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ABSTRACT 

Computer Generated Holograms (CGHs) are used for wavefront shaping and complex optics testing, including aspherical 
and free-form optics. Today, CGHs are recorded directly with a laser or intermediate masks, allowing only the 
realization of binary CGHs; they are efficient but can reconstruct only pixilated images. We propose a Digital Micro-
mirror Device (DMD) as a reconfigurable mask, to record rewritable binary and grayscale CGHs on a photochromic 
plate. The DMD is composed of 2048x1080 individually controllable micro-mirrors, with a pitch of 13.68 µm. This is a 
real-time reconfigurable mask, perfect for recording CGHs. The photochromic plate is opaque at rest and becomes 
transparent when it is illuminated with visible light of suitable wavelength. We have successfully recorded the very first 
amplitude grayscale CGH, in equally spaced levels, so called stepped CGH. We recorded up to 1000x1000 pixels CGHs 
with a contrast greater than 50, using Fresnel as well as Fourier coding scheme. Fresnel’s CGH are obtained by 
calculating the inverse Fresnel transform of the original image at a given focus, ranging from 50cm to 2m. The 
reconstruction of the recorded images with a 632.8nm He-Ne laser beam leads to images with a high fidelity in shape, 
intensity, size and location. These results reveal the high potential of this method for generating 
programmable/rewritable grayscale CGHs, which combine DMDs and photochromic substrates. 

Key words: Computer Generated Hologram, CGH, programmable CGH, MOEMS, photochromic material, 
optical testing, wavefront shaping, DMD. 
 
 

1. INTRODUCTION 

Computer Generated Holograms (CGHs) are useful for wavefront shaping and complex optics testing, including 
aspherical and free-form optics [1]. CGHs are classified in two groups: 1- phase holograms, which are obtained by 
recording a phase variation in a material having a modulated refractive index or thickness; 2- amplitude holograms, 
where an intensity pattern is recorded in a material whose transparency can be locally controlled. Phase and amplitude 
holograms provide the same performances in terms of image reconstruction quality, but different diffraction efficiency. 
For instance, binary phase holograms, show 40% diffraction efficiency in the first order, whereas efficiency is limited to 
10% for binary amplitude holograms [2]. Therefore, amplitude holograms are usually applied in interferometry, which is 
not intensity limited. 

Grayscale amplitude and grayscale phase holograms are known to give a higher reconstruction quality than binary 
holograms [2], but they require a more complex production process. Specifically, the production of phase grayscale 
CGHs is complex since a series of masks has to be consecutively aligned very precisely, and a developing step is 
required after each exposure step to obtain the final hologram. 
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To our best knowledge, only grayscale phase CGHs have been obtained so far by micro-lithography [3], the uniformity 
of the material thickness being the main limiting parameter for these components [4]. Concerning amplitude CGHs, they 
are nowadays produced in chrome on glass by means of lithographic techniques, either mask or maskless (by direct 
writing) lithography. Due to the binary nature of the chrome developing process, these techniques allow for easily 
writing binary CGHs, but they cannot provide grayscale CGHs.  

In this paper, we demonstrate an original recording technique, which makes use of a programmable mask and a non-
threshold photosensitive material, to produce ready to use grayscale CGHs in a one exposure process without requiring 
any developing step. Indeed, a set-up based on a Digital Micro-mirror Device (DMD), which has been originally 
developed to generate programmable slit masks in multi-object spectrographs [5], is considered. DMDs are 
programmable devices, composed of millions of micro-mirrors reconfigurable in real time. Actually, DMDs have been 
extensively used to generate dynamic binary or grayscale holograms [6], by exploiting the fast switching of the mirrors at 
frequencies higher than the human vision frame rate. The grayscale originates as a dynamic effect and not as a steady 
state effect. However, the discrete structure of the device induces a high scattering and background noise from the 
mirrors edges when illuminated with laser light [7], making such holograms useless for interferometry and metrology. 
Nevertheless, DMDs perfectly reproduce binary masks to be projected with incoherent light on photosensitive plates, 
thus producing amplitude CGHs. In this work, such plate consists in a photochromic film that can be reversibly 
converted from an opaque and colored form to a transparent form upon exposure with light of suitable wavelengths [8].  

Actually, reversible holograms have been already obtained with photochromic materials [9, 10] and real-time 
photochromic holograms were shown, by exploiting the fast transition of imidazole dimers [11, 12]. Moreover, 
photochromic binary CGHs for optical testing have been recently demonstrated [13]. In photochromic materials, a ready 
to use hologram is generated just after the light exposure, and the reversibility of the photoconversion makes devices 
rewritable. Even more interesting, the transparency of a photochromic layer can be tuned by the dose of light absorbed, 
which opens to the development of grayscale patterns [14]. In fact, the DMD set-up allows for easily recording grayscale 
CGHs with equidistant transparency levels, named as stepped CGHs, in a single exposure process. The lower diffraction 
efficiency of grayscale amplitude holograms with respect to binary amplitude holograms (6% vs. 10% [2]) is here 
compensated by a better image reconstruction quality, an easy exposure process and no developing steps, which are the 
limiting factors in the production of grayscale phase holograms.  

In this paper, we report on the first stepped CGHs and results are compared to binary CGHs. We read the recorded 
information using a low power 632.8 nm laser, and the whole hologram is erased with a UV flash, for a reusable 
substrate. 

 
2. RECORDING AND RECONSTRUCTION OF A CGH 

We developed 2 set-ups, respectively dedicated to the recording of the calculated CGH and the reconstruction of the 
original encoded images. 

2.1 Recording set-up 

Figure 1 shows our first set-up, dedicated to the CGH recording on the photosensitive plate. The DMD, controlled by the 
formatter board [15] is illuminated by a collimated beam from a white source, and redirects the light toward the plate. 
The beam is illuminating the entire DMD and the light power is homogeneous on the plate. The pattern reproduced by 
the DMD has to be projected onto the plate as precisely as possible, so the plate is illuminated through an Offner relay 
with a magnification of 1:1. This relay provides a nearly aberration free beam and has the advantage of being compact. 
The unit magnification means that the maximum size of CGH is directly limited by the size of the DMD; the micro-
mirrors of the DMD therefore correspond to the “pixels” of the CGH. Finally, a post-CGH imaging system located right 
after the CGH plate consists of two lenses, a filter around 600 nm and a CCD camera. This system in an afocal assembly 
allows imaging of the CGH during writing, in situ and in real time. Magnification is tuned by changing properly the pair 
of lenses, from a value of 1 up to 4.  

DMD, CGH and camera planes are then conjugated. Note that DMD plane is a tilted focal plane due to the nature of 
micro-mirror array: each micro-mirrors tilts out of the array plane by 12°, leading to a global 24° tilted focal plane. 
This effect is reproduced as well at the post-CGH imaging camera level (the camera plane is tilted by 24°). 
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8. CONCLUSION 

Computer generated holograms are well suited for optical testing and wavefront shaping. Up to now amplitude 
holograms have only been recorded in binary format, and our method increases their quality by enabling the realization 
of stepped holograms with discrete gray levels. 
 
We have been able to successfully record several Fresnel CGHs, with stepped and binary coding. The resolution of 
recorded holograms was set to 720x720 pixels to be able to project it on the functional part of the photochromic plate, up 
to 1x1cm2 size. The high optical resolution of our set-up allowed making high quality recorded CGH with the desired 
grayscale properly produced. The reconstructed images using stepped holograms are very faithful to the original images 
without being pixilated as for binary holograms. 
 
The next step will be to code wavefronts containing phase information. We also plan to conduct the same study on 
Fourier holograms as they are much faster to compute and may give better results according to preliminary simulations. 
Finally, we will also use our method to create beam shapers including apodizers, using the same protocol as for 
stepped CGHs. 
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