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Abstract

Dead time affects many of the instruments used in X-ray astronomy, by producing a strong distortion in power
density spectra. This can make it difficult to model the aperiodic variability of the source or look for quasi-periodic
oscillations. Whereas in some instruments a simple a priori correction for dead-time-affected power spectra is
possible, this is not the case for others such as NuSTAR, where the dead time is non-constant and long (∼2.5 ms).
Bachetti et al. (2015) suggested the cospectrum obtained from light curves of independent detectors within the
same instrument as a possible way out, but this solution has always only been a partial one: the measured rms was
still affected by dead time because the width of the power distribution of the cospectrum was modulated by dead
time in a frequency-dependent way. In this Letter, we suggest a new, powerful method to normalize dead-time-
affected cospectra and power density spectra. Our approach uses the difference of the Fourier amplitudes from two
independent detectors to characterize and filter out the effect of dead time. This method is crucially important for
the accurate modeling of periodograms derived from instruments affected by dead time on board current missions
like NuSTAR and Astrosat, but also future missions such as IXPE.

Key words: methods: data analysis – X-rays: binaries – X-rays: general

1. Introduction

Dead time is an unavoidable and common issue of photon-
counting instruments. It is the time td that the instrument takes
to process an event and be ready for the next event. In most
current astronomical photon-counting X-ray missions, dead
time is of the non-paralyzable kind, meaning that the
instrument does not accept new events during dead time,
avoiding a complete lock of the instrument if the incident rate
of photons is higher than t1 d. Being roughly energy-
independent, dead time is not usually an issue for spectroscopy,
as it only affects the maximum rate of photons that can be
recorded, so it basically only increases the observing time
needed for high-quality spectra.

For timing analysis, the effect of dead time is far more
problematic. Dead time heavily distorts the periodogram, the
most widely used statistical tool to estimate the power density
spectrum (PDS),5 with a characteristic pattern that is stronger
for brighter sources. It is often not possible to disentangle this
power spectral distortion due to dead time and the broadband
noise components characterizing the emission of accreting
systems. In the special case where dead time is constant, its
shape can be modeled precisely (Vikhlinin et al. 1994; Zhang
et al. 1995). However, dead time is often different on an event-
to-event basis (e.g., in NuSTAR), and it is not obvious how to
model it precisely, also because the information on dead time is
often incomplete in the data files distributed by HEASARC
(see, e.g., Bachetti et al. 2015).

When using data from missions carrying two or more
identical and independent detectors like NuSTAR, Bachetti
et al. (2015) proposed an approach to mitigate instrumental

effects like dead time exploiting this redundancy: where in
standard analysis, light curves of multiple detectors are
summed before Fourier transforming the summed light curve,
it is possible to instead Fourier transform the signal of two
independent detectors and combine the Fourier amplitudes in a
cospectrum—the real part of the cross spectrum—instead of the
periodogram. Since dead time is uncorrelated between the two
detectors, the resulting powers have a mean white-noise level
fixed to 0, which resolves the first and most problematic issue
created by dead time (see details in Bachetti et al. 2015);
however, the resulting powers no longer follow the statistical
distribution expected for power spectra, and their probability
distribution is frequency-dependent. Whereas a noise cospec-
trum in the absence of dead time would follow a Laplace
distribution (Huppenkothen & Bachetti 2017), dead time
affects the width of the probability distribution for cospectral
powers and modulates the measured rms similarly to the
distortion acted on power spectra. In this Letter, we show a
method to precisely recover the shape of the periodogram by
looking at the difference of the Fourier amplitudes of the light
curves of two independent detectors. This difference, in fact,
contains information on the uncorrelated noise produced by
dead time, but not on the source-related signal that is correlated
between the two detectors. This allows us to disentangle the
effects of dead time from those of the source variability.
In Section 2, we show that, in the absence of dead time, the

difference of the Fourier amplitudes calculated from two
independent detectors contains the sum of the correlated signal
(the source signal) and uncorrelated noise (detector-related
noise), and that their difference eliminates the source part. In
Section 3, we use extensive simulations to show how to use this
fact to correct dead-time-affected periodograms, and we
describe the limitations of this method.
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5 Here, we will use the term PDS for the actual source power spectrum and
periodogram to indicate our estimate of it, or in other words, the realization of
the “real” power spectrum we observe in the data.
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2. On the Difference of Fourier Amplitudes

Let us consider two identical and independent detectors
observing the same variable source, producing independent and
strictly simultaneous time series, with identical even sampling
dt , = ={ }x xk k

N
1, and = ={ }y yk k

N
1. For a stochastic process

(e.g., n1 -type red noise), the Fourier amplitudes will vary as a
function of n( )N P 4phot , where n( )P (Leahy-normalized;
Leahy et al. 1983) is the shape of the power spectrum
underlying the stochastic process, and Nphot denotes the number
of photons in a light curve.

If the two detectors observe the same source simultaneously,
the amplitudes and phases of the stochastic process will be
shared among x and y, while each light curve will be affected
independently by the photon-counting noise in the detector, as
well as the dead-time process.

Dead time can be considered a convolution on the signal
(Vikhlinin et al. 1994). Following the convolution theorem, the
Fourier transform  of dead-time-affected light curves will be
the product of the Fourier transform of the signal  and the
Fourier transform of the dead-time filter :

  n n n=( ) ( ) · ( ) ( ). 1

For a large enough number of data points N, the complex Fourier
amplitudes Sj will be composed of a sum of two independent
random normal variables for the intrinsic red-noise variability and
the detector photon-counting noise, respectively: = +S S Sj sj nj,

with  s~( ) ( )R S 0,sj sj
2 and  s~( ) ( )R S 0,nj n

2 , and similarly

for the imaginary parts. The red-noise variance s s n= =( )sj s
2 2

n( )N P 4phot (where = å =N xk
N

kphot 1 ) is given by the power
spectrum of the underlying stochastic process and is frequency-
dependent. However, the photon-counting noise s = N 2n

2
phot is

independent of frequency. Note that =S Sxsj ysj because the
amplitudes of the stationary noise process will be the same for the
Fourier transforms of x and y as for the case considered here,
while the components due to white noise differ between the two
time series. The dead-time filter affects the sum of signal and
white-noise amplitudes as a multiplicative factor and only depends
on count rate, which is equal for both light curves given the
identical detectors. Thus, the difference between the Fourier
amplitudes for the two time series x and y will be

- = - = -( ) · ( ) · ( )F F S S D S S D . 2xj yj xj yj j xnj ynj j

Because =S Sxsj ysj, but ¹S Sxnj ynj (since the white-noise
component is formed in each detector separately), the
difference of the real and imaginary Fourier amplitudes
between the two light curves effectively encodes the white-
noise component only, multiplied by the Fourier transform of
the dead-time filter. This fact effectively allows us to separate
out the (source-intrinsic) red noise from the spurious variability
introduced by dead time: if we can extract the shape of the
dead-time filter ∣ ∣2 from the Fourier amplitude differences
(FADs) of the two detectors, we can use it to correct the shape
of the periodogram. In the following section, we lay this
procedure out in more detail and describe its limits in
Section 3.5.

3. The FAD Method

3.1. Data Simulation

All simulated sets in this Letter were produced and analyzed
with a combination of the two Python libraries Stingray6

(Huppenkothen et al. 2016) and HENDRICS v.3.0b2
(formerly known as MaLTPyNT; Bachetti 2015), both
affiliated with Astropy (Astropy Collaboration et al. 2013;
Astropy Project et al. 2018).
We used the same procedure and algorithms described by

Bachetti et al. (2015, Section 4), which we briefly summarize
here. We used the Timmer & Koenig (1995) method to create a
red-noise light curve starting from a given power spectral
shape. This method is implemented in the stingray.
simulate module. This step needs to be done carefully: if
the initial light curves contain significant random noise, the
process for the creation of events creates a random variate on
the top of the local count rate—which is varying randomly
already—producing a non-Poissonian final light curve. We
initially simulated light curves with a very high mean “count
rate” such that the Poisson noise was relatively small. We then
renormalized the light curves to the wanted (lower) count rate
and rms and finally used these light curves to simulate event
lists using rejection sampling, implemented in the stingray.
Eventlist.simulate_times() method. Then, the hend-
rics.fake.filter_for_deadtime() function was used to
apply a non-paralyzable dead time of 2.5ms to the simulated
event lists. For more details on the simulated data sets and the
validation of the simulation infrastructure, see also Section 3.4 and
the available Jupyter notebooks.7,8 After producing these synthetic
event lists, we started the standard timing analysis: we produced
light curves with a bin time of ∼0.244ms and calculated power
spectral products (cospectrum, periodogram) over segments of
these light curves using stingray.

3.2. First Test: White Noise

As laid out in Section 2, the difference of Fourier amplitudes
from two independent but identical detectors shows no source
variability, but still shows the same distortion due to dead time
(See Figure 1, left panel, where this is shown with red noise).
Let us simulate two constant 1000 s light curves with an
incident mean count rate of 2000 counts s−1 and a dead time of
2.5 ms, as we would expect from the two identical detectors of
NuSTAR observing the same stable X-ray source. The Fourier
amplitudes of the light curves from the two detectors are
heavily distorted by dead time, with the characteristic damped
oscillator-like shape (Vikhlinin et al. 1994; Zhang et al. 1995;
Figure 1, middle panel). Therefore, using the difference
between the Fourier amplitudes in two detectors, we can in
principle renormalize the periodogram so that only the source
variability alters its otherwise flat shape.
As shown in Figure 1 (right panel), the single-detector

Fourier amplitudes are proportional on average to the
difference of the Fourier amplitudes in different realizations,
with a constant factor of 1 2 . Therefore, we expect that the

6 The library is under heavy development. For this work we used the version
identified by the hash 3e64f3d. See https://github.com/StingraySoftware/
notebooks/ for tutorials on simulations, light curve production, and timing
analysis with Stingray.
7 https://github.com/matteobachetti/deadtime-paper-II/
8 https://github.com/StingraySoftware/HENDRICS/tree/master/
notebooks
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periodogram will be proportional to the square of the FAD,
divided by 2. Let us try to divide the periodogram by a
smoothed version of the squared Fourier differences and
multiply by 2. For smoothing, we used a Gaussian running
window with a window width of 50 bins. Given that the initial
binning had 50 bins/Hz, this interpolation allows an aggressive
smoothing over bins whose y value does not change
significantly. We call this procedure the FAD correction.

The results of this correction are shown in Figure 2. Starting
from a heavily distorted distribution of the powers, applying
the FAD correction “flattens” remarkably well the white-noise
level of the periodogram and the distribution of the scatter of
the white-noise periodogram and cospectrum. Also, it reinstates
a correct distribution of powers, following very closely the
expected c2

2 distribution (Lewin et al. 1988; Figure 3, right

panel). Analogously, the corrected cospectrum will follow the
expected Laplace distribution (Huppenkothen & Bachetti 2017;
Figure 3, left panel). While the original dead-time-affected
cospectrum had a distorted, frequency-dependent rms level, the
FAD-corrected cospectrum returns to the correct distribution at
all frequencies.

3.3. The FAD Algorithm in Detail

In practice, the FAD correction algorithm in a generic case
would work as follows:

1. split the light curves from two independent, identical
detectors into segments as one would do to calculate
standard averaged periodograms;

2. for each pair of light curve segments:

Figure 1. Real-valued Fourier amplitudes obtained by single light curves (1) and difference between two realizations of the same source light curve ( -1 2),
plotted against each other in two cases. (Left) Strong f1 red noise and no dead time, calculated over many 500 s segments of the light curve. (Right) No red noise and
strong dead time, calculated over 5 s segments of the light curve. The red curve gives the frequency-dependent spread of the distributions, measured by the mean of the
absolute values of the curves in each frequency bin. The different behavior of Fourier amplitude differences in the two cases is evident: in the dead-time-free case, the
Fourier amplitude difference does not correlate with the Fourier amplitude, while in the dead-time-affected case, this follows a precise linear relationship.

Figure 2. Periodogram and cospectrum, before and after FAD correction, for a pure white-noise light curve (count rate 2000 counts s−1) . The dead-time-driven
distortion of the white-noise level in the periodogram and the frequency-dependent modulation of the rms in both spectra disappear after applying the FAD correction.
We averaged 500 periodograms calculated over 2 s intervals to decrease the scatter and highlight the distortion of powers.

3

The Astrophysical Journal Letters, 853:L21 (6pp), 2018 February 1 Bachetti & Huppenkothen



(i) calculate the Fourier transform of each detector
separately, and then of the summed detectors (here-
after total intensity);

(ii) save the unnormalized Fourier amplitudes;
(iii) multiply these Fourier amplitudes by N2 ph (that

would give Leahy-normalized periodograms if
squared);

(iv) subtract the Leahy-normalized Fourier amplitudes of
the two detectors between them, take the absolute
value, and obtain this way the FADs;

(v) smooth the FAD using a Gaussian-window interpola-
tion with a large number of bins, in our case all the
bins contained in 1–2 Hz, but this might need an
adjustment at extreme count rates ( t10 d), where
significant gradients in the white-noise periodogram
can occur in less than 1 Hz;

(vi) use the separated single-detector and total-intensity
unnormalized Fourier amplitudes to calculate the
periodograms (and/or the cospectrum);

(vii) divide all periodograms (and/or the cospectrum) by
the smoothed and squared FAD, and multiply by
2; and

3. normalize the periodograms to the wanted normalization
(e.g., Leahy et al. 1983; or fractional rms: Belloni &
Hasinger 1990; Miyamoto et al. 1991).

3.4. FAD Correction of Generic Variable Periodograms

We are now ready to verify whether the FAD-corrected
periodogram is a good approximation to the dead-time-free
periodogram. To test this, we produced a number of different
synthetic data sets as explained in Section 3.2, containing
different combinations of QPOs and broadband noise compo-
nents, expressed as pairs of Lorentzian curves.9 We first
calculated the periodogram and cospectrum of the dead-time-

free data, averaged over 64–512 s intervals. Then, we applied a
2.5 ms dead-time filter to the event list and applied the FAD
correction, as described in Section 3.3.
All spectra were then expressed in fractional rms normal-

ization (Belloni & Hasinger 1990; Miyamoto et al. 1991). In
this normalization, the integrated model returns the full
fractional rms of the light curve, and the dead-time-free and
the FAD-corrected periodograms should be consistent over the
full frequency range. An example of this analysis is shown in
Figure 4: the FAD successfully corrects so well periodograms
and cospectra when compared to dead-time-free simulated
spectra that in the figure they are almost indistinguishable.
We ran extensive simulations testing how the method

performs (1) for a range of different input count rates, leading
to dead-time effects of different magnitude in the output
periodograms and cospectra, and (2) when the light curves do
not have the same count rate (since detectors may in reality
have slightly different efficiencies). We fit all spectra with a
two-Lorentzian model, plus a constant offset to account for the
white-noise level in periodograms. We calculated the rms by
integrating the model fitted above over the full frequency range
and compared the results in the dead-time-free and FAD-
corrected cases.

3.5. Simulation Results and Discussion

The simulations described above show that the shape of the
periodogram is precisely corrected by the FAD procedure if
the input light curves have the same count rate and for values of
the input count rate and rms that are not too extreme. Differing
input count rates in different detectors matter in practice only
for the single-detector periodogram, but not for cospectra and
total-intensity periodograms. At high count rates, single-
detector periodograms are corrected very well only if the two
detectors have very similar count rates, and count rates must be
more similar at higher count rates in order for the correction to
apply. However, we find that the total-intensity periodogram
and the cospectrum remain well corrected by the FAD even if
the count rate in the two detectors differs by 30% in most cases.
Therefore, we recommend using the FAD very carefully with

Figure 3. Probability density function of non-averaged powers in the cospectrum (pink) and the periodogram (gray), before the FAD correction and after (red and
black, respectively), shown as a fine-grained histogram. After correction, the powers follow remarkably well the expected Laplace (cospectrum) and c2

2 (periodogram)
distributions, as highlighted by the overplotted probability density functions (PDF).

9 See the notebooks at https://github.com/matteobachetti/deadtime-paper-II
to reproduce the analysis plotted in the figures of this Letter and more. The
algorithm described in Section 3.3 is contained in the fad_correction.py
file in the notebooks directory.
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single-detector periodograms, which should not be an issue
given that the total-intensity periodogram is more sensitive and
more convenient to use. A comparison with the cospectrum,
which is not affected by white-noise level distortions, is always
recommended.

However, we find that the FAD correction consistently
overestimates the integrated rms when the count rate and rms
are both very high, in particular at low frequency (See
Figure 5). At ∼200 counts s−1 and 50% rms, the relative
overestimation is below 5% (meaning that if the true rms is
50%, the measured rms is between 50% and 53%) and it is
symmetrically distributed around 0, as expected from statistical
uncertainties. At higher incident rates and rms, the uncertainty
distribution is biased toward positive relative errors, implying
an overestimation of the rms. This should not be a problem in
most use cases, when the rms is used as a rough indicator for
spectral state. If very precise measurements of rms are needed

(for example, to calculate rms/energy spectra), it is safer to
account for this bias through simulations. As a rough rule-of-
thumb, the bias in the measured fractional rms increases
linearly with the count rate and quadratically with rms. A
practical way to estimate this effect during analysis is to apply
the FAD, obtain a best-fit model, calculate the rms, and
simulate a number of realizations of the light curve to evaluate
the amount of overestimation involved.10

4. Conclusions

In this Letter, we described a method to correct the
normalization of dead-time-affected periodograms. This
method is valid in principle for (1) correcting the shape of
the periodogram, eliminating the well-known pattern produced

Figure 4. Periodogram, in fractional rms normalization, from a simulation with four Lorentzian features (at 50, 200, 300, and 400 Hz) with 40 Hz full with at half
maximum (FWHM). We plotted and fitted the periodograms obtained before and after applying a 2.5 ms dead-time filter. The total rms before dead time was 30% and
the incident photon flux 400 counts s−1. There is no significant difference between the FAD-normalized and the dead-time-free periodogram, while the cospectrum
without FAD (pink) clearly distorts the curves at different frequencies.

Figure 5. Relative overestimation of FAD with respect to rms vs. rms as calculated from the cospectrum. We encoded in the color the the incident rate (left) and the
frequency of the feature (right). From this visualization we see two regimes: below ∼40% fractional rms, the errors are dominated by statistical errors. These errors
will simply decrease when we average more data, as we expect from statistical errors. Over ∼40% fractional rms, FAD-corrected spectra overestimate the rms, and this
is in particular when the incident rate is high and the frequency is relatively low.

10 Relevant code can be found in Jupyter notebooks in the following GitHub
repository: https://github.com/matteobachetti/deadtime-paper-II.
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by dead time, and (2) adjusting the white-noise standard
deviation of periodogram and cospectra to its correct value at
all frequencies. In general, we recommend applying the FAD
correction to both the periodogram and the cospectrum. The
periodogram, if obtained by the sum of the light curves, can
yield a higher signal-to-noise ratio. However, the white-noise
level subtraction is not always very precise due to mismatches
in the mean count rate in the two light curves. A comparison
with the FAD-corrected cospectrum, to verify visually the
white-noise subtraction, is always recommended: the white-
noise subtraction is the most important step when calculating
the significance of a given feature in the periodogram (e.g.,
Barret & Vaughan 2012; Huppenkothen et al. 2017). The
cospectrum indeed has the advantage of not requiring white-
noise level subtraction.

We performed a number of simulations to test the validity of
our method and explore its performance in the limits of high
count rates as well as detectors with mis-matched efficiencies.
In all cases, we find that the adjustment of the white-noise
standard deviation in the periodogram and the cospectrum
works remarkably well, allowing us to conduct a confident
analysis of X-ray variability even in sources where this was
precluded until now. Only in cases where the count rate and the
rms are both very high (>500 counts s−1 incident, >40%
resp.), the FAD correction leads to an overestimation the rms,
even if the white-noise level of the periodogram remains flat.
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