C = S/N

max(S/N)
− δcombined

max(δcombined)
. (33)

Here we have normalized the signal/noise defined in equation (30)
and the combined error defined in equation (32) to their respective
maxima (on the considered grid) and we are interested in finding
the regions where this contrast is dominated by the signal/noise,
i.e. where C(n, R) ∼ 1. In Fig. 6 we show the neutrino contrast on
the (n, R) grid, for the simulation with Mν = 0.17 eV at redshift
z = 0.48551.

We have repeated this analysis for the three massive neutrino
simulations (with Mν = 0.17, 0.30, 0.53 eV) and for different red-
shifts, spanning the range from z = 0.485 51 to z = 2.050 53. Our
conclusion is that the combination R = 22 h−1 Mpc, n = 2.1 is the
most viable candidate for all these cosmologies and redshifts.

4.2 Likelihood

We aim at comparing measurements and predictions of the cluster-
ing ratio, in order to find the set of parameters of the model that
maximizes the likelihood. We exploit the different dependence of
measurements and predictions on the cosmological model. In par-
ticular, the measured value of the clustering ratio depends on the
way we convert redshifts and angles into comoving distances, that
depends on the total matter density �m, on the dark energy fraction
�� and on the background expansion rate H(z).

On the other hand, the theoretical prediction for the clustering
ratio depends on the entire cosmological model and is therefore
sensitive also to the value of the total neutrino mass Mν .

We choose six baseline free parameters in our analysis, namely
the baryon and cold dark matter density parameters �b h2 and
�cdmh2, the Hubble parameter H0, the optical depth at the recom-
bination epoch τ , the amplitude of the scalar power spectrum at

Figure 6. In this colour plot we subtract to the neutrino signal-to-noise
normalized to 1 a combined error normalized in the same fashion. Details
on the definition are in the text. We are interested to regions in the (n,
R) plane where the neutrino signal-to-noise dominates (∼1) on the error
(∼0), graphically visible as hot spots. The region with smoothing scales
20 < R < 23 h−1 Mpc seems to be the most promising. In particular, by
repeating this test for different redshifts and neutrino masses, we chose as
our candidate scales R = 22 h−1 Mpc, n = 2.1.

the pivotal scale As and the scalar spectral index ns. Moreover, we
extend this parametrization with two additional free parameters, the
total neutrino mass Mν and the equation of state of the dark energy
fluid w. The most general vector of parameters therefore is

p = {�bh
2, �cdmh2, H0, τ, As, ns, Mν, w}.

We follow Bel & Marinoni (2014), who showed that the likelihood
function of the clustering ratio (given a fixed set of parameters) is
compatible with being a Gaussian. Therefore we will compute the
logarithmic likelihood as lnL = −χ2/2 (apart from a normalization
term) where

χ2( p) =
∑

i

(ηR,i(r) − ηth
R,i(r))2

σ 2
ηi

, (34)

where we neglect the covariance between the different redshift bins.
We account for the dependence of the measurements on the cos-

mological model assumed, induced by the cosmology-dependant
conversion of redshifts into distances, whenever we compare mea-
surements of the clustering ratio (obtained in the fiducial cosmol-
ogy) to its predictions (in a generic cosmology). That is, when
computing the likelihood for the set of parameters ϑ , we must keep
in mind that the measured value has been computed in a different
cosmology, the one with the fiducial set of parameters ϑF.

We keep the measurements fixed in the fiducial cosmology
and rescale the predictions accordingly. We consider that, due to
Alcock–Paczyński effect, at same redshift and angular apertures we
can associate different lengths depending on cosmology (Alcock &
Paczyński 1979).

Our measurements depend on distances only through the smooth-
ing scale R. This is because the correlation length is always ex-
pressed as a multiple of the smoothing scale, r = nR. This means
that, since the measurement has been obtained in the fiducial
cosmology using spheres of radius RF = 22 h−1Mpc, they need
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to be compared to predictions obtained in a generic cosmology us-
ing a smoothing length R = αRF, where α is our Alcock–Paczyński
correction.

We write the Alcock–Paczyński correction α as (Eisenstein et al.
2005)

α =
[

EF(z)

E(z)

(
DA

DF
A

)2
]1/3

, (35)

where E(z) ≡ H(z)/H0 is the normalized Hubble function and DA

the angular diameter distance. Therefore, we are going to compare

ηF,s
g,R(nR) ≡ ηαR(nαR), (36)

the left-hand side of equation (36) being the clustering ratio of
galaxies measured in redshift space assuming the fiducial cosmol-
ogy, while the right hand side is the predicted clustering ratio for
matter in real space, rescaled to the fiducial cosmology to make it
comparable with observations.

In order to efficiently explore the parameter space we have mod-
ified the public code COSMOMC (Lewis & Bridle 2002), adding a
likelihood function that implements this procedure.

4.3 Constraints using SDSS data

We measure the clustering ratio in the 7th (Abazajian et al. 2009)
and 12th (Alam et al. 2015) data release of the Sloan Digital Sky
Survey (SDSS) by smoothing the galaxy distribution with spherical
cells of radius R and counting the objects falling in each cell. We
divide the sample into three redshift bins that have mean redshifts
z̄ = {0.29, 0.42, 0.60}. The first redshift bin is extracted from the
DR7 catalogue, while the two bins at higher redshift come from the
DR12 catalogue, after removing the objects already present in the
other bin.

To perform the count-in-cell procedure, we convert redshifts into
distances, assuming a cosmology with H0 = 67 km s−1 Mpc−1,
�m = 0.32 and in which we fix the geometry of the universe to
be flat, �k = 0, forcing �� = 1 − �r − �m. Therefore, this is to
be considered our fiducial cosmology. We compute the clustering
ratio using the estimators presented in Section 2.1, employing our
optimized smoothing size and correlation length, R = 22 h−1Mpc
and r = 2.1 R. Our measurements of the clustering ratio in each
redshift bin are

at 0.15 ≤ z ≤ 0.43, ηg,R(r) = 0.0945 ± 0.0067,

at 0.30 ≤ z ≤ 0.53, ηg,R(r) = 0.0914 ± 0.0055,

at 0.53 ≤ z ≤ 0.67, ηg,R(r) = 0.1070 ± 0.0110.

Details on the computation of the clustering ratio and its errors
in the SDSS catalogue can be found in Bel et al. (2015), where,
though, measurements are performed assuming a different fiducial
cosmology.

In Fig. 7 we show, for some relevant parameters, the joint poste-
rior distribution obtained fitting at the same time the Planck temper-
ature and polarization data and the clustering ratio measurements
in SDSS DR7 and DR12, leaving free to vary the six baseline pa-
rameters and the total neutrino mass Mν . Already by eye, adding
the clustering ratio to the CMB information does not seem to im-
prove much the upper bound of the total neutrino mass parameter.
In general, the most significant improvement seems to occur on the
constraint of the cold dark matter density parameter.

Moreover, we have also checked how constraints change when
we leave the equation of state of dark energy, w, as an additional
free parameter. As a matter of fact, w is known to be strongly

Figure 7. Joint posterior distribution obtained using Planck temperature
and polarization data and the clustering ratio measured in SDSS DR7 and
12. We fit a cosmological model with seven free parameters, the six baseline
parameters of Planck and the neutrino total mass, but here only four of them
are shown.

degenerate with the other parameters of the model, when only CMB
data are used. In general, we need information from a geometrical
probe sensitive to the late time universe in order to force physical
solutions. Fig. 8 shows that the clustering ratio is indeed able to
break such degeneracy.

Also the combination of other cosmological probes can help
breaking degeneracies and tightening constraints. For this reason
we compare the constraining power of the clustering ratio to that
of two other observables, the fit of the BAO peak in the correlation
function measured by the BOSS collaboration in the DR11 CMASS
and LOWZ data sets (Anderson et al. 2014) and the lensing of the
CMB signal due to the intervening matter distribution between the
last scattering surface and us, where the amplitude of the lensing
potential, AL, has been kept fixed to 1 (Planck Collaboration XI
2016).

In the first part of Table 4 we show the mean, 68 per cent and
95 per cent levels obtained for the different parameters combining
the likelihoods presented above. To better show the behaviour of
the clustering ratio with respect to the other probes considered, in
Figs 9 and 10, we focus particularly on the parameters w, Mν , and
H0.

In general, adding the clustering ratio considerably improves on
the parameter constraints obtained with CMB data alone, especially
when also w is free to vary. In particular, the clustering ratio is able
to break the degeneracy between w and the other cosmological
parameters, that affects the constraints drawn with the sole CMB
data. The clustering ratio does not, however, seem to improve much
the constraint on the Mν parameter, especially when compared to
probes such as the CMB lensing and the BAO peak position.

The clustering ratio proves to be extremely sensitive to the
cold dark matter fraction �cdmh2, as adding the clustering ratio
to the CMB analysis results in a 12 per cent improvement on the

MNRAS 477, 491–506 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/477/1/491/4935185 by Biblioteca di Scienze, U
niversità degli studi di Firenze user on 22 O

ctober 2020



Constraints from clustering ratio with neutrinos 501

Figure 8. Joint posterior distribution obtained employing CMB temperature and polarization data from Planck and the clustering ratio measurements from
SDSS DR7 and DR12 catalogues. Besides the six standard parameters of the model, also the equation of state of dark energy is left free.

95 per cent confidence level, which goes from 0.119 78 ± 0.002 91
(obtained using Planck data alone) to 0.119 72 ± 0.002 55.

To improve our understanding of the results presented in the
previous section, we investigate how well the clustering ratio allows
us to recover a certain known cosmology.

To this purpose, we use the measurements of the clustering ratio
in one of the DEMNUni simulations, the one with Mν = 0.17 eV,
which represents the closest value to the current available constraints
on the neutrino total mass. The clustering ratio is measured in the
simulation at the same redshifts, and with the same binning, as in
the SDSS data. The error on each measurement in the simulation is
assumed to be the same as SDSS measurements.

The likelihood using the CMB data is computed in this case fixing
the bestfits to the values of the parameters in the cosmology of the

simulation, and employing the covariance matrix contained in the
publicly available Planck data release.

The posterior distribution obtained with this procedure is shown
in Fig. 11, while the second part of Table 4 summarizes the im-
provements on the constraints on the parameters that we obtain
adding the clustering ratio. We correctly recover the bestfits of
our known cosmology, with errors comparable with the true ones.
We conclude that the reason why we did not achieve a significant
improvement on the constraint on the total neutrino mass using
the SDSS data resides in the fact that the clustering ratio requires
smaller error bars to be effective in constraining such parameter.
We can therefore expect that, with upcoming, large galaxy red-
shift surveys, the clustering ratio will reach a larger constraining
power.
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Constraints from clustering ratio with neutrinos 503

Figure 9. Left: Degeneracy between the equation of state of dark energy, w, and the Hubble parameter today H0. Right: Degeneracy between w and the total
neutrino mass Mν . The considered likelihoods are computed using Planck data alone, as well as its combinations with the clustering ratio measured in SDSS
DR7 and 12, the BAO position from SDSS DR11, or both.

Figure 10. Left: Degeneracy between the equation of state of dark energy, w, and the Hubble parameter today H0. Right: Degeneracy between w and the total
neutrino mass Mν . The considered likelihoods are computed using Planck data alone, as well as its combinations with the clustering ratio measured in SDSS
DR7 and 12, CMB-lensing, or both.

We test such an hypothesis in the next section, analysing the
clustering ratio expected for a Euclid-like galaxy redshift survey, in
combination with CMB data.

5 FO R E C A S T S F O R A EU C L I D - L I K E G A L A X Y
REDSHIFT SURV EY

In order to forecast the constraining power of the clustering ra-
tio, expected from a future, Euclid-like galaxy redshift survey, we
construct the synthetic clustering ratio data in the following way:

(i) We imagine to have 14 redshift bins, from z = 0.7 to z = 2,
with 	z = 0.1.

(ii) In each redshift bin, the synthetic measurement of the cluster-
ing ratio is given by the predicted clustering ratio (computed using
a Boltzmann code), to which we add a small random noise (within
1 standard deviation).

(iii) We measure the errors (at the same redshifts) in the DEM-
NUni simulations; the errors in the simulations are then rescaled,
according to the operative formula presented below, to match the
volume and number density of our Euclid-like survey.

The relative error on the clustering ratio depends on the vol-
ume and number density of the sample, and can be parametrized,

following Bel et al. (2015), as

δη

η
= AV −1/2 exp

{
0.14

[
ln ρ − ln2 ρ

2 ln(0.02)

]}
, (37)

where V is the volume expressed in h−3 Mpc3, ρ is the object number
density in h3 Mpc−3 and A is a normalization factor computed with
the reference volume and number density.

We use these data to explore the posterior distribution of the
parameters of the model. The results are shown in Fig. 12, and the
constraints are shown in the last part of Table 4.

The obtained best fits in all cases are compatible within one
standard deviation with the fiducial values that we assumed. In
general, with these synthetic data, there is a much larger improve-
ment on the constraints of all the parameters. The neutrino total
mass parameter goes from a 95 per cent upper limit of <0.431 eV
obtained using the Planck covariance matrix alone, to <0.377 eV
when the information of the clustering ratio is added to the analysis
(∼14 per cent improvement). Most notably, the 95 per cent limits on
the cold dark matter density parameter improve by over 40 per cent,
going from �cdmh2 = 0.119 42 ± 0.002 90 using Planck alone,
to �cdmh2 = 0.119 26 ± 0.001 67 by adding the clustering ra-
tio. Also the spectral index ns goes from 0.959 83 ± 0.009 64
to 0.960 46 ± 0.008 54 (10 per cent improvement with respect to
Planck alone) and the constraint on the Hubble constant H0 goes
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504 M. Zennaro et al.

Figure 11. Joint posterior distribution obtained using Planck temperature
and polarization data combined with clustering ratio measurements. Bestfits
here are fixed, errors for Planck come from the publicly available covariance
matrix, errors on clustering ratio measurements have been computed in the
case of SDSS DR7 and DR12 data. Four of the seven free parameters are
shown.

from 66.665 88 ± 1.384 64 to 66.982 61 ± 1.122 63 (20 per cent
improvement over Planck alone).

This means that, when new data, covering a larger volume, will be
available, clustering ratio measurements are expected to contribute
with a significant improvement on the constraints on the parameters
of the cosmological model.

We also note that, as more different observations are carried out,
it becomes very interesting to enhance the constraining power of the
clustering ratio also combining its measurements in different data
sets. This can be easily done since the clustering ratio is a single
measurement, thus scarcely dependent on the survey geometry.

6 SU M M A RY A N D C O N C L U S I O N

Neutrino effects are being increasingly included in cosmological
investigations, becoming in fact part of the standard cosmological
model. Thanks to these investigations, the description of the statis-
tical properties of the universe is gaining the precision required by
forthcoming experiments and, at the same time, neutrino physics
gains tighter constraints.

In this work we have considered the clustering ratio, an observ-
able defined as the ratio between the smoothed correlation function
and variance of a distribution, and extended its range of applica-
bility to cosmologies that include a massive neutrino component.
As a matter of fact, the clustering ratio, which has already been
tested in �CDM cosmologies including only massless neutrinos, is
unbiased and independent from redshift-space distortions on linear
scales. As massive neutrinos introduce characteristic scale depen-
dencies in the clustering of galaxies (and matter), such peculiar
properties of the clustering ratio needed to be confirmed (or denied)
in this cosmological framework.

We divided our analysis into two steps: first, we studied the
properties of the clustering ratio in simulations that include massive

neutrinos; afterwards, we used the clustering ratio to compute the
likelihood of the parameters of the cosmological model, using both
real data and forecasts of future data.

In the first part of this work, we employed the DEMNUni simula-
tions to test the clustering ratio in the presence of massive neutrinos.
These are the largest available simulations that include massive neu-
trinos as a separate particle species along with cold dark matter. We
computed the clustering ratio using different tracers (dark matter
FoF haloes and spherical overdensities), divided into different mass
bins (spanning the interval from ∼6 × 1011 to � 1014 h−1 M�), and
we explore different choices of neutrino mass (Mν = {0, 0.17, 0.3,
0.53} eV) in real and redshift space.

From such analysis we conclude that the properties of the clus-
tering ratio hold also in cosmologies with massive neutrinos. In
particular its main property, the fact that the galaxy clustering ratio
in redshift space is directly comparable to the clustering ratio pre-
dicted for matter in real space on a range of linear scales, is proven
valid.

We have therefore moved to employing the clustering ratio as
a cosmological probe to find the set of parameters of the model
that maximizes the likelihood function, given a set of data. We
have used the data from the SDSS DR7+DR12 catalogue. We have
computed the clustering ratio in three redshift bins and used these
measurements in combination with the temperature and polariza-
tion anisotropies of the CMB measured by the Planck satellite to
explore the likelihood in parameter space with an MCMC approach.
We find that the clustering ratio is able to break the degeneracy,
present in the CMB data alone, between the equation of state of
dark matter, w, and the other parameters. Moreover it improves the
95 per cent limit on the CDM density parameter by ∼12 per cent,
going from 0.119 78 ± 0.002 91 (obtained using Planck data alone)
to 0.119 72 ± 0.002 55. However, we do not find an appreciable
improvement in the constraint on the neutrino total mass.

By analysing simulations we conclude that we blame such lack
of improvement on the statistical errors, which, with current data,
are not yet competitive enough. We have therefore tested the con-
straining power of the clustering ratio using the error bars expected
from a Euclid-like galaxy survey.

In this case we find that the clustering ratio greatly improves the
constraint on the CDM density parameter, shrinking the 95 per cent
limit from a typical error of ±0.002 90 (using CMB data alone)
to ±0.001 67, which corresponds to a ∼40 per cent improvement.
Also the constraints on all the other free parameters improve, for
example the 95 per cent limit on the Hubble parameter H0 shrinks by
20 per cent (from ±2.6 to ±2.2). Finally, it is also able to improve the
95 per cent upper bound on the total neutrino mass by ∼14 per cent,
going from <0.432 to <0.377 eV.

In conclusion, the clustering ratio appears to be a valuable probe
to constrain the parameters of the cosmological model, especially
with upcoming large galaxy redshift surveys. Being easy to model
and measure, it provides us with a powerful tool to complement
other approaches to galaxy clustering analysis, such as the mea-
surements of the galaxy correlation function or power spectrum.
Moreover, we note that, given the simplicity of combining the clus-
tering ratio measured in different surveys, we expect its true con-
straining power to emerge when it will be measured in a number of
different data sets.

AC K N OW L E D G E M E N T S

LG, JB, CC, and JD acknowledge financial support from the
European Research Council through the Darklight Advanced

MNRAS 477, 491–506 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/477/1/491/4935185 by Biblioteca di Scienze, U
niversità degli studi di Firenze user on 22 O

ctober 2020



Constraints from clustering ratio with neutrinos 505

Figure 12. Joint posterior distribution obtained combining Planck temperature and polarization data together with the clustering ratio measured in a Euclid-like
galaxy survey. For CMB data, errors come from the publicly available covariance matrix, for clustering ratio measurements errors have been obtained from the
DEMNUni simulations and rescaled to match the volume and number density of the mock Euclid survey.
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