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Abstract

We describe a new hybrid framework to model non-thermal spectral signatures from highly energetic particles
embedded in a large-scale classical or relativistic magnetohydrodynamic (MHD) flow. Our method makes use of
Lagrangian particles moving through an Eulerian grid where the (relativistic) MHD equations are solved
concurrently. Lagrangian particles follow fluid streamlines and represent ensembles of (real) relativistic particles
with a finite energy distribution. The spectral distribution of each particle is updated in time by solving the
relativistic cosmic ray transport equation based on local fluid conditions. This enables us to account for a number
of physical processes, such as adiabatic expansion, synchrotron and inverse Compton emission. An accurate semi-
analytically numerical scheme that combines the method of characteristics with a Lagrangian discretization in the
energy coordinate is described. In the presence of (relativistic) magnetized shocks, a novel approach to consistently
model particle energization due to diffusive shock acceleration is presented. Our approach relies on a refined
shock-detection algorithm and updates the particle energy distribution based on the shock compression ratio,
magnetic field orientation, and amount of (parameterized) turbulence. The evolved distribution from each
Lagrangian particle is further used to produce observational signatures like emission maps and polarization signals,
accounting for proper relativistic corrections. We further demonstrate the validity of this hybrid framework using
standard numerical benchmarks and evaluate the applicability of such a tool to study high-energy emission from
extragalactic jets.

Key words: acceleration of particles – methods: numerical – polarization – radiation mechanisms: non-thermal –
relativistic processes – shock waves

1. Introduction

Magnetized and relativistic large-scale flows in the form of
jets are a common observational feature seen for example in
active galactic nuclei (AGNs), gamma-ray bursts, and micro-
quasars. The dominant emission is originated by non-thermal
processes from high-energy particles. Multi-wavelength obser-
vations covering a wide spectrum from radio wavelengths to
TeV gamma-ray emission provide valuable insights into the
micro-physical processes that occur in jets and lead to the
observed radiation. The length scales associated with these
micro-physical processes are many orders of magnitude smaller
than the physical jet scales, which can range up to few tens of
kiloparsecs. Connecting a bridge between these scales poses a
serious challenge to theoretical modeling of the emission from
AGN jets. In the present work, we aim to build a quantitative
connection between such disjoint scales by developing a
numerical tool that can simulate multi-dimensional flow
patterns, treating small-scale processes in a sub-grid manner.
We describe such a tool which consistently accounts for most
of the micro-physical processes.

The general analytical picture of multi-wavelength radiation
from beamed relativistic magnetized jets was proposed by, e.g.,
Blandford & Königl (1979), Marscher (1980) and Konigl (1981).
Since then, synchrotron emission signatures from large-scale jets
have been obtained from time-dependent simulations through
post-processing. In the relativistic hydrodynamic context, transfer
functions between thermal and non-thermal electrons in the jet are
used (Gómez et al. 1995, 1997; Aloy et al. 2000) whereas in the
case of relativistic magnetohydrodynamic (MHD) calculations,

the magnetic structure inside the jet is used to compute
synchrotron emission maps (e.g., Porth et al. 2011; Hardcastle
& Krause 2014; English et al. 2016).
Formalisms for studying the micro-physics of particle

acceleration at shocks using hybrid implementations combining
both particles and grid-based fluid descriptions have also been
developed targeting different scales of interest. At the scale of
the electron’s gyro-radius, the most consistent approach is that
of particle in cell (PIC). Several groups have applied this
kinetic approach to understand shock acceleration at relativistic
shocks (e.g., Sironi et al. 2015 and references therein). A
hybrid MHD–PIC approach can be used to study the shock
acceleration phenomenon on slightly large length scales,
typically of the order of a few thousand proton gyro-scales.
Such an approach, developed by, e.g., Bai et al. (2015),
Mignone et al. (2018) and van Marle et al. (2018) describes the
interaction between collisionless cosmic ray particles and a
thermal plasma. Similarly, Daldorff et al. (2014) proposed a
hybrid approach for the BATS-R-US code that combines Hall–
MHD and PIC methods to capture small-scale kinetic effects in
magnetosphere simulations.
An alternative approach in the numerical modeling of non-

thermal emission from astrophysical jets treats the population of
non-thermal electrons as separate particle entities suspended in
fluid. Effects due to synchrotron aging in the presence of shock
acceleration under the test particle limit were studied for radio
galaxies using multi-dimensional classical MHD simulations by
Jones et al. (1999) and Tregillis et al. (2001). Acceleration of test
particles and subsequent radiative losses in the presence of
shocks formed via hydrodynamic Kelvin–Helmholtz vortices
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were studied by Micono et al. (1999). Such a hybrid framework
of combining test particles with classical fluid has also been used
effectively to study cosmic-ray transport in a cosmological
context (Miniati 2001). For relativistic hydrodynamic flows,
populations of non-thermal particles (NTPs) were included to
study non-thermal emission from internal shocks in blazars
(Mimica et al. 2009; Mimica & Aloy 2012; Fromm et al. 2016).
Recent relativistic hydrodynamical simulations using NTPs have
also been applied for a study of star–jet interactions in AGNs (de
la Cita et al. 2016). There are two critical limitations with models
using NTPs. First, as the fluid simulations are done with
relativistic hydrodynamics, magnetic field strengths are assumed
to be in equipartition with the internal energy density. This
ad hoc parameterized assumption of magnetic field strengths can
affect the estimation of the spectral break in the particle
distribution due to synchrotron processes. The second simplify-
ing assumption in these models is the choice of a constant value
for the power-law index E E m µ -( ) , (m=2.0; de la Cita
et al. 2016, and m=2.23; Fromm et al. 2016) in the recipe of
particle injection at shocks.

In the present work, we describe methods used to overcome
the above limitations with the aim of building a state-of-the-art
hybrid framework of particle transport to model high-energy,
non-thermal emission from large-scale 3D relativistic MHD
(RMHD) simulations. Our sub-grid model for shock accelera-
tion incorporates the dependence of the spectral index on the
shock strength and magnetic field orientation. The magnetic
fields obtained from our RMHD simulations are used to
compute radiation losses due to synchrotron and inverse
Compton (IC) emission in a more accurate manner without
any assumption on equipartition. Further, we also incorporate
the effects of relativistic aberration in estimating the polarized
emission due to synchrotron processes.

Unlike the MHD-PIC approach (Bai et al. 2015; Mignone
et al. 2018; van Marle et al. 2018), we do not consider the
feedback of motion of particles on the fluid. This prevents us
from studying the associated nonlinear coupling effects.
However, we can certainly extend the applicability of the
presented hybrid framework to observable scales, whereby
micro-physical aspects of spectral evolution are treated using
sub-grid physics based on local fluid conditions. Further, we
have only considered the spectral evolution for electrons in the
presence of magnetic fields and shocks. Modifications in the
mass and timescales would be required if the physics of
acceleration of protons were to be incorporated. Also, protons
are expected to undergo from a negligible amount of
synchrotron loss in comparison with electrons, which would
significantly affect their spectral behavior. Additionally, the
post-shock spectral evolution is different for protons as
demonstrated by PIC simulations for all kinds of shocks
(e.g., Sironi et al. 2013; Park et al. 2015; Marcowith et al.
2016). This sub-grid physics associated with acceleration
and radiative loss of protons is not included in the
present work.

The paper is organized as follows: a detailed theoretical
description of our hybrid particle and fluid framework is
presented in Section 2. In particular, the transport equation for
particle spectral evolution is given in Section 2.1, details of
numerical implementation are outlined in Section 2.3, and the
different micro-physical processes considered are elaborated in
detail in Sections 2.2 and 2.4. The post-processing methods
used to obtain emissivity and polarization signatures from

particles are described in Section 3. In Section 4, we
demonstrate the accuracy of the developed hybrid framework
using standard tests and go on to describe the astrophysical
applications in Section 5.

2. Numerical Framework

2.1. The Cosmic Ray Transport Equation

The transport equation for cosmic rays in a scattering
medium has been derived, in the classical case, by several
authors (see e.g., Parker 1965; Jokipii & Parker 1970;
Skilling 1975; Webb & Gleeson 1979) and, in the relativistic
case, by Webb (1989). Let f0(x

μ, p) be the isotropic distribution
function of the NTP in phase space, where xμ and p denote the
position four-vector and the momentum magnitude, respec-
tively; the transport equation then reads (Webb 1989)
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where the terms in round brackets describe particle transport by
convection, and particle transport by diffusion. Here uμ is the
bulk four-velocity of the surrounding fluid while qμ is the
spatial diffusion flux. The terms in square brackets are
responsible for evolution in momentum space and describe

1. the energy changes due to adiabatic expansion;
2. the losses associated with synchrotron and IC emission

(here p lá ñ˙ is the average momentum change due to non-
thermal radiation), see Section 2.2;

3. the acceleration term due to fluid shear, where Γvisc is the
shear viscosity coefficient;

4. the Fermi second-order process, where Dpp is the
diffusion coefficient in momentum space;

5. the non-inertial energy changes associated with the fact
that particle momentum p is measured relative to a local
Lorentz frame moving with the fluid (here p0 is the
temporal component of the momentum four-vector while
um˙ is the four-acceleration).

For the present purpose, we shall neglect particle transport
due to spatial diffusion, (i.e., qμ=0) and, for simplicity,
ignore particle energization due to shear (Γvisc=0), Fermi
second-order processes (Dpp=0), and the last term involving
non-inertial energy changes (as qμ=0). Equation (1) then
reduces to
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On expanding the derivative in the first term and using the fact
that
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is the Lagrangian derivative with respect to proper time, related
to the laboratory time by dτ=dt/γ, where γ is the bulk
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Lorentz factor, we obtain
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We now define p d p f p f, 42
0

2
0 òt p= W »( ) , taking into

account the assumption of isotropy for distribution of particles
in momentum space. Physically, p t dp,( ) represents the
number of particles per unit volume lying in the range from p to
p+dp at a given time t. Since the particles are highly
relativistic, we can express the energy of the particle as
E≈pc (c being the speed of light) and therefore,

E dE p dp, , t t=( ) ( ) . Integrating Equation (4) over the
solid angle yields
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where the first term in square brackets accounts for energy
losses from adiabatic expansion while the second term
E p pl l

2= á ñ˙ ˙ is the radiative loss term due to synchrotron
and IC processes.

2.2. Radiative Losses

Energetic electrons lose energy by synchrotron emission in
the presence of magnetic fields and by the IC process up-
scattering the surrounding radiation field. For the latter process
we assume that the scattering in the relativistic particle rest
frame is Thompson, so that the cross section σT is independent
of the incident photon energy Eph. The energy loss terms for
electrons with isotropically distributed velocity vectors is
therefore given by

E c E 6l r
2= -˙ ( )

where

c
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where β is the velocity of the electrons (we assume β=1 for
highly relativistic electrons) and me is their mass. The

quantities U B
B 8

2

=
p
and Urad are the magnetic and the radiation

field energy densities, respectively. For the present work, we
use the isotropic cosmic microwave background (CMB) as the
radiation source. Therefore, applying the blackbody approx-
imation, we have U a T a T z1rad rad CMB

4
rad 0

4 4= = +( ) where
arad is the radiation constant, z is the redshift and T0=2.728 K
is the temperature of CMB at the present epoch.

2.3. Numerical Implementation

Equation (5) is solved using a particle approach where a
large number of Lagrangian (or macro-) particles sample the
distribution function in physical space. A macro-particle
represents an ensemble of actual particles (leptons or hadrons)
that are very close in physical space but with a finite
distribution in energy (or momentum) space. To each macro-
particle we associate a time-dependent energy distribution
function E,p t( ) quantized in discrete energy bins.

For numerical purposes, however, it is more convenient to
rewrite Equation (5) by introducing the number density ratio

np pc = , which represents the number density of electrons

normalized to the fluid number density. Using the continuity
equation, ∇μ(nu

μ)=0, it is straightforward to show that χp

obeys the following equation:
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The solution of Equation (8) is carried out separately into a
transport step (during which we update the spatial coordinates
of the particles) followed by a spectral evolution step
(corresponding to the evolution of the particle energy
distribution). These two steps are now described.

2.3.1. Transport Step

Since the distribution function is carried along with the fluid,
the spatial part of Equation (8) is solved by advancing the
macro-particle coordinates xp through the ordinary differential
equations

x
v x

d

dt
, 9

p
p= ( ) ( )

where v represents the fluid velocity interpolated at the macro-
particle position and the subscript p labels the particle.
Equation (9) is solved concurrently with the fluid equations
given by
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t
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which are solved as usual by means of the standard Godunov
methods already present in the PLUTO code (Mignone
et al. 2007, 2012). In the equation above, U is an array of
conservative variables, F is the flux tensor while S denotes the
source terms.
The same time-marching scheme used for the fluid is also

employed to update the particle position. For example, in a
second-order Runge–Kutta scheme, a single time update
consists of a predictor step followed by a corrector step.

1. Predictor step: particles and conservative fluid quantities
are first evolved for a full step according to
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where Δt n is the current level time step, x n
p denotes the

particle’s position at time step n and v xn n
p( ) is the fluid

velocity interpolated at the particle position (at the current
time level).

2. Corrector step: using the fluid velocity field obtained at
the end of the predictor step, particles and fluid are
advanced to the next time level using a trapezoidal rule:
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where v xp* *( ) denotes the (predicted) fluid velocity
interpolated at the (predicted) particle position.

Interpolation of fluid quantities at the particle position is
carried out by means of standard techniques used in PIC codes
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(see, e.g., Birdsall & Langdon 2004):

v x x x vW 13
ijk

ijk ijkp på= -( ) ( ) ( )

where x xW W x x W y y W z zijk i j kp p p p- = - - -( ) ( ) ( ) ( ) is
the product of three one-dimensional weighting functions,
while the indices i, j, and k span the computational (fluid) grid.
For the present implementation we employ the standard
second-order accurate triangular shaped cloud method.

Particles are stored in memory as a doubly linked list in
which each node is a C data-structure containing all of the
particle attributes. Parallel implementation is based on the
Message Passing Interface and employs standard domain
decomposition based on the fluid grid. Particles are therefore
distributed according to their physical location and are thus
owned by the processor hosting them. Parallel scaling up to 104

processors has been demonstrated in a previous work; see
Vaidya et al. (2016).

2.3.2. Spectral Evolution Step

As macro-particles are transported in space by the fluid, their
spectral distribution evolves according to the energy part of
Equation (8) which can be regarded as a homogeneous scalar
conservation law with variable coefficients in (E, τ) space. Here
we show that a semi-analytical solution can be obtained using
the method of characteristics. The resulting expressions can
then be used to advance the spectral energy distribution of the
particles using a Lagrangian scheme in which the discrete
energy grid points change in time.

To this purpose, we first observe that the characteristic
curves of Equation (8) are given by
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where ca(τ)=∇μu
μ/3, while cr(τ) is given in Equation (7).
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Along the characteristic curve, Equation (8) becomes an
ordinary differential equation so that, for each macro-particle,
we solve
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where Ė is given by Equation (14) while the subscript  on the
left-hand side denotes differentiation along the characteristic
curve. Integrating Equation (17) and considering the fact that Ė
is a function of E alone, one finds

E dE dE, , 18p p0 0c t c=( ) ( )

where E ,p0 p 0 0c c t= ( ). The previous expression shows that
the number of particles (normalized to the fluid density) per
energy interval remains constant as the interval changes in
time. The term dE0/dE describes the spreading or shrinking of

the energy interval and it is readily computed from
Equation (15). Integrating Equation (18) one has
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The previous analytical expressions can be used to construct
a numerical scheme based on a Lagrangian solution update. To
this purpose, we discretize (for each macro-particle) the energy
space into NE energy bins of width E E Ei
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(where i=1, K, NE while the superscript n denotes the
temporal index) spanning from E n

min to E n
max . In our

Lagrangian scheme, mesh interface coordinates are evolved
in time according to Equation (15) which we conveniently
rewrite (using Equation (20)) as
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The particle distribution pc does not need to be updated
explicitly (at least away from shocks, see Section 2.4), since
Equation (18) automatically ensures that the number of
particles per energy interval is conserved in time:
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This approach provides, at least formally, an exact solution
update. A numerical approximation must, however, be
introduced since the coefficient b(τ) (Equation (21)) has to be
computed from fluid quantities at the particle position. Using a
trapezoidal rule to evaluate the second integral in Equation (16)
together with Equation (20) we obtain
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where the factor 1/γ comes from the definition of the proper
time. Equation (21) with Equation (23) do not make the scheme
implicit inasmuch as the spectral evolution step is performed
after the fluid corrector and the particle transport step.
Our method extends the approaches of, e.g., Kardashev

(1962) and Mimica & Aloy (2012) and it is essentially a
Lagrangian discretization for updating the distribution function
in the energy coordinate.
In all of the tests presented here we initialize pcá ñ at t=t0

using an equally spaced logarithmic energy grid and a power-
law distribution
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where tot is the initial number density of physical particles
(i.e., electrons) associated to the macro-particle p, n0 is the
initial fluid number density interpolated at the particle position
and m is the electron power index.
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We remark that our formalism holds if physical micro-
particles embedded within a single macro-particle remain close
in physical space (although they are allowed to have a
distribution in energy space). Therefore, an additional con-
straint should be imposed on the maximum Larmor radius so
that it does not exceed the computational cell size. This sets an
upper threshold Emax to the maximum attainable energy of a
given macro-particle, namely

E E m c
eBr

25L
L

max
cf

e
2

cf

 g
b

= =
^

( )

where r x y z0.5 min , ,L
cf = D D D( ) is computed at the particle

cell position, B is the magnetic field in Gauss and e is electron
charge in c.g.s. units. In the macro-particle limit, we assume
that the individual leptons are highly relativistic and therefore
the ratio of velocity of a single electron perpendicular to the
magnetic field with the speed of light, β⊥≈1.

The initial energy bounds, the number of particles tot , and
the value of m are specified for each test presented in this paper.
The Lagrangian scheme described above has the distinct
advantage of reducing the amount of numerical diffusion
typical of Eulerian discretizations and it does not require an
explicit prescription of boundary conditions.

2.4. Diffusive Shock Acceleration

The mechanism of diffusive shock acceleration (DSA) plays
an important role in particle acceleration in a wide variety of
astrophysical environments, particularly in supernova rem-
nants, AGN jets, gamma-ray bursts (GRBs), solar corona, etc.
The steady state theory of DSA naturally results in a power-law
spectral distribution (e.g., Blandford & Ostriker 1978;
Drury 1983; Kirk et al. 2000; Achterberg et al. 2001) The
two most important factors on which the post-shock particle
distribution depends on are the strength of the magnetized
shock (i.e., the compression ratio) and the orientation of
magnetic field lines with respect to the shock normal. The
obliquity of magnetized shocks plays a very important role
in determining the post-shock particle distribution (e.g.,
Jokipii 1987; Ballard & Heavens 1991). A comprehensive
treatment was presented by Summerlin & Baring (2012) using
Monte Carlo simulations, who showed the importance of the
mean magnetic field orientation in the DSA process as well as
the effect of MHD turbulence in determining the post-shock
spectral index. Analytical estimates of the spectral index for
parallel relativistic shocks (Kirk et al. 2000; Keshet &
Waxman 2005) and for perpendicular shocks (Takamoto &
Kirk 2015) have also shown remarkable consistency with the
results from Monte Carlo simulations.

For our hybrid framework, modeling the post-shock spectral
distribution using the Monte Carlo method (Summerlin &
Baring 2012) is computationally very expensive and beyond
the scope of the present work. Instead we adopt analytical
estimates to account for DSA in the test particle limit valid for
highly turbulent relativistic shocks. The slope of the spectral
distribution associated with each macro-particle will depend on
the compression ratio of the shock, r, and the angle ΘB between
the shock normal and magnetic field vector. To estimate these
quantities, we have devised a strategy based on a shock
detection algorithm and the corresponding change in the energy
distribution of the particle as it crosses the shock. This is based
on the following steps.

1. We first flag computational zones lying inside a shock
when the divergence of the fluid velocity is negative, i.e.,

v 0 <· and the gradient of thermal pressure is above a
certain threshold, òsh (see also the Appendix of Mignone
et al. 2012). Typically we observe that a value òsh∼3 is
enough to detect strong shocks. Shocked zones are
shaded in green in Figure 1.

2. Away from shocked zones (point a in Figure 1), the
particle spectral distribution evolves normally following
the method outlined in the previous section.

3. When the macro-particle enters a flagged zone (point b in
Figure 1), we start to keep track of the fluid state (such as
density, velocity, magnetic field, and pressure) by
properly interpolating them at the macro-particle position.

4. As the particle travels across the shocked area (points b,
c, and d), we compute the maximum and minimum
values of thermal pressure. The pre-shock fluid state U1 is
then chosen to correspond to that with minimum pressure
and, likewise, the post-shock state U2 to that with
maximum pressure.

5. As the macro-particle leaves the shock (point d), the pre-
and post-shock states U1 and U2 are used to compute the
orientation of the shock normal nsˆ and thereafter the
shock speed. We employ the co-planarity theorem,
stating that the magnetic fields on both sides of shock
front, B1 and B2, lie in the same plane as the shock
normal, nsˆ . Furthermore, the jumps in velocity and
magnetic field across the shock must also be co-planar
with the shock plane (Schwartz 1998). By knowing two
vectors co-planar to the plane of the shock, we can easily

Figure 1. Different positions of the particle and corresponding diagnostics.

5

The Astrophysical Journal, 865:144 (21pp), 2018 October 1 Vaidya et al.



obtain nsˆ through their cross product:
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where, 1,2
arbb is the velocity vector in the pre- and post-

shock states for an arbitrary frame (here the rest frame of
underlying fluid) and θarb is the angle between the
magnetic field and the shock normal in that frame. The
jumps in the fluid quantities are denoted by Δ, so that

B B B2 1D = - and arb
2 1b b bD = - . Special care has

to be taken to estimate the shock normal in the case of
parallel and perpendicular shocks as the jump across the
B field in the fluid rest frame will be zero (i.e., B 0D = ).

We then compute the shock speed by imposing
conservation of mass flux across the shock:

n n n nv v 27s s s s1 1 1 sh 2 2 2 shb br g r g- = -( ˆ ) · ˆ ( ˆ ) · ˆ ( )

where the pre- and post-shock values are evaluated in the
lab frame. The previous equation holds also in the non-
relativistic case by setting the Lorentz factors to unity.

6. Next we compute the shock compression ratio r defined
as the ratio of upstream and downstream velocities in the
shock rest frame ( 1b¢ and 2b¢ , respectively):

n
n

r . 28s
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2

b
b

=
¢
¢

· ˆ
· ˆ

( )

In the the non-relativistic case, the shock rest frame can
be trivially obtained using a Galilean transformation. In
this case, the compression ratio can also be obtained from
the ratio of densities across the shock (see Equation (87)).
However, this is no longer true in the case of relativistic
shocks. The reference frame transformation is not trivial
in this case and multiple rest frames are possible. In our
approach, we transform from the lab frame to the normal
incidence frame (NIF; see Appendix B) to obtain the
compression ratio using Equation (89).

7. The compression ratio r and the orientation ΘB of the
magnetic field B with respect to the shock normal nsˆ in
the shock rest frame are used to update the particle
distribution χp(E, t d) in the post-shock region. In
particular, we inject a power-law spectrum in the post-
shock region following E t E, d q

p 0 0
2  = - +( ) ( )( )

where ò0 is the lower limit of the injected spectra and
0( ) is the normalization constant. These two quantities

depends on two user-defined parameters, namely the ratio
of non-thermal to thermal (real) particle densities, δn, and
the ratio of total energy of the injected real particles to the
fluid internal energy density, δe (see e.g., Mimica
et al. 2009; Böttcher & Dermer 2010; Fromm et al.
2016). In our recipe, we reset the particle energy
distribution to the predicted DSA power law by also
taking into account the pre-existing population. There-
fore, we solve
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2 g= . The

number density nold and energy Eold are obtained by
integrating the spectra of the macro-particle before it has
entered the shock. In Equation (29), ρ is the value of fluid
density interpolated at the macro-particle’s position and
mi is the ion mass (we assume the thermal fluid density is
dominated by protons).  is the fluid internal energy
density interpolated at the particle position. Finally, the
high-energy cut-off, ò1, is estimated using the balance of
synchrotron timescale, τsync, to the acceleration timescale
τacc (Böttcher & Dermer 2010; Mimica & Aloy 2012).
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where me is the electron mass while the acceleration
efficiency λeff is derived from the acceleration timescale
as given by Takamoto & Kirk (2015):
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where the dimensionless free parameter η>1 is the ratio
of gyro-frequency to scattering frequency and chosen to
be a constant. Primed quantities are computed in the
shock rest frame. The angles ΘB1 and B2Q represent the
angles between the magnetic field vector and the shock
normal in the upstream and downstream region. We treat
shocks as quasi-parallel when cos 1B2 h Q and quasi-
perpendicular otherwise (see Sironi & Spitkovsky 2009).

8. The upper energy cutoff may exceed the maximum
allowed energy imposed by the Larmor radius constraint
(see Equation (25)). If this is the case, we reset γ1 to L

cfg
in order to avoid spatial spreading of micro-particles.

9. As the macro-particle approach developed here aims to
study large observable scales, micro-physical aspects of
the DSA including amplification of magnetic fields and
turbulent scattering have to be treated at the sub-grid
level. The free (dimensionless) parameter η encapsulates
the micro-physical nature of electron scattering associated
with shock acceleration. Studies of quasi-perpendicular
relativistic shocks have shown small-angle scattering
to be the dominant mechanism (Kirk & Reville 2010;
Sironi et al. 2013) for accelerating electrons, particularly
in relativistic shocks. In this regime, η is a function
of energy: η ∝ E. Here, for simplicity, we adopt a
constant value of η for both the downstream and the
upstream flows. This may overestimate the acceleration
efficiency particularly in the quasi-perpendicular case
(see Equation (31)).

10. The power-law index, q, for non-relativistic shocks used
in our model is that obtained from the steady state theory
of DSA (Drury 1983),

q q
r

r

3

1
. 33NR= =

-
( )
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In case of relativistic shocks, q is obtained using
analytical estimates from Keshet & Waxman (2005),
particularly under the assumption of isotropic diffusion,

q q
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where 1b¢ and 2b¢ are the upstream and downstream
velocity components along the shock normal in the NIF.
In our test-particle framework, we assume isotropic
diffusion for values of cos 1B2 h Q and use the spectral
index from Equation (34), while for more oblique shocks
we adopt the analytic estimate obtained by Takamoto &
Kirk (2015) for perpendicular shocks,
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11. Once the particle has left the shock (point e in Figure 1,
the distribution function is again updated regularly as
explained in Section 2.3.2.

3. Emission and Polarization Signatures

In the previous sections, we described the framework and the
methods used for following the temporal evolution of the
distribution function of the ensemble of NTPs attached to each
Lagrangian macro-particle. Knowledge of the distribution
function allows us to compute the non-thermal radiation
emitted by each macro-particle and from the spatial distribution
of macro-particles we can reconstruct the spatial distribution of
non-thermal radiation. The non-thermal processes that we will
consider are synchrotron and IC emission on a given radiation
field and we will then be able to obtain intensity and
polarization maps for each temporal snapshot. We now
describe synchrotron emission, while Section 3.2 will be
devoted to IC radiation.

3.1. Synchrotron Emission

The synchrotron emissivity, in the direction n¢ˆ , per unit
frequency and unit solid angle, by an ensemble of ultra-
relativistic particles is given by (see Ginzburg & Syrovatskii
1965):

nJ E N E dE d, , , , 36syn ò tn n y¢ ¢ ¢ = ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ W¢t( ˆ ) ( ) ( ˆ ) ( )

where all primed quantities are evaluated in the local co-
moving frame, which has a velocity v cb = with respect to
the observer. Here, E, , n y¢ ¢ ¢ ¢( ) is the spectral power per unit
frequency and unit solid angle emitted by a single ultra-
relativistic particle, with energy E′, and whose velocity makes
an angle ψ′ with the direction n¢ˆ , while N E dE d, t¢ ¢ ¢ ¢ W¢t( ˆ )
represents the number of particles with energy between E′ and
E′+dE′ and whose velocity is inside the solid angle dW¢t
around the direction t ¢ˆ . In performing the integrals, we can
take into account that the particle radiative power in the ultra-
relativistic regime is strongly concentrated around the particle
velocity and therefore only the particles with velocity along n¢ˆ
contribute to the integral; we can then set N E , t¢ ¢ ¢ =( ˆ )

nN E ,¢ ¢ ¢( ˆ ). Inserting in Equation (36) the expression for  ,
which can be found in Ginzburg & Syrovatskii (1965), we then

get
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where the direction taken by nlos¢ˆ is the direction of the line of
sight, we assume that the radiating particles are electrons, and
we take a particle distribution that is isotropic and covers an
energy range between a minimum energy Ei and a maximum
energy Ef. From the isotropic condition we can also write

nE N E4 , . 38 p¢ ¢ = ¢ ¢ ¢( ) ( ˆ ) ( )

Finally, the function F(x) is the usual Bessel function integral
given by
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and crn¢ is the critical frequency at which the function F(x)
peaks. Similarly, the linearly polarized emissivity is given by
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where the Bessel function G(x)=x K2/3(x).
Equations (37) and (41) give the emissivities in the co-

moving frame as functions of quantities measured in the same
frame; we need, however, the emissivities in the observer frame
as functions of quantities in the same frame. These can be
obtained by applying the appropriated transformations:

n B n BJ J, , , , , 42syn los
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n B n BJ J, , , , 43pol los
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where the Doppler factor  is given by
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γ is the bulk Lorentz factor of the macro-particle, and ν′, nlos¢ˆ ,
and B¢ can be expressed as functions of ν, nlosˆ , and B through
the following expressions:

1
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Using Equations (42) and (43), we can get for each macro-
particle the associated total and polarized emissivities, at any
time. The values are then deposited from the macro-particle on
to the grid cells so as to give grid distributions of total and
polarized emissivities, n r, ,syn los n( ˆ ) and n r, ,pol los n( ˆ ), as
functions of the position r.
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Specific intensity maps can now be obtained by integrating
the synchrotron emissivity, r,syn n( ) along the line of sight, in
the direction nlosˆ ,

I X Y X Y Z dZ, , , , , , 48synòn n=n
-¥

¥
( ) ( ) ( )

where we introduced a Cartesian observer’s frame where the
axis Z is taken along the line of sight and the axes X and Y are
taken in the plane of the sky. The total intensity represents the
first Stokes parameter. To compute the other Stokes para-
meters, Qν and Uν (neglecting circular polarization), we need to
estimate the polarization angle, χ. Such an estimate would
require us to account for proper relativistic effects like position
angle swings (Lyutikov et al. 2003; Del Zanna et al. 2006). The
two Stokes parameters in the plane of the sky are given by (see
Del Zanna et al. 2006)
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3.2. IC Emission

The other important emission mechanism that we consider is
the IC effect due to the interaction of relativistic electrons with
a given radiation field. In the present work, we will focus on the
IC emission on seed photons due to the isotropic CMB
radiation.

The co-moving IC photon emissivity nn ,IC n¢ ¢ ¢ =˙ ( ˆ ) j hIC n¢ ¢
(number of photons per frequency interval per unit solid angle
around the direction n¢) is given by

n

l l l n
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where ln ,ph phe¢ ¢ ¢( ) and N E , t¢ ¢( ) are, respectively, the spectral
density distribution of the seed photons, in the co-moving
frame, as a function of photon energy phe¢ and photon direction
l¢, and the electron distribution as a function again of energy
E′ and direction t . The factor lc 1 eb- ¢( · ) arises from the
differential velocity between the photon and the electron, and

eb is the scattering electron velocity vector in units of c. The
scattering cross section, σ, depends, in principle, on the
directions and energies of incident and outgoing photons.

The seed photons are the CMB photons; then in the observer
frame they have a blackbody distribution with energy density

u
c

T z4 1 55B
CMB CMB

4s
= +[ ( )] ( )

where σB is the Stefan–Boltzmann constant, T 2.728KCMB = is
the CMB temperature, and z is the redshift of the source we
study. We approximate the blackbody distribution with a
monochromatic distribution with energy equal to the peak
energy of the blackbody, εCMB=kBTCMB, where kB is the
Boltzmann constant. If the flow moves at relativistic bulk speed
(γ>>1), the seed photons in the co-moving frame are bunched
in the direction opposite to the macro-particle velocity. The
photon spectral energy distribution can be written as

l ln
u

, , 56ph ph
CMB

CMB
ph CMBbe

g
e
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where b̂ is the unit vector in the direction of the macro-particle
velocity and δ represents the Dirac function. The electron
distribution is assumed to be isotropic N E E, 4t p¢ ¢ = ¢ ¢( ) ( )
The scattered photons are beamed along the direction of the

scattering electron so that n t¢ =ˆ and emerge after scattering
with average final energy

h
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Using the Thomson cross section, which is justified when the
incident photon energy in the electron frame is much less than
the electron rest mass energy, i.e., assuming l n, , ,phs e n¢ ¢ ¢ ¢ =( ˆ )

Ts , inserting Equations (55)–(57) in Equation (54) and taking
into account the appropriate Lorentz transformations, we can
finally express the IC emissivity in the observer frame for each
macro-particle as
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where  is the Doppler factor,
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1
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. 60
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As we do for the synchrotron emissivity, we can deposit the
IC emissivity on to the grid cells so as to give the grid
distribution of n r, ,IC los n( ˆ ) and finally we can obtain specific
intensity maps by integrating along the line of sight.

4. Numerical Benchmarks

In this section we report a suite of numerical benchmarks aimed
at validating the correctness of our numerical implementation.

4.1. Classical Planar Shock

In the first test problem we assess the accuracy of our
method in verifying that the shock properties (such as
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compression ratio, mass flux, etc.), are sampled correctly as
macro-particles cross the discontinuity.

We solve the classical MHD equation with an ideal equation
of state (Γ=5/3) on the Cartesian box x ä [0,4], y ä [0,2]
using a uniform resolution of 512×256 grid zones. The initial
condition consists of a planar shock wave initially located at
xs(0)=1 and moving to the right with speed vsh. We work in
the upstream reference frame where the gas is at rest with
density and pressure equal to ρ1=1, p 101

4= - . Here the
magnetic field lies in the x−y plane and it is given by
B B cos , sinB B1 q q= ( ) where θB=30° is the angle formed by
B and the x axis while B1 is computed from the plasma beta,

p B2 10p1 1 1
2 2b = = . The downstream state is computed by

explicitly solving the MHD jump conditions once the upstream
state and the shock speed vsh are known. Zero-gradient
boundary conditions are set on all sides. We place a total of
Np=16 macro-particles in the region 1.5<x<3 in the pre-
shock medium and perform six different runs by varying the
shock speed v 0.01, 1sh Î [ ] on a logarithmic scale.

While crossing the shock, fluid quantities are interpolated at
each macro-particle position following the guidelines described
in Section 2.4. From these values we compute, for each macro-
particle, the mass flux Jp and the compression ratio rp in the
shock rest frame. As all macro-particles experience the same
shock, we compute the average value

J
N

J
1

61
p p

påá ñ = ( )

and similarly for the compression ratio rá ñ. In the left and right
panels of Figure 2 we compare, respectively, Já ñ and rá ñ with
the analytical values obtained from the computations at
different shock velocities. Our results are in excellent
agreement with the analytic values, thereby demonstrating the
accuracy of steps (i)–(vi) of the algorithm described in
Section 2.4 in the non-relativistic case.

4.2. Relativistic Planar Shock

Next, we extend the previous problem to the relativistic
regime with the aim of further describing the spectral evolution
of macro-particles as they cross the discontinuity. The initial
conditions are similar to the previous test case but the upstream
medium has now a transverse velocity y0.01b = ˆ and the
magnetic field has a different strength given by βp1=0.01. We
solve the relativistic MHD equation with the Taub (1948)/
Mathews (1971) equation of state and repeat the computation
considering different values of the shock speed vsh. As in the
classical case, we introduce Np=16 macro-particles in the
upstream reference frame in the region 1.5<x<3.
As explained in Section 2.4, we estimate relevant quantities

such as the mass flux J and compression ratio r by transforming
to the NIF where the upstream velocity is normal to the shock
front. The strategy used for frame transformation is more
involved than its classical counterpart and is illustrated in
Appendix B.
The left panel of Figure 3 shows the analytical mass flux J in

the lab frame (see Equation (27)) as red dots and the average
value of the mass flux Já ñ obtained from the particles in the NIF
frame as green stars. A good agreement between the analytical
and numerical results highlights the accuracy of our method
in sampling the shock and the subsequent frame transformation
required to quantify the compression ratio. A comparison
between the analytical values (red dots) for the compression
ratio r with that obtained from macro-particles (green stars) is
shown in the right panel of Figure 3. We observe that the
average compression ratio, rá ñ, estimated as the ratio of
upstream and downstream velocities in NIF using macro-
particles, agrees with analytical values for varying shocks
speeds. The compression ratio value approaches r=4.0 for
smaller shock speeds, as expected from the non-relativistic
limit.
Next we focus on the evolution of the spectral energy

distribution and, to this purpose, appropriate physical scales
must be introduced. We set the unit length scale L0=102 pc
and the speed of light as the reference velocity, i.e., V0=c.

Figure 2. Analytical (red dots) and simulated (green stars) values of the mass flux in the shock rest frame J (left panel) and compression ratio r (right panel) for the
classical MHD planar shock test with θB=30°.
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The energy distribution for each macro-particle is initialized as
a power law with m=9 (see Equation (24)) with the initial
number density of real particles 10 cmtot

4 3 = - - .
The initial spectral energy ranges from E 0.63 MeVmin = to

E 0.63max = TeV, with nE=500 bins. The initial bounds are
chosen to cover an observed frequency range from the radio
band to X-rays for the chosen magnetic field strengths. The
energy bounds of the spectral distribution as the macro-
particles cross the shock are estimated from Equations (29) and
(30) with δn=0.9 and δe=0.5.

We consider both quasi-parallel and quasi-perpendicular
shocks where the angles between the shock normal and
magnetic field vector are θB=3° and θB=83°, respectively.
The shock jump conditions are set to obtain a compression ratio
r∼3.6 for both cases corresponding to the shock speed
vs=0.7c. The density map and magnetic field orientation at
t=0.98 kyr are shown in the top panels of Figure 4 for the two
cases.

The spectral evolution of a representative macro-particle is
shown in the bottom panel of Figure 4 for the quasi-parallel
(left) and quasi-perpendicular (right) cases. For the quasi-
parallel case, the initial spectrum steepens at high energies in
the presence of losses due to synchrotron emission. At time
t∼0.46 kyr the macro-particle crosses the shock from the
upstream region and the distribution function flattens its slope,
yielding a spectral index q=4.15 as estimated from
Equation (34). Due to the large acceleration timescale for
the quasi-parallel case, a high-energy cutoff Emax∼6.25×
105 GeV is obtained as indicated by the light blue curve in the
left panel. This sudden change in the spectra can be attributed
to steady-state DSA, whereby the spectrum is modified
completely based on the compression ratio at the shock and
particle density injected at the shock (see Equations (29)

and (30)). Subsequently, the high-energy part cools down due
to synchrotron emission, reaching an energy of ∼104 GeV (red
curve). In the case of a quasi-perpendicular shock, we obtain a
steeper distribution owing to the dependence of the spectral
index (q=6.2) on η2 (Equation (35)). Also, the high-energy
cutoff lessens due to the inefficiency of quasi-perpendicular
shocks in accelerating particles to high energy. The subsequent
evolution of the particle spectrum is then governed by radiation
losses due to synchrotron and IC cooling and leads to a similar
steepening at high energies. This test clearly shows the validity
of our method in estimating the compression ratio r and the
change in the spectral slope under the DSA approximation.

4.3. Relativistic Magnetized Spherical Blast Wave

In the next test case, we test our numerical approach on
curved shock fronts to assess the accuracy of the method in the
case where shock propagation is not grid-aligned.
The initial conditions consist of a relativistic magnetized

blast wave centered at the origin with density and pressure
given by

p
R l

,
1, 1 for 0.8

10 , 3 10 otherwise
62

0
2 5

r =
<

´- -

⎧⎨⎩( )
( )

( )
( )

where R x y2 2= + and l0 is the scale length. The magnetic
field is perpendicular to the plane, B zB0= ˆ, with B0=10−6

and an ideal equation of state with adiabatic index Γ=5/3
is used.
For symmetry reasons, we consider only one quadrant using

5122 computational zones on a square Cartesian domain of side
6l0. Reflecting conditions are applied at x=y=0 while
outflow boundaries hold elsewhere. The HLL Riemann solver,
linear interpolation, and a second-order Runge–Kutta scheme

Figure 3. Left panel : comparison of mass flux and compression ratio for the relativistic planar shock case with ΘB=3.0. Analytical mass flux J in the lab frame (or
NIF) estimated from Equation (27) is shown as red dots, whereas its average value Já ñ obtained from macro-particles is shown as green stars. In the right panel, the
analytical (red dots) and simulated values of compression ratio r (green stars) estimated using Equation (89) are shown. The simulated values are obtained as macro-
particles traverse the relativistic planar shock and the sampled quantities across the shock are transformed to a shock rest frame.
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are used to evolve the fluid. We employ 360 macro-particles
uniformly distributed between 0<f<π/2 and placed at the

cylindrical radius R x y l2p p
2

p
2

0= + = . Associated with
each macro-particle is an initial power-law spectrum with
index m=9 covering an energy range of 10 orders of
magnitude with 500 logarithmically spaced uniform bins.

The over-pressurized regions develop a forward moving
cylindrical shock that propagates along the radial direction. The
shock velocity vsh computed by different macro-particles (see
Section 2.4) is shown in the top panel of Figure 5 as a function
of the angular position and compared to a semi-analytical value
v 0.885sh » obtained from a highly resolved 1D simulation. The
numerical estimate of the shock speeds is consistent with the
semi-analytical value within 1% relative error. Additionally, its
value remains the same independently of the angular position of
the macro-particle. This clearly demonstrates the accuracy of our
hybrid shock tracking method for a curvilinear shock.

This shock speed is then used to perform a Lorentz
transformation to the NIF in order to obtain the compression
ratio, shown in the middle panel of Figure 5, from

macro-particles initially lying at different angles. Similar to
the shock velocity estimate, the compression ratio also agrees
very well with the semi-analytical estimate r≈2.473, shown
as a red dashed line.
The bottom panel of Figure 5 shows the relative error in the

estimate of mass flux, JNIF, in the NIF. This is estimated as

J
J J

J
% 100 , 63NIF

NIF NIF
ref

NIF
ref

D =
-⎛

⎝⎜
⎞
⎠⎟[ ] ( )

where JNIF is estimated from quantities interpolated on the
macro-particles from the fluid. The reference value, JNIF

ref , is
estimated using the semi-analytical shock velocity and quantities
across the shock from a highly resolved 1D simulation. The
colors represent the value of the compression ratio.

4.4. Sedov–Taylor Explosion

In the next test we verify the accuracy of our method in
computing the radiative loss terms by focusing on the adiabatic
expansion term alone, for which an analytical solution is

Figure 4. Top panels: density distribution in color at time t=0.98 kyr along with magnetic field vectors shown as white arrows for the quasi-parallel case θB=3°
(left) and quasi-perpendicular case θB=83° (right) for the relativistic planar shock test. Bottom panels: the corresponding evolution of normalized spectral
distribution of a representative macro-particle.
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available. The fluid consists of a pure hydrodynamical (B=0)
Sedov–Taylor explosion in 2D Cartesian coordinates (x, y) on
the unit square [0,1] discretized with 5122 grid points. Density
is initially constant ρ=1. A circular region around the origin
(x=0, y=0) with an area A r 2pD = D( ) is initialized with a
high internal energy (or pressure), where Δr=3.5/512, while
the region outside this circle has a lower internal energy (or
pressure). Using an ideal equation of state with adiabatic index
5/3 we have,

e
E

A
r rfor

1.5 10 otherwise

64
5


r = D

D

´ -

⎧
⎨⎪
⎩⎪

( )

where r x y2 2= + and input energy E 1.0= . Therefore we
have a contrast of ≈4.54×108 in ρ e.

For this test problem we have used the standard HLL
Reimann solver with Courant number CFL=0.4. Reflective
boundary conditions are set around the axis while open
boundary conditions are imposed elsewhere.

Using the dimensional analysis, the self-similar solution for
the Sedov–Taylor blast can be derived. In terms of the scaled
radial co-ordinate r Et2 1 5h rº -( ) , the shock location is

obtained by

r t
Et

t . 65s s

2 1 5
2 5h

r
= µ

⎛
⎝⎜

⎞
⎠⎟( ) ( )

where ηs is a constant of the order of unity, t is the time in
arbitary units and r is the spherical radius. The shock velocity
follows via time differentiation as

v t
dr

dt

r t

t
t

2

5
. 66s s

sh
3 5= = µ -( ) ( ) ( )

Due to the self-similar nature, we can further relate the flow
velocity at any spherical radius r to that of the shock velocity
obtained from Equation (66):

v r t
v t

r t
r rt,

2

5
. 67

s

sh 1º º -( ) ( )
( )

( )

Thus, we have v t 1 µ -· . To estimate the evolution of
spectral energy for a single macro-particle due to adiabatic
expansion we have to solve Equation (14)

E t E c t dtexp 68
t

t

a0
0

ò= -
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

where vc t ta
1

3
1=  µ -( ) · . Plugging Equation (68) into

Equation (19) gives the temporal dependence of an initial
power-law spectral density E t,( ):

E t E
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t
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 µ µ-
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⎝
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⎝
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a result already known by Kardashev (1962).
In order to compare the above analytical result with

simulations, we initialize a total of 1024 macro-particles that
are placed uniformly within the domain of unit square. Each
particle is initialized with a power-law spectrum E m

p
0c µ - (see

Equation (24)) with m=3 covering a range of six orders of
magnitude in the actual particle energy with a total of 250
equally spaced logarithmic energy bins. As the aim of this test
is to study solely the effects due to adiabatic expansion, we
switch off (by hand) the impact of shock acceleration due to the
forward moving spherical shock.
Equation (69) indicates that the ratio of spectral density

varies with the inverse square law of time and does not affect
the initial distribution slope m. This implies that losses due to
adiabatic expansion modify all energy bins in the same way
and the resulting spectral evolution involves a parallel shift of
the spectrum. Such an evolution of the spectrum for a
representative particle is shown in the right panel of
Figure 6.
The particle distribution along with the fluid density

(in color) at time t=0.85 is shown in the left panel of
Figure 6. The particles that were initially placed uniformly have
expanded with the flow as expected from their Lagrangian
description. Also, in the regions of high density just behind the
shock, a large concentration of particles is seen. The spectral
evolution of the particle marked in white is shown in the right
panel. Radiation losses due to adiabatic cooling affect all
energy bins uniformly and, as a result, the spectrum shifts
toward the lower-energy side, keeping the same value of initial
spectral power, i.e., m=3. To test the accuracy of the

Figure 5. Variation of shock properties with angular position for the RMHD
blast wave test. The shock velocity obtained from a single representative
macro-particle is shown as black circles and the semi-analytical estimate from a
very high resolution 1D run is shown as a red dashed line in the top panel. The
middle panel shows the variation of compression ratio obtained from the
particles. The relative error in the estimate of mass flux, JNIF, in the normal
incidence frame is shown in the bottom panel; the colors here indicate the value
of compression ratio.
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numerical method applied, we have done a convergence study
by varying the grid resolution of the unit square domain.

In the top panel of Figure 7, we compare the spectral
distribution for a particular energy bin (E=Emin(t)) of a single
particle under consideration with the analytical solution
described above. We observe that, for the run with 5122

resolution, the simulated values are in perfect agreement with
the analytical estimates. However, the errors in the estimate
of the slope become as large as 10%–15% with low resolution.
The bottom panel of Figure 7 shows the relative error in % for
the estimate of the slope for different grid resolutions. The error
is visibly large for grid resolutions <100 points. However,
having more than 128 points in the domain results in reducing
the error within the ±2% band as indicated by two black
dashed lines, and the study is fully converged for runs with 512
grid points.

4.5. Relativistic Spherical Shell

In this test, we verify our numerical implementation to
estimate synchrotron emissivities (Equations (42) and (43)) and
the polarization degree from Stokes parameters (Equations (49)
and (50)), specifically testing the changes due to relativistic
effects.

4.5.1. Co-moving Frame

We initialize a magnetized sphere in a 3D square domain of
size L=40 pc. The sphere has a constant density
(ρ0=1.66×10−25 g cm−3) and pressure (P0=1.5×10−4

dyne cm−2), is centered at the origin, and has a radius of
Rs=10 pc. The three components of the velocity are given
such that

v
R

R
sin cos , sin cos , cos 70

s
b q f q f q= { ( ) ( ) ( ) ( ) ( )} ( )

where 1 1 2b g= - with bulk Lorentz factor γ and R, θ and f
are spherical co-ordinates expressed using Cartesian components.
The Cartesian components of the purely toroidal magnetic

fields are set as

B B x y

B B x y

B

sin

cos

0.0 71
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0
2 2

0
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=
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where B0∼60 mG is the magnitude of magnetic field vector.

Figure 6. Left panel: particle distribution (black points) along with the fluid density (in color) for the Sedov–Taylor explosion test at time t=0.85 (in arbitary units)
with a resolution of 5122. Right panel: temporal spectral evolution for the macro-particle marked as a white star in the left panel.

Figure 7. Top: comparison of the evolution with time (in arbitary units) of a
normalized spectral distribution, E t,min( ) (red squares) with an analytical
solution obtained from Equation (69) (black dashed line). Bottom: results from
the convergence study with different resolution. The green triangles represent the
relative errors (%) in estimating the analytical slope for the variation of

E t,min( ) with respect to time. The two black dashed lines mark the ±2% error.
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A total of 100 macro-particles with an initial power-law
spectral distribution are randomly placed on the shell of width
0.1Rs. For each particle, the spectral range from E 10min

8= -

erg to E 10max
2= erg is sampled by a total of 250

logarithmically spaced energy bins. The synchrotron emissiv-
ity, Jsy(ν) and linearly polarized emissivity Jpol(ν) from each
macro-particle are estimated numerically using Equations (42)
and (43) for an observed frequency ν=1010 GHz with the
initial power-law spectral distribution. Their ratio gives a value
of polarization fraction Πi, for ith macro-particle. We compute
the arithmetic average of numerically estimated polarization
degree and this is denoted by áPñ

In the co-moving frame, the theoretical value expected for
the polarization degree on the shell is simply given by (e.g.,
Longair 1994)

m

m

1

7 3
. 72P =

+
+

( )

In figure Figure 8, we have compared the numerical averaged
value (in co-moving frame) for different initial power-law
spectral slopes m with the above theoretical estimate
(Equation (72)).

4.5.2. Observer Frame

To obtain the polarization degree,Πobs in the observer frame, the
Stokes parameters given by Equations (49) and (50) have to be
computed along with the polarization angle χ. Relativistic effects
like position angle swing must be taken into account in order to
calculate χ (e.g., Lyutikov et al. 2003; Del Zanna et al. 2006). Due
to the relativistic motion, the emission is boosted, resulting in a
rotation of linear polarization angle in the n v-ˆ plane. Though the
value of fractional polarization is the same, the rotation of
polarization angle is different for different elements of the emitting
object. These relativistic kinematic effects can therefore result in the
maximum observed polarization being smaller than the theoretical

upper limit given by Equation (72). This crucial ingredient has been
implemented in our hybrid framework to compute the Stokes
parameters and thereby the corrected fractional polarization in case
of macro-particles moving in a relativistic flow. Here, we verify our
numerical implementation by replicating the calculation of the
averaged value of the Stokes parameters done by Lyutikov et al.
(2003) for a quasi-spherical thin emitting shell.
In our case, an emitting element is represented by a macro-

particle that is moving with the spherical shell with a velocity
that depends on the two spherical co-ordinates θ and f:

v sin cos , sin cos , cos , 73b q f q f q= { } ( )

where β is a related to the Lorentz factor γ. The observer is in
the x–z plane with

n sin , 0, cos 74obs obsq q=ˆ { } ( )

as the unit vector along the line of sight and obsq is the angle
with respect to the vertical z-axis. The shell is magnetized with
a field that lies along

B sin sin , sin cos , cos 75f f= - Y¢ - Y¢ Y¢ˆ { } ( )

where Ψ′ is the magnetic pitch angle. Macro-particles placed
uniformly on this shell will emit synchrotron emission based on
their initial power-law spectra governed by the index m (same
for all macro-particles). The dependence of volume-averaged
Stokes parameters obtained from our numerical implementation
for two values of Lorentz factor γ=10 (solid lines) and
γ=50 (dashed lines) of the shell and three values of initial
power-law index (i.e., m=1, 2, and 3) of the emitting macro-
particles is shown in Figure 9. The left panel is for a value of
the magnetic pitch angle Ψ′=45° and the right panel is for a
purely toroidal field Ψ′=90°.
For the case of a purely toroidal magnetic field, we observe

that the value of the polarization degree saturates for
θobs>1/γ, consistent with the electromagnetic model pro-
posed to explain large values of polarization reported in GRBs
(Lyutikov et al. 2003). As expected, the polarization fraction
saturates at a smaller θobs for γ=50 as compared to runs with
γ=10. The asymptotic value Π≈56% obtained for m=3
(blue) is less than the maximum upper limit of 75% (using
Equation (72)), in agreement with the estimates by Lyutikov
et al. (2003). The effect of depolarization is further enhanced if
the magnetic field distribution is changed using the value of
Φ′=45° (left panel). In this case, the asymptotic value of the
polarization degree for m=3 is 30% . This clearly shows
the vital role of (de)-polarization degree in determining the
magnetic field structure in the flow.

5. Astrophysical Applications

In this section, we describe a couple of astrophysical
applications of the hybrid framework.

5.1. Supernova Remnant SN1006

The first application is to study classical DSA and properties
of non-thermal emission from a historical Type IA supernova
remnant (SNR), SN1006. The numerical setup chosen for this
problem is identical to that of Schneiter et al. (2010). We
perform an axisymmetric MHD simulation with a numerical grid
of physical size of 12 and 24 pc in the r- and z-directions,
respectively. The grid has a spatial resolution of 1.56×10−2 pc.

Figure 8. Comparison of the numerically estimated averaged ratio of Jsy(ν)
with Jpol(ν) for ν=1010 GHz (red squares) with the theoretical values obtained
from Equation (72) shown as the black dashed line.
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The ambient interstellar medium has a constant number density,
namb=0.05 cm−3. The initial magnetic field is chosen to be
constant with a value of 2 μG and parallel to the z-axis. To
numerically model the Type Ia SNR, we initialize a sphere with
radius of 0.65 pc at the center of the domain such that it contains
an ejecta mass of M1.4 . Within the sphere, the innermost region
has a constant mass equivalent to M0.8  while the rest of the
mass is in the outer region. This outer region has an initial
power-law density profile, Rsph

7r µ - , where the spherical

radius R r zsph
2 2= + .

Figure 10 shows the fluid density for the SNR at time
τ=1008 yr. The magnetic field is represented by red arrows.
We see the formation of Rayleigh–Taylor instabilities at the
contact wave. The forward spherical shock traverses the
magnetic fields thereby modifying its vertical alignment. Due
to compression from the shock, the magnetic flux just ahead of
it is also enhanced and follows the curved shock as evident
from the magnetic field vectors.

A total of 2.5×104 macro-particles are randomly initialized
in the ambient medium. To each of them we attach a scalar
quantity “color” whose value is initially set to be −2. However,
as the simulation progresses in time, these macro-particles enter
the shock and sample the compression ratio as described in
Section 2.4. The scalar “color” for each macro-particle is then
replaced by the value of the compression ratio of the shock it
experiences. This helps to separate the particle population for
further diagnostics. The initial population of particles (e.g.,
electrons) has a steep power-law spectral distribution with
an index m=3 covering a range Emin≈0.63MeV to

Emax≈0.31 TeV. The inital value of Emax is set in accordance
with the Larmor radius constraint, ensuring that every single
macro-particle consists of an initial energy distribution of
micro-particles that are situated very nearby in physical space
(within one grid cell). This initial spectral distribution is
evolved accounting for radiation losses due to adiabatic,
synchrotron, and IC effects.
The macro-particle distribution (as scalar “color”) at time

τ=1008 yr is shown in the left panel of Figure 11. This
distribution shows that most of the macro-particles have a
compression ratio close to 4.0, indicating a strong adiabatic
shock. For all the macro-particles that are shocked, we estimate
the spectral energy index m using the shock compression ratio.
We assume isotropic injection whereby the spectral index
depends solely on the compression ratio and is independent of
the orientation of the magnetic field with respect to the shock
normal (see Equation (33)). A histogram of the spectral energy
index showing a distinct peak around m≈2.05 is shown in the
middle panel of Figure 11. Due to the skewness in the
distribution, an arithmetic average of spectral energy index
gives a value m 2.1á ñ = . This is equivalent to a spectral
frequency index 0.55, a value slightly flatter as compared to the
observed estimate of 0.6 at radio wavelengths. Note that the
value of m obtained here is immediately after the particle has
traversed the shock. However, the subsequent evolution in a
magnetized environment will result in radiative losses due to
adiabatic expansion and synchrotron and IC losses, which will
effectively steepen the spectrum, especially at very high
energies. The spectral evolution is shown in the right panel of

Figure 9. Left: dependence of observed polarization fraction Πobs with observation angle θobs for a magnetic pitch 45Y¢ =  and two values of Lorentz factor for the
shell, γ = 10 (solid line) and 50 (dashed line). The distribution of macro-particles(radiating elements) is set to be a power law with three different spectral slopes,
m=1 (red), 2 (green) and 3 (blue). Right: same as the left panel but for a purely toroidal field ( 90Y¢ = ).
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Figure 11 for a representative single macro-particle. This
macro-particle experiences the shock around 540 yr and its
spectral energy distribution is flattened by the shock and also
extended to higher energies. The rapid spectral change is, once
again, caused by our “instantanous” steady state approach to
DSA. The maximum energy obtained after the DSA is ≈16
TeV. Such an estimate is a factor 2.5 times smaller than the
upper limit obtained by fitting the electron spectrum from
SN1006 (Reynolds & Keohane 1999) assuming a magnetic
field of 10 μG. As the shock passes, the losses due to adiabatic
expansion are evident from a uniform downward shift over
time. Losses due to synchrotron cooling are insignificant due to
the cooling time being larger than the evolution time for
electrons with few TeV energies for field strengths of the order
of 10 μG in our simulations.

5.2. Shocks in Relativistic Slab Jets

The second application studies the particle acceleration at
shocks in a two-dimensional relativistic slab jet.

The initial conditions consist of a Cartesian domain having a
spatial extent of (0, D=10π a) and (−D/2, D/2) along the x
and y planes respectively. The domain is discretized with 3842

grid cells. The slab jet is centered at y=0 and has a vertical
extent of length a=200 pc on both sides of the central axis.
The slab jet has a flow velocity given by a bulk Lorentz factor

γ=5 along the x axis while the ambient medium is static. In
order to avoid excitation of random perturbations due to the
steep gradient in velocity at the interface we convolve the jet
velocity with a smoothening function as described in Bodo
et al. (1995). Additionally, a uniform magnetic field with a
plasma β=103 along the x axis corresponding to a field
strength of ≈6 mG is introduced. As the main goal of this
application is to model the interaction of under-dense AGN jets
with the ambient, we choose a jet with a density ratio of
η=10−2:

y y

a

,
1 sech 76
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6r h
r
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where 10 cm0
4 3r = - - is the density of the jet on the central

axis (i.e., y=0). The jet is set to be in pressure equilibrium
with the ambient, i.e., Pjet=Pamb=1.5×10−9 dyne cm−2.
Periodic boundary conditions are imposed along the x axis and
free boundary conditions are imposed at the top and bottom
boundaries.
This initial configuration at time 0t = is perturbed with a

functional form that can excite a wide range of modes. We
perturb the y component of the velocity using the antisym-
metric perturbation described by Equation 2(b) of Bodo et al.
(1995). The amplitude of the perturbation is chosen to be 1% of
the initial bulk flow velocity. The wavelength of the
fundamental mode is set equal to the size of the computational
domain along the x direction; the corresponding wave number
is k0=2π/D=0.2/a. These perturbations grow with time as
a consequence of the Kelvin–Helmholtz instability, progres-
sively steepen, and develop into shocks. These oblique shocks
are typically seen in AGN jets as the bulk jet flow interacts with
the surrounding ambient.
In order to study the effects of such shocks on the process of

particle acceleration via DSA, we introduce two macro-
particles per cell ( 3 105~ ´ particles) at the initial time. The
macro-particles are initialized with a very steep initial power-
law spectrum (m=15; see Equation (24)) covering a wide
spectral energy range of eight orders of magnitude with
E 0.63 keVmin = to E 63 TeVmax = with 250 bins. The initial
number density of real particles is set to be 100

4
0 r= - .

During the early stages of evolution when the shocks have yet
to form, the particles experience radiative losses due to
synchrotron and IC processes. After the perturbations steepen
to form shocks, the particles are accelerated via DSA and their
spectral distribution is modified as described in Section 2.4.
The obliquity of magnetic field with respect to the shock
normal is also accounted for in the estimate of the post-shock
electron spectral slope q of the particle by using Equations (34)
and (35). The free parameters used to determine the energy
bounds of the shock modified spectral distribution are chosen
as δn=0.01 and δe=0.5.
During the simulation run of 0.3 Myr, we record a total of

16,539 events when the spectral distribution of the macro-
particles is altered on passing through the shock. The
normalized probability distribution function (PDF) of the
modified spectral slope q is shown in Figure 12. The PDF
shows a reasonable spread in the shock-modified spectral slope
q. We observe that the mean of the events of spectral
modification results in a slope 〈q〉∼ 3.1 This spread arises
due to our consistent approach of estimating the value of q
based on the compression ratio of the shock and the obliquity

Figure 10. Evolution of fluid density at time τ≈1008 yr along with magnetic
field vectors, shown as red arrows.
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of the magnetic field with respect to the shock normal. With our
approach we relax the approximation of treating every shock as
a strong shock with a fixed spectral slope of q=2.23 (Mimica
et al. 2009; Fromm et al. 2016) or q=2.0 (de la Cita
et al. 2016). The fixed choice of spectral index (q≈2) would
result in an overestimate of the emissivity as the majority of
shocks formed in our simulations have either lower strengths or
are quasi-perpendicular, resulting in a steeper spectral
distribution.

We estimate the synchrotron emissivity n r, ,sy los n( ˆ ),
fractional polarization Π (see Equations (42), (43)), and IC
emissivity n r, ,IC los n( ˆ ) (Equation (58)) using the instanta-
neous spectral distribution for each macro-particle. The above
integral quantities for each macro-particle are then deposited
onto the fluid grid. The line of sight is chosen to be θobs=20°

with respect to the z-axis (pointing out of the plane). The
Gaussian convoluted normalized emissivity (with standard
deviation σg=9) is shown in Figure 13 for three different
observed frequencies at time τ∼0.14Myr. The left panel
shows the emissivity at ν=150MHz in the low-frequency
radio band using spectral colors. The emissivity for 10 keV
X-ray energy is shown in the middle panel and the IC
emissivity at an energy of 0.5 MeV representing the soft-
gamma band is shown in the right panel. In each of these
panels, we also show the fluid density ρ in the background with
copper colors. We observe a correlation between high-
emissivity regions in the radio band with those of shocks
formed as the jet interacts with the ambient medium. The X-ray
emission at 10 keV is interesting and very distinct from that in
the left and right panels. We observe X-ray emission as
localized bright knots rather than a distributed emission in
radio. The spots are associated with regions where there has
been recent interactions of merging shocks as seen in the
background fluid density. The weak emission features observed
in the right panel in the soft-gamma band are correlated with
those seen in the left panel. No localized bright spots are
observed for the emission at 0.5 MeV. This can be understood
from the fact that the same population of electrons responsible
of the production of the low-frequency radio emission also up-
scatter CMB photons (TCMB(z)=2.728 K) to give rise to IC
emission around the same energy band.
To better compare the distinct nature of radio and X-ray

synchrotron emission, we overlap the normalized X-ray
emission corresponding to an energy of 3 keV with normalized
radio (ν=15 GHz) contours in the left panel of Figure 14. The
X-ray emission is convoluted with a beam that is 1.5 times
broader than that used to obtain the radio contours. Though our
emissivity estimates from the slab jet are not integrated along
the line of sight, we do see clear evidence of knotty emission in
the X-ray bands that is offset from the radio peaks. The reason
for this offset lies in the fact that they originate from different
regions associated with the structure of oblique shocks. Radio

Figure 11. Left panel: particle distribution at time τ=1008 yr for the SN 1006 supernova remnant case. The colors represent the compression ratio due to shock
while the negative values represent initial particles in the domain that have not interacted with the shock. Middle panel: histogram showing the electron spectral index
m for all the particles that have been shocked. Right panel: evolution of spectral energy distribution for a single representative macro-particle.

Figure 12. Normalized PDF of the modified spectral slope q as the particle
crosses the shock during the evolution of the slab jet until 0.3 Myr.
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emission is mainly forming due to large-scale, long-lived
shocks as the jet flow interacts with the ambient. Additionally,
the radio electrons have a much longer synchrotron lifetime,
allowing them to produce bright emission at low frequencies.
As the large-scale, forward-moving shocks interact, they also
result in the formation of reverse shocks, which eventually
merge. Bright X-ray knots are produced where such a recent
merging of reverse shocks takes place and are short-lived due
to the very short synchrotron cooling time of high-energy
electrons. Multi-wavelength observations of the kpc-scale jet in
the powerful radio galaxy 3C 346 have shown signatures of an
offset of about 0.8 kpc between the radio and X-ray emission
(Worrall & Birkinshaw 2005; Dulwich et al. 2009). The
synthetic emissivity map obtained from our simulations of
oblique shocks is able to very well reproduce such offsets.

Additionally, the magnetic obliquity plays a crucial role in
determining the spectral index and energy bounds of injected
spectrum at shocks. The magnetic fields at oblique shocks
typically become perpendicular to the jet flow, and therefore
would result in a steeper spectral slope. This can been
understood from the distribution of fractional polarization
shown in the right panel of Figure 14. We have overlaid
contours (spectral colors) of Π for radio band ν=15 GHz on
the copper background of fluid density. The contour levels vary
from 20% (black) to 70% (gray). Regions of high degree of
polarization >50% are seen at the merging large-scale shocks,
indicating strong polarization of synchrotron emission there.
Multi-wavelength spectral studies of typical AGN jets like M87
and 3C 264 have shown evidence of X-ray synchrotron
emission and harder spectral indices toward the edge of the jet
(Perlman et al. 1999, 2010; Worrall & Birkinshaw 2005). A
consequence of this is the presence of a high degree of
polarization at the edges of the interface between the jet bulk
flow and ambient medium. Optical and radio polarization
studies in 3C 264 show a similar high degree > 45% close to
the edges (e.g., Perlman et al. 2006, 2010).

Thus, our implementation of DSA at relativistic shocks for
the case of slab jets shows similar qualitative features as

observed for typical AGN jets. A one-to-one comparison with
observed flux estimates will be made in a subsequent paper
using 3D RMHD jet simulations.

6. Discussion and Conclusion

We have presented a state-of-the-art hybrid framework for
the PLUTO code which describes the spectral evolution of
highly energetic particles by means of (mesh-less) Lagrangian
macro-particles embedded in a classical or relativistic MHD
fluid. The main purpose of this work is the inclusion of sub-
grid micro-physical processes at macroscopic astrophysical
scales where the fluid approximation is adequate. While the
MHD equations are integrated by means of standard Godunov-
type finite-volume schemes already available with the code,
macro-particles obey the relativistic cosmic-ray transport
equation in the diffusion approximation. Back-reaction from
particle to the fluid is not included and will be considered in
forthcoming works.
The main features that characterize our hybrid framework are

summarized below.

1. Lagrangian macro-particles follow fluid streamlines and
embody a collection of actual physical particles (typically
electrons) with a finite distribution in energy space. For
each macro-particle we solve, away from shocks, the
cosmic ray transport equation in momentum (or energy
space) to model radiation losses due to synchrotron,
adiabatic expansion, and IC effects, based on local fluid
conditions. The transport equation is solved semi-
analytically using the method of characteristics to update
the energy coordinates in a Lagrangian discretization.

2. In the presence of magnetized shocks, we have described
a novel technique to account for particle energization due
to DSA processes. This involves sampling the local fluid
quantities (such as velocity, magnetic field, and pressure)
in the upstream and downstream states to estimate the
shock velocity along with the shock normal. These
quantities are critical to performing the transformation to

Figure 13.Multi-wavelength emission signatures from the slab jet simulation run at time τ=0.137 Myr. Each panel shows the fluid density ρ (as copper colors). The
emissivities shown in each panel are obtained from instantaneous spectral distribution of particles and deposited on the grid. They are shown as spectral colors for
three different observed frequencies, namely ν=150 MHz (left), 10 keV (middle) due to synchrotron processes, and 0.5 MeV (right) due to IC.
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the NIF where the compression ratio can then be
calculated. We have verified the validity of our shock-
detection scheme by comparing it with theoretical
estimates from 2D planar shocks. The technique works
also for curved as well as oblique shocks with very good
accuracy.

Knowledge of the shock normal and of the local
magnetic field direction enables us to include obliquity
dependence in the estimate of the post-shock power-law
index of the particle energy distribution. In this way our
model is able to distinguish between quasi-parallel (more
efficient) and quasi-perpendicular (less efficient) shocks,
the latter resulting in a steeper spectrum and depending
on the amount of parameterized (unresolved) turbulence.
In both cases, the high-energy cut-off is estimated
consistently from the acceleration timescale derived
without assuming equipartition, but rather by considering
particle diffusion along and across the magnetic field
lines.

3. The spectral distribution from each macro-particle is then
further employed to compute observables such as
emissivity and the degree of polarization due to
synchrotron processes. Numerical benchmarks involving
a relativistically expanding shell have been used to
demonstrate the accuracy of our implementation against
theoretical expectation. We adopt appropriate relativistic
kinematic effects to estimate the observed degree of
polarization and study its dependence on the viewing
angles, θobs. We observe that the value of polarization
degree saturates for larger viewing angles. For

gamma-ray energies, we obtain Π≈56% for a power-
law distribution with m=3, smaller than the theoretical
upper limit of 75%. This effect of depolarization is
consistent with values estimated by Lyutikov et al.
(2003).

We have further applied our new framework to problems of
astrophysical relevance involving either classical MHD or
relativistic magnetized shocks. Two examples have been
proposed.

1. SN 1006. In the first application, we have studied DSA
and non-thermal emission in the context of SNRs with
particular attention to SN1006. Our study of particle
acceleration at classical MHD shocks using axisymmetric
SNR simulations has shown that the average spectral
index for particles is around m=2.1, consistent with
values obtained for strong shocks. The maximum spectral
energy of 20 TeV obtained for the magnetic field of
∼8μG is about a factor two times less than the upper
limits obtained from fitting of observed spectra from
SN 1006.

2. Slab jet. In the second application, we have investigated
particle acceleration at shocks in a 2D relativistic slab jet.
Unlike previous authors who employed a constant value
for the spectral index of shocked particles, our method
self-consistently determines the shock compression ratio
and distinguishes between quasi-parallel or quasi-
perpendicular shocks. This has shown to produce a
considerable spreading in the electron spectral index (see
Figure 12). Also, we observe knotty emission features for

Figure 14. Multi-wavelength emissivity map of the slab jet at time τ=0.137 Myr (left panel). The color map shows the Gaussian-convoluted normalized X-ray
(3 keV) emissivity and overlaid are the contours for Gaussian-convoluted normalized radio (ν=15 GHz) emissivity. The right panel shows the density of the flow in
the copper color map at the same time and overlaid are the contours of the polarization degree whose values range from Π=20% (black contours) to Π=70% (gray
contours).
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X-ray energies and misaligned emissivity features,
indicating the effects of oblique shocks. The polarization
degree is also found to be larger at the jet/ambient
interface, in agreement with radio and optical polarization
signatures from 3C 264 (Perlman et al. 2010).

Forthcoming extensions of this work will aim at relaxing
some of the simplifying assumptions adopted here. In
particular, efforts will be taken to (i) incorporate energy
dependence in the free parameter η for quasi-perpendicular
relativistic shocks along with magnetic field amplification
through feedback, (ii) include macro-particle back-reaction on
the underlying fluid which can also account for modifications
in the shock structure (Blasi 2002), and (iii) extend our
framework to include spectral evolution of protons with an aim
to compare leptonic and hadronic emission from jets. The
ultimate goal of this framework would be to model multi-
wavelength emission from AGN jets using 3D simulations.
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Appendix A
Complete Analytic Solution for RMHD Shocks

Here we describe the steps used to derive the analytic
solution that completely describes the RMHD shock with
arbitrary orientation of magnetic fields. For the tests of planar
shocks described in this paper, the inputs are the pre-shock
conditions (region where the particle is initialized) and the
shock speed (treated as an input parameter). Our aim is to
obtain the scalar and vector quantities in the post-shock region
(where the particle moves on crossing the shock). Without loss
of generality we will assume here that the shock moves along
the positive x axis.

Let us denote input quantities, Ua, in the pre-shock region
with subscript a and the unknown post-shock quantities, Ub,
with subscript b. In the lab frame, these quantities are related
via the following jump condition across a fast magnetosonic
shock with speed vsh:

U F Uv . 77sh =[ ] [ ( )] ( )

Here, q q qb a= -[ ] denotes the jump across the wave and
F q( ) is the flux for any quantity q. The set of jump conditions
can be reduced to the following five positive-definite scalar
invariants (Lichnerowicz 1976; Mignone & McKinney 2007):
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The specific gas enthalpy h is related to the gas pressure p and
density ρ via an equation of state. The magnetic energy density,
b2 is related to the magnetic field B in the lab frame as
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Following Mignone & McKinney (2007), we numerically
solve the set of 3 3´ nonlinear Equations (80)–(82) using
the expression for the post-shock ηb=ηaha/hb from
Equation (79). The solution of this closed set of equations
gives us the three unknown scalars, namely the gas pressure pb,
density ρb, and magnetic energy density bb

2 in the post-shock
region.
The next step in describing the shock completely is to

estimate the post-shock vector quantities, i.e., velocities bb and
magnetic fields Bb. To estimate these, we use the exact
Riemann solution for full set of RMHD equations (Giacomazzo
& Rezzolla 2006). In particular, we obtain the tangential
components of the velocity ( ,b

y
b
zb b ) in the post-shock region

using the expressions presented in Appendix A of their paper.
These expressions relate the tangential velocity components to
the pre-shock quantities and only the post-shock pressure, pb.
Further, using the estimated tangential velocity components,
we obtain the normal velocity b

xb in the post-shock region using
Equation (4.25) in Giacomazzo & Rezzolla (2006). With the
knowledge of the post-shock velocity field, the magnetic fields
in the post-shock region can be easily derived from the
following jump conditions Giacomazzo & Rezzolla (2006):
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where, D=ρ γ is the proper gas density. Note that the
magnetic field component normal to the shock front does not
jump across the shock, i.e., B Ba

x
b
x= . The PYTHON code

written to derive the analytic solutions for RMHD shock
conditions will be made available upon request from the author.

Appendix B
Frame Transformation to NIF

In order to compute the spectral index of particle energy
distribution as it passes the shock, one has to estimate the
compression ratio in the shock rest frame. The compression
ratio, r, is defined as the ratio of upstream to downstream
velocities normal to the shock, and since the mass flux is
conserved across the shock, it is also equivalent to the ratio of
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densities across the shock for non-relativistic MHD:

v n
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where the velocities v1,2 are obtained in the shock rest frame,
which is defined in a unique way for the non-relativistic
MHD case.

However, while treating RMHD shocks, one can have
multiple shock rest frames (Ballard & Heavens 1991; Summerlin
& Baring 2012). The NIF is the shock rest frame where the
upstream velocity is normal to the shock front. The other shock
rest frame often used in the case of RMHD flows is the de
Hoffmann–Teller Frame (HTF) wherein the upstream velocity
and magnetic fields are aligned with the shock at rest. Since the
HTF is usually defined for sub-luminal shocks and does not exist
for super-luminal shocks, we choose to work with the NIF as our
preferred shock rest frame.

Given the shock speed, vsh, normal to the shock direction, nsˆ
and both upstream and downstream states across the shock in
the lab frame, we can transform to the NIF in a two-step
process. The first step involves a Lorentz boost equal to the
shock velocity and along its direction. Mathematically, any
general four-vector u in the lab frame is related to u¢ in the
Lorentz-boosted frame as follows:

u n u, , 88bst bst b¢ = ( ˆ ) ( )

where  is the symmetric Lorentz boost operator.
For the first step, vbst shb = and n nsbst =ˆ ˆ . The second

transformation requires another Lorentz boost to transform the
intermediate primed frame of reference to obtain the NIF. In
this case, the boost has to be in the transverse direction to the
shock and with a boost velocity vtbstb = ¢, where, vt¢ is the
tangential velocity in the primed frame of reference. For 2D
tests with planar shocks propagating along the x axis, the
tangential velocity is the velocity along the y axis obtained in
the intermediate prime frame.

With these two Lorentz boosts, we obtain the quantities
across the shock in the NIF and then we can estimate the
compression ratio as

n

n
r 891

NIF NIF

2
NIF NIF

b
b

=
· ˆ
· ˆ

( )

. 902 2
NIF

1 1
NIF

r g
r g

= ( )

ORCID iDs

Bhargav Vaidya https://orcid.org/0000-0001-5424-0059
Gianluigi Bodo https://orcid.org/0000-0002-9265-4081
Paola Rossi https://orcid.org/0000-0002-0840-4726

References

Achterberg, A., Gallant, Y. A., Kirk, J. G., & Guthmann, A. W. 2001,
MNRAS, 328, 393

Aloy, M.-A., Gómez, J.-L., Ibáñez, J.-M., Martí, J.-M., & Müller, E. 2000,
ApJL, 528, L85

Bai, X.-N., Caprioli, D., Sironi, L., & Spitkovsky, A. 2015, ApJ, 809, 55
Ballard, K. R., & Heavens, A. F. 1991, MNRAS, 251, 438

Birdsall, C., & Langdon, A. 2004, Plasma Physics via Computer Simulation
(London: Taylor and Francis)

Blandford, R. D., & Königl, A. 1979, ApJ, 232, 34
Blandford, R. D., & Ostriker, J. P. 1978, ApJL, 221, L29
Blasi, P. 2002, APh, 16, 429
Bodo, G., Massaglia, S., Rossi, P., et al. 1995, A&A, 303, 281
Böttcher, M., & Dermer, C. D. 2010, ApJ, 711, 445
Daldorff, L. K. S., Tóth, G., Gombosi, T. I., et al. 2014, JCoPh, 268, 236
de la Cita, V. M., Bosch-Ramon, V., Paredes-Fortuny, X., Khangulyan, D., &

Perucho, M. 2016, A&A, 591, A15
Del Zanna, L., Volpi, D., Amato, E., & Bucciantini, N. 2006, A&A, 453, 621
Drury, L. O. 1983, RPPh, 46, 973
Dulwich, F., Worrall, D. M., Birkinshaw, M., Padgett, C. A., & Perlman, E. S.

2009, MNRAS, 398, 1207
English, W., Hardcastle, M. J., & Krause, M. G. H. 2016, MNRAS, 461, 2025
Fromm, C. M., Perucho, M., Mimica, P., & Ros, E. 2016, A&A, 588, A101
Giacomazzo, B., & Rezzolla, L. 2006, JFM, 562, 223
Ginzburg, V. L., & Syrovatskii, S. I. 1965, ARA&A, 3, 297
Gómez, J. L., Martí, J. M., Marscher, A. P., Ibáñez, J. M., & Alberdi, A. 1997,

ApJL, 482, L33
Gomez, J. L., Marti, J. M. A., Marscher, A. P., Ibanez, J. M. A., &

Marcaide, J. M. 1995, ApJL, 449, L19
Hardcastle, M. J., & Krause, M. G. H. 2014, MNRAS, 443, 1482
Jokipii, J. R. 1987, ApJ, 313, 842
Jokipii, J. R., & Parker, E. N. 1970, ApJ, 160, 735
Jones, T. W., Ryu, D., & Engel, A. 1999, ApJ, 512, 105
Kardashev, N. S. 1962, SvA, 6, 317
Keshet, U., & Waxman, E. 2005, PhRvL, 94, 111102
Kirk, J. G., Guthmann, A. W., Gallant, Y. A., & Achterberg, A. 2000, ApJ,

542, 235
Kirk, J. G., & Reville, B. 2010, ApJL, 710, L16
Konigl, A. 1981, ApJ, 243, 700
Lichnerowicz, A. 1976, JMP, 17, 2135
Longair, M. S. 1994, High Energy Astrophysics, Vol. 2 (Cambridge: Cambridge

Univ. Press)
Lyutikov, M., Pariev, V. I., & Blandford, R. D. 2003, ApJ, 597, 998
Marcowith, A., Bret, A., Bykov, A., et al. 2016, RPPh, 79, 046901
Marscher, A. P. 1980, ApJ, 235, 386
Mathews, W. G. 1971, ApJ, 165, 147
Micono, M., Zurlo, N., Massaglia, S., Ferrari, A., & Melrose, D. B. 1999,

A&A, 349, 323
Mignone, A., Bodo, G., Massaglia, S., et al. 2007, ApJS, 170, 228
Mignone, A., Bodo, G., Vaidya, B., & Mattia, G. 2018, ApJ, 859, 13
Mignone, A., & McKinney, J. C. 2007, MNRAS, 378, 1118
Mignone, A., Zanni, C., Tzeferacos, P., et al. 2012, ApJS, 198, 7
Mimica, P., & Aloy, M. A. 2012, MNRAS, 421, 2635
Mimica, P., Aloy, M.-A., Agudo, I., et al. 2009, ApJ, 696, 1142
Miniati, F. 2001, CoPhC, 141, 17
Park, J., Caprioli, D., & Spitkovsky, A. 2015, PhRvL, 114, 085003
Parker, E. N. 1965, P&SS, 13, 9
Perlman, E. S., Biretta, J. A., Zhou, F., Sparks, W. B., & Macchetto, F. D.

1999, AJ, 117, 2185
Perlman, E. S., Padgett, C. A., Georganopoulos, M., et al. 2006, ApJ, 651, 735
Perlman, E. S., Padgett, C. A., Georganopoulos, M., et al. 2010, ApJ, 708, 171
Porth, O., Fendt, C., Meliani, Z., & Vaidya, B. 2011, ApJ, 737, 42
Reynolds, S. P., & Keohane, J. W. 1999, ApJ, 525, 368
Schneiter, E. M., Velázquez, P. F., Reynoso, E. M., & de Colle, F. 2010,

MNRAS, 408, 430
Schwartz, S. J. 1998, ISSIR, 1, 249
Sironi, L., Keshet, U., & Lemoine, M. 2015, SSRv, 191, 519
Sironi, L., & Spitkovsky, A. 2009, ApJ, 698, 1523
Sironi, L., Spitkovsky, A., & Arons, J. 2013, ApJ, 771, 54
Skilling, J. 1975, MNRAS, 172, 557
Summerlin, E. J., & Baring, M. G. 2012, ApJ, 745, 63
Takamoto, M., & Kirk, J. G. 2015, ApJ, 809, 29
Taub, A. H. 1948, PhRv, 74, 328
Tregillis, I. L., Jones, T. W., & Ryu, D. 2001, ApJ, 557, 475
Vaidya, B., Mignone, A., Bodo, G., & Massaglia, S. 2016, JPhCS, 719,

012023
van Marle, A. J., Casse, F., & Marcowith, A. 2018, MNRAS, 473, 3394
Webb, G. M. 1989, ApJ, 340, 1112
Webb, G. M., & Gleeson, L. J. 1979, Ap&SS, 60, 335
Worrall, D. M., & Birkinshaw, M. 2005, MNRAS, 360, 926

21

The Astrophysical Journal, 865:144 (21pp), 2018 October 1 Vaidya et al.

https://orcid.org/0000-0001-5424-0059
https://orcid.org/0000-0001-5424-0059
https://orcid.org/0000-0001-5424-0059
https://orcid.org/0000-0001-5424-0059
https://orcid.org/0000-0001-5424-0059
https://orcid.org/0000-0001-5424-0059
https://orcid.org/0000-0001-5424-0059
https://orcid.org/0000-0001-5424-0059
https://orcid.org/0000-0002-9265-4081
https://orcid.org/0000-0002-9265-4081
https://orcid.org/0000-0002-9265-4081
https://orcid.org/0000-0002-9265-4081
https://orcid.org/0000-0002-9265-4081
https://orcid.org/0000-0002-9265-4081
https://orcid.org/0000-0002-9265-4081
https://orcid.org/0000-0002-9265-4081
https://orcid.org/0000-0002-0840-4726
https://orcid.org/0000-0002-0840-4726
https://orcid.org/0000-0002-0840-4726
https://orcid.org/0000-0002-0840-4726
https://orcid.org/0000-0002-0840-4726
https://orcid.org/0000-0002-0840-4726
https://orcid.org/0000-0002-0840-4726
https://orcid.org/0000-0002-0840-4726
https://doi.org/10.1046/j.1365-8711.2001.04851.x
http://adsabs.harvard.edu/abs/2001MNRAS.328..393A
https://doi.org/10.1086/312436
http://adsabs.harvard.edu/abs/2000ApJ...528L..85A
https://doi.org/10.1088/0004-637X/809/1/55
http://adsabs.harvard.edu/abs/2015ApJ...809...55B
https://doi.org/10.1093/mnras/251.3.438
http://adsabs.harvard.edu/abs/1991MNRAS.251..438B
https://doi.org/10.1086/157262
http://adsabs.harvard.edu/abs/1979ApJ...232...34B
https://doi.org/10.1086/182658
http://adsabs.harvard.edu/abs/1978ApJ...221L..29B
https://doi.org/10.1016/S0927-6505(01)00127-X
http://adsabs.harvard.edu/abs/2002APh....16..429B
http://adsabs.harvard.edu/abs/1995A&amp;A...303..281B
https://doi.org/10.1088/0004-637X/711/1/445
http://adsabs.harvard.edu/abs/2010ApJ...711..445B
https://doi.org/10.1016/j.jcp.2014.03.009
http://adsabs.harvard.edu/abs/2014JCoPh.268..236D
https://doi.org/10.1051/0004-6361/201527084
http://adsabs.harvard.edu/abs/2016A&amp;A...591A..15D
https://doi.org/10.1051/0004-6361:20064858
http://adsabs.harvard.edu/abs/2006A&amp;A...453..621D
https://doi.org/10.1088/0034-4885/46/8/002
http://adsabs.harvard.edu/abs/1983RPPh...46..973D
https://doi.org/10.1111/j.1365-2966.2009.15211.x
http://adsabs.harvard.edu/abs/2009MNRAS.398.1207D
https://doi.org/10.1093/mnras/stw1407
http://adsabs.harvard.edu/abs/2016MNRAS.461.2025E
https://doi.org/10.1051/0004-6361/201527139
http://adsabs.harvard.edu/abs/2016A&amp;A...588A.101F
https://doi.org/10.1017/S0022112006001145
http://adsabs.harvard.edu/abs/2006JFM...562..223G
https://doi.org/10.1146/annurev.aa.03.090165.001501
http://adsabs.harvard.edu/abs/1965ARA&amp;A...3..297G
https://doi.org/10.1086/310671
http://adsabs.harvard.edu/abs/1997ApJ...482L..33G
https://doi.org/10.1086/309623
http://adsabs.harvard.edu/abs/1995ApJ...449L..19G
https://doi.org/10.1093/mnras/stu1229
http://adsabs.harvard.edu/abs/2014MNRAS.443.1482H
https://doi.org/10.1086/165022
http://adsabs.harvard.edu/abs/1987ApJ...313..842J
https://doi.org/10.1086/150465
http://adsabs.harvard.edu/abs/1970ApJ...160..735J
https://doi.org/10.1086/306772
http://adsabs.harvard.edu/abs/1999ApJ...512..105J
http://adsabs.harvard.edu/abs/1962SvA.....6..317K
https://doi.org/10.1103/PhysRevLett.94.111102
http://adsabs.harvard.edu/abs/2005PhRvL..94k1102K
https://doi.org/10.1086/309533
http://adsabs.harvard.edu/abs/2000ApJ...542..235K
http://adsabs.harvard.edu/abs/2000ApJ...542..235K
https://doi.org/10.1088/2041-8205/710/1/L16
http://adsabs.harvard.edu/abs/2010ApJ...710L..16K
https://doi.org/10.1086/158638
http://adsabs.harvard.edu/abs/1981ApJ...243..700K
https://doi.org/10.1063/1.522857
http://adsabs.harvard.edu/abs/1976JMP....17.2135L
https://doi.org/10.1086/378497
http://adsabs.harvard.edu/abs/2003ApJ...597..998L
https://doi.org/10.1088/0034-4885/79/4/046901
http://adsabs.harvard.edu/abs/2016RPPh...79d6901M
https://doi.org/10.1086/157642
http://adsabs.harvard.edu/abs/1980ApJ...235..386M
https://doi.org/10.1086/150883
http://adsabs.harvard.edu/abs/1971ApJ...165..147M
http://adsabs.harvard.edu/abs/1999A&amp;A...349..323M
https://doi.org/10.1086/513316
http://adsabs.harvard.edu/abs/2007ApJS..170..228M
https://doi.org/10.3847/1538-4357/aabccd
http://adsabs.harvard.edu/abs/2018ApJ...859...13M
https://doi.org/10.1111/j.1365-2966.2007.11849.x
http://adsabs.harvard.edu/abs/2007MNRAS.378.1118M
https://doi.org/10.1088/0067-0049/198/1/7
http://adsabs.harvard.edu/abs/2012ApJS..198....7M
https://doi.org/10.1111/j.1365-2966.2012.20495.x
http://adsabs.harvard.edu/abs/2012MNRAS.421.2635M
https://doi.org/10.1088/0004-637X/696/2/1142
http://adsabs.harvard.edu/abs/2009ApJ...696.1142M
https://doi.org/10.1016/S0010-4655(01)00293-4
http://adsabs.harvard.edu/abs/2001CoPhC.141...17M
https://doi.org/10.1103/PhysRevLett.114.085003
http://adsabs.harvard.edu/abs/2015PhRvL.114h5003P
https://doi.org/10.1016/0032-0633(65)90131-5
http://adsabs.harvard.edu/abs/1965P&amp;SS...13....9P
https://doi.org/10.1086/300844
http://adsabs.harvard.edu/abs/1999AJ....117.2185P
https://doi.org/10.1086/506587
http://adsabs.harvard.edu/abs/2006ApJ...651..735P
https://doi.org/10.1088/0004-637X/708/1/171
http://adsabs.harvard.edu/abs/2010ApJ...708..171P
https://doi.org/10.1088/0004-637X/737/1/42
http://adsabs.harvard.edu/abs/2011ApJ...737...42P
https://doi.org/10.1086/307880
http://adsabs.harvard.edu/abs/1999ApJ...525..368R
https://doi.org/10.1111/j.1365-2966.2010.17125.x
http://adsabs.harvard.edu/abs/2010MNRAS.408..430S
http://adsabs.harvard.edu/abs/1998ISSIR...1..249S
https://doi.org/10.1007/s11214-015-0181-8
http://adsabs.harvard.edu/abs/2015SSRv..191..519S
https://doi.org/10.1088/0004-637X/698/2/1523
http://adsabs.harvard.edu/abs/2009ApJ...698.1523S
https://doi.org/10.1088/0004-637X/771/1/54
http://adsabs.harvard.edu/abs/2013ApJ...771...54S
https://doi.org/10.1093/mnras/172.3.557
http://adsabs.harvard.edu/abs/1975MNRAS.172..557S
https://doi.org/10.1088/0004-637X/745/1/63
http://adsabs.harvard.edu/abs/2012ApJ...745...63S
https://doi.org/10.1088/0004-637X/809/1/29
http://adsabs.harvard.edu/abs/2015ApJ...809...29T
https://doi.org/10.1103/PhysRev.74.328
http://adsabs.harvard.edu/abs/1948PhRv...74..328T
https://doi.org/10.1086/321657
http://adsabs.harvard.edu/abs/2001ApJ...557..475T
https://doi.org/10.1088/1742-6596/719/1/012023
http://adsabs.harvard.edu/abs/2016JPhCS.719a2023V
http://adsabs.harvard.edu/abs/2016JPhCS.719a2023V
https://doi.org/10.1093/mnras/stx2509
http://adsabs.harvard.edu/abs/2018MNRAS.473.3394V
https://doi.org/10.1086/167462
http://adsabs.harvard.edu/abs/1989ApJ...340.1112W
https://doi.org/10.1007/BF00644337
http://adsabs.harvard.edu/abs/1979Ap&amp;SS..60..335W
https://doi.org/10.1111/j.1365-2966.2005.09082.x
http://adsabs.harvard.edu/abs/2005MNRAS.360..926W

