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Abstract

Asymptotic Safety, based on a non-Gaussian fixed point of the gravitational

renormalization group flow, provides an elegant mechanism for completing the

gravitational force at sub-Planckian scales. At high energies the fixed point

controls the scaling of couplings such that unphysical divergences are absent

while the emergence of classical low-energy physics is linked to a crossover be-

tween two renormalization group fixed points. These features make Asymptotic

Safety an attractive framework for cosmological model building. The resulting

scenarios may naturally give rise to a quantum gravity driven inflationary phase

in the very early universe and an almost scale-free fluctuation spectrum. More-

over, effective descriptions arising from an renormalization group improvement

permit a direct comparison to cosmological observations as, e.g. Planck data.
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1. Asymptotic Safety: a brief introduction

It is well-known that the quantization of general relativity based on the

Einstein-Hilbert action results in a quantum field theory which is perturba-

tively non-renormalizable. This conclusion also holds if (non-supersymmetric)

matter fields are added. The phenomenological success of general relativity then

motivates to treat gravity as an effective field theory. This approach leads to

a renormalizable theory of gravity in the sense that any quantum field theory

becomes renormalizable if all possible counterterms compatible with its sym-

metries are included in the action [1]. While providing a consistent quantum

theory for gravity, this construction falls short in terms of predictive power:

while the effective field theory formulation works well at energy scales below

the Planck scale where higher-derivative terms are suppressed by powers of the

Planck mass, describing gravity at trans-Planckian scales requires fixing an in-

finite number of free coupling constants from experimental input.

In principle, Asymptotic Safety lives in the same space of theories as the

corresponding effective field theory. It resolves the problem of “predictivity”

encountered in effective field theory framework by imposing the extra condition

that the quantum theory describing our world is located within the UV crit-

ical hypersurface of a suitable renormalization group (RG) fixed point. This

condition implies that the high-energy behavior of the theory is controlled by

the fixed point which renders all dimensionless coupling constants finite at high

energy. Fixing the trajectory uniquely then requires a number of experimental

input parameters equal to the dimensionality of the hypersurface.

On this basis the crucial elements for Asymptotic Safety providing a valid

theory for quantum gravity can be summarized as follows. Firstly, the existence

of a suitable RG fixed point has to be shown. Secondly, the predictive power

of the construction must be determined. Finally, it has to be shown that the

UV critical hypersurface develops a regime where classical gravity constitutes a

good approximation. Starting from the pioneering work [2], these points have

been investigated in a vast variety of highly sophisticated computations, putting
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the scenario on firm grounds [3, 4, 5, 6, 7, 8]. In particular the dimension of the

UV critical hypersurface could be as low as three.

The prospect that Asymptotic Safety could be capable of describing gravita-

tional force at all length scales makes the theory quite attractive for cosmological

model building [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 31, 32, 33, 34, 35, 35, 36, 37, 38]. On the one hand some or all of

the free parameters appearing in the Asymptotic Safety construction (including

the value of the cosmological constant and Newton’s constant complemented by

a low number of higher-derivative couplings) may be determined from cosmo-

logical data. On the other hand, Asymptotic Safety provides a framework for

developing effective cosmological models and addressing questions related to a

possible resolution of cosmological singularities. Typically, such investigations

incorporate the effect of scale-dependent couplings through RG improvement

techniques implemented either at the level of the equations of motion or the ef-

fective (average) action. While the resulting models are not based on the same

level of rigor as the RG computations forming the core of the Asymptotic Safety

program, they allow for the construction of interesting cosmological scenarios,

e.g., in the framework of f(R)-type gravitational actions or dilaton-gravity the-

ories.

The rest of the work is then organized as follows. We briefly review the

computation of gravitational RG flows and the central results in Sect. 2, em-

phasizing the occurrence of a classical phase where general relativity is a good

approximation. Cosmological models arising from RG improved equations of

motion are discussed in Sect. 3 while Sect. 4 summarizes results otained from

(improved) effective actions. We close with a brief summary and outlook in

Sect. 5.

2. Asymptotic Safety: fixed points and classical regime

Testing Asymptotic Safety at the conceptual level requires the ability to con-

struct approximations of the gravitational RG flow beyond the realm of pertur-
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bation theory. A very powerful framework for carrying out such computations

is the functional renormalization group equation (FRGE) for the gravitational

effective average action Γk [2]

∂kΓk[g, ḡ] =
1

2
Tr

[(
Γ

(2)
k +Rk

)−1

∂kRk
]
. (1)

The construction of the FRGE uses the background field formalism, splitting the

metric gµν into a fixed background ḡµν and fluctuations hµν . The Hessian Γ
(2)
k

is the second functional derivative of Γk with respect to the fluctuation field at a

fixed background and Rk provides a scale-dependent mass term for fluctuations

with momenta p2 � k2 with the RG scale k constructed from the background

metric. The interplay of Rk in the numerator and denominator renders the

trace both infrared and ultraviolet finite and ensures that the flow of Γk is

actually governed by fluctuations with momentum p2 ≈ k2. In this sense, the

flow equation realizes Wilson’s idea of renormalization by integrating out “short

scale fluctuations” with momenta p2 � k2 such that Γk provides an effective

description of physics for typical scales k2. A priori one may then expect that

resulting RG flow may actually depend strongly on the choice of background.

As it was explicitly demonstrated in [39], this is not the case, however: if flow is

computed via early-time heat-kernel methods the background merely serves as

a book-keeping device for disentangling the flow of different coupling constants.

The arguably simplest approximation of the gravitational RG flow is ob-

tained from projecting the FRGE onto the Einstein-Hilbert action approximat-

ing Γk by

Γk =
1

16πGk

∫
d4x
√
g [−R+ 2Λk] + gauge-fixing and ghost terms . (2)

This ansatz comprises two scale-dependent coupling constants, Newton’s con-

stant Gk and a cosmological constant Λk. The scale-dependence of these cou-

plings is conveniently expressed in terms of their dimensionless counterparts

λk ≡ k−2 Λk , gk ≡ k2Gk , (3)
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and captured by the beta functions

k∂kgk = βg(gk, λk) , k∂kλk = βλ(gk, λk) . (4)

Evaluating the beta functions [2] for the Litim regulator [40] gives

βλ = (ηN − 2)λ+
g

12π

[
30

1− 2λ
− 24− 5

1− 2λ
ηN

]
βg = (2 + ηN ) g ,

(5)

with the anomalous dimension of Newton’s constant ηN ≡ (Gk)−1 k∂kGk being

given by

ηN =
g B1(λ)

1− gB2(λ)
(6)

where

B1(λ) = 1
3π

[
5

1−2λ −
9

(1−2λ)2 − 7
]
, B2(λ) = − 1

12π

[
5

1−2λ −
6

(1−2λ)2

]
. (7)

The beta functions (5) encode the scale-dependence of the dimensionless

Newton’s constant and cosmological constant. In particular, they contain the

information on fixed points g∗ of the RG flow where, by definition of a fixed

point, the beta functions vanish simultaneously, βa(ga)|ga=ga∗
= 0 constants.

In the vicinity of a fixed point, the properties of the RG flow are captured by

linearizing the beta functions around the fixed point. Defining the stability

matrix Bab ≡ ∂gbβga |g=g∗ the linearized flow takes the form

ga(k) = ga∗ +
∑
I

CI V aI

(
k0

k

)θI
. (8)

Here the VI denote the right-eigenvectors of B with eigenvalues −θI such that∑
bBabV

b
I = −θIV aI , k0 is a fixed reference scale and the CI are constants of

integration. If ReθI > 0 the flow along the eigendirection VI automatically

approaches the fixed point ga∗ as k →∞. In this case, the CI has a status of a

free parameter. Analogously, eigendirections with ReθI < 0 are repelled from

the fixed point as k → ∞. The requirement that the fixed point controls the

flow at high energy then demands that the corresponding integration constants

CI must be set to zero. Compared to the effective field theory framework,
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Asymptotic Safety then potentially fixes an infinite number of free couplings,

leading to a vast increase in predictive power.

The beta functions (5) give rise to two fixed points. Firstly, the Gaussian

fixed point (GFP) is situated at (g∗, λ∗) = (0, 0). It corresponds to a free theory

where the stability coefficients are determined by the mass-dimension of the

coupling constant. Thus the GFP is a saddle point in the g−λ–plane: linearized

solutions with g > 0 are repelled from this fixed point for k →∞. This feature

reflects the perturbative non-renormalizability of the Einstein-Hilbert action in

the Wilsonian language.

In addition, the flow possesses a non-Gaussian fixed point (NGFP) located

at

g∗ = 0.707 , λ∗ = 0.193 . (9)

From eq. (5) one sees that the anomalous dimension of Newton’s constant at

this fixed point is ηN = −2. Its stability coefficients are given by

θ1,2 = 1.48± 3.04i , (10)

such that RG flows in its vicinity actually spiral into the fixed point as k →

∞. In the fixed point regime (9) then entails that the dimensionful coupling

constants scale according to

lim
k→∞

Gk = g∗ k
−2 , lim

k→∞
Λk = λ∗ k

2 . (11)

In particular the dimensionful Newton’s constant vanishes as k →∞, entailing

that the Asymptotic Safety mechanism renders gravity anti-screening.

At this stage it is instructive to construct the flow of Gk and Λk by integrat-

ing the beta functions (5) numerically. For solutions giving rise to a positive

cosmological constant, typical examples are shown in Fig. 1. For ln k & 2 all

solutions exhibit the fixed point scaling (11). In the range −2 < ln k < 2 the

solutions undergo a crossover from the NGFP to the GFP. For ln k . −2, both

Gk and Λk are (approximately) constant before terminating at finite kterm when

λkterm ≈ 1/2. The value of Gk and Λk in this classical regime can be set to the
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Figure 1: Scale-dependence of the Newton’s constant (right) and cosmological constant (left)

as a function of the RG scale k for typical solutions giving rise to a positive cosmological

constant. The red line indicates a singularity of the beta functions where ηN diverges (adapted

from [41]).

experimentally measured values G0 and Λ0 by choosing suitable initial condi-

tions [42]. The small value of Λ0 then ensures that the classical regime extends

from the Planck scale up to cosmic scales.

At this stage the following remarks are in order. The result (9) actually

constitutes the projection of the NGFP underlying Asymptotic Safety to the

space of interactions spanned by the Einstein-Hilbert action. It is unlikely that

the full effective average action Γ∗ is of Einstein-Hilbert form. Starting from

the Einstein-Hilbert result, the existence of a suitable NGFP has by now been

established in a series of highly sophisticated approximations, reviewed, e.g.,

in [7]. The inclusion of power-counting marginal four-derivative terms thereby

indicate that there is (at least) one additional relevant direction which may be

associated with the coupling constant associated with an R2-interaction [43,

44]. Notably, the existence of a classical regime persists upon including higher-

derivative terms comprising R2-interactions or the Goroff-Sagnotti counterterm

[45, 46]. The mechanism giving rise to this feature is universal: the classical

regime results from a crossover from the NGFP controlling the high-energy

behavior to the GFP governing the low-energy physics. This crossover also

works for realistic values of the cosmological constant [42].
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3. Quantum gravity effects and the initial singularity

In principle, astrophysical and cosmological applications of the asymptotic

safety scenario are ubiquitous. Fig. 1 displays a significant scale-dependence

of Newton’s constant and the cosmological constant for trans-Planckian energy

outside the classical regime. This raises the immediate question if this scale-

dependence has an influence on cosmic singularities and if it leaves phenomeno-

logical imprints in cosmological signatures. These questions may be addressed

using RG improvement techniques reviewed below.

3.1. Incorporating quantum gravity via renormalization group improvements

A key feature of the effective average action Γk[gµν ] is that it provides an

effective description of the physical system at scale k. Based on this property

Γk allows to derive effective field equations for the effective metric via

δΓk
δgµν(x)

[〈g〉k] = 0 (12)

where, quantities 〈·〉 can be interpreted as averaged over (Euclidean) spacetime

volumes with a linear extension of order k−1. In the case of Einstein-Hilbert

truncation (2), one obtains

Rµν [〈g〉k]− 1

2
R 〈gµν〉k = −Λ(k) 〈gµν〉k + 8πG(k) 〈Tµν〉k , (13)

with Tµν the standard energy momentum tensor describing the matter content

of the system. In the RG improvement process the cutoff k is then identified with

a typical length scale of the system, k 7→ k(xµ). In the context of cosmology,

there are several types of cutoff identifications

Type I: k2 = ξ2 t−2 , (14a)

Type II: k2 = ξ2H(t)2 , (14b)

Type III: k2 = ξ2
√
RµνρσRµνρσ , (14c)

Type IV: k2 = ξ2 T 2 . (14d)

Here t denotes cosmic time (representing a proper distance), H(t) the Hubble

parameter,
√
RµνρσRµνρσ is representative for a quantitiy characterizing the
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curvature of spacetime, and T ∝ ρ1/4 is the temperature of the cosmic plasma.

Moreover, ξ is an a priori undetermined positive parameter of order one. Sup-

plementing (13) by a suitable equation of motion for the matter sector and

substituting one of the cutoff identifications leads to a closed system of equa-

tions which allows to determine the averaged metrics 〈gµν〉k. If Λ(k) and G(k)

are (approximately) scale-independent the dynamics entailed by (13) reduces to

the one of general relativity while the running of the couplings induces distinct

modifications controlled by the beta functions of the theory. Fig. 1 then indi-

cates that these corrections will set in when k2 & G0 which is the natural scale

for quantum gravity effects.

An alternative to the RG improvement of the equations of motion described

above can be borrowed from QED and QCD [47, 48, 49] and carries out the

improvement at the level of the effective action. Instead of calculating the

effective action in terms of Schwinger’s proper-time approach or perturbative

calculations of Feynman diagrams, it turns out to be more convenient to ob-

tain the low energy effective action by means of the stress-energy tensor and

the leading-log model. In a similar way the RG approach to gravity allows to

construct improved actions by promoting k to an external spacetime dependent

field k = k(xµ) or identifying k directly with the field strength. The later cor-

responds to a cutoff identification of Type III applied to the effective average

action. This procedure then leads to additional terms in the equations of mo-

tion which originate from DµG(k(x)) 6= 0 (also see [42, 17] for a more detailed

discussion).

3.2. Friedmann-Robertson-Walker cosmology

A natural starting point for investigating potential signatures of Asymp-

totic Safety studies the RG improved equations of motion for homogeneous and

isotropic flat Friedmann-Robertson-Walker cosmologies. In this case complete

cosmic histories taking the scale-dependence of the couplings into account have
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been developed in a series of works [9, 12, 13, 17].3 In this case the line element

ds2 = −dt2 + a(t)2
[
dx2 + dy2 + dz2

]
, (15)

is supplemented by a stress-energy tensor of a perfect fluid, Tµν = diag[−ρ, p, p, p],

satisfying the equation of state p = wρ. Applying a cutoff identification k 7→ k(t)

to (13) leads to the RG improved Friedmann and continuity equation

H2 =
8π

3
G(t)ρ+

1

3
Λ(t) ,

ρ̇+ 3H(ρ+ p) = − Λ̇ + 8πρ Ġ

8πG(t)
.

(16)

The second equation arises from the Bianchi identity satisfied by Einstein’s

equations Dµ[λ(t) gµν − 8πG(t)Tµν ] = 0. The extra term on its right-hand-side

has the interpretation of an energy transfer between the gravitational degrees of

freedom and matter. Introducing the critical density ρcrit ≡ 3H(t)2/(8πG(t))

and defining the relative densities Ωmatter = ρ/ρcrit and ΩΛ = ρΛ/ρcrit the first

equation is equivalent to Ωmatter + ΩΛ = 1.

We first focus on the very early part of the cosmological evolution where the

scaling of G and Λ is given by (11). Selecting the cutoff identification to be of

Type II, eq. (14b), the system (16) has the analytic solution

H(t) =
α

t
, a(t) = A tα , α =

[
3
2 (1 + w)(1− Ω∗Λ)

]−1
, (17)

together with ρ(t) = ρ̂ t−4, G(t) = Ĝ t2 and Λ(t) = Λ̂ t−2. The constants

Ĝ, Λ̂ and ρ̂ are determined in terms of the position of the NGFP and the free

parameter ξ,

ρ̂ = 3
8π

ξ2α4

g∗

(
1− 1

3λ∗ξ
2
)
, Ĝ =

g∗
ξ2α2

, Λ̂ = λ∗ ξ
2 α2 , Ω∗Λ = 1

3 λ∗ ξ
2 , (18)

while A is a positive constant. The vacuum energy density in the fixed point

regime, Ω∗Λ takes values in the interval ]0, 1[.4 The solutions (17) possess no

particle horizon if α ≥ 1 while for α < 1 there is a horizon of radius rH =

3Also see [23, 50] for related discussions.
4A priori the value of α depends on the parameter ξ ' O(1) entering the renormalization
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t/(1 − α). Moreover, they undergo power law inflation if α > 1. Assuming

radiation dominance, w = 1/3, this requires Ω∗Λ > 1/2. For the NGFP (9) this

corresponds to 2.79 ≤ ξ ≤ 3.94. Remarkably, the asymptotic behavior of the

solution for t → 0 is actually independent of the chosen improvement scheme:

given the solution (17) together with the curvature tensor evaluated in Tab.

1, all choices entail k ∝ t−1 + subleading, corroborating the robustness of the

improvement procedure.

Realizing an inflationary phase in the fixed point regime by having Ω∗Λ ≥ 1/2

is a rather attractive scenario: inflation driven by the quantum gravity effects

ends automatically at the transition time ttr when the RG flow enters into the

classical regime. For t > ttr the evolution is then given by a classical Friedmann-

Robertson-Walker universe. The period of a NGFP-driven inflationary phase

does not require any extra ingredients like an inflaton or a specific inflaton

potential.

Quite remarkably, the NGFP-driven inflation may leave imprints in the cos-

mic fluctuation spectrum. The transition time ttr is determined by the scale k

where the underlying RG trajectory enters into the classical regime G0. From

Fig. 1 one sees that k ' mPl where the Planck mass is determined from the value

of Newton’s constant in the classical regime. Since ξ = O(1) gives H(ttr) ≈ mPl.

The relation H(t) = α/t then leads to the estimate

ttr = α tPl . (19)

If Ω∗Λ is very close to one, i.e., α � 1 the cosmic time ttr when the Hubble

parameter is of order mPl can be much larger than the Planck time which is

then located within the NGFP regime.

We now consider the evolution of a fluctuation with comoving length ∆x.

The corresponding physical length is L(t) = a(t)∆x. In the NGFP regime, L(t)

group improvement scheme (14). For radiation dominance w = 1/3, and the fixed point (9),

one typically has 1/2 < α < 1. In principle, the value of ξ may be fixed by imposing, e.g.,

conservation of the classical stress-energy tensor [9], but we will consider ξ as a free parameter

in the sequel.
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is related to the proper length at the transition time ttr via L(t) = (t/ttr)
α L(ttr).

The ratio of L(t) and the Hubble radius `H(t) then evolves as

L(t)

`H(t)
=

(
t

ttr

)α−1
L(ttr)

`H(ttr)
. (20)

For α > 1 the proper length of the object grows faster than the Hubble radius.

Fluctuations which are of sub-Hubble size at early times can then cross the

horizon and become “super-Hubble”-size at later times.

For definiteness, let us consider a fluctuation which, at the transition time

ttr is eN times larger than the Hubble radius. For this fluctuation, eq. (20)

implies
L(t)

`H(t)
= eN

(
t

ttr

)α−1

. (21)

The time tN where this fluctuation crosses the Hubble horizon, L(tN ) = `H(tN )

is

tN = ttr exp

(
− N

α− 1

)
. (22)

Thus even for moderate values of α, NGFP-driven inflation easily magnifies

fluctuations to a size where they are many orders of magnitude larger than the

Hubble radius. Interestingly, the structures visible today may have crossed the

Hubble horizon during the NGFP regime. Starting from the largest structures

visible today and using the classical evolution to backtrace them in time to the

point where H = mPl their size back then is given by e60`Pl. Setting N = 60 the

time t60 when these structures crossed the horizon can be estimated from eq.

(22). For α = 25, t60 = ttr/12.2 = 2.05tPl. Thus t60 is one order of magnitude

smaller than ttr. In this setting structures observed today may have their origin

in the quantum regime controlled by the NGFP.

The NGFP also offers a natural mechanism for generating a scale-free spec-

trum of primordial fluctuations [13]. Following the discussion [51], this can be

seen as follows: owed to the anomalous dimension of the theory at the NGFP,

ηN = −2, the effective graviton propagator (at background level) has a char-

acteristic 1/p4 dependence. This implies a logarithmic dependence for the two-

point graviton correlator in the configuration space, 〈hµν(x)hµν(y)〉 ∼ ln(x−y)2.
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Figure 2: Dynamics of the scale factors ai for the classical (left) and RG improved (right)

vacuum Bianchi IX model as a function of dτ ≡ a1a2a3 dt. The RG improvement leads to

a decoupling of spatial points such that the system enters into a quiescence phase (adapted

from [52]).

As a consequence curvature fluctuations δR ∝ ∂2h (where R stands for any

component of Riemann or Ricci tensor) must behave as: 〈δR(x, t)δR(y, t)〉 ∝

1/|x−y|4. If the fluctuations on the matter part δρ originate from the fluctua-

tions of the geometry itself, the classical Einstein equations provide the relation

δρ ∝ δR. The correlation function ξ(x) ≡ 〈δ(x)δ(0)〉 of the density contrast of

δ(x) ≡ δρ(x)/ρ must behave as [13]

ξ(x) ∝ 1

|x|4
(23)

provided the physical distance a(t)|x| is smaller than the Planck length. There-

fore, from the 3-dimensional Fourier transform of (23) we immediately get

|δk|2 ∝ |k| which results in a scale invariant power spectrum, with spectral

index n = 1. Clearly (small) deviations from n = 1 are expected as, strictly

speaking, the prediction of an exactly scale-free spectrum holds at the NGFP

only. Since the NGFP is supposed to govern the dynamics of the theory before

the onset of inflation this implies in particular that the power spectrum may

acquire non-trivial corrections during the inflationary phase.

3.3. BKL-Type singularities

The RG improvement techniques employed in the case of a homogeneous and

isotropic Friedmann-Robertson-Walker solution are readily extended anisotropic

13



Singularity RµνρσR
µνρσ

FRW cosmology 12α2(1−2α+2α2)
t4

BKL singularity
4[r+λ∗+(r+λ∗)2−2(p31+p32+p33)−p21p

2
2−p

2
1p

2
3−p

2
2p

2
3]

t4

Table 1: Initial singularities for the RG improved Friedmann-Robertson-Walker (FRW)

solution (top) and the vacuum Bianchi IX universe (bottom). The values α and pi determining

the square of the Riemann tensor are given in eqs. (17) and (28). Both models exhibit a point

singularity at t = 0.

models [52]. This includes the class of vacuum Bianchi I and Bianchi IX models

where the line element has the form

ds2 = −dt2 +
(
a2

1 lalb + a2
2mamb + a2

3 nanb
)
dxadxb . (24)

Here ai(t) are scale factors depending on the cosmological time t and the three-

vectors la, ma, na depend on the spatial coordinates and determine the direc-

tions scaling with the corresponding ai. At the classical level, BKL [53, 54, 55]

discovered that the dynamics of the scale factors follows a complex oscillatory

pattern between Kasner phases where the spatial derivatives of the three-vectors

are negligible (see right panel of Fig. 2). In a Kasner phase the scale factors

follow a power-law behavior ai(t) = tpi with the Kasner exponents pi satisfying

3∑
i=1

pi = 1 ,

3∑
i=1

(pi)
2 = 1 . (25)

The solution of these equations may be parameterized in terms of a single real

variable u, showing that classically one always has two positive and one negative

Kasner exponent (the point p1 = 1 and p2 = p3 = 0 constituting an exception).

If the system approaches t → 0, the scale-factor associated with the negative

Kasner exponent becomes large, triggering a bounce into a new Kasner phase.

Thus classically, the system undergoes an infinite number of Kasner bounces as

it approaches the initial singularity at t = 0.

We now include a scale-dependent cosmological constant and perform a Type

I RG improvement identifying k2 = ξ2t−2. In the NGFP regime the improved
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vacuum equations of motion take the form

Rµν − 1
2gµνR = −λ∗ t−2 gµν , (26)

where we absorbed ξ2 into the parameter λ∗. Neglecting spatial gradients (corre-

sponding to the Bianchi I case), the system again possesses Kasner-type scaling

solutions where the Kasner exponents satisfy
3∑
i=1

pi = r ,

3∑
i=1

(pi)
2 = r + λ∗ (27)

with r ≡ (1 +
√

1 + 12λ∗)/2. The one-parameter family of solutions of this

system is conveniently parameterized by u ∈ [0, 1] and given by

p1 = 1
3

(
r −
√
r
)
−

√
r u

1 + u+ u2
,

p2 = 1
3

(
r −
√
r
)

+

√
r u(1 + u)

1 + u+ u2
,

p3 = 1
3

(
r −
√
r
)

+

√
r (1 + u)

1 + u+ u2
.

(28)

For λ∗ > 0, these solutions possess the remarkable feature that there are inter-

vals u where all Kasner exponents are positive.

Returning to the Bianchi IX case with the spatial gradients turned on, a

generic solution undergoes Kasner oscillations. When tracing the dynamics

back in time, the crucial difference to the classical case occurs if a Kasner bounce

reflects the system into the part of the solution space where all pi > 0. In this

phase there is then no scale factor which diverges as t → 0. Consequently, the

Kasner bounces stop and the system approaches a point-like singularity where

limt→0 ai(t) = 0, i = 1, 2, 3 (see the right panel of Fig. 2 for illustration). The

RG improved Bianchi IX model exhibits the same quiescent behavior found

when the Bianchi IX universe is populated by stiff matter [56]. Moreover, it

gives rise to the same type of point singularity as the one encountered in the

homogeneous and isotropic case.5

5In the context of shape dynamics a similar setup has recently been studied in [57] where

it was shown that the specific properties underlying shape dynamics allow the continuation

of solutions through this singularity.
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4. Inflationary models

A more detailed connection between Asymptotic Safety and cosmological

data may be obtained through the construction of effective actions valid at the

scale of inflation. For pure gravity the effective actions studied so far fall into the

class of f(R)-type theories where the modifications are attributed to quantum

gravity effects. Along a different line it is also possible to extend the pure

gravity theory by including an additional scalar field and investigate imprints

of Asymptotic Safety within the framework of dilaton-gravity theories. These

two cases will be discussed in subsections 4.1 and 4.2, respectively.

4.1. Effective f(R)-type gravity models

According to the inflationary scenario quantum gravity phenomena could be

observed in anisotropy experiments of the microwave background as well as in

galaxy clustering data. In particular, according to the latest release of Planck

data the inflationary scale is significantly lower than the Planck scale, with

k ∼ 1014 − 1015 GeV for a pivot scale k? = 0.05 Mpc−1. An effective action

for inflation can then be obtained by linearizing the flow around the NGFP and

identifying the cutoff with the field strength. Starting from a scale-dependent

Lagrangian including the (projection of) the currently known relevant coupling

constants,

Lk =
1

16πGk
(R− 2Λk)− βk R2 , (29)

and implementing a Type III cutoff identification, a detailed calculation shows

that an effective action valid around the inflationary scale may be given by

[58, 59]

S =
1

2κ2

∫
d4x
√
−g

[
R+ αR2− θ32 +

R2

6m2
−M

]
. (30)

Here κ2 = 8πG0, the scalaron mass m and M encode the details of the RG

trajectory in the Einstein-Hilbert sector, and θ3 is the critical exponent of the

R2-operator. The relevant R2-coupling is encoded in α. For α = 0 eq. (30)

coincides with standard Starobinsky inflation which is favored by the Planck

2015 data.
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Figure 3: Theoretical predictions in the r-ns plane for different values of α for the Planck

collaboration 2015 data release for the TT correlation assuming ΛCDM + r. Triangles are for

N = 55 and squares for N = 60 e-folds. Solid and dashed lines are the 1σ and 2σ confidence

levels, respectively (adapted from [59]).

It is then possible to constrain the value of α in the slow-roll approximation.

Mapping (30) to the Einstein frame yields

S =

∫
d4x
√
−gE

[
1

2κ2
RE −

1

2
gµνE ∂µφ∂νφ− V±(φ)

]
(31)

where

V(φ) =
m2e−2

√
2
3κφ

256κ2

{
192

(
e
√

2
3κφ − 1

)2

− 3α4 + 128M

− 3α2
(
α2 + 16 e

√
2
3κφ − 16

)
− 6α3

√
α2 + 16 e

√
2
3κφ − 16

−
√

32α
[ (
α2 + 8e

√
2
3κφ − 8

)
+ α

√
α2 + 16e

√
2
3κφ − 16

] 3
2

}
(32)

and gEµν = ϕgµν with ϕ = e
√

2/3κφ. In (32) α and M are in units of the

scalaron mass m by means of the rescaling α → α/3
√

3m and M → Mm2, so

that both α and M are dimensionless numbers. It is thus possible to constrain
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the value of α in the slow-roll approximation so that for α ∈ [1, 3] and N = 50

e-folds, the spectral index ns ∈ (0.965, 0.967) and the tensor-to-scalar ratio r ∈

(0.069, 0.0076), see Fig. 3. These values significantly larger than the Starobinsky

value but still in agreement with observations [60]. It is hoped that future CMB

anisotropy experiments like CORE [61], LiteBIRD [62], or PIXIE [63] could

discriminate among these models.

4.2. Dilaton-gravity models

The asymptotic safety mechanism, in the case of pure gravity realized through

the NGFP (9), is also operative in gravity-matter systems [64, 65, 66]. The oc-

currence of non-Gaussian gravity-matter fixed points then motivates studying

the imprints of Asymptotic Safety also in dilaton-gravity (DG) models. A typ-

ical ansatz for the (Euclidean) effective average action reads

ΓDG
k =

∫
d4x
√
g
[

1
2Fk(χ2)R− 1

2Kk(χ2)∂µχ∂
µχ− Vk(χ)

]
+ . . . , (33)

where the three functions F, V and K depend on the scalar field χ and the RG

scale k. Restricting to

Fk(χ2) =
1

16πGk
+ ξk χ

2 , Vk(χ2) = vk + 1
2m

2
k χ

2 + 1
4 σk χ

4 , Kk = 1 , (34)

this class of models also comprises the actions discussed in the context of asymp-

totically safe Higgs inflation [35, 36]. Substituting the ansatz (33) into the

FRGE (1) yields a system of coupled partial differential equations determining

the scale-dependence of F, V and K. These equations may be used to inte-

grate down the fixed point potentials to the scale of inflation. Converting to

the Einstein frame the predictions for cosmological observables may then be

constructed in the standard way.

An alternative approach taken in [67] aims at constructing so-called scaling

solutions where, by definition, the dimensionless counterparts of F, V and K

are independent of the RG scale k. Such solutions can be constructed through

a combination of analytic and numerical methods. Converting back to the

Einstein frame, it is found that the scalar potential is, firstly, independent of
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the RG scale k and, secondly, possesses a maximum for small values of the

scalar field. While these solutions do not (yet) give rise to realistic cosmological

models, they serve as a prototype for connecting solutions of the FRGE to

cosmology without invoking a cutoff identification.

5. Summary and outlook

Asymptotic Safety provides an attractive mechanism for constructing a the-

ory of gravity extending to length scales below the Planck scale. The non-

Gaussian fixed point controlling the short-distance behavior of the theory leads

to a distinct scale-dependence of the gravitational couplings at (trans-)Planckian

energies. At the level of cosmological model building, this scale-dependence may

be taken into account via a RG improvement either at the level of the equations

of motion or the effective average action. The resulting models may naturally

give rise to a quantum gravity driven inflationary phase in the very early uni-

verse, generate a significant amount of entropy through an energy transfer from

the gravitational to the matter sector, and should possess an (almost) scale-free

fluctuation spectrum [9, 12, 13, 17]. Moreover, effective actions arising from the

RG improvement permit a direct comparison to cosmological observations as,

e.g. Planck data, potentially constraining the relevant couplings of the theory.

Generically, the RG improvements studied so far do not resolve the initial Big

Bang singularity. There are indications, however, that in some cases the singu-

larity is replaced by a bounce [50], though. While a derivation of fluctuation

spectra based on a first principle computation in Asymptotic Safety is still miss-

ing, the construction of consistent RG flows in a Friedmann-Robertson-Walker

background recently completed in [68] constitutes an important first step in this

direction.
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