INAF

ISTITUTO MNAZIOMNALE
SICa

ol ASTROFI

MATICHN AL IMS L]
FOR ASTROPFHYSIC!

Publication Year 2016

Acceptance in OA@INAF |2020-11-17T14:21:547

Title Radio data archiving system

Authors KNAPIC, Cristina; ZANICHELLI, Alessandra; Dovgan, E.; NANNI, MAURO;
STAGNI, Matteo; et al.

DOl 10.1117/12.2232603

Handle http://hdl.handle.net/20.500.12386/28384

Series PROCEEDINGS OF SPIE

Number 9913

PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Radio data archiving system

Knapic, C., Zanichelli, A., Dovgan, E., Nanni, M., Stagni,
M., et al.

C. Knapic, A. Zanichelli, E. Dovgan, M. Nanni, M. Stagni, S. Righini, M.
Sponza, F. Bedosti, A. Orlati, R. Smareglia, "Radio data archiving system,"
Proc. SPIE 9913, Software and Cyberinfrastructure for Astronomy 1V, 99132D
(26 July 2016); doi: 10.1117/12.2232603

Event: SPIE Astronomical Telescopes + Instrumentation, 2016, Edinburgh,
SPIEo United Kingdom

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2020 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Radio Data Archiving System

Knapic C.2, Zanichelli A.P, Dovgan E.»¢, Nanni M.P, Stagni M.", Righini S.*, Sponza M.?,
Bedosti F.*, Orlati A.”, and Smareglia R.?

*National Institute of Astrophysics — Astronomical Observatory of Trieste, via G.B. Tiepolo
11, Trieste, Italy
PNational Institute of Astrophysics — Radio Astronomy Institute, via P. Gobetti 101, Bologna,
Italy
“Jozef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia

ABSTRACT

Radio Astronomical Data models are becoming very complex since the huge possible range of instrumental
configurations available with the modern Radio Telescopes. What in the past was the last frontiers of data
formats in terms of efficiency and flexibility is now evolving with new strategies and methodologies enabling the
persistence of a very complex, hierarchical and multi-purpose information. Such an evolution of data models and
data formats require new data archiving techniques in order to guarantee data preservation following the directives
of Open Archival Information System and the International Virtual Observatory Alliance for data sharing and
publication. Currently, various formats (FITS, MBFITS, VLBI’s XML description files and ancillary files) of
data acquired with the Medicina and Noto Radio Telescopes can be stored and handled by a common Radio
Archive, that is planned to be released to the (inter)national community by the end of 2016. This state-of-the-art
archiving system for radio astronomical data aims at delegating as much as possible to the software setting how
and where the descriptors (metadata) are saved, while the users perform user-friendly queries translated by the
web interface into complex interrogations on the database to retrieve data. In such a way, the Archive is ready
to be Virtual Observatory compliant and as much as possible user-friendly.

Keywords: Radio Astronomy, Archive, Radio Data Model

1. INTRODUCTION

Recently, Medicina and Noto Radio telescopes and VLBI Italian observation (including Sardinia Radio Telescope
data) have been equiped with a new archiving system capable to store all the private and public data acquired with
those facilities and export them to the Astronomical Community, using a common web interface and following
an official data policy. This is a joint collaboration between the Radio Astronomy Institute and the Italian
Astronomical Archives (IA2) infrastructure at the Astronomical Observatory of Trieste that aims at providing
the (inter)national community with a state-of-the-art archive for radio astronomical data and will in the near
future be provided also with Virtual Observatory compliant services to increase the interoperability of data.
The IRA radio telescopes at Medicina and Noto can observe in Single-Dish (SD) or VLBI mode. In particular,
with the advent of the new Sardinia Radio Telescope it will be possible to realize a fully Italian VLBI array
(hereafter VLBI-IT) by using the three antennas in a coordinated manner and applying software correlation for
the pre-processing phase. Data coming from such pre-processed VLBI-IT observations will be stored in the same
database used for SD data. The Archive must thus be able to host and handle two kinds of data: those coming
from VLBI-IT observations and those coming from SD ones, with a variety of formats that will be described in
the following sections.

Modern Single Dish acquisition modes are described by a vast number of possible instrumental setup param-
eters. This required the design and implementation of a Radio Data Model able to store all the information

Further author information: (Send correspondence to Cristina Knapic)
E-mail: knapic@oats.inaf.it, Telephone: +39 040 3199 276

Software and Cyberinfrastructure for Astronomy IV, edited by Gianluca Chiozzi,
Juan C. Guzman, Proc. of SPIE Vol. 9913, 99132D - © 2016 SPIE
CCC code: 0277-786X/16/$18 - doi: 10.1117/12.2232603

Proc. of SPIE Vol. 9913 99132D-1

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

needed to fully characterize the various observations. The developed radio data model has been built on top of
the data/metadata structure defined in the MBFITS standard for the Atacama Pathfinder Experiment (APEX)
and is capable to handle radio data written in FITS format as well, as described in Sect. 2. At the Medicina, Noto
and SRT sites —for VLBI-IT acquisition mode— a customized XML summary file stores the main configuration
parameters for the interferometric observations and is a subset of the previously mentioned Radio data model.
The archiving system itself is equipped with an internal data model in order to handle transparently all the
various radio raw data formats mentioned above. Additional observation-related information such as schedules
and night logs are archived together with the data.

The Radio Archive users can perform dedicated queries through the Radio Archive web interface. SD and
VLBI-IT observations share a generic subset of parameters. A more specialized query form specific for each
instrumental mode (SD or VLBI-IT) in terms of selection parameters and query outputs is also available.

2. RADIO RAW DATA MODELS AND METADATA

2.1 MBFITS

Initially MBFITS was developed to define a new, FITS-based data format for multifeed receivers to be used
at the IRAM 30m and APEX telescopes.! Later on, changes in the format structure and the addition of
keywords needed to accommodate single-dish configurations (particularly multiple beam observing and multiple
frontend /backend combinations) have been done.? It can be used for all single-dish bolometer and heterodyne
observations including multiple frontend/backend combinations and array receivers. The MBFITS hierarchical
grouping directory is defined as follows:

e Main directory name according to the OBSDATE and PROJID keywords. Inside this main directory there
are the files for the scan-level tables:

— the grouping table file: GROUPING fits
— the scan table file: SCAN.fits

— the FEBEPAR table files for each FEBE (instrumental frontend/backend) combination: <FEBE
name>-FEBEPAR .fits

e The actual data are stored in sub-directories per subscan named according to the subscan number. Each
sub-directory contains the following types of member files:

— the MONITOR table file: MONITOR fits

— the ARRAYDATA table files for each FEBE combination and baseband:
* <FEBE name>-ARRAYDATA-<Baseband number> fits
* the DATAPAR table files for each FEBE combination: <FEBE name>-DATAPAR fits

The naming convention for one MBFITS directory is: DATE-UT-PROJID-OBJECT. The GROUPING fits file
stores the locations of the member files so that the dataset can be accessed as one entity. The GROUPING fits
file primary header also contains some relevant keywords for the Archive, like, e.g., OBJECT, EXPTIME and
PROJID, while the Primary headers of the other files in an MBFITS contain only the small set of keywords
needed to define the file type as FITS and are thus not useful for the archive. The secondary HDU of each
fits file composing an MBFITS contains some relevant keywords related to the content of that file (e.g., HDU
1 of the *DATAPAR fits file contains the FEBE keyword), and the keywords needed to describe the data table
contained in that file. The complex structure of the MBFITS format causes a redundancy of keywords among
the GROUPING.FITS file primary header and the HDU 1 headers of the other files, thus some keywords are

found in more than one header.

From the Archiving system point of view, the most relevant step is to exactly locate the information (file
path, file name, HDU number and exact name of the keywords) to be extracted and organized in the database.
To do so, a one-to-one relation is set between non—multiple parameters with keywords location. For multiple
parameters like the frequency for each spectral section, a recursive search on frequency domain is performed.

Proc. of SPIE Vol. 9913 99132D-2

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Table 1. HDU structure of a Medicina single-dish FITS file

Index | Extension Type

0 Primary Image
1 SectionTable Binary
2 RFInputs Binary
3 FeedTable Binary
4 DataTable Binary
5 AntennaTempTable | Binary
6 ServoTable Binary

2.2 FITS

Currently, SD data for the Italian radio telescopes are written in FITS format as a series of binary tables
according to the structure described in Table 1. The various HDUs contain information needed to describe the
observation and the instrument setup, e.g., in the case of a multifeed receiver the FEED_TABLE describes the
feeds, their relative position and power. Each observation of a given source performed with a given instrumental
setup (a scan) may be composed of one or more FITS files (one for each subscan). All the FITS files belonging
to the same scan are written inside a common folder (hereafter scan folder) together with a Summary file in
standard FITS format whose primary header contains all the relevant metadata for the archive. A scan may thus
be seen as the “atomic unit” for single dish observations. Single-dish FITS scan folder names are composed as:
DATE-UT-PROJID-OBJECT, while the single FITS file naming convention is: DATE-UT-PROJID-OBJECT-
SCAN-SUBSCAN. A naming convention to univocally associate the Summary file with the correspondent scan
has been established as well. In some cases, typically for spectroscopic observations, the instrumental setup may
change during the scan execution (e.g., due to earth rotation the frequency of a spectral line may shift during the
observation, thus the observed band must be shifted accordingly to compensate and keep the line at the band
center). It has been agreed that in any case the Summary.fits file will always contain only the setup of the first
subscan.

2.3 VLBI XML customized format

Each VLBI observation is executed by a variable number of antennas and described by means of proper schedules
(VEX files shared between observation sites). Signal correlation is performed offline by using the information in
the VEX and log files as well as the observed data themselves. The correlation process generates a Visibility file
containing UV data, structured as a monolithic FITS file of some Gby in size. This file contains the real raw-data
for an interferometric experiment and is given as input to the data reduction tools for calibration, filtering and
image reconstruction. Data inside a Visibility File are homogeneous and contain all the calibration information
essential for subsequent data processing. Contrary to what happens for a Single Dish scan, the Visibility File
contains all the data coming from an observing session and thus may include data from more than one source.
The Visibility File is to be considered as an “atomic unit” and as such will be archived and delivered to the
users. The header of the Visibility file contains some keywords needed by the most commonly used packages for
data reduction like AIPS, CASA and MIRIAD. However the keyword set is by no means complete in terms of
the most commonly used query parameters (for instance, RA and Dec information are not written explicitly in
keywords), and other relevant search parameters like field size or resolution are set only after the data reduction
process is executed. Also, the FITS file structure may vary in number and position of the HDU depending on
the type of observations (imaging, satellite tracking, pulsar observations, etc.). At the same time, the VEX file
associated to the observation contains all the information that is relevant for the archive search, but given its
structure it is not easy to be parsed in order to fill the database tables with all the relevant metadata. For these
reasons it has been agreed that each FITS Visibility Data file is accompanied with a Summary file (similar to the
one used for single-dish FITS scans) written in XML format, which lists all the relevant information organized
in blocks of keynames/keyvalues, one block for each source contained in the FITS Visibility Data file.

Proc. of SPIE Vol. 9913 99132D-3

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

3. ARCHIVING STRATEGY

In order to handle commonly all the three types of radio data formats coming into the Archiving system, a specific
architecture and a configurable software has been foreseen.> The main characteristics of the archiving system
software are the storage of data models into a dedicated database (called data_model schema in a MySQL DBMS)
and the configuration of the software behavior using specific information for each instrument (or telescope) saved
in dedicated tables of the data_model. The software, called Nadir EXTension for Radio (NEXTR), is build on
top of TANGO* control framework and de facto is a TANGO* device called RadioDatalmporter (RDI). All
the metadata relevant for query purposes are extracted from the various set of files and stored into a relational
database called radio_metadata. The radio_metadata schema maps the entire MBFITS metadata datamodel
plus some administrative dedicated information.

3.1 RadioDatalmporter (the software)

Radio Data Importer (RDI) is a TANGO server for importing files (containing observation metadata) in the
Radio archive database, currently implemented for MySQL 2 on the Linux operating system. RDI can be
configured to import (a subset of) data from either FITS, MBFITS or XML input files. The RDIs configuration
is stored in a datamodel database, described in next sections. This configuration enables to store the radio data
at various locations, each consisting of a database and a storage directory. More precisely, for each observation
instrument that produced an input file, a different destination and subset of data can be selected. All the files
that are part of one VLBI-IT observation or of one Single-Dish scan observation must be packed in a single tar
or tar.gz archive to be given as input to RDI.

3.1.1 Input File Processing

RDI is programmed to detect and ingest all files of known format that are present in a specifc directory. RDI
starts processing the input files when the On command is executed. At the beginning, it reads all the existing
files in the input directory and, in addition, it activates the notifications on newly created input files, sent by the
Linux Inotify 5 service. A special routine to check the end of writing of new files is foreseen in order to avoid that
large files or net latency problems may induce RDI to start managing files before they are fully written. Next
step is to unpackage (untar) the previously defined observational “atomic units” and to start the identification
of the instrument/telescope type. This is done by reading the appropriate FITS/MBFITS/XML keyword. If the
keyword cannot be found, the file is assigned to a default instrument usually defined as “warning” and RDI does
not store any data from the source files but just a row with the basic information of the input file (such as the
name and the storage directory). The appropriate RDI property enables to select the instruments whose input
files are to be processed. If the input file was produced by a unidentified instrument, it is also assigned to the
default instrument. Then, RDI reads the data from the source files and archives in the database all the keywords
that are included in the data model. Some source files are grouped together since they logically contain the same
type of data, but differ in data values. For example, an MBFITS input file can contain several ARRAYDATA
files that are in the same group. The extracted metadata are inserted in a set of tables in the Radio archive
database. During the insertion, the relations between the rows in related tables (i.e., the foreign keys) have to
be defined by taking into account the identifiers. An identifier is a (name, value) pair assigned to a row in the
database table, where one row can have multiple identifiers. Identifiers are not inserted in the database (unless
explicitly defined in the datamodel database), thus they are neither primary nor foreign keys. An example of an
identifier is the FEBE name as part of the ARRAYDATA file name. The definition of (groups of) source files,
the database tables, the table columns, and the identifiers are stored in the datamodel database, and read at
the RDI initialization. RDI reads the source files by iterating over the defined database tables. For each table,
all the source files are checked in order to determine whether they contain data and/or identifiers for this table.
This is done by testing whether the source file name matches the information stored in the datamodel database
(thus the source files are not opened at this step). When the data from a source file is related to a database
table, the source file is opened and data and identifiers are read.

*http://www.tango-controls.org/

Proc. of SPIE Vol. 9913 99132D-4

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

3.1.2 Keywords and Identifiers

Data and identifiers are defined by keywords and file headers that contain these keywords. When reading the
value of a keyword, several cases may occur with respect to the definition of the keyword itself:

1. A keyword can store several values (that are organized in multidimensional arrays). In this case, several
values are returned.

2. A keyword can be defined with a pattern. If, in addition, it is defined as countable, then the pattern
is replaced with a natural number, starting with 1, and the keyword is read. Afterwards, the number is
increased and the keyword with the increased number is read. This increase-number-and-read-keyword
procedure continues until such a keyword exists. On the other hand, if the keyword is not defined as
countable, then all the keywords are checked to verify if they match the pattern. For each keyword
matching the pattern, or the pattern plus natural number, a single value is read. The values of all the
matching patterns are returned.

3. A keyword can store the number of rows. In this case, a single value is read. Afterwards, a set of natural
numbers is defined storing numbers from 1 to the read value. Finally, this set is returned.

4. A keyword can store a single value. In this case, only one value is returned.
When combining the values of the keywords related to a database table, the following cases can occur:

1. The size of the values of a keyword is the same as the size of values of other keywords. In this case, values
are combined together to form several rows, i.e., the first values of all keywords are combined into the first
row, the second values into the second row etc.

2. If the size of the values of a keyword is equal to one, then this keyword value is added to all the rows.

3. If the size of the values of a keyword is not the same as the size of values of other keywords, and is not
equal to one, an error is produced (assigning the input file to the “warning” instrument).

4. An error is also produced if the value of a mandatory keyword is missing.

The same cases also occur when reading keywords of table identifiers. However, there are few differences, namely:
the identifier values are not added to rows as data, but as metadata; the number of rows can be a multiplier
of the number of identifier values. Consequently, when assigning identifier values to rows, the set of identifier
values is repeated until all the rows receive an identifier value. Moreover, there exists three (plus default) types
of identifiers:

1. Content identifier: its value is read in the same way as the table data values, and assigned to the rows as
described above.

2. Row index identifier: it is used to assign a row/column index to the values of multidimensional keywords.
Currently, one- and two-dimensional data are supported. For each dimension, the number of elements in
the array must be given. The sizes of two-dimensional data are written in a table, meaning that for each
row/column a custom size can be defined. In addition, the first identifier represents the number of rows,
while the second is the number of columns. When the size(s) of the dimension(s) are determined, a set of
one/two dimensional indexes is created. For example, the rows of one-dimensional data get the indexes (0,
1, 2, 3, ...), while the rows of two-dimensional data get the pairs of indexes (<0,0>, <0,1>, ...<1,0>,
<Ll>,...).

3. File_ name identifier: its value is obtained by parsing the name or path of the source file. This value is
added to all the rows.

Proc. of SPIE Vol. 9913 99132D-5

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

4. Default identifier: the previously described identifiers have to be defined in the database. However, if no
identifier is defined for a database table and if there is only one file containing data for this database table,
the default identifier is applied. This identifier assigns sequential numbers to the rows of data. While the
previously described identifiers are mostly used for the FITS and MBFITS files, the default identifier is
mostly used for the XML files that contain no obvious identifier.

A database table may store data from several groups of source files, where each group contains data for a subset
of table columns. Note that there must be no intersection between column subsets of various groups of source
files. In this case, data from various groups are combined in rows using the following procedure. After the first
group of source files related to a table is processed, no new rows can be added to the table. When processing
other groups of source files related to the same table, the obtained rows must be merged with the existing ones.
More precisely, for each new row, a related existing row must be found by matching the identifiers (see the
description of the matching procedure below). When the related row is found, these two rows are concatenated
together meaning that all the data from the new row are simply added to the existing row. This enables to
merge data from two or more (groups of) source files related to the same table, where each of them store data
for its own subset of table columns. When all the data and identifiers of all the tables are read, the relations
between all the rows of all the related tables are found (i.e., the foreign and primary keys of the related rows are
connected together). This is done using identifiers as follows. When table A is related to table B and table B
requires the foreign key from table A, then for each row in table B a row in table A that matches the identifiers
is found. The matching can be partial, meaning that it is not required that both rows have the same set of
identifiers. Nevertheless, it is required that if both rows have identifiers with the same name, their values have
to be the same. In addition, it is also mandatory that each row in table B matches to one and only one row
in table A. If any of these requirements is not fulfilled, the input file processing is not successful and the input
file is assigned to the default (“warning”) instrument. Finally, there exists a table that stores only one row for
each input file (containing some general information). This is the only table that does not store foreign keys
from other tables storing data (i.e., the “data_file” table in Figure 4 and Figure 5). If the number of rows to
be inserted in this table is not exactly one, the input file processing is not successful. However, this condition
is checked only for the FITS and MBFITS files, since an XML file can have multiple entries in the “data_file”
table. Note that RDI uses two libraries to read the source files: one for FITS/MBFITS, the other for XML.
When a file has to be opened and read, the appropriate library is selected based on the extension of that file.

3.2 Data insertion in the Radio archive database

The insertion of data in the Radio archive database is done as follows. First the input file basic data, such
as the file name and the storage path, are inserted in the main table (i.e., the file_info table in Figure 4 and
Figure 5), which also stores the input file version. The file version is obtained by checking all the existing files
in the database with the same name and determining their maximum file version. If necessary, the maximum
file version is increased by one and the new file version is assigned to the input file. This procedure has to be
thread-safe since multiple input files with the same name can be simultaneously inserted in the same database
(from one or more instances of RDI). This is achieved by first locking the main table, then reading the maximum
file version and increasing it, storing the basic information of the input file (including the file version) in the
main table, and finally unlocking the main table. Such a procedure also enables other threads to read/lock the
main table without waiting for the current thread to store all the other data in the database. When the basic
input file data are stored in the main table, all the other data can be inserted in the database. This is done by
starting a transaction, storing the data in the database tables, executing the procedures that are defined in the
RDI configuration, copying the input file in the storage directory, and stopping the transaction. Note that RDI
only stores the data as they are found in the source files. If some processing is needed, data must first be inserted
in the database tables and then already defined procedures have to be applied. If the input file was successfully
copied and data were successfully inserted in the database, the transaction is stopped with a commit and the
input file in the input directory is deleted. Otherwise, the transaction is stopped with a rollback, the basic input
file data are deleted from the main table (since this insertion is not in the transaction), and the input file is not
deleted.

Proc. of SPIE Vol. 9913 99132D-6

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

3.3 Datamodel database

The datamodel database stores the configuration of RDI regarding the set and the structure of data that has to
be read from the source files and inserted in the Radio archive database. To this aim, it stores the data related
to the various instruments, the information on the location of the Radio archive databases and storage folders,
the structure of the Radio archive databases (names of tables, relations among them, columns of each table),
and the description of the source files obtained when untaring the input file (their names and the data that can
be found in each file). The following Sections describe the groups of tables of the datamodel database.

3.3.1 Instrument definition

The datamodel database defines one or more destinations, each defining an instance of the Radio archive database
(i.e., it stores connection data including schema, name and type, e.g., MySQL, Oracle, etc.) and a storage
directory. Omne destination can store data from various instruments, each uniquely defined by its name. In
addition, a destination is associated with a directory name where the input files are stored, and with the name
of the main table in the Radio archive database (file_info_table_name). Moreover, via an internally-defined type
name, it stores the information on the type of data contained in the input file. For example, if the input file stores
an MBFITS, the data type can be fits-mb. When an input file is inserted in the Radio archive database its data
type is copied in the FILE_INFO table. This enables to distinguish among input files based on their type. There
can be several configurations defining the data to be read from the source files and stored in the Radio archive
database. Each one (except for the default, warning instrument) has an associated instrument_configuration
used to read data from each input file coming from that instrument. The instrument configuration defines
the keyword storing the instrument name (foreign key data_id_instrument_name) and the keyword storing the
observation date (foreign key data_id_date_obs).

3.3.2 Configuration definition

A configuration defines the tables and the structure of the Radio archive database. In addition, it defines the
data that has to be inserted in these tables, and the source files where these data can be found.

Definition of tables

Tables storing the data from the source files are listed in the database_table so that no previous table needs a
foreign key from any subsequent one. Besides the table name, the result_id is stored as the name of the primary
key column. When a row is inserted in the Radio archive database, the value of the primary key is automatically
created by the autoincremental function and associated to the result_id. This value is then used as a foreign key
for the connected rows in the connected tables. If result_id is null then the table has no autoincremental primary
key. The relations between Radio archive database tables are stored in precedent table (parent reference).
When inserting a row, the precedents enable to determine the tables to which the row has to be connected.
The other_data defines the other data that has to be inserted in each row of a Radio archive database_ table.
Currently, it is used to determine which foreign keys from connected tables have to be inserted in each row. The
table_procedure stores the names of the procedures that have to be executed after all the data of an input file
are inserted in the Radio archive database.

Definition of data of source files

The source_file table stores the path and name patterns that are used to search for the source files of the same
type, i.e., which contain the same data structure but differ only in data values. Therefore, a datum can be stored
in several files where, in most cases, one row is created for each file. However, if the datum stores a table or if
multiple instances of the keyword are stored in one file (see the description of data below), then multiple rows
are inserted in the Radio archive database for each file. If multiple files store data in the same table, then two
cases can be distinguished:

1. all the files contain data that can be stored in one row. In this case, these data are simply concatenated in
one row.

Proc. of SPIE Vol. 9913 99132D-7

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

2. some files contain data that have to be stored in multiple rows. For example, the GROUPING file stores
multiple FEBEn, while FEBEPAR files store data related to specific FEBEs. Both data could be stored
in the same table (related to FEBE data). In this case, the concatenation of rows of these files has to be
determined using identifiers (see the description of identifiers below). In this example, the FEBE identifier
has to be determined for data from GROUPING and for data from FEBEPAR. Then data with the same
FEBE value have to be concatenated in the same row.

Data definition

The table data stores the definition of each datum that has to be read from the source file and inserted in the
Radio archive database. This definition consists of:

e the file where the datum is stored (i.e., the foreign key to the source_file);

e the part of the file where it can be found, such as headerl, dataQ; the current implementation supports
only "header” +integer and ”data” +integer syntax for the purpose of processing the FITS and MBFITS
file, while when processing the XML files, the file part is ignored;

e keyword pattern pri and sec: first the primary keyword has to be checked and, if it does not exist, the
secondary keyword is checked;

e the column name where the datum will be inserted in the Radio archive database;

e type [char, double, int, bool, date]; consistency with the type in the source files is checked and the input
file is assigned to the default instrument if a datum type is not consistent;

e countable: used only when a keyword represents a pattern, i.e., when it contains ” .* 7; if it is countable,
then .* is replaced with a sequence of natural numbers until such a keyword is not found (e.g., FEBEL,
FEBE2, FEBE3, FEBE4, ...is read until no more found); if not countable, the list of keyword are checked
one by one to verify if it match the pattern;

e are_multiple_dimensions: used only when file HDU part contains ”data” to be read; it represents the
number of dimensions of a datum, i.e., 0 = single data, 1 = 1-D array, 2 = 2-D table etc;

e is_number_of _rows: if true then the datum represents the number of rows that have to be inserted in
database; in this case, a row is inserted for each natural number from 1 to the value of the datum. For
instance, CHANNELS from ARRAYDATA store the number of rows that could be inserted in a table
related to channels.;

e mandatory: if true and this datum does not exist in the source file, then the input file is assigned to the
default instrument (“warning”);

e read_as_single_datum: if true then all the bits storing the value of this datum are read as a single value;
e.g., a file might contain 3 values for a datum, each of them stored in 24 bits, if read_as_single_datum is
true, then only one datum of 3*24 bits size is read if multiple instances of one keyword are feasible; as an
example, FEBEn in GROUPING, would be defined as a pattern, e.g., FEBE.*

Data that are stored in each table are defined in step_data.

Definition of data identifiers

To determine the relations, i.e., foreign keys between the rows of data inserted in connected tables, one or more
identifiers have to be defined. Each identifier has a name that enables to compare identification values of different
rows. Therefore, when two rows are compared in order to determine if they are connected, the values of the
identifiers with the same name are compared. If the values are equal, these rows are connected, i.e., they share
foreign keys. For example, a data from the FEBEPAR file has an identifier called FEBE and its value is a part
of the name of the file. A data from the ARRAYDATA file has another identifier with the same name (FEBE)

Proc. of SPIE Vol. 9913 99132D-8

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

other_data

destination fable_procedure

other_data_id: INTEGER [PK]|
destination_id: INTEGER [PK] procedure_id: INTEGER [PK]

table_id: INTEGER [FK]
port: SMALLINT narne: YARCHAR(25S) name: VARCHAR(255)

Liser: VARCHAR (255) eonfigr N

password; YARCHAR(255)
scherma_name: YARCHAR.(255)| T
storage_path: YARCHAR(255)
comment: YARCHAR (255)

~e-precedent
s

table_id: INTEGER. [FFK]
lprecedent_table_id: INTEGER [PFK]|

host: VARCHAR(255) _F — — ~onfiguration_d: INTEGER [F«] ——

database_table .

— — —gefable_id: INTEGER [PK] }
configuration_id: INTEGER [FK]—Q
table_name: YARCHAR(255)

1 result_id: VARCHAR(255)

-

\
\
\
\
instrument]

instrument_id: INTEGER [PK] r — — — —qerow_Index_identifier flename. identifior table
‘ rowe_identifier _id: INTEGER [PK] — —
Idestination_id: INTEGER [FK] ’ table_id: INTEGER [PFK]
ldir_mame: VARCHER (255) ‘ content,_identifier table_id: INTEGER [FK] filename_identifier_id: INTEGER [PFK]
Inarme: VARCHAR(255) | step_data ftable_icl: INTEGER. [PFK] data_id_dimension_size: INTEGER [FK]
Iile_infio_table_rame: VARCHAR(2SS) | table_id: INTEGER [PFK Idaits_idl: INTEGER [PFK] narme: YARCHAR(25S) prite_into_database: BOOLEAN
cata_id: INTEGER [FPFK] dirnension_number: SMaLLINT
[name: VARCHAR(255) is_dimension_size_in_table: BOOLEAN
¥
instrument_configuration filenarne_idertifier
instrument_ict: INTEGER [FFK] | filename_identifier_id: INTEGER [PK]
lconfiguration_ic: INTEGER. [FiC] | file_icl: INTEGER [FK]
idata_id_instrument_name: INTEGER [FK] data ‘ name: YARCHAR(255)
(data_id_date_ohs: INTEGER [FK] pE——— ato o INTEGER [P _ nattern: VARCHAR (255)
| is_name_pattern: BOOLEAN
| | file_id: INTEGER [FK] type: VARCHAR (255)
L file_part: YARCHAR(255)
‘ leeyword_pattern_pri: YARCHAR(255)
[keyword_pattern_sec: YARCHAR(259) SasEe il]
columin_name: YARCHAR(255) file_id: INTEGER [PK] H———
type: VARCHAR(255) —— — —H

path_pattern: YARCHAR(255)
narme_pattern: YARCHAR (255)

countable: BOOLEAN
are_multiple_dimensions: BOOLEAN
is_rumber_of_rows: BOOLEAN
mandatory: BOOLEAN
read_as_single_datum: BOOLEAN

Figure 1. Data model schema tables

and its value is also read from the part of the name of the file. These two identifiers with the same name enable
to (transitionally) connect the data from FEBE and ARRAYDATA, i.e., the data with the same FEBE value
will be (transitionally) connected with foreign keys. The following types of identifiers exist, depending on the
source of the identifier value:

e content_identifier: this is the most common identifier. Its value is obtained by reading a datum from the
source file. For example, FEBEn from GROUPING represents a content identifier, since its value is the
identifier for the rows related to FEBE;

e filename_identifier and filename_identifier_table: a file name and its path may contain an identifier. In this
case, one or more patterns are defined, which enable to extract one or more filename identifiers. A filename
identifier has a pattern that defines where the identifier value can be found (the position is denoted with
parentheses). For example, ” *~ARRAYDATA-([0-9]*)..* ” is a pattern to obtain the baseband number
from the ARRAYDATA file name. Next, the pattern type is defined (int, char). If is_name_pattern is true,
this is a file name pattern, otherwise it is a file path pattern. If write_into_database is true, this identifier
has to be written into the database for each row that it identifies. An example of filename identifier is the
file DATAPAR that contains the subscan in its path, and the FEBE in its name (two filename identifiers);

e row_index_identifier: the source file might also store data that are tables of values, where the row index
represents the identifier. For example, FEEDOFFX from FEBEPAR stores a value for each FEED of
a receiver, where the row index is equal to the FEED index. If the datum represents multidimensional
data, then one row_index_identifier is defined for only one dimension of these data. Consequently, mul-
tiple row_index_identifiers can be defined on the same multidimensional data, each index for a different
dimension. The following data have to be defined for each row_index_identifier:

— dimension_number: row identifiers on one table (one datum) must have unique dimension numbers
that are sequential natural numbers, i.e., 1, 2, 3, 4, etc. Therefore, 1-D table can have one identifier

Proc. of SPIE Vol. 9913 99132D-9

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

with dimension number 1; 2-D table two identifiers with number 1 and 2; 3-D table three identifiers
with number 1, 2, 3 and so on;

data_id_dimension_size: this is the foreign key to the datum that stores the number of elements in
row/column where the identifier is defined; if is_dimension _size_in_table is true, then it stores multiple
values, one dimension size for each row/column;

is_dimension_size_in_table: true if the size of one dimension is stored in table; e.g., if the dimension

represents rows, the table stores the number of rows for the first, second, third etc. column; this
enables to have different number of rows for each column.

There exists also a default identifier. Note that this identifier is not inserted/stored in the datamodel database.
3.4 General MBFITS database
A general MBFITS database is used as a baseline for the creation of the Radio archive database. The Radio

file_info
ffile_info_id: INTEGER [PK]

storage_path: WARCHAR(ZSS)
Ifile_path: VARCHAR (255)

monitor_data
ifile_version: INTEGER [&K]

ronitor_data_id: INTEGER. [PK]|
Ifile_name: VARCHAR (255} [AK] . , —
update_time: TIMESTAMP subscan_id: INTEGER [FK
subscan Emonpomt: WYARCHAR (255)
—Jr subscan_id: INTEGER [PK] - mjd: DOUBLE EUIECER) [IEED
jll_ — _ monunits: YARCHAR(255) subscan_phase_id: INTEGER [PK]
fits | fits_icl: INTEGER [FK] rorvalue: DOUBLE
fits_id: INTEGER [PK] subscan_number: YARCHAR (255)—— | [— —gjepbstan_febe_id: INTEGER [FK]
: | st frame: VARCHAR (255) uhscan_febe | phase: VARCHAR (255)
object: VARCHAR (255} subscan_fiebe_id: INTEGER [P]
projid: YARCHAR(ZIS) fbe -
file_info_id: INTEGER [FK] s — — — —stelsubscan_id: INTEGER [FK] S
fabe_id: INTEGER [PK] febe_id: INTEGER [FK]
— J e VARCLAR (255 H— — — — —akarraydata_id: INTEGER [FK]
fits_it: INTEGER [FiC] B scantype: (255)
| feba: VARCHAR(255) ‘ subscan_febe_id: INTEGER [FK]
| swichmod: YARCHAR(255) L febe_setup baseband_id: INTEGER [FK]
febe_setup_id: INTEGER [PK J—— — — — ——gjegebe_sehup_id: INTEGER [FK]
channels: INTEGER
febe_id: INTEGER [FK] I — SKrestfreq: DOUBLE
phass ——— | fren: DOUBLE | bandwid: DOUBLE
phase_id: INTEGER. [PK 1 §k | puwid: DOUBLE | _-I—
fits_id: INTEGER [7K] | | £
phase: YARCHAR(ZSS) e L—— aseband e channel

feed_id: INTEGER. [PK] hasshand_id: INTEGER [PK] icharme|_id: INTEGER [FK]
fiebe_idl: INTEGER, [F] febe_id: INTEGER [FK] larraydata_id: INTEGER [FK]
feed_number: VARCHAR (255), baseband: INTEGER \channe|_number : VARCHAR (255)
feedoffi: DOUBLE =

feed_baseband

feed_id: INTEGER [PFK]
basehand_id: IMTEGER [PFK]

channel_used_feed
ichannel_used_feed_id: INTEGER. [PK]

used_feed_baseband

- channel_id: INTEGER [FK]
apereff: DOUBLE feed_id: INTEGER [PRK] T —Heed_id: INTEGER [FK |
baseband_id: INTEGER [PFK] hasehand_id: INTEGER [FK]
e Pl

SHusefeed: INTEGER data: DOUBLE
besects: INTEGER

Figure 2. MBFITS database including all the needed tables

archive database (as described in the following sections) is then used to store data from the source files on the
basis of the configuration stored in the datamodel database. The configuration enables to select from the source
files the subset of data that has to be stored in the Radio archive database. To do this, the Radio archive
database itself consists of a subset of MBFITS database tables containing subsets of MBFITS database data. In
any case, the structure of the Radio archive database tables must comply with the data structure in the MBFITS
database and in the FITS/MBFITS/XML files. This section presents all the possible MBFITS database tables
that can be defined based on the definition of the MBFITS file format. Therefore, all the data in any MBFITS
can be stored in the presented database structure. To maintain the description compact, only a subset of data
will be shown in each table. Nevertheless, all the tables, thus the entire database structure will be presented.

Proc. of SPIE Vol. 9913 99132D-10

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Note that the data in the FITS and XML files represent only a subset of data in the MBFITS files, thus the
data from the FITS and XML files can be easily mapped/stored in the MBFITS database. Figure 2 shows the
detailed database structure for a generic MBFITS data model rapresentation (full model).

3.4.1 Description of tables and data cardinality

Table 2 shows the symbols that are used to describe the MBFITS database. The tables used to store the
MBFITS data are described in Table 3. The MBFITS database including all the needed tables and a subset of
data columns is shown in Figure 2.

Table 2. Symbols describing the MBFITS database

=
a 2| 8
%l @l zl 2 A A E = | 8] 8
Z. < Z
<| 8 3| 4 2 2 =| 2| E =2
S |LEL2] A LE 2 R = -
— N
= Z 2
A A |2
= 8 2 2
F a —_ V
Z |z2lg & L.
1 1Z2E V8 =
< A~ < €a) w0
n U)mmFHQ — | M an)
DLTJD”<Q>‘M<C o
Il Z | o] IS Z| =
~ ZSQLHMZ I Z
el |g|gE s xEED] 2 e
<| |==l< AZ8<Z| & <
~ ol o5 P Sl < o
& MEE =g ZA Z | =22
M MmMAMA < A Emm
BRAAEEE A |8 @@
R2lERRE A [E | = |E|E
AZIATAIA 2 |V S Z[A
ol Al Z| ¥ Al ™ o 'z sz
S| Bl B B A \V2 < < | H
=|Elol.EELE) C Uk
> Via| VvV 2 = ;| Vv
£a]
m =
= g
P <2 g
5@ %gcc
Slal oy |2 E|E 7
<@ & =[S =
= < @
L 2 m o = ~
Q| = QCQ S |z i
wn| ol|.L €3 a0l = o 5]
S| B+ = %) = =%
n|l @ S| » mh_‘ '—‘.Es"o
g S2lal o |EE|= 288
MRz = < 3 So|d |83
Hls| 8HA o gmo(fzgg
|| 5| & =l Sh|E = Ala
S e | o | um | a3 Gy Gy | o |
S|o|o|o|o SIS c kKo 5| o| o
R =] =] =] = - QO ;_‘LH;_(“‘“;_‘;_‘
EIEIE1E81E8] 22 |52 |22
-
S1E|E|E| & g - g <8 ==
v| 3|2 2|2 = = = A=
Alz|z|lz |z Z Z Z. Z | Z
[a)]
Z
<
A
a Q
Z M3 et
<A E1S)
—_ 28 EZ S al
o |l Z|auBlea 13 zZ | z5 | @lan
S8 &3 2 |E| 85 E
a AR e ED 20 | 25 | ok
| 4| &4 & A Z Z Z |z

Proc. of SPIE Vol. 9913 99132D-11

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Table 3. MBFITS database tables and data cardinality - 1

XA10adHAd 89

ATuo o1qey Areurq

dddd,, 1 = dddd
anOQM Op @@uﬂmﬁwh @@@U %MEO m<ﬁ~mmm,m~|Am~mm,n:v mm—m:ﬁz mmmhzw Qmmm
urOSqNS < ANvey
e 10§ HAHEI oRo “VIVAAY V- TVINT Tmmae NVOSN | VIVAAVINYV
JO pur(aseq oed I0] MOI dU() <LHELHAT> / NVOST
posn a1e
SOXOpUI puR|oseq AUO 9dUIS PopaoUl
. . AJuo o[qe) Areur — .
Jot o1 £or73 “IoA0MOY "INV AUS o e, WPIN " Tammag < ANVEASYE
Vg -<HdHddr> : N
Ul paIols are sewreN ‘DATVOT1OI
-3'0 ‘spueqeseq 0} pajelaI vIRp AU
HAOWNVDS “89 ‘NVDS ul
PoI03S senfeA JNeJop oY) URY] JUSIOPIP VAVIVd- A NVOS
QI JRYJ SON[RA S9I0)S OS[R 9] URISNS <HgHAT> / NVOST N N | gdd NVOSHENS
oed Ul HgHq Yoed I0j MOI 9u()
awreu NyY)DSENS oY) sjyuesaxdar
OWIRU IOP[OJqNS oY} dI0YM ‘Iop[ojqns HOLINON/NVOST NVOSN NVOSINS
QU0 01 SPUOdSaLI0d URISUNS Yo
qVddddq-<dadar HEHAN CREICKI
NVOS -
BIBD ON[eA-9[3UIS AU
P onfeA-o] 1O HNINOYD 1 CHIKIARYC
BIRp SN[eA-d[FUIS ATU() 1 OJANI H'IIA
uo1)drIosa(J ®)R(] JO 90aN0S | STIAGIN Iod sorjuy jo Ioquuny oure N o[qe],

3.5 Radio Archive Database

The Radio archive database is a subset of the general MBFITS database described in Section 3.4. Data that are
required to be stored in this database are described in Figure 3. Note that the presented database is a common

Proc. of SPIE Vol. 9913 99132D-12

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2020

Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Table 4. MBFITS database tables and data cardinality - 2

NVDS ut
paioys seserd uer)

JUBISJIP oIe AoY) ugSVyHd A[uo 1 = dgad
wom Awo YVIVIVA “UVAVIVA asvHINy T avosy ASVHA NVDSANS
Ul PAI0IS dI€ SIseyJ -<HAEAT> / NVOST CEEFEIN
"PO1LIID ST MOI DUIO
‘UHSVHJ U2ed 104
‘Pojeald SI MmOl 9uo :mm<mﬁ~ \ﬁ:O ASVI
UESVHA Wro 104 NVDS N dSVHd
ejep
oeo 10 MOI 110 o e £reut 1 = NVOSsI
ouo ‘“eyep SuLioyuour : 1 i ‘ \.z<%_£ (rom¥ony) - " VIVA HOLINOW
MBI S9I09S VHOHHZOH& HOLINON N NVOSN

Jo o[qe) Areurg

ddHAdISN
avdaddad
~<"ddJ>
ur se oures oYy SI

P10 qHAA 2L

o[qe) Areurq wody
VLvA £uo
‘< ANVEr>

“VIVAAVUYY
-Aama,ﬁv\ NVOST

T = ANVE | = "g984; | = NVOSy

2 qIHATSN A@ZZ<:OZ W v W v W
ANVEpradadpN ANvVepragadr NVOSy
%%MMZ qgAAN NVOSN

TANNVHD dddA"ddISN

STANNVHD
09 T WOIJ IoquInu

® SaI03S MOI PRy
"STANNVH)D 03 [enbs
ST SMOI PajeaId
JO IoquuInu o)

VIVAAVYHYYV U® 104

¢

PIOMADY
STANNVHD Auo
‘< ANVE>

“VLVAAVYYV
-< mmm,ﬁV\ NVOST

T = ANVEr | = "g9d8d4; | = NVOS|

(awaradi®A¥IN <)) K

anve agdd NVOS
agaaN N N

TANNVHD

AHHAISN
Ul palojs aIe

SPo9J Pasn Jo soureN
"‘SLOHASHAY 8o

Auo o[qey Areurq
UVJIgHg-<HEE>

1 = ANV | = ddddp

[eicict(eicig]
Acz<mm,mmmuwz N v N

dHdHA daIsN ANvVaaIsvd

Spooj pesn pur %%%%Z dHAN
spueqeaseq 09 paje[al
so[qe} (g ejep \ﬁgo
AIAYAJY 80
Spooj [[e puer . . . 1 = dgddr
SpuBqseq 0} paYeal mmwm m%%%wmﬂv (YN S < QEHd ANVEISVE
so[qe} dc ° [CEEEING
eyep A[uQ

Proc. of SPIE Vol. 9913 99132D-13

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2020

Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

file_info
file_info_id: INTEGER [PK]

storage_path: VARCHAR (24)
file_path: WARCHAR(20)
file_wersion: INTEGER [&K]
file_name: YARCHAR(100) [AK]
update_time: TIMESTAMP
data_type: VARCHAR(LO)
last_version: BOOLEAN

schedule

lschedule_id: INTEGER [PK]

lstorage_path: YARCHAR(24)
Ifile_path: YARCHAR(20)
Ifile_wersion: INTEGER [AK]
ffile_name: YARCHAR(100) [&K]
update_time: TIMESTAMP
data_type: VARCHAR(10)
last_version: BOOLEAMN

data_file

data_file_id: INTEGER [PK]

telescop: YARCHAR(SO)
ohject: VARCHAR(40)

H——&ie]datenbs : VARCHAR(2S)

ra_deq: DOUBLE

ra_rad: DOUBLE

ra_char: YARCHAR(18)
dec_deq: DOUBLE
dec_rad: DOUBLE
dec_char: YARCHAR(18)
equino:: DOUBLE
exptime: DOUBLE

projid: YARCHAR(24)

Ist: DOUBLE

Ist_char: VARCHAR(18)Y
scantype: VARCHAR(E0)
scanmode: YARCHAR(30)
scangeom: YARCHAR(30)
scarzvel: DOUBLE

_ﬁésubscanfld: INTEGER [PK]

subscan

data_file_id: INTEGER [FK]
subscan_number: VARCHAR(10)
usrframe: YARCHAR(30)

ficbe
—afebe_id: INTEGER [PIC]

febe: YARCHAR(30)
frontend: WARCHAR(1S)
backend: VARCHAR(1S)
swichmod: YARCHAR(30)

data_file_id: INTEGER [FK J—~— -

— —&<subscan_fehe

subscan_febe_id: INTEGER [PK]

r— ~S<febe_id: INTEGER [FK]

subscan_id: INTEGER [FK]

!

baseband

baseband_id: INTEGER [PK]|

fiebe_id: INTEGER. [FK]
basehand: INTEGER
freq_bin: INTEGER

arraydata

arraydata_id: INTEGER [PK]

data_file_id: INTEGER [Fk]
subscan_febe_id: INTEGER [FK]

1 _gjefbasshand_id: INTEGER [FK]

channels: INTEGER
freqres: DOUBLE
restireq: DOUBLE
bandwid: DOUBLE
freq_mbfits: DOUBLE
freq_fits: DOUBLE

LT —gkgmin_freq: DOUBLE

max_freq: DOUBLE
freq_vibi: DOUBLE

\
\
\
\
\
wobused: wARCHAR(10) ‘
obsid: VARCHAR(38) ‘
creator: WARCHAR(30) |
mbftsver: YARCHAR(1S) H—
fitsver: VARCHAR(1S)
file_info_id: INTEGER. [FK]
piname: YARCHAR(4E)
ontime: INTEGER
antennas: YARCHAR(40)
rate: DOUBLE
channelks_vibi: DOUBLE
ch_resol: DOUBLE
Iogfilename: WARCHAR(100)
schedulename: Y ARCHAR (1000
scanlen: DOUBLE
scanxspc: DOUBLE
scanyspc: DOUBLE
date: DATE
center_ra_deg: DOUBLE
center_dec_deg: DOUBLE
range_ra_deq: DOUBLE
range_dec_deqg: DOUBLE
min_ra_deqg: DOUBLE
min_dec_deq: DOUBLE
max_ra_deg: DOUBLE
man_dec_deg: DOUBLE
public: BOOLEAN
rcenter_range_ra_1: DOUBLE
center_range_ra_2: DOUBLE
center_range_dec_1: DOUBLE
center_range_dec_2: DOUBLE

Figure 3. Radio Archive database including only the needed tables

database for the FITS, MBFITS and XML files. Therefore, the data_file table contains fitsvers, mbfitsvers
and freq_vlbi, where only one of them is filled depending on the type of input data. All the three data types
can be stored in the database. A few metadata have different meaning depending on the type of input data.
For instance, the keyword FREQ describing the frequency can represent either the minimum or the average
frequency in the observing band. The database is able to recognize and handle both meanings of FREQ thanks
to a stored procedure used to calculate the minimum and the maximum frequency and store them in min_freq
and max_freq. If some input files are not valid, data cannot be read and a row is inserted only in the main table
called file_info. This row has no associated entry in the data_file table. This enables to recognize problematic
input files. The Radio Archive database contains an additional table (called schedule table) with respect to the
MBFITS database. The schedule table is a copy of file_info table, which is not linked to the tables storing data
from the input files. Such a configuration enables to store two input files for each observation, i.e., an input
file storing the actual observing data, and an input file storing the log and the schedule of the observation. To
handle both types of input files, the deployment of two instances of RDI is required. The first instance reads the
data from FITS/MBFITS/XML and stores them in file_info, data_file and other connected tables. The second
instance processes the schedule input files without untaring/opening them, but just moving them in the storage
folder and inserting their names in the schedule table. Note that these two instances of RDI read the input files
from two different input folders, each of them storing one type of input files. When searching for the schedule
of an observation, the schedule name in the data_file table has to be matched with the file_name in the schedule
table.

Proc. of SPIE Vol. 9913 99132D-14

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

3.6 User access

Users can perform dedicated queries in the Radio Archive depending on Instrument (Telescope) features or
modes. In particular, SD and VLBI-IT observation share a generic subset of parameters and can be specialized
for each instrument in terms of selection parameters and query outputs. Common features are, for example,
the user authentication page, the celestial object name resolver, the coordinates and the frequencies fields.
Specialized fields are related to the Observing mode, the frontend /backend configuration and so on. To improve
the query performance and speed of results delivery, an indexing process of the most commonly used columns
and SQL functions were implemented. The index process was set up using the indications of a group of test users
(professional astronomers) while the querying functions have been implemented to optimize the investigation
over the hierarchical database structure, returning information organized in a table on the output web page. To
speed-up the queries, two approaches were applied. First, all the parameter computations that could be done
during the query execution are performed in advance and stored in the database. In this way, there is no need for
real time calculation and the computed parameters are easily indexable. Second, indexes were created on various
columns and combinations of columns to speed-up the most frequent queries. These processes are very specific
and customized on the necessities of a Radio Archive query form, and on the effective necessities of the average
radio astronomer curiosity and needs. Moreover, a dedicated algorithm was implemented for the search inside
a circular region around user-selected celestial coordinates on rectangular radio maps with different reference
frames.

3.7 Conclusions

In view of the realization of a public Radio Data archive, the design and development of a comprehensive data
model for radio observations taken with the Italian radio telescopes required a thorough analysis of the available
instrumentation. Beside this, a configuration mapping for software set up has been elaborated in order to
delegate all the data model complexity to a defined number of possible schemes designed to be human readable
and easy-to-use as far as possible, to allow software re-usability and flexibility. By changing the Radio_data
model using simple SQL commands, different kinds of instruments/telescopes can be easily added to the Radio
Data Archive. Modifications to the source data models are also easily handled, thus offering the possibility to
have different versions of the Radio_data model working at the same time. The choice to be fully compliant with
the MBFITS data model improved the perspective of the Archive in the direction of VO compliance. Moreover,
a Raw Radio Data model which is already in use by the astronomical community may be of interest for the
Virtual Observatory Alliance to define a new model for this kind of data, or to include this specific model into
an already existing one, opening the possibility to use Table Access Protocol (TAP) to export publicly available
resources. An ongoing activity in this field is foreseen to export the Radio Archive Database to VO compliant
clients through TAP, in view of improving open data re-usage and the accessibility of scientific data to the general
public.

3.8 Acknowledgments

This work became feasible due to the great contribution of both the Radio Astronomy Institute of Bologna and
Medicina and the Italian Astronomical Archives data center teams.

REFERENCES

[1] Murder, D., “Multi-beam fits raw data format,” APEX Interface Control Document 1, — (2015).
http://www.apex-telescope.org/documents/public/ APEX-MPI-ICD-0002.pdf.

[2] Zanichelli, A., “Data formats for the medicina and noto radio telescopes,” IRA Technical Report 1, — (2015).
http://www.ira.inaf.it /Library /rapp-int /488-15.pdf.

[3] Dovgan, E., “Radio data importer report,” OATs Technical Report 1, — (2015).

[4] Chaize, J.-M., “Tango- an object oriented control system based on corba,” in [7th International Conference
on Accelerator and Large Experimental Physics Control Systems], D. Bulfone, A. D., ed., Proc. ICALEPCS
1898, — (1999).

Proc. of SPIE Vol. 9913 99132D-15

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

