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Highlights:  

● Brittle ice shell thickness calculated for the SPT is approximately 31 km  

● The ice depth of fracture penetration increases from 31 km to 70 km up to 75°N 

● We demonstrate the prevalence of fractal populations of faults on Enceladus 

 

Abstract  

We determine the depth of fracture penetration in multiple regions of Enceladus by 

performing self-similar clustering and length distribution analysis of fractures. The statistical 

characterization of fault-population attribute, such as length and clustering, provide a 

productive avenue for exploring deformation rate, stress transmission mode, rheology of the 

medium, and mechanical stratification of the ice satellite. Through this analysis, we estimate 

the depth of the mechanical discontinuity of Enceladus’ ice shell that is the depth to which 

fractures penetrate the brittle ice layer above the ductile one.  

In this work, we find that for the South Polar Terrain (SPT), the brittle ice shell 

interested by fracture penetration is about 30 km and corresponds to the total depth of the ice 

shell because the SPT has a very high thermal gradient and, hence, fractures likely reach the 

ocean-ice interface. In the other regions analyzed, the depth of fracture penetration increases 

from 31 to 70 km from the South Pole to northern regions up to 75°.  



 

1 Introduction  

Enceladus is the smallest Solar System body that presents intense geologic activity on its surface. It 

is a heavily deformed satellite with a visible geological history stretching from billion of years ago 

to the present. The geologically-youngest region of the satellite is the strongly fractured area 

surrounding the South Pole, called the South Pole Terrain (hereafter SPT). The numerous cracks in 

the SPT appear to be directly related to high-energy effusive activity of vapor plumes revealed in 

images taken by the NASA Cassini spacecraft (Hansen et al., 2006; Porco et al., 2006; Porco et al., 

2014). The SPT equally-spaced, tension fractures are known as "tiger stripes" (Yin and Pappalardo, 

2015; Yin et al., 2016) and are in correspondence with high rates of heat flow indicated by thermal 

measurements (Spencer et al., 2006). The geologically active SPT has been interpreted as evidence 

of a liquid water reservoir beneath the South Pole (Collins and Goodman, 2007), and most likely 

below the entire ice crust (Patthoff and Kattenhorn, 2011). Estimates of the SPT total ice shell 

thickness have been derived using gravity and physical libration data, with values between 15 and 

40 km (Iess et al., 2014; McKinnon, 2015, Thomas et al., 2016). The determination of the total ice 

shell thickness of Enceladus has important implications for both its thermal history and 

astrobiological potential. However, the mechanical boundary between the ice layer and ocean is not 

discrete, rather, the brittle ice layer is underlained by ductile ice that deforms in accordance with 

satellite strain rates and thermal gradients (Roberts and Nimmo, 2008). Temperatures near the 

surface of Enceladus are sufficiently cold and overburden pressures are sufficiently small that 

tectonic stresses are likely to result in brittle deformation exhibiting evidence of extensional 

deformation and strike-slip faulting.  

The analysis of faults and fault populations on the icy satellite can reveal insight into the 

evolution of its surface that cannot be gained from other techniques. Statistical characterization of 

fault-population attributes, such as length and clustering, provide a productive avenue for exploring 

deformation rates, stress transmission modes, rheology of the medium, and mechanical stratification 

(e.g. Benedicto et al., 2003; Soliva and Schultz, 2008; Gudmundsson et al. 2010; Schultz et al., 

2010; Gudmundsson et al. 2013). 

For instance, fractal analysis has been utilized in terrestrial studies to determine the 

thickness of the fractured (brittle) crust (e.g., Mazzarini and D’Orazio, 2003; Mazzarini, 2004; 

Soliva and Schultz, 2008; Mazzarini and Isola, 2010). Similarly, on Enceladus we can constrain the 

depth at which fractures penetrate the brittle ice layer exploring some of the main characteristics of 

fault populations such as length and clustering. We provide thickness estimates of Enceladus’ 

brittle ice crust in multiple regions using a structural geology approach that employs fractures’ self-



similar clustering and length distribution analysis. This method provides constraints on the depth 

of fracture penetration (still an unanswered problem) (Rudolph and Manga, 2009), and 

demonstrates the prevalence of fractal populations of faults on Enceladus.  

The paper is structured as follows: after mapping the distribution of fractures belonging to 

five different regions of Enceladus, we analyze their length distribution and self-similar clustering 

(Bonnet et al., 2001; Bour et al., 2002, Gudmundsson et al., 2013). We compare the SPT pattern-

fracture results with literature (Gioia et al., 2007; Smith-Konter and Pappalardo, 2008; Rudolph 

and Manga, 2009; Olgin et al., 2011, Iess et al., 2014; Yin et al., 2015) to assess the reliability of 

our approach and, finally, we extended the analysis to all datasets providing the behavior of fracture 

penetration in the Enceladus ice shell up to 75°N latitude. 

 

3 Case study 

We analyzed patterns of fractures located in different regions of the icy satellite to which we 

applied the fractures’ length distribution and self-similar clustering analysis, explained in the 

Method section. We used the Enceladus mosaic from images acquired by the Imaging Science 

Subsystem (ISS, onboard NASA Cassini spacecraft) that consists of a wide-angle camera and a 

narrow-angle camera (Porco et al., 2005). The narrow-angle camera provides high-resolution 

images of targets of interest, while the wide-angle camera allows a more extended spatial coverage 

at lower resolution. The global mosaic used as a base map is provided by USGS and contains 586 

images in various filters (color, green, UV3, and infrared 3), selected for the control network 

(Becker et al., 2016). Images were selected according to coverage, quality and spatial resolution 

ranging between 50 and 500 m/px with phase angles less than 120 degrees. Some existing gaps in 

the global coverage (between 90°N and 50°N in places) were filled with one image from NASA's 

Voyager 2 spacecraft, which visited Enceladus more than 25 years ago. All the images underwent a 

high-pass filter to remove low frequency albedo and enhance the surface fractures and structures. 

The map is projected as equidistant (simple cylindrical) with a scale of 110 m/px at the equator 

(Fig. 1). The mean radius of Enceladus used for projection of this map is 252 km (Becker et al., 

2016). 

We mapped fractures in five different regions improving the recently published geological 

map of Crow-Willard and Pappalardo (2015), following the same definition criteria of their 

structural interpretation. In particular, we have taken into account the fractures located in well-

defined geological units. On these fractured terrains, we improved the mapping of the wide troughs 

and narrow troughs (Fig. 1).  The wide troughs are defined by Crow-Willard and Pappalardo (2015) 

as relatively long (>100 km long and >2 km wide) curvilinear features in planar view, which often 



present branched tips and appear rounded smooth in cross section. The narrow troughs, commonly 

shorter than the wide troughs, present a width < 2 km and cross cut other geologic units and 

structures (Crow-Willard and Pappalardo, 2015). Troughs are the most widespread structural 

feature on the satellite’s surface and, in this work, we focused particularly on the narrow ones, 

being larger in number and most likely related to recent/incipient brittle tensional deformation of 

the ice shell (Crow-Willard and Pappalardo, 2015). Along with the narrow troughs, we also 

mapped the features interpreted as tension fractures (Yin and Pappalardo, 2015) with steep walls, 

almost constant aperture and lateral tips often exposed, that are present in evenly-spaced 

straight parallel sets. In our analysis, we focused particularly on tension fractures to investigate 

an interconnected fracture network, which could even work as pathway for cryovolcanic fluids 

(Bonini et al., 2010). 

The five different datasets used in the analysis are the following (Fig. 1): 

- Dataset 1 (ds1): region around the South Pole (up to 50°S latitude) with 253 fractures 

mapped (Fig. 1b); 

- Dataset 2 (ds2): region extending mainly in the southern hemisphere, centered at longitude 

value of 175°W (55°S - 10°N latitude, 165°W – 185°W longitude) with 384 fractures 

mapped (Fig. 1c); 

- Dataset 3 (ds3): region extending down from the equator, centered at longitude value of 

10°W (25°S – 0° latitude, 350°W - 40°W longitude) with 481 fractures mapped (Fig. 1c); 

- Dataset 4 (ds4): Regions extending around the equator, more precisely centered at longitude 

values of 283°W (15°S - 25°N latitude, 265°W – 306°W longitude) with 328 fractures 

mapped (Fig. 1c); 

- Dataset 5 (ds5): northern region centered at longitude value of 330°W (35°N - 75°N 

latitude, 315°W - 345°W longitude) with 85 fractures mapped (Fig. 1c). 

The mapping was carried out with ESRI ArcGis software, calculating the fractures’ length as well 

as the barycenter of each fracture in latitude and longitude. To reduce the deformation due to the 

image projection, we used a sinusoidal projection with a local reference meridian for each 

equatorial dataset, while a polar stereographic projection was applied for the south polar dataset 

(see Appendix A).  

For the ds1 (South Pole region), which is mainly characterized by iso-oriented wide troughs, 

we considered fractures inside the central South Polar unit (csp), following the geological map 

nomenclature of Crow-Willard and Pappalardo (2015). We mapped the narrow branched troughs 

that crosscut and interact with the TSF, but we did not consider the southern curvilinear (cl3) ring 

surrounding the SPT (Crow-Willard and Pappalardo, 2015). This region mainly consists of a belt of 



ridges and troughs that are subparallel to the outer limit of the central SPT, with two Y-shaped 

branches that depart radially from the cl3 towards the trailing hemisphere. Within these branches, 

ridges and troughs are present and they appear convex towards the north in planar view (Crow-

Willard and Pappalardo, 2015). A slightly complex tectonic history is hypothesized for the cl3 unit. 

In particular, strike slip deformation was detected in some areas, mainly in the sub-Saturnian and 

anti-Saturnian margins (see Yin and Pappalardo, 2015), while compression was identified in the 

section facing the trailing hemisphere, especially localized on the Y-shaped branches. These 

features are interpreted as contractional fold and thrust belts that transition into extensional 

structures to the north, where extensional bookshelf structures were identified in the cl3 section 

facing the leading hemisphere (Yin and Pappalardo, 2015).  The most likely origin for such a 

complex structural framework in cl3 is the SPT spread and lateral escape towards the trailing 

hemisphere, due to the presence of a near South-Pole-centered transient thermal anomaly (Barr, 

2008; Yin and Pappalardo, 2015). Although the presence of tension fractures radial to the SPT 

margin and crosscutting the larger structures was spotted by several authors (Porco et al., 2006; 

Gioia et al., 2007, Yin and Pappalardo, 2015; Yin et al., 2016), their number is negligible for a 

fractal clustering analysis. For these reasons, the cl3 region was not considered in this study.  

Ds2 and ds3 were chosen inside the Cratered Plains unit (cp1). This geologic unit is most 

likely the oldest one on Enceladus (crater age retention ~4.2 - 4.6 Ga, Porco et al., 2006, Kirchoff 

and Schenk, 2009) and presents heavily cratered terrain, including subducted material and shallow 

craters with sizes ranging between the image resolution and ~35 km (Crow-Willard and 

Pappalardo, 2015).  Cp1 bears morphologically fresh narrow-troughs crosscutting larger craters (up 

to 30 km) and in some places merging pit chains that suggest an incipient extension. On the other 

hand, the presence of few large wide troughs suggests important tectonization of the ice crust in the 

past (Crow-Willard and Pappalardo, 2015). The subdued appearance of part of this unit, especially 

proximal to the equator (Kirchoff and Schenk, 2009), is thought to be due to accretion by plume 

material ejected from the TSF in the SPT.  

Ds4 is located in the Trailing Hemisphere Terrain (THT) and more specifically in the ridged 

material (r) region. The (r) unit is dominated by the so-called dorsa: large, smooth, mostly iso-

oriented NW-SE ridges of few km in width, whose origin is likely related either to fluid injection 

along pre-existing fractures (Spencer et al., 2009) or to pervasive thrust-blocks tectonics on the 

pre-existing striated plains (Pappalardo et al., 2010). This whole area also presents N-S oriented 

narrow and wide troughs crosscutting the dorsa and is surrounded by striated plains (sp) along the 

equator with ridges and troughs. It is also characterized by a U-shaped region, called Trailing 

Hemisphere Curvilinear (cl1), which underwent reshaping under effects of contraction. This latter 



region, cl1, is truncated to the south by the transitional unit (t) characterized by curvilinear troughs. 

Among these regions, we concentrated our mapping only within the (r) area because of the higher 

frequency of fracturing and narrow troughs. We also took into consideration the ridge fetaures (r) 

due to their possible origin related to fluid injection along fractures (Spencer et al., 2009) or as a 

proxy to the presence of faulting due to their rectilinear geometry (Pappalardo et al, 2010). 

Extremely low resolution images in the North Polar area prevented the mapping of this 

region, however, we were able to identify and map a fracture dataset (ds5) in the Samarkan Sulci 

area in the northern part of the trailing hemisphere (Yin and Pappalardo, 2016). 

This region was identified as north lineated (nl) terrain located in the trailing hemisphere and 

presents a smooth terrain dissected by a N-S system of narrow troughs and pit chains (Crow-

Willard and Pappalardo, 2015). In addition, it was hypothesized that resurfacing from 

cryovolcanism has affected this area, but mainly from extensional tectonics (Crow-Willard and 

Pappalardo, 2015).   

  

3 Method 

Brittle deformation (faults, fractures, joints) occurs beyond the Earth on many other planets, 

satellites, and asteroids in the Solar System. Faults on these bodies exhibit the same attributes of 

fault geometry, displacement–length scaling, interaction and linkage, topography, and strain 

accommodation as on Earth terrestrial faults, indicating common processes despite environmental 

differences, i.e. gravity, surface temperature, temperature gradient and tectonic driving mechanisms 

(e.g., Schultz et al., 2010).  

Two main distributions can be used when analyzing fault population statistics: size 

distribution and spatial distribution. The former focuses on the properties of geometric features 

such as fault length or displacement, while the latter analyzes the properties of the whole population 

by relating each fault to others, such as fault density and clustering. Experimental studies on normal 

fault populations suggest the presence of a lower (Lco) and an upper cutoff (Uco) in the power law 

describing the size-distribution of the geometric properties of fractures (Ackermann et al., 2001). In 

addition, two or more power laws have been observed in normal fault population length 

distributions (e.g. Gudmundsson and Mohajeri, 2013).  

Fault length distribution is often used to define the evolution of fault systems (e.g. Soliva 

and Schultz, 2008; Schultz et al., 2010; Mohajeri and Gudmundsson, 2012; Gudmundsson et al., 

2013) and, in particular, two main length distributions are used to describe fault populations: 

N(>l) = cl-a   (1a) 

N(>l) = e-a   (1b) 



where N(>l) is the number of faults with length greater than l, c is the scaling factors and a is the 

exponent for the power-law distribution (1a),  and  the parameters of the exponential distribution 

and a its exponent (1b). 

The vertical dimension of a faults (height) is nearly proportional to its length and is 

controlled by the mechanical layering of the crust as long as a sufficiently large contrast in material 

properties exists between the layers (e.g., Benedicto et al., 2003; Gudmundsson et al., 2010; Soliva 

and Schultz, 2008). Analysis of fault length distribution in the Main Ethiopian Rift-Afar system 

(Soliva and Schultz, 2008) show clearly that small-size, evenly spaced faults with an exponential 

length distribution are mainly confined to the uppermost mechanical unit (basaltic lava flows). 

Conversely, the faults, which are characterized by a power law size distribution and whose large-

scale linkages belong to the border zones (large throw faults), cut the entire brittle crust. Thus two 

end-members for fault length distribution can be identified (e.g., Soliva and Schultz, 2008; Schultz 

et al., 2010): (i) localized fault systems, with few large faults cutting across the whole crust down to 

the main mechanical discontinuity, displaying a power-law distribution, and (ii) distributed fault 

systems, with strain regularly distributed along evenly spaced faults and confined within specific 

mechanical layers in the crust, displaying an exponential distribution.  

The fractures’ spatial distribution (i.e. fracture/fault clustering) depends strictly on the 

spacing of fractures that, in turn, is correlated with the thickness of the fractured medium  calculated 

for extensional faulting on the basis of the stress saturation model (Wu and Pollard, 1995; Gross et 

al., 1995; Ackermann and Schlische, 1997; Schultz et al., 2010). Linear scaling relationships 

between fault spacing and thickness of the brittle crust has been also confirmed for strike-slip 

faults on icy satellites (Yin et al., 2016) as well as for continental scale strike-slip faults on 

Earth (Zuza et al., 2017). 

A robust way to define how fractures fill space is to analyze their self-similar clustering 

(Bonnet et al., 2001). The self-similar clustering of fractures is performed for a range of lengths (the 

size range) between a lower (Lco) and an upper cutoff (Uco). Mandelbrot (1982) suggested that there 

are Lco and Uco for the scale-invariant characteristics of fractures (e.g., spacing, length, density), and 

that these are a function of the resolution of the methods used to map and detect fractures (Lco) as 

well as of mechanical layers and rock properties (Uco).  

Moreover, on Earth, both the thickness of sedimentary beds with different mechanical 

properties (e.g., Gudmundsson et al., 2010) and the crust is mechanical layering control the scaling 

law of fractures and earthquakes (Pacheco et al., 1992; Davy, 1993; Ouillon et al., 1996). The 

spatial distribution (fracture clustering) of fractures along the East African Rift System (Mazzarini 

and Isola, 2010) has clearly shown scaling relationships with the crust thickness affected by 



faulting, indeed, the thickness of the fractured layer control the dimension of fractures (e.g. 

Gudmundsson, 2011). Also in the Pali Aike volcanic fields in the southernmost Patagonia, the 

self-similar clustering of fracture traces has scaling relationships with crustal thickness (Mazzarini 

and D’Orazio, 2003). 

The upper cutoffs (Uco) for the scale-invariant characteristics of fractures (in this case self-

similar clustering) are thus considered directly linked to the mechanical layering of the medium 

and, hence, in this case reflect the thickness of the fractured layer.  

In this work, the spatial distribution (self-similar clustering) of fractures was analyzed by 

applying the two-point correlation function method to measure the fractal dimension of the fracture 

population. For a population of N points (fracture’s trace barycenter) the correlation integral C(l) is 

defined as the correlation sum that accounts for all the points at a distance of less than a given 

length l (Hentschel and Procaccia , 1983; Bour and Davy, 1999, Bonnet et al., 2001).  

The term C(l) is computed as 

C(l) = 2 N(l)/N(N-1)   (2) 

where N(l) is the number of pairs of points whose distance is less than l. The fractal distribution of 

C(l) is defined by  

C (l) ~ clD   (3) 

where c is a normalization constant and D is the fractal exponent. If scaling holds, equation (2) is 

valid and the slope of the curve in a log(C(l)) versus log(l) diagram yields the fractal exponent (D); 

the higher the D value, the less clustered the system. Self-similarity exists in range of distances (l), 

which is defined as size range bounded by Lco and Uco, where the scaling of C(l) with l is valid. 

Within this size range, the linear fit of the curve is well defined and the angular coefficient of the 

straight line is the fractal exponent D. The local slope is a point by point measure of the slope of the 

tangent to the curve 

local slope = (Δlog(C(l)/Δlog(l)) (4) 

where linear fit holds, the curve is a straight line and the local slope (the angular coefficient of the 

regression line) is constant.  

For each analysis, the size range of samples is in turn defined by a plateau in the local slope 

versus log(l) diagram: the wider the range the better the computation of the power-law distribution 

(Walsh and Watterson, 1993). The derivation of the cut-offs defining the size range is not trivial, 

especially when the local slope does not show a regular and wide plateau. 

The Lco and Uco are defined according to the method described in Mazzarini (2004) by 

selecting the wider length range for which the correlation between log(l) and the local slope is 

greatest. The goodness of fit for fractures’ length distribution and the evaluation of the cut-off 



estimation for fractures spatial distribution are reported in Appendix B.  

 

4 Results and Discussion  

Azimuthal distribution of fractures in ds1 (Figure 2a) has a clear NE-SW trending peak and 

a secondary narrow ESE-WNW trending peak. The length distribution ranges between 3 and 117 

km with an average of 20 km (Table 1) and a maximum frequency ranging from 10 to 15 km 

(Figure 2b). The cumulative distribution of fracture length (Figure 2c) shows a negative exponential 

distribution for fractures with length shorter than 22 km (defined as a threshold length lth) and a 

power-law distribution for fractures with length larger than 22 km (Table 1).  This behavior reflects 

the possible presence of (i) distributed fault systems, with strain regularly distributed along evenly 

spaced faults and confined within specific mechanical layers in the crust (exponential distribution) 

and (ii) localized fault systems, with few large faults cutting across the whole crust down to the 

main mechanical discontinuity (power-law) (e.g., Soliva and Schultz, 2008; Schultz et al., 2010). 

Fractures of the ds1 dataset were also analyzed investigating their spatial distribution, 

clustering and fractal dimension yielding a D exponent in the size range bounded by Lco and Uco, as 

explained in the Method section. The spatial distribution shows self-similar clustering (Figure 2d) 

with D= 1.9633 and Uco= 31 km (Table 2).  

The Lco value is very sensitive to the presence of short fractures in the size distribution, 

which in turn depends on the image resolution. In this work, due to the low resolution of images, 

the Lco is not considered in the following discussion. The Uco has been related to the mechanical 

discontinuity (i.e., maximum difference in terms of viscosity and stiffness) between different layers 

and defines the thickness of the fragile crust that is mechanically fractured (Mazzarini and 

D’Orazio, 2003; Mazzarini and Isola 2010; Mazzarini et al., 2013; Pozzobon et al., 2015).  

In the ds1 case, the Uco ~31 km represents the depth of fractures’ penetration and, in this 

unique case, it corresponds to the depth of the ocean-ice interface due to the fact that SPT has a very 

high thermal gradient and fractures are likely to reach the ocean-ice interface.  For this reason, we 

can compare our result to the measurement of the total ice shell thickness obtained from Cassini 

gravity data (Iess et al., 2014). By analyzing them, it was found that the compensation depth 

beneath the SPT is between 30 and 40 km, which can be considered as the mean thickness of the ice 

shell above a liquid ocean extending from South Pole to 50°S (Iess et al., 2014). As the gravitational 

inverse problem is not formally unique, gravity data were revised and re-interpreted suggesting that: 

1) the compensation depth (shell thickness) of Enceladus’ global (degree 2) ice shell is 50 km and 

2) the compensation depth (shell thickness) beneath the SPT (from J3) remains thinner 

(approximately 30 km) than the shell at the equator (McKinnon, 2015). Therefore, the Uco value for 

the ds1, 31 ± 3 km (Table 2), is comparable with the above gravity-independent estimates. 



In addition, we also compare our ds1 result with the current estimates of the brittle ice crust 

restricted to the SPT terrain, which ranges from 2 km to 35 km (Gioia et al., 2007; Smith-Konter 

and Pappalardo, 2008). The large diversity of values can be attributed to the different physical 

processes assumed in different studies to assess the formation of tiger-stripe fractures (hereafter 

TSF).  A minimum of 5 km is found modeling shear heating along the TSF (Roberts and Nimmo, 

2008), while Smith-Konter and Pappalardo (2008) and Olgin et al. (2011) show that the SPT ice 

shell is between 2 and 40 km from the effect of tidal stress acting on TSF. The fractures penetration 

is treated by Rudolph and Manga, (2009) finding that the SPT ice shell is likely to be thinner than 

25 km. Investigating spacing between TSF, Gioia et al., (2007) and Helfenstein and Porco (2015) 

inferred the thickness of the SPT ice shell to be 35 and 5 km respectively, but without providing a 

quantitative mechanical reason. In this framework, our result are slightly in agreement with 

previous brittle ice crust estimates and, in particular, we are coherent with recent results of Yin et 

al., (2016) that estimate a 30 km SPT brittle ice shell thickness on the basis of the formation of 

evenly spaced TSF in the SPT.  

After assessing the reliability of our approach thanks to SPT results, we applied the 

length size distribution analysis and the fractal clustering approach to the other four selected 

regions to estimate the fractures behavior and penetration depth. 

The fractures size-distribution analysis for the other regions (Table 1) show length 

distributions characterized by negative exponential distributions for fractures with lengths shorter 

than the lth and a power law distribution for fractures with lengths larger than lth (Table 1 and Figure 

3). From this analysis we found that the threshold length, lth, varies between 10 and 36 km (Table 

1).  

Fracture populations with two different size-distributions, as derived for the complete data 

set, have also been observed on Earth, where two different size distributions have been 

extensively studied on field (Cowie et al., 1994, Scholtz et al., 1993) by analogue (Ackermann et 

al., 2001) and numerically modeling (Soliva et al., 2006, Cowie et al., 1995). The transition 

between negative exponential and power-law size-frequency distributions (SFD) appears to be 

related both to fault growth and linkage in a vertically confined medium. Ackermann et al., (2001) 

reported that the negative exponential SFD is related to nucleation of new faults occurring during 

incipient phases of extension, when mechanical layering is not an influence (due to the small size). 

The exponential behavior is also related to the saturation of a vertically-confined system in which 

large regularly-spaced faults dominate and accommodate most of the strain (e.g., Schultz et al., 

2010; Cowie et al., 1994; Ackermann et al., 2001).  Before the saturation, the interaction of 

fractures and the consequent linkage/growth process overcomes the nucleation of new faults 



providing a power-law SFD behaviour (Cowie et al., 1995).  

In Enceladus’ case, it results that the fracture systems under study can represent the whole 

evolutional time-frame starting from fractures’ formation and incipient extension (negative 

exponential) to present day (power-law with almost constant steepness), but before the saturation 

point. Specifically, the two length size distributions probably reflect both the first stages of 

deformation (negative exponential) and the presence of a mechanical/rheological layering, which is 

determined by a power-law behavior that is related to fault-spanning throughout the entire brittle 

shell (Schultz et al., 2010; Ackermann et al., 2001).  

The length threshold (lth), discriminating the two different fractures’ length behavior can 

represent the effects of: (i) the depth above which tensile stresses exist and where fractures with a 

length shorter than lth are likely confined (Rudolph and Manga, 2009), and (ii) the development and 

growth of fractures with length larger than lth penetrating the entire brittle ice shell (likely up to 

brittle-ductile ice transition), probably due to a higher strain rate.  

The quantitative values of the thickness of the penetrated brittle ice shell are given through 

the self-similar clustering analysis. The results are reported in Table 2 and displayed in Figure 4. In 

more detail, the depth of fractures’ penetration found for the ds2, ds3, ds4 and ds5 are 42.5 ± 

2.5, 32 ± 4, 43.5 ± 3.5 and 69.9 ± 3.3, respectively (Table 2). 

Figure 5 gives an overview of the results showing the plot of log(l) vs. local slope for each 

analyzed region. Data here are stacked in order to show their similarities and differences. The 

differently-dashed vertical bands represent the Uco values that define the depth of the 

mechanical discontinuity of Enceladus’ ice shell which is the depth to which fractures 

penetrate the ice layer. In Enceladus’ case, the brittle ice likely rests upon a ductile ice layer 

that may mark the transition to the ocean and deforms in agreement with planetary strain 

rates and thermal gradients (Roberts and Nimmo, 2008). The behavior of the brittle-ductile 

ice of Enceladus’ crust is not yet totally understood, hence, the portion of the crust 

investigated by fractures’ penetration correspond to the mechanical discontinuity of the ice 

shell and not necessarily to its full extent (i.e., the depth of the ocean). 

From Figure 5, it is shown that the ds1 brittle ice shell thickness is similar to the one of 

the region containing the ds3, which extends in latitude from 25°S to the equator, while the 

ds2 and ds4 present a brittle ice shell thickness of about 43-44 km. The difference between these 

findings is quite small considering errors included in the analysis (see Table 2), while ds5 provides 

a totally different value of ~70 km.  

In conclusion, the depth of fractures’ penetration ranges between 31 and 44 km from 

the South Pole up to 25°N latitude, while it increases in the northern region up to 70 km. The 



large discrepancy between this latter region and the others can be attributed to the still-unsolved 

mechanism causing the tectonic dichotomy between the very active SPT and inactive North Polar 

region (Showman et al., 2013).  

These results give new insight into the depth of the base of the brittle ice and the 

mechanical/rheological layering on icy satellite (which is still an unresolved problem) (Rudolph 

and Manga, 2009), and demonstrate the prevalence of fractal populations of faults on Enceladus.  

 

 

5 Conclusions  

The structural geology approach used in this work reveals new insight regarding the thickness of 

brittle ice in multiple regions of Enceladus. Exploring the main geometrical properties of fractures, 

we performed length distribution (Soliva and Schultz, 2008; Schultz et al., 2010) and self-similar 

clustering analysis (Bonnet et al., 2001) on the selected datasets.  

We revealed two different length distributions, probably reflecting the effect of the depth 

distribution of the tensile stresses and the depth of the brittle-ductile ice boundary.  

The self-similar clustering analysis allowed us to quantify the thickness of fractured (brittle)  

ice shell. Firstly, we considered the dataset corresponding to the SPT because its results allow a 

direct comparison with literature. We found agreement between our results, which imply a brittle 

ice layer of 31 km, and both the gravity independent estimates revealed by Cassini data (Iess et al., 

2014; McKinnon, 2015) and those reported by different studies regarding the mechanical formation 

of TSF in SPT (Gioia et al., 2007; Smith-Konter and Pappalardo, 2008; Olgin et al., 2011, Yin et 

al., 2015). Then, applying the results to the other four selected regions (ds2, ds3, ds4 and ds5), we 

cover the satellite up to northern latitudes. We estimate that the thickness of the brittle ice shell of 

Enceladus ranges between 31 and 44 km from the South Pole up to 25°N latitude, while it increases 

in the northern region reaching a value of 70 km. This latter result reflects the tectonic contrast 

characterizing the two poles that is still an unresolved problem. Starting from geological evidence 

(fractures), we provide new knowledge about the depth of fracture penetration and 

mechanical/rheological layering on Enceladus, which is still a debated problem (Rudolph and 

Manga, 2009), and demonstrate the prevalence of fractal populations of faults.  This structural 

approach can be of interest because of the possible application on other icy bodies whose fracture 

penetration depth’s are still unknown, such as the Galilean satellites. 
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Appendix A. Surface curvature contribution 

In order to minimize the effect of the satellite’s curvature in the fracture datasets analysis, we use a 

sinusoidal projection for areas around the equator and a polar stereographic projection for the SPT. 

Since the fractal clustering analysis works in 2D, the curvature effect of a small body such as 

Enceladus (252 km in radius) must be taken into account. Indeed, it is not sufficient a proper 

projection to avoid deformation of lineaments and distances throughout the datasets, hence, the 

knowledge of the curvature influence on the Uco final results (for fracture datasets around 200 km in 

size) is mandatory. We selected a smaller portion of the datasets used, where the curvature effect is 

negligible, to verify the consistency of our measurements and results.  

As a rule of thumb, by selecting smaller datasets, we applied the same proportions between 

the dataset’s size and planet radius used in the published fractal clustering analysis related to Earth 

crustal thickness, whose calculation is strongly consistent with independent measurements (i.e. 

geophysical data such as inversion of the local gravity field and seismic tomography). Specifically, 

previous works (Mazzarini et al., 2013; Mazzarini et al., 2010) analyzed the fractures in the Main 

Ethiopian Rift system where the maximum size of vents and fractures systems ranges between 600 

km and 800 km. A similar type of analysis was performed for a ~400 km system in the Mexican 

volcanic belt (Mazzarini et al., 2013). 

Thus, considering the Earth’s radius equal to 6371 km and the average size of the studied 

systems of 600 km, the size of the analyzed dataset should be 10-13% of the satellite radius on 

average.  

In other words, with Enceladus’ radius of 252 km, the maximum size of the studied 

fractured surface portion that has a negligible curvature should be ~40 km.  

Therefore, we selected 29 lineaments in a smaller region (~45x50 km2) of the ds1 area (Fig. 

A1a), while for the equatorial region we sampled a portion of the ds3 area (Fig. A1b) whose 



maximum size is ~40x45 km2 and bears the most densely fractured terrain among all datasets. We 

chose a subset just southern to the intersection between the equator and the reference meridian of 

the sinusoidal projection obtaining a dataset of 60 fractures. 

These sub-datasets contain fewer records, nonetheless, a sample of ~50 points is sufficiently 

large to perform a fractal clustering analysis (Clauset et al., 2009).  

For these two subsets the same fractal clustering analysis as the whole dataset was 

performed, checking the scaling of the Uco and Lco thresholds.  

The Fig. A1c reports the local slopes of log (l) vs log C(l) plots for ds1 and ds3 datasets and 

subsets. It is clear that all the Uco values obtained are consistent and comparable (especially for the 

ds1 fractures that bear only 29 samples), hence, the influence of curvature in using dataset involving 

a larger area is assumed within the errors of the estimations (Fig. A1). 

 

Appendix B. Goodness of fit for fractures’ length distribution and cut-off estimation for 

fractures spatial distribution. 

 

A log-log plot that yields a straight line is regarded an indication  that the data follow a power-law 

distribution. However, even if the data follow a power law distribution, it does not follow that the 

power law necessarily provides the best model or fit for the data (Mohajeri and Gudmundsson, 

(2012)). This is the case for our fractures’ lengths distributions. Indeed, we found that a single 

power law did not fit the data well. Following the Clauset e al. (2009) approach, we obtained a 

power law distribution for lengths above a well-defined threshold finding a higher R2 value for each 

dataset, in comparison to other distributions (such as exponential). The value of R2 may be regarded 

as a measure of the goodness of fit, but when difference in the R2 values between different 

distributions is not large enough, an alternative test might be performed. 

This is not our case, since the R2 value is high enough to rule out alternative distribution 

above a threshold length. However, we simply calculate the p-value using the available codes of 

Clauset et al. (2009), with the program Matlab and the statistical programming language R, to 

strengthen our conclusion. We obtained a p-value for power law distribution for each dataset that is 

larger than 0.1 (as shown in Table B1), hence the power law is not ruled out (Clauset et al. (2009)). 

 

Dataset lth alpha p-value 

Ds1 22 2.339 0.98 

Ds2 20 3.856 0.78 

Ds3 10 2.875 0.72 

Ds4 36 4.947 0.46 

Ds4 14 2.486 0.42 

Table B1. For each dataset we report the power law fit above a threshold length and the p-value.  

 



The estimation of cutoff positions for fractures’ spatial distribution is empirical; as an 

example we analyze the dataset 3 (ds3) consisting of 481 fracture traces. The barycenter of the 

traces have been computed and their self-similar clustering analyzed applying equations (1) to (3). 

The results are shown in the plot of l vs. C(l) and local slope (Fig. B1a) and all possible values of R2 

vs. size range (Δlog(l)) have also been computed (Fig. B1b); points inside the blue box (Fig. B1b) 

represent the maximum size ranges (that is Uco –Lco) that have the highest possible R2 values. The 

comparison with the local slope is important because large size ranges with relatively high R2 

values are also computed for non-constant local slopes (i.e. not power law fit, see portion A in Fig. 

B1a). The points in the R2 vs. Δlog(l) plot along with the variation of the local slope with l indicate 

that the optimal size range has a Lco varying between 2-2.1 km and a Uco varying between 28-36 

(average 32) km; the errors in the computation of the Lco are about 10% and for the Uco vary from 

6% up to 12%. From equation (2) the corresponding fractal exponent D is computed for the size 

range defined by the average values of cutoffs with errors < 2%. 

The sampling of fracture population is affected by “truncation” and “censoring” effects. 

Short fractures are incompletely observed as the limit of resolution of the observation methods is 

approached (truncation), causing a shallowing of slope of the distribution trend at the lower end of 

the scale range. Long fractures tend to be incompletely sampled because they pass outside the 

observed region (censoring), causing an artificial steepening of the distribution trend at the upper 

end of the scale range. According to Bour et al. (2002), spatial correlation analysis of fracture is 

valid whatever the point used to define fracture location (barycenter, fracture tips, or any point 

taken at random in the fracture). The reason comes from the fact that the derivation of a two-point 

correlation dimension is statistically dominated by the numerous small fractures, for which the error 

in the determination of the precise spatial location is relatively insignificant. Consequently, the 

censoring effects (fractures that intersect the system boundaries), which have to be explicitly taken 

into account when deriving the length distribution model (Pickering et al., 1995), did not affect the 

derivation of the fractal dimension. Thus, the definition of the upper cut off (Uco) does not suffer 

from censoring effects. Truncation derives from the system’s resolution when acquiring data and it 

may produce an underestimation of small size objects and small range spatial distributions (i.e. 

objects closer than the minimum resolution are not distinguished), which in turn affects the 

definition of the lower cutoff (Lco). Other sources of errors derive from the number of samples 

acquired and the accuracy in their spatial location (i.e. errors in mapping fracture traces and the 

relative barycenter). Mazzarini and Isola (2010) show that removing a random sample of 20% from 

large (i.e. >200 points) datasets does not affect the estimation of fractal dimension (less than 0.01% 

of variation) and the error introduced into the estimation of the cut-offs is less than 1%–2%. 



Mazzarini et al., (2013) also tested the effect of uncertainties in point locations by adding random 

errors (in the 0–100 m, 0–300 m and 0–500 m ranges) to the sampled points. In this test, the added 

errors are as high as five to twenty five times that of the coarsest image resolution we used to locate 

points. The 0–100 m errors randomly added to the point locations generate fractal exponents and cut 

offs value identical to those computed for the original dataset. In the case of 0–500 m random 

errors, the resulting fractal exponent is 3% higher than that computed for the original dataset, and 

the cut offs are very similar to those computed for the original dataset (Mazzarini and Isola, 2010). 

The minimum number of samples required for extracting robust parameter estimates must be 

between 50 and 150, as reported in literature (Bonnet et al., 2001; André-Mayer and Sausse, 2007; 

Clauset et al., 2009). 
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Figure 1: The five different regions used in this work. a) Simple cylindrical global image mosaic of 

Enceladus produced by the Cassini ISS team (Credit: NASA/JPL/Space Science Institute) with 

superimposed the geological map provided by Crow-Willard and Pappalardo (2015). The dataset 

(ds) within the five regions selected for our analysis are outlined on the map.  b) The ds1 (region 

around the South Pole) is projected in polar stereographic projection to reduce the image 

deformation. The number of features used in the analysis is 253. c)  The ds2, ds3, ds4 and ds5 are 

projected in sinusoidal projection using a local reference meridian. The number of fractures 

analyzed in these regions are 384, 481, 328 and 84, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



 

Figure 2: Fracture length distribution and self similar clustering of the ds1 data set. a) Rose 

diagram (Jenness, 2013) showing the azimuthal distribution of fractures. b) Histogram of fracture 

length distribution (bin size= 5 km). c) Cumulative distribution of fractures’ length (Table 1): 

fractures shorter than the threshold length (lth = 22 km, red dashed vertical line) fit well with a 

negative exponential distribution, while fractures larger than 22 km (red arrows) fit with a power 

law distribution. d) Self-similar clustering analysis for each dataset considered (log log plot of C(l) 

vs. l, according to equation 3), crosses represent the local slope (see equation 4); the colored strips 

are the range of values for Lco (yellow strip) and the Uco (brown strip) that define the size range of 

the fractal distribution. The slope of the curve is the fractal exponent D computed in the size range 

defined by the plateau in the log(l) vs. local slope plot. The portion A of the plot, at the right of the 

Uco, show a clear descending trend of the local slope thus indicating that, although with a relatively 

high R2 value, the relation between C(l) and l in the log-log space is not linear.  

 
 



 

 



Figure 3: Length distribution of sampled fracture data sets (Table 1). a) ds2 data set. Left panel: 

rose diagram (Jenness, 2013) showing the azimuthal distribution of fractures; Central panel: 

histogram of fracture length distribution (bin size= 4 km). Right panel: cumulative distribution of 

fractures’ length: fractures shorter than the threshold length (lth = 20 km, red dashed vertical line) fit 

a negative exponential distribution, while fractures longer than 20 km (red arrows) fit with a power 

law distribution. b) ds3 data set. Left panel: rose diagram (Jenness, 2013) showing the azimuthal 

distribution of fractures; Central panel: histogram of fracture length distribution (bin size= 4 km). 

Right panel: cumulative distribution of fractures’ length: fractures shorter than the threshold length 

(lth = 10 km, red dashed vertical line) fit a negative exponential distribution, while fractures longer 

than 10 km (red arrows) fit with a power law distribution. c) ds4 data set. Left panel: rose diagram 

(Jenness, 2013) showing the azimuthal distribution of fractures; Central panel: histogram of fracture 

length distribution (bin size= 5 km). Right panel: cumulative distribution of fractures’ length: 

fractures shorter than the threshold length (lth = 36 km, red dashed vertical line) fit a negative 

exponential distribution, while fractures longer than 36 km (red arrows) fit with a power law 

distribution. d) ds5 data set. Left panel: rose diagram (Jenness, 2013) showing the azimuthal 

distribution of fractures; Central panel: histogram of fracture length distribution (bin size= 4 km). 

Right panel: cumulative distribution of fractures’ length: fractures shorter than the threshold length 

(lth = 14 km, red dashed vertical line) fit a negative exponential distribution, while fractures longer 

than 14 km (red arrows) fit with a power law distribution.   

 

 



 

 

Figure 4: Self-similar clustering analysis for each dataset considered (log log plot of C(l) vs. l, 

according to equation 3), crosses represent the local slope (see equation 4); the colored strips are the 

range of values for Lco (yellow strip) and the Uco (brown strip) that define the size range of the 

fractal distribution. The slope of the curve is the fractal exponent D computed in the size range 

defined by the plateau in the log(l) vs. local slope plot. The portion A of the plot, at the right of the 

Uco, show a clear descending trend of the local slope thus indicating that, although with a relatively 

high R2 value, the relation between C(l) and l in the log-log space is not linear. The plots correspond 

to: a) ds2, b) ds3, c) ds4, and d) ds5.  

 



 

Figure 5: Plot of log l vs. local slope for all datasets considered in the analysis. Data are 

represented by black dots, blue diamonds, green triangles, red crosses and light blue squares for the 

ds1, ds2, ds3, ds4 and ds5, respectively. The plot compares the estimates of the ice brittle crust 

thickness found for all different regions which ranges from 31 km to 44 km for the first four dataset. 

On the other hand, for the ds5, we found a different value of about 70 km.  

 

 



 

Figure A.1: Self-similar clustering applied to subsets of initial data a) The ds3 mapped fractures are 

shown in green, while the analyzed subset is in yellow; b) The ds1 mapped fractures are shown in 



blue, while the analyzed subset in yellow. c) Plot of log l vs. local slope for all datasets considered 

in the analysis. The dashed lines represent the values of Uco for each dataset and relative subset, 

returning comparable values. 

 

Figure B.1: a) Log log plot of C(l) vs. l according to equations (1)-(2), crosses represent the local 

slope (3); the colored strips are the range of values for Lco (pale green strip) and the Uco (yellow 

strip) that define the size range of the distribution. The slope of the curve (red dashed line) is the 

fractal exponent D; the portion A of the plot, at the right of the Uco, show a clear descending trend 

of the local slope thus indicating that although with a relatively high R2 value the relation between 

C(l) and l in the log-log space is not linear. b) Plot of all possible Δlog(l) (i.e. size range) and R2 

values, the green line marks the border of the distribution; the vertical and horizontal grey lines are 

the lower boundaries of the space where Δlog(l) > 1 and R2 > 0.9994; the point located along the 

green line inside the blue box correspond to the position where cut offs satisfying the condition are 

met. 

  



 

Table 1: Parameters of length distribution (size-distribution) of fractures for each region under 

study.  

Data set n l range (km) av l (km) lth (km) 
Distributions N(>l) 

l < lth l > lth 

ds1 253 3 - 117 20 22 
305.98e-0.052L 
R² = 0.9312 

108829L-2.339 

R² = 0.9975 

ds2 384 2 – 49 11 20 
523.75e-0.116L 
R² = 0.9912 

5x106L-3.856 
R² = 0.9825 

ds3 481 1 – 79 9 10 
645.39e-0.134L 
R² = 0.9567 

142376L-2.875 
R² = 0.9762 

ds4 328 1 – 70 12 36 
400.92e-0.106L 
R² = 0.9961 

7x108L-4.947 
R² = 0.9127 

ds5 84 4 - 86 19 14 
97.32e-0.04L 
R² = 0.8914 

43234L-2.486 
R² = 0.9775 

N: number of fractures; l range: max and min fractures’ length; av l: average fracture length; lth: threshold length 

 

 

 

Table 2: Parameters of spatial distribution (self similar clustering) of fractures for each region under 

study.  

 
N: number of samples; D: fractal exponent of fractures self-similar clustering; R2: goodness of fit; Uco: upper cut-off 
 

   Data set Longitude 

range 

Latitude 

range 

n D R2 Uco (km) 

        ds1 0°W-360°W 90°S – 50°S 253 1.9633± 0.03 0.9995 31 ± 3 

ds2 165°W – 185°W 55°S – 10°N 384 1.7426 ± 0.01 0.9998 42.5 ± 2.5 

ds3 350°W – 40°W 25°S – 0° 481 1.9322 ± 0.03 0.9995 32 ± 4 

ds4 265°W – 306°W 15°S – 25°N 328 1.7704 ± 0.02 0.9994 43.5 ± 3.5 

ds5 315°W -345°W 35°N-75°N 84 1.7263 ± 0.01 0.9979 69.9 ± 3.3 


